实验四图的最短路径弗洛伊德算法实现

合集下载

佛洛伊德算法

佛洛伊德算法

佛洛伊德算法
佛洛伊德算法(Floyd算法)是一种利用动态规划的思想寻找给定的加权图中多源点之间最短路径的算法,以创始人之一、1978年图灵奖获得者、斯坦福大学计算机科学系教授罗伯特·弗洛伊德命名。

该算法的基本思想是通过Floyd计算图G=(V,E)中各个顶点的最短路径时,需要引入一个矩阵S,矩阵S中的元素a[i][j]表示顶点i(第i个顶点)到顶点j(第j个顶点)的距离。

具体步骤如下:
1.初始化S。

矩阵S中顶点a[i][j]的距离为顶点i到顶点j的权值;如果i和j不相邻,则a[i][j]=∞。

实际上,就是将图的原始矩阵复制到S中。

2.以顶点A(第1个顶点)为中介点,若a[i][j]>a[i][0]+a[0][j],则设置a[i][j]=a[i][0]+a[0][j]。

请注意,在具体使用中,可能需要根据问题的具体情况对该算法进行适当的调整。

第11周图(下)第4讲-求最短路径的Floyd算法

第11周图(下)第4讲-求最短路径的Floyd算法

path3
3
0
1
2
3
7
0
-1
0
31
0
2
1
2 -1 31
1
2
2
2
2
-1
2
0
3
2
2
3
-1
求最终结果
A3
0
1
2
3
0
0
5
8
7
1
6
0
3
2
2
3
3
0
2
3
4
4
1
0
path3
0
1
2
30-10301
2
-1
3
1
2
2
2
-1
2
3
2
2
3
-1
求最短路径长度:
由A3数组可以直接得到两个顶点之间的最短路径长度。 如A3[1][0]=6 说明顶点1到0的最短路径长度为6。
pathx[i][j]表示考虑过0~x的顶点得到i j的最短路径,该路径上顶点j的 前一个顶点。
已经考虑过0~k-1顶 点的情况
k
a
i
……
b
j
现在考虑顶点k
pathk-1[i][j]=b
若经过顶点k的路径更短: pathk[i][j] = a = pathk-1[k][j] 否则: pathk[i][j] = b = pathk-1[i][j] 不改变
Floyd算法示例演示
0
7 34
51
3
2
2
2
3
1
A-1
0
1
2

最短路算法

最短路算法

最短路径在一个无权的图中,若从一个顶点到另一个顶点存在着一条路径,则称该路径长度为该路径上所经过的边的数目,它等于该路径上的顶点数减1。

由于从一个顶点到另一个顶点可能存在着多条路径,每条路径上所经过的边数可能不同,即路径长度不同,把路径长度最短(即经过的边数最少)的那条路径叫作最短路径或者最短距离。

对于带权的图,考虑路径上各边的权值,则通常把一条路径上所经边的权值之和定义为该路径的路径长度或带权路径长度。

从源点到终点可能不止一条路径,把带权路径长度最短的那条路径称为最短路径,其路径长度(权值之和)称为最短路径长度或最短距离。

最短路径算法Dijkstra算法:该算法是用于求解单源点最短路径的实用算法。

Dijkstra算法的基本思想如下:设置并逐步扩充一个集合S,存放已求出其最短路径的顶点,则尚未确定最短路径的顶点集合是V-S其中,V为网中所有顶点集合。

按最短路径长度递增的顺序逐个用V-S中的顶点加到S中,直到S中包含全部顶点,而V-S为空。

Dijkstra算法的具体步骤;(1)设源点为V1,则S中只包含顶点V1,令W=V-S,则W中包含除V1外图中所有顶点。

V1对应的距离值为0,即D[1]=0。

W中顶点对应的距离值是这样规定的:若图中有弧 <v1,vk>,则Vj顶点的距离为此弧权值,否则为一个无穷大的数;(2)从W中选择一个其距离值最小的顶点 vk,并加入到S中;(3)每往S中加入一个顶点vk后,就要对W中各个顶点的距离值进行一次修改。

若加进vk做中间顶点,使<v1,vk> + <vk+vj>的值小于<v1,vj> 值,则用<v1,vk> + <vk+vj>代替原来vj 的距离值;(4)重复步骤2和3,即在修改过的W中的选距离值最小的顶点加入到S 中,并修改W中的各个顶点的距离值,如此进行下去,知道S中包含图中所有顶点为之,即S=V。

弗洛伊德算法求解最短路径

弗洛伊德算法求解最短路径

弗洛伊德算法求解最短路径算法的基本思想是采用动态规划的方式,逐步地计算图中所有顶点对之间的最短路径长度。

算法首先初始化一个二维数组D,其中D[i][j]表示从顶点i到顶点j的最短路径长度。

初始时,D[i][j]的值为无穷大,表示顶点i到顶点j没有直接路径。

然后,算法通过逐步更新D数组的值,不断地优化顶点对之间的最短路径。

算法的具体步骤如下:1.初始化D数组:对于图中的每一对顶点i和j,如果i等于j,则置D[i][j]=0,表示顶点到自身的距离为0;否则,如果i和j之间有边存在,则置D[i][j]为边的权重,否则置为无穷大。

2.对于图中的每一个顶点k,依次考虑顶点对(i,j),其中i和j分别表示图中的任意两个顶点。

如果从顶点i先经过顶点k再到达顶点j的路径长度小于当前D[i][j]的值,则更新D[i][j]为新的较短路径长度。

3.对于每一对顶点i和j,以每一个顶点k为中间节点,重复步骤2、这样,在每一次迭代中,D数组会根据当前的顶点k得到更短的路径。

4.根据更新后的D数组,可以得到任意两个顶点之间的最短路径长度。

如果需要获取最短路径上的具体路径,则可以使用一个辅助数组P,其中P[i][j]表示从顶点i到顶点j的最短路径上,从顶点i到顶点j前一个顶点的编号。

通过回溯P数组,可以得到最短路径上的所有顶点。

弗洛伊德算法的时间复杂度为O(n^3),其中n表示图中顶点的个数。

由于要对所有顶点对之间的路径长度进行计算,因此算法的运行时间较长。

然而,该算法适用于复杂图中的最短路径计算,可以得到任意两个顶点之间的最短路径及其长度。

弗洛伊德算法在实际应用中有广泛的应用。

例如,在路由算法中,可以使用弗洛伊德算法来计算网络中所有节点之间的最短路径,并根据计算结果进行路由选择。

此外,弗洛伊德算法也可以应用于交通规划、航空航线优化等领域。

总之,弗洛伊德算法是一种用于求解图中所有顶点对之间最短路径的动态规划算法。

通过逐步更新路径长度的方式,可以得到任意两个顶点之间的最短路径及其长度。

弗洛伊德(Floyd)算法

弗洛伊德(Floyd)算法

弗洛伊德(Floyd)算法最短路径问题:从某个顶点出发到达另外⼀个顶点的所经过的边的权重和最⼩的⼀条路径弗洛伊德算法解决最短路径问题1.基本思想(1)计算图中各个顶点之间的最短路径,每⼀个顶点都是出发访问点,所以需要将每⼀个顶点看做被访问顶点,求出从每⼀个顶点到其他顶点的最短路径(2)所有顶点都作为中间节点遍历⼀次,每次遍历将各个顶点经过中间节点到另⼀个节点的距离,与不经过该节点的距离相⽐较,若经过中间节点的距离更⼩,就更新距离表与前驱关系(3)时间复杂度O(n3),所有顶点作为出发点、中间节点、终点,每个顶点都要遍历3次2.步骤(1)设置顶点 a 到顶点 b 的最短路径已知为 L ab,顶点 b 到 c 的最短路径已知为 L bc,顶点 a 到 c 的路径为 L ac,则 a 到 c 的最短路径为:min ( ( L ab + L bc ), L ac ),b 的取值为图中所有顶点,则可获得 a 到 b 的最短路径(2)⾄于 a 到 b 的最短路径 L ab或者 b 到 c 的最短路径 L bc,是以同样的⽅式获得(3)三个点为同⼀顶点时:中间顶点为⾃⾝;三个点是不同顶点时:中间顶点是终点的前驱节点;两个顶点直接连通时:中间节点为出发点代码实现import java.util.Arrays;public class Floyd {//弗洛伊德算法解决最短路径问题public static final int BLOCK = 65535;//表⽰顶点之间不直接连通public static void main(String[] args) {char[] vertex = {'A', 'B', 'C', 'D', 'E', 'F', 'G'};//顶点到⾃⾝距离为0int[][] matrix = {{0, 5, 7, BLOCK, BLOCK, BLOCK, 2},{5, 0, BLOCK, 9, BLOCK, BLOCK, 3},{7, BLOCK, 0, BLOCK, 8, BLOCK, BLOCK},{BLOCK, 9, BLOCK, 0, BLOCK, 4, BLOCK},{BLOCK, BLOCK, 8, BLOCK, 0, 5, 4},{BLOCK, BLOCK, BLOCK, 4, 5, 0, 6},{2, 3, BLOCK, BLOCK, 4, 6, 0}};Graph graph = new Graph(matrix, vertex);graph.floyd();graph.result();}}//带权⽆向图class Graph {public char[] vertex;//存放顶点public int[][] matrix;//保存各个顶点到其它顶点的距离,初始为直接连接的距离,算法计算后为最短距离public int[][] relay;//保存中间结点//构造器public Graph(int[][] matrix, char[] vertex) {this.vertex = vertex;this.matrix = matrix;this.relay = new int[vertex.length][vertex.length];//三个点为同⼀顶点时:中间顶点为⾃⾝;三个点是不同顶点时:中间顶点是终点的前驱节点;两个顶点直接连通时:中间节点为出发点for (int i = 0; i < vertex.length; i++) {Arrays.fill(relay[i], i);//初始中间顶点为⾃⾝}}//显⽰算法结果public void result() {for (int k = 0; k < vertex.length; k++) {for (int i = 0; i < vertex.length; i++) {System.out.println(vertex[k] + " 到 " + vertex[i] +" 最短路径 " + matrix[k][i] +" 中间结点 " + vertex[relay[k][i]]);}System.out.println();}}//弗洛伊德算法public void floyd() {int temp;//保存i到j的距离for (int i = 0; i < matrix.length; i++) {//出发点ifor (int j = 0; j < matrix.length; j++) {//中间顶点jfor (int k = 0; k < matrix.length; k++) {//终点ktemp = matrix[i][j] + matrix[j][k];//求从i出发,经过k,到达j的距离 if (temp < matrix[i][k]) {matrix[i][k] = temp;//更新距离relay[i][k] = relay[j][k];//更新中间顶点}}}}}}。

数据结构与算法课程设计报告---图的算法实现

数据结构与算法课程设计报告---图的算法实现

数据结构与算法课程设计报告课程设计题目:图的算法实现专业班级:信息与计算科学1002班目录摘要 (1)1、引言 (1)2、需求分析 (1)3、概要设计 (2)4、详细设计 (4)5、程序设计 (10)6、运行结果 (18)7、总结体会 (19)摘要(题目): 图的算法实现实验内容图的算法实现问题描述:(1)将图的信息建立文件;(2)从文件读入图的信息,建立邻接矩阵和邻接表;(3)实现Prim、Kruskal、Dijkstra和拓扑排序算法。

关键字:邻接矩阵、Dijkstra和拓扑排序算法1.引言本次数据结构课程设计共完成图的存储结构的建立、Prim、Kruskal、Dijkstra 和拓扑排序算法等问题。

通过本次课程设计,可以巩固和加深对数据结构的理解,通过上机和程序调试,加深对课本知识的理解和熟练实践操作。

(1)通过本课程的学习,能够熟练掌握数据结构中图的几种基本操作;(2)能针对给定题目,选择相应的数据结构,分析并设计算法,进而给出问题的正确求解过程并编写代码实现。

使用语言:CPrim算法思想:从连通网N={V,E}中的某一顶点v0出发,选择与它关联的具有最小权值的边(v0,v),将其顶点加入到生成树的顶点集合V中。

以后每一步从一个顶点在V中,而另一个顶点不在V中的各条边中选择权值最小的边(u,v),把它的顶点加入到集合V中。

如此继续下去,直到网中的所有顶点都加入到生成树顶点集合V中为止。

拓扑排序算法思想:1、从有向图中选取一个没有前驱的顶点,并输出之;2、从有向图中删去此顶点以及所有以它为尾的弧;重复上述两步,直至图空,或者图不空但找不到无前驱的顶点为止。

没有前驱-- 入度为零,删除顶点及以它为尾的弧-- 弧头顶点的入度减1。

2.需求分析1、通过键盘输入建立一个新的有向带权图,建立相应的文件;2、对建立的有向带权图进行处理,要求具有如下功能:(1)用邻接矩阵和邻接表的存储结构输出该有向带权图,并生成相应的输出结果;(2)用Prim、Kruskal算法实现对图的最小生成树的求解,并输出相应的输出结果;(3)用Dijkstra算法实现对图中从某个源点到其余各顶点的最短路径的求解,并输出相应的输出结果;(4)实现该图的拓扑排序算法。

弗洛伊德算法最短路径

弗洛伊德算法最短路径

弗洛伊德算法最短路径嘿,咱们来聊聊弗洛伊德算法最短路径这玩意儿。

你可以把它想象成在一个超级大的迷宫里找最快的出口。

我就拿我上次去旅游找酒店的事儿来说吧。

我们到了一个陌生的城市,那城市的道路就像一团乱麻。

我们要从车站去预订的酒店,这就好比在一个复杂的网络里找从一个点到另一个点的最短路线,这就是弗洛伊德算法要解决的问题啦。

我们站在车站门口,手里拿着地图,那地图上的街道密密麻麻的,交叉路口多得数不清。

就像我们面对的是好多节点和连线组成的图形,每个路口就是一个节点,路就是连线,而我们要找的就是从车站这个“起始节点”到酒店那个“目标节点”的最短路径。

弗洛伊德算法呢,就像是一个聪明的向导。

它会把所有可能的路线都考虑进去,不管是大道还是小路。

比如说,我们可以直接坐某一路公交直达酒店附近,这是一条路;也可以先坐地铁到一个中转站,再换乘公交,这又是一条路;甚至还可以打个车到某个地方,然后步行过去,选择可多了。

算法就会像个耐心的数学家,把这些路线的距离都算一算,然后找出最短的那一条。

我们当时就在讨论走哪条路好。

我朋友说要打车,觉得快。

可我看着地图,觉得也许坐公交转地铁会更划算,距离说不定更短呢。

这时候要是有弗洛伊德算法帮忙就好了。

它会把打车可能遇到堵车的时间、公交的站点停靠时间、地铁的行驶速度这些因素都考虑进去,然后得出一个准确的最短时间路径。

就像在算法里,每一段路都有它的“权重”,也就是长度或者花费的时间之类的。

打车虽然速度快,但可能会因为堵车让这个“权重”变得很大;公交虽然慢,但如果一路顺畅,“权重”可能就还好。

弗洛伊德算法会把这些复杂的情况都分析清楚,就像一个超级大脑。

最后我们还是决定先坐公交,再走一小段路。

嘿,你猜怎么着?还真挺顺利,没花多少时间就到酒店了。

这就有点像弗洛伊德算法成功找到了最短路径一样。

所以说,弗洛伊德算法最短路径这个东西啊,虽然听起来很复杂,但它在生活中其实还挺实用呢,能帮我们在复杂的选择中找到最快到达目标的方法,是不是挺神奇的?这算法就像一把神奇的钥匙,打开了找到最短路径的那扇门。

图的最短路径与最小生成树算法实践

图的最短路径与最小生成树算法实践

图的最短路径与最小生成树算法实践在计算机科学中,图(Graph)是一种抽象的数据结构,它由节点(Vertex)和边(Edge)组成。

图的最短路径和最小生成树是图算法中的两个重要问题,它们在网络、交通、社交网络等领域有着广泛的应用。

本文将介绍图的最短路径算法和最小生成树算法的实践。

一、图的最短路径算法实践图的最短路径算法用于求解两个节点之间的最短路径,常用的算法有迪杰斯特拉算法(Dijkstra Algorithm)和弗洛伊德算法(Floyd Algorithm)。

(这里可以介绍迪杰斯特拉算法和弗洛伊德算法的思想和流程,注意使用文字和图示来说明)在实际应用中,最短路径算法可以被用于许多场景,比如导航系统中的路径规划、物流配送中的最优路线选择等。

例如,在一座城市中,我们需要规划出从A地到B地的最短路径,可以使用最短路径算法来求解。

二、图的最小生成树算法实践图的最小生成树算法用于找到一个连通图的最小生成树,最常用的算法是普里姆算法(Prim Algorithm)和克鲁斯卡尔算法(Kruskal Algorithm)。

(这里可以介绍普里姆算法和克鲁斯卡尔算法的思想和流程,注意使用文字和图示来说明)最小生成树算法在实际应用中也有很多用途,比如电力系统的最优输电线路规划、通信网络的构建等。

例如,在一个城市的交通网络中,我们希望为每个区域之间建立电缆线路,以便实现高速、稳定的通信,可以使用最小生成树算法来求解。

三、图的最短路径和最小生成树算法在实践中的应用图的最短路径和最小生成树算法在现代社会中有广泛的应用,下面将介绍一些实际应用场景。

1. 路径规划最短路径算法可以用于导航系统中的路径规划。

通过输入起点和终点,最短路径算法可以帮助我们找到从起点到终点的最短路径,以便在导航系统上为驾驶员提供准确的路线指引。

2. 物流配送在物流配送中,最短路径算法可以用于选择最优路线,以节省时间和成本。

通过计算各个配送点之间的距离和路径,可以帮助物流公司规划出最佳配送路线,提高配送效率。

Floyd算法求解最短路径问题(完整程序代码)

Floyd算法求解最短路径问题(完整程序代码)

引言在图论中经常会遇到这样的问题,在一个有向图里求出任意两个节点之间的最短距离。

当节点之间的权值是正值的时候,我们可以采用Dijkstra算法,用贪心策略加于解决。

但当节点之间的权值有负数的时候,Dijkstra就行不通了,这里介绍另外一种算法—Floyd最短路径算法。

对于任意图,选择存储结构存储图并实现FLOYD算法求解最短路经。

将问题分解,分解为两方面。

一是对于任意图的存储问题,第二个是实现FLOYD算法求解最短路经。

首先对于图的创建选择合适的存储结构进行存储,对于合适的存储结构可以简化程序。

本实验采用邻接矩阵存储。

然后是实现FLOYD算法求解最短路经,在FLOYD算法中路径的长度即是图中两定点间边的权值,FLOYD算法要求输出任意两个顶点间的最短路径,而且经过的顶点也要输出。

考虑到问题的特殊性,采用一个二维数组和一个三维数组进行存储。

二维数组存储最短路径,三维数组存储路径经过的顶点,在进行适当的算法后对这两个数组进行输出即可。

通过问题的分解,逐个解决,事先所要求的程序。

最短路径算法问题是计算机科学、运筹学、地理信息系统和交通诱导、导航系统等领域研究的一个热点。

传统的最短路径算法主要有Floyd算法和Dijkstra算法。

Floyd算法用于计算所有结点之间的最短路径。

Dijkstra算法则用于计算一个结点到其他所有结点的最短路径。

Dijkstra算法是已经证明的能得出最短路径的最优解,但它的效率是一个很大的问题。

对于具有n个结点的一个图,计算一个结点到图中其余结点最短路径的算法时间复杂度为O(n2)。

对于一座大中型城市,地理结点数目可能达到几万个到几十万个,计算最短路径的时间开销将是非常巨大的。

本文根据吴一民老师的建议,分析当前存在的各种求最短路径的算法,提出一种新的基于层次图的最短路径算法,即将一个平面图划分若干子图,子图抽象为一个高层图。

最短路径的计算首先在高层图中进行,缩小了最短路径的查找范围,降低了最短路径计算的时间开销。

图论论文迪杰斯特拉(Dijkstra)-弗罗伊德(Floyd)算法

图论论文迪杰斯特拉(Dijkstra)-弗罗伊德(Floyd)算法

摘要:主要介绍最短路的两种算法,迪杰斯特拉(Dijkstra)以及算法在实际问题中的应用。

关键字:图论,最短路径,树,生成树,迪杰斯特拉(Dijkstra),弗罗伊德(Floyd)算法1 引言最短路问题是图论理论的一个经典问题。

寻找最短路径就是在指定网络中两结点间找一条距离最小的路。

最短路不仅仅指一般地理意义上的距离最短,还可以引申到其它的度量,如时间、费用、线路容量等。

最短路径算法的选择与实现是通道路线设计的基础,最短路径算法是计算机科学与地理信息科学等领域的研究热点,很多网络相关问题均可纳入最短路径问题的范畴之中。

经典的图论与不断发展完善的计算机数据结构及算法的有效结合使得新的最短路径算法不断涌现。

2最短路定义①1若图G=G(V,E)中各边e 都赋有一个实数W(e),称为边e 的权,则称这种图为赋权图,记为G=G(V,E,W)。

定义②2若图G=G(V,E)是赋权图且()0W e ≥,()e E G ∈,若u 是i v 到j v 的路()W u 的权,则称()W u 为u 的长,长最小的i v 到j v 的路()W u 称为最短路。

3、Dijkstra 算法基本步骤③: 令:{}{}_23,1,,,,i n s v i s v v v ===并令:{()()10,j j W v T v v s-==∞∈1、 对j v s -∈,求()(){}()min ,j i ij j T v W v w T v +=。

2、 求(){}min j jv sT v ∈得()kT v ,使()kT v =(){}min j jv sT v ∈令()()k k W v T v =3、若k n v v =则已找到1v 到n v 的最短路距离()k W v ,否则令i k =从s -中删去i v 转1 这样经过有限次迭代则可以求出1v 到n v 的最短路线,可以用一个流程图来表示:第一步 先取()10W v =意即1v 到1v 的距离为0,而()j T v 是对()j T v 所赋的初值。

算法12--最短路径--弗洛伊德(Floyd)算法

算法12--最短路径--弗洛伊德(Floyd)算法

D(2) [i][j] = min{D(1) [i][j], D(1) [i][2]+D(1) [2][j]}
6
0123
V2 8 V3
8
0 1 1920 43 0
3
4 52
ADA(((-32101)))==
8
11021 0 98 2 3 45 0 687
1 2
9
V0
V1
8
8
90 110 6 0 3
12
5.算法实现
• 图用邻接矩阵存储 • edge[ ][ ]存放最短路径长度 • path[i][j]是从Vi到Vj的最短路径上Vj前一顶点序号
void floyd ( ){
for ( int i = 0; i < n; i++ ) //矩阵dist与path初始化
for ( int j = 0; j < n; j++ ) { //置A(-1)
例题:
6 A4 3 11
C
初始:
0 6
4 0
11 2
3 0 B
路径: BA CA
AB AC BC
2 0 4 11
加入A: 6 0 2 37 0
AB AC
路径: BA
BC
CA CAB
04 6 加入B: 6 0 2
37 0
AB ABC
路径: BA
BC
CA CAB
04 6 加入C: 5 0 2
37 0
AB ABC
8
0092 3 45 0 687
1 2
9
V0
V1
8
8
0160 3
1
以D(0)为基础,以V1为中间顶点,求从Vi,到Vj的最短

弗洛伊德算法实现

弗洛伊德算法实现

弗洛伊德算法实现
弗洛伊德算法(Floyd Algorithm)是一种用于解决最短路径问题的算法,它是以计算机科学家沃尔夫冈·弗洛伊德(Walter Floyd)的名字命名的。

该算法基于Dijkstra算法的思想,但是在处理多个起点的情况时更加高效。

弗洛伊德算法的基本思路是,对于每个节点,维护一个从该节点出发到其他所有节点的最短距离,以及这些节点的当前位置。

然后,从任意一个起点开始,依次计算到其他所有节点的最短路径,直到计算完整个图。

具体实现步骤如下:
1、初始化起点,并计算从该起点出发到其他所有节点的最短距离,以及这些节点的当前位置。

2、从任意一个起点开始,依次计算到其他所有节点的最短路径,直到计算完整个图。

3、对于每个节点,如果当前位置已经遍历过,则更新从当前位置出发到其他所有节点的最短距离。

4、如果当前位置未遍历过,则将其加入待处理列表中。

5、重复步骤2-4,直到计算完整个图。

弗洛伊德算法的时间复杂度为O(E(logV)),其中E表示边数,V表示节点数。

这是因为在每次迭代中,只需要计算当前位置到其他所有节点的最短距离,而不需要重新计算整
个图的最短路径。

因此,弗洛伊德算法比Dijkstra算法更加高效,尤其是当图中存在多个起点时。

算法12--最短路径--弗洛伊德(Floyd)算法ppt课件

算法12--最短路径--弗洛伊德(Floyd)算法ppt课件

D(0) [i][j] =
min{D(-1) [i][j], D(-1) [i][0]+D(-1) [0][j]}
D(0) [i][j] 为从Vi到Vj的中间顶点序号不大于0的最短路径长度.
5
V2 3
V0
6
8
V3
4
5
2
9 V1
1
ADD((-(110)) ==
8
8
8
0123
0 1 2 4 10 3
0
6
V2 3
V0
6
8
V3
4
5
2
9 V1
1
ADA((-(1210)) ==
8
8
8
0123
0 1 2 4 10 3
0
8
1
102 0 9 2
2
3
3 5 40 8
67
90 1 106 0
以D(1)为基础,以V2为中间顶点,求从Vi,到Vj的最短路径。或者为从Vi到Vj的边, 或者为从Vi开 始通过V0,V1, V2到达Vj的最短路径 。
2.解决办法
§ 方法一:每次以一个顶点为源点,重复执行Dijkstra算法n次—— T(n)=O(n³) § 方法二:弗洛伊德(Floyd)算法
11
3. Floyd算法思想:逐个顶点试探法 –求最短路径步骤 •初始时设置一个n阶方阵,令其对角线元素为0,若存在弧<Vi,Vj>,则对应元素为 权值;否则为 •逐步试着在原直接路径中增加中间顶点,若加入中间点后路径变短,则修改之; 否则,维持原值 •所有顶点试探完毕,算法结束
以D(2)为基础,以V3为中间顶点,求从Vi,到Vj的最短路径。或者为从Vi到Vj的边, 或者为从Vi开 始通过V0,V1, V2,V3到达Vj的最短路径 。

Floyd(弗洛伊德)算法(C语言)

Floyd(弗洛伊德)算法(C语言)

Floyd(弗洛伊德)算法(C语⾔)转载:Floyd算法的介绍算法的特点弗洛伊德算法是解决任意两点间的最短路径的⼀种算法,可以正确处理有向图或有向图或负权(但不可存在负权回路)的最短路径问题,同时也被⽤于计算有向图的传递闭包。

算法的思路通过Floyd计算图G=(V,E)中各个顶点的最短路径时,需要引⼊两个矩阵,矩阵S中的元素a[i][j]表⽰顶点i(第i个顶点)到顶点j(第j个顶点)的距离。

矩阵P中的元素b[i][j],表⽰顶点i到顶点j经过了b[i][j]记录的值所表⽰的顶点。

假设图G中顶点个数为N,则需要对矩阵D和矩阵P进⾏N次更新。

初始时,矩阵D中顶点a[i][j]的距离为顶点i到顶点j的权值;如果i和j不相邻,则a[i][j]=∞,矩阵P的值为顶点b[i][j]的j的值。

接下来开始,对矩阵D进⾏N次更新。

第1次更新时,如果”a[i][j]的距离” > “a[i][0]+a[0][j]”(a[i] [0]+a[0][j]表⽰”i与j之间经过第1个顶点的距离”),则更新a[i][j]为”a[i][0]+a[0][j]”,更新b[i][j]=b[i][0]。

同理,第k次更新时,如果”a[i][j]的距离” >“a[i][k-1]+a[k-1][j]”,则更新a[i][j]为”a[i][k-1]+a[k-1][j]”,b[i][j]=b[i][k-1]。

更新N次之后,操作完成!补充:以下⾯图为例⼦,b[i][j]中存储的是Vi~Vj之间的中介点,b[i][j]初始值为j,⽐如V0~V3最短路径是V0-->V2-->V1-->v3,在计算最短路径时转换为V0-->V2的距离加上V2-->V3的最短距离,接下来类似于递归,V2-->V3的最短路径就是以V1为中介点,V2-->V1的距离加上V1-->V3的距离。

因此,b[0][3]=2实例说明将整体分为两个步骤1.计算metrixD矩阵(两顶点之间的最短距离)和P矩阵(两顶点的中介点)#include <stdio.h>#include <stdlib.h>void Create_metrixD_P(int** metrixD, int **P ,int VerNum, int EdgNum){int x, y, Weight, edg_count = 0;int i, j, k;for (i = 0; i < VerNum; ++i) {for (j = 0; j < VerNum; ++j) {metrixD[i][j] = INT_MAX;P[i][j] = j;}}while (edg_count < EdgNum) {scanf("%d%d%d", &x, &y, &Weight);metrixD[x - 1][y - 1] = Weight;edg_count++;}}//Floyd algorithmvoid Floyd(int **metirxD, int **P, int VerNum) {int n, x, y, temp = 0;//The triple loop looks for shortest paths and weightsfor (n = 0; n < VerNum; ++n) {for (x = 0; x < VerNum; ++x) {for (y = 0; y < VerNum; ++y) {//The distance between two vertices is compared to the distance through a vertextemp = (metirxD[x][n] == INT_MAX || metirxD[n][y] == INT_MAX) ? INT_MAX : (metirxD[x][n] + metirxD[n][y]);if (temp < metirxD[x][y]) {//Update matrix informationmetirxD[x][y] = temp;P[x][y] = n;}}}}}void Show_metrixD_P(int** metrixD, int **P, int VerNum){int x, y;printf("metrixD:\n");for (x = 0; x < VerNum; ++x) {for (y = 0; y < VerNum; ++y) {if (metrixD[x][y] == INT_MAX) {printf("∞ ");}else {printf("%d ", metrixD[x][y]);}}printf("\n");}printf("P:\n");for (x = 0; x < VerNum; ++x) {for (y = 0; y < VerNum; ++y) {printf("%d ", P[x][y]);}printf("\n");}}int main(void){int VerNum, EdgNum, i;int** metrixD, ** P;printf("Enter the number of vertices and edges:");scanf("%d%d", &VerNum, &EdgNum);metrixD = (int**)malloc(VerNum * sizeof(int));P = (int**)malloc(VerNum * sizeof(int));for (i = 0; i < VerNum; ++i) {metrixD[i] = (int*)malloc(VerNum * sizeof(int));P[i] = (int*)malloc(VerNum * sizeof(int));}printf("Input vertices and weights:");Create_metrixD_P(metrixD, P, VerNum, EdgNum);Floyd(metrixD, P, VerNum);Show_metrixD_P(metrixD, P, VerNum);for (i = 0; i < VerNum; ++i) {free(metrixD[i]);free(P[i]);}free(metrixD);free(P);return0;}2.输出顶点之间的最短距离与路径#include <stdio.h>#include <stdlib.h>#define VEXNUM 5//Adjacency matrix: shows the distance between verticesint metirxD[VEXNUM][VEXNUM] = {INT_MAX,10, 5, INT_MAX,INT_MAX,INT_MAX,INT_MAX,2, 1, INT_MAX,INT_MAX,3, INT_MAX,9, 2,INT_MAX,INT_MAX,INT_MAX,INT_MAX,4,7, INT_MAX,INT_MAX,5, INT_MAX};//Path: passing vertex between two verticesint P[VEXNUM][VEXNUM] = {0,1,2,3,4,0,1,2,3,4,0,1,2,3,4,0,1,2,3,4,0,1,2,3,4};//Floyd algorithmvoid Floyd() {int n, x, y, temp = 0;//The triple loop looks for shortest paths and weightsfor (n = 0; n < VEXNUM; ++n) {for (x = 0; x < VEXNUM; ++x) {for (y = 0; y < VEXNUM; ++y) {//The distance between two vertices is compared to the distance through a vertextemp = (metirxD[x][n] == INT_MAX || metirxD[n][y] == INT_MAX) ? INT_MAX : (metirxD[x][n] + metirxD[n][y]);if (temp < metirxD[x][y]) {//Update matrix informationmetirxD[x][y] = temp;P[x][y] = n;}}}}}void Show_Path() {int x, y, temp = 0;//Output the shortest path between two verticesfor (x = 0; x < VEXNUM - 1; ++x) {for (y = x + 1; y < VEXNUM; ++y) {printf("V%d-->V%d weight:%d path:V%d", x, y, metirxD[x][y], x);temp = P[x][y];while (temp != y) {printf("-->V%d", temp);temp = P[temp][y];}printf("-->V%d", y);printf("\n");}}}int main(void){Floyd();Show_Path();return0;}完整代码#include <stdio.h>#include <stdlib.h>void Create_metrixD_P(int** metrixD, int **P ,int VerNum, int EdgNum){int x, y, Weight, edg_count = 0;int i, j, k;for (i = 0; i < VerNum; ++i) {for (j = 0; j < VerNum; ++j) {metrixD[i][j] = INT_MAX;P[i][j] = j;}}while (edg_count < EdgNum) {scanf("%d%d%d", &x, &y, &Weight);metrixD[x - 1][y - 1] = Weight;edg_count++;}}//Floyd algorithmvoid Floyd(int **metirxD, int **P, int VerNum) {int n, x, y, temp = 0;//The triple loop looks for shortest paths and weightsfor (n = 0; n < VerNum; ++n) {for (x = 0; x < VerNum; ++x) {for (y = 0; y < VerNum; ++y) {//The distance between two vertices is compared to the distance through a vertextemp = (metirxD[x][n] == INT_MAX || metirxD[n][y] == INT_MAX) ? INT_MAX : (metirxD[x][n] + metirxD[n][y]);if (temp < metirxD[x][y]) {//Update matrix informationmetirxD[x][y] = temp;P[x][y] = n;}}}}}void Show_metrixD_P(int** metrixD, int **P, int VerNum){int x, y;printf("metrixD:\n");for (x = 0; x < VerNum; ++x) {for (y = 0; y < VerNum; ++y) {if (metrixD[x][y] == INT_MAX) {printf("∞ ");}else {printf("%d ", metrixD[x][y]);}}printf("\n");}printf("P:\n");for (x = 0; x < VerNum; ++x) {for (y = 0; y < VerNum; ++y) {printf("%d ", P[x][y]);}printf("\n");}}void Show_Path(int **metirxD, int **P, int VerNum) {int x, y, temp = 0;//Output the shortest path between two verticesfor (x = 0; x < VerNum - 1; ++x) {for (y = x + 1; y < VerNum; ++y) {printf("V%d-->V%d weight:%d path:V%d", x, y, metirxD[x][y], x); temp = P[x][y];while (temp != y) {printf("-->V%d", temp);temp = P[temp][y];}printf("-->V%d", y);printf("\n");}}}int main(void){int VerNum, EdgNum, i;int** metrixD, ** P;printf("Enter the number of vertices and edges:");scanf("%d%d", &VerNum, &EdgNum);metrixD = (int**)malloc(VerNum * sizeof(int));P = (int**)malloc(VerNum * sizeof(int));for (i = 0; i < VerNum; ++i) {metrixD[i] = (int*)malloc(VerNum * sizeof(int));P[i] = (int*)malloc(VerNum * sizeof(int));}printf("Input vertices and weights:");Create_metrixD_P(metrixD, P, VerNum, EdgNum);Floyd(metrixD, P, VerNum);Show_metrixD_P(metrixD, P, VerNum);Show_Path(metrixD, P, VerNum);for (i = 0; i < VerNum; ++i) {free(metrixD[i]);free(P[i]);}free(metrixD);free(P);return0;}。

图的最短路径

图的最短路径

后,要以Vj作为新考虑的中间点,用Vi到Vj的最
短路径长度和Vi到其它尚未求出最短路径的那些
终点的当前最短路径长度进行比较、修改,使它
成为当前新的最短路径长度,当进行n-2次后算 法结束。
14
如图所示:
(1)设置一个集合数组S,作用是标记已经求得最短路 径的终点号,初始值只有一个源点,每找到一个最短路径 的终点,将该终点并入S集合中,以便作为新的中间点。 若选取为1否则为0 (2)设置数组dist,该数组的第j个元素dist[j]用来保 存从源点Vi到Vj的目前最短边的路径长度。
(0,6,2,4,0,4), (0,0,0,9,4,0));
8
type fg=set of 1..m ;
var
city,pnt:array[1..100 ] of byte ;
flag : array[1..100 ] of fg ; flags:fg ;
i,k,n,r,f:integer ; path :array[1..10] of 1..m ;
访问过的城市。在搜索中注意本问题中,最先找到的路
径未必是最短路径,只是走过城市最少的路径。
顶点 1 2 3 4 5 6
1 0 4 8 0 0 0
2 4 0 3 4 6 0
3 8 3 0 2 2 0
4 0 4 2 0 4 9
5 0 6 2 4 0 4
6 0 0 0 9 4 0
7
•(3)判断当前的路径是否是最短路径
end;
20
(2) for k:=1 to n-2 do { 计算到各顶点的最短路径 } begin (a) w:=max ; m:=I; for j:=1 to n do { 求出第K个终点Vm } if (s[j]=0 ) and (dist[j]<w) then [ m:=j; w:=dist[j] ] (b) if m<>i then s[m]:=1 else exit { 若条件成立,把Vm并入到S集合中 ,否则 剩余终点路最短径长度均为max}

软件课程设计报告- 从某个源点到其余各顶点的最短路径

软件课程设计报告- 从某个源点到其余各顶点的最短路径

摘要摘要本次课程设计的问题:假设西安、北京、沈阳、武汉4个城市构成小型交通网,4个城市表示图的4个顶点,它们构成了无向连通图。

以北京为源点,求北京到西安的最短路径;求北京到沈阳的最短路径;北京到武汉的最短路径。

本次课程设计中应用Floyd算法求最短路径。

通过一个图的权值矩阵求出它的每两点间的最短路径矩阵,从图的带权邻接矩阵A=[a(i,j)] n×n开始,递归地进行n次更新,按一个公式,构造出矩阵D(1),又用同样地公式由D(1)构造出D(2)…最后又用同样的公式由D(n-1)构造出矩阵D(n)。

矩阵D(n)的i行j列元素便是i号顶点到j号顶点的最短路径长度,称D(n)为图的距离矩阵,同时还可引入一个后继节点矩阵path来记录两点间的最短路径。

本次试验可以进行有向和无向的计算,不同城市之间的距离由开始进行输入,最后显示两个城市之间的最短路径。

一、应用弗洛伊德(Floyd)算法计算最短路径假设西安、北京、沈阳、武汉4个城市构成小型交通网,4个城市表示图的4个顶点,他们构成了无向连通图。

以北京为源点,求北京到西安的最短路径;求北京到沈阳的最短路径;求北京到武汉的最短路径。

二、弗洛伊德(Floyd)算法的基本思想Floyd 算法是通过权矩阵计算来实现的一种方法,其主要思想是从代表任意两个节点vi到vj的距离的带权邻接矩阵D(0)开始,首先计算D(1),即计算vi到vj 的距离。

经过一次经转的所有可能路径,经过比较后选出最短路,代替D(0)中对应的路径,迭代列出距离矩阵D(1),D(1)中各元素表示通过一次迭代后网络中任意两点间最短路,也即网络中任意两点之间直接到达或只经过一个中间点时的最短路。

在此基础上依次计算D(2) ,D(3) ,…,D(k),D(k)中对应的元素表示任意两点间不经过中间点或最多允许经过2k-1 个中间点时的最短路。

当D(k+1)=D(k)时,表明得到的带权邻接矩阵D(k)就反映了所有顶点对之间的最短距离信息,,成为最短距离矩阵。

解最短路径问题的两种方法及其应用

解最短路径问题的两种方法及其应用

解最短路径问题的两种方法及其应用
最短路径问题是指在一张带权图中找到两个节点之间最短的路径。

最短路径问题是许多计算机科学和应用领域中的一个基本问题。

以下是解决这个问题的两种方法:
1. Dijkstra算法:Dijkstra算法是解决最短路径问题的一种
基本算法,它是基于贪心思想的。

该算法首先确定起始点到其他节
点的距离(记为d),然后不断扩大已确定最短距离的节点集,直
到覆盖所有节点。

Dijkstra算法适用于单源最短路径,即从一个节
点到所有其他节点的最短路径。

2. Floyd算法:Floyd算法也是一种经典的解决最短路径问题
的算法,它是一个动态规划算法。

该算法利用动态规划的思想,通
过比较任意两个节点之间经过第三点(中转点)的路径长度,更新
路径长度。

Floyd算法适用于多源最短路径,即从任意两个节点之
间的最短路径。

这两种算法可广泛应用于各种计算机科学和应用领域,如网页
排名算法、图像处理、计算机网络等。

在实际应用中,我们需要根
据实际问题的特点,选择最适合的算法。

算法|三重循环与Floyd(弗洛伊德)多源最短路径算法

算法|三重循环与Floyd(弗洛伊德)多源最短路径算法

算法|三重循环与Floyd(弗洛伊德)多源最短路径算法通常,数组用循环来处理,一般来说,一维数组的数据处理可以使用单重循环或双重循环。

如输出数组元素值,从一个数组中挑选最大值或最小值等可以使用单重循环。

而对于数组的排序一般使用双重循环,因为单重循环可以挑出一个元素的最大值或最小值,而有n个元素的数组则通过n次挑选便可完成整个数组的排序,所以在单重循环外再嵌套一个循环即可。

对于二维数组的数据处理,通常可以使用双重循环或三重循环,如二维数组元素值的输出,便可以使用双重循环,而矩阵(二维数组)乘法,便可以使用三重循环:const int maxn=105; int a[maxn][maxn],b[maxn][maxn]; int ans[maxn][maxn]; int a_n,a_m,b_n,b_m; void mul(){ for(int i=0; i<a_m; i ){ // i循环数组a的行 for(int j=0; j<b_n; j ){// j循环数组b 的列for(int k=0; k<a_n; k ){ // k循环数组a的列,数组b的行,ans[i][j] =a[i][k]*b[k][j]; } } }三重循环的另一个经典应用就是Floyd算法求多源最短路径。

Floyd算法又称为插点法,是一种利用动态规划的思想寻找给定的加权图中多源点之间最短路径的算法,与Dijkstra算法类似。

该算法名称以创始人之一、1978年图灵奖获得者、斯坦福大学计算机科学系教授罗伯特·弗洛伊德命名。

其算法的核心是在顶点 i 和顶点 j 之间,插入顶点k,看是否能够缩短 i 和 j 之间的距离(松驰操作)。

暑假,小哼准备去一些城市旅游。

有些城市之间有公路,有些城市之间则没有,如下图。

为了节省经费以及方便计划旅程,小哼希望在出发之前知道任意两个城市之前的最短路程。

可以画成如下的简图↓上图中有4个城市8条公路,公路上的数字表示这条公路的长短。

c语言实现弗洛伊德算法

c语言实现弗洛伊德算法

c语言实现弗洛伊德算法弗洛伊德算法,又称为全源最短路径算法,是一种用于求解图中所有节点的最短路径的算法。

该算法的时间复杂度是 O(n^3),因此适合于小规模的图。

C语言可以很方便地实现弗洛伊德算法。

基本上,该算法需要两个步骤:首先,需要构建一个邻接矩阵来表示图中的节点和边;其次,需要使用三重循环来计算所有节点之间的最短路径。

下面是一个简单的C语言代码示例,用于实现弗洛伊德算法: ```#include<stdio.h>#define INF 99999void floyd(int graph[][4], int n){int i,j,k;for(k=0;k<n;k++){for(i=0;i<n;i++){for(j=0;j<n;j++){if(graph[i][j]>graph[i][k]+graph[k][j])graph[i][j]=graph[i][k]+graph[k][j];}}}}int main(){int graph[4][4]={{0,5,INF,10},{INF,0,3,INF},{INF,INF,0,1},{INF,INF,INF,0}};floyd(graph,4);int i,j;for(i=0;i<4;i++){for(j=0;j<4;j++){printf('%d ',graph[i][j]);}printf('');}return 0;}```在上述代码中,我们首先定义了一个4*4的邻接矩阵,其中INF 表示两个节点之间没有直接的连通性。

然后,我们调用了floyd函数来计算所有节点之间的最短路径。

最后,我们输出了结果矩阵。

通过这种方法,我们可以方便地实现弗洛伊德算法,以解决图中的最短路径问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数据结构与算法课程实验报告实验四:图的相关算法应用
姓名:王连平
班级:09信科2班
学号:I09630221
实验四图的相关算法应用
一、实验内容
求有向网络中任意两点之间的最短路。

二、实验目的
掌握图和网络的定义,掌握图的邻接矩阵、邻接表和十字链表等存储表示。

掌握图的深度和广度遍历算法,掌握求网络的最短路的标号法和floyd算法。

三、问题描述
对于下面一张若干个城市以及城市间距离的地图,从地图中所有可能的路径中求出任意两个城市间的最短距离及路径,给出任意两个城市间的最短距离值及途径的各个城市。

四、问题的实现
4.1数据结构的抽象数据类型定义和说明
1)
typedef struct ArcCell{//储存弧信息
int Distance;
ArcCell *info;//此项用来保存弧信息,,在本实验中没有相关信息要保存
}ArcCell,AdjMatrix[ MAX_VERTEX_NUM][ MAX_VERTEX_NUM];
typedef struct{//储存顶点信息
string vexs[ MAX_VERTEX_NUM];//顶点向量
AdjMatrix arcs;//邻接矩阵
int vexnum , arcnum;//图的当前顶点数和弧数
}MGraph;
顶点信息和弧信息都是用来建立一个有向网G
2)
d[v][w];//G中各对顶点的带权长度
若P[v][w][u]为TRUE,则u是从v到w当前求得最短路径上的顶点
4.2主要的实现思路
首先通过一个函数(CreateDN)建立图的邻接矩阵储存方式,一次输入某条弧的起点,终点,和权值。

通过调用Locate函数来找到该弧在邻接矩阵中的相应位置。

其次运用弗洛伊德算法来求各定点的最短路劲,具体思路为:如果从v到w有弧,则存在一条长度为arcs[v][w]的路径,该路径不一定是最短路径。

考虑路径(v,u,w)是否存在,若存在,比较(v,w)和(v,u,w)的长度,取较短者为从v到w的中间点序号不大于0的最短路径。

以此类推,每次增加一个点,从而求出任意两点间的最短路径。

这样,经过n次比较后,所求得的必为从v到w的最短路径。

按此方法,可以同时求得任意两点间的最短路径。

五、主要源程序代码(包含程序备注)
#include<iostream>
#include<string>
using namespace std;
#define INfinity 10000//最大值
# define MAX_VERTEX_NUM 10//最大顶点数
typedef struct ArcCell{//储存弧信息
int Distance;
ArcCell *info;
}ArcCell,AdjMatrix[ MAX_VERTEX_NUM][ MAX_VERTEX_NUM];
typedef struct{//储存顶点信息
string vexs[ MAX_VERTEX_NUM];//顶点向量
AdjMatrix arcs;//邻接矩阵
int vexnum , arcnum;//图的当前顶点数和弧数
}MGraph;
int Locate(MGraph &G,string v)
{ int a=0;
for (int i=0;i<G.vexnum;i++)
{
if( G.vexs[i]==v) {
a=i;
break;}
}
return a;
}
void CreateDN(MGraph &G)//采用邻接矩阵表示法,构造有向图G
{ string v1,v2;
cout<<"请依次输入图的顶点数和弧数"<<endl;
cin>>G.vexnum>>G.arcnum;
for (int i=0;i<G.vexnum;i++)
{ cout<<"请按顺序输入地点"<<endl;
cin>>G.vexs[i];
}
for (int i=0;i<G.vexnum;i++)//初始化邻接矩阵;
{ for (int j=0;j<G.vexnum;j++) G.arcs[i][j].Distance=INfinity;}
for (int k=0;k<G.arcnum;k++){
cout<<"请输入某条路径的初始地点V1,终点V2及他们之间的距离W"<<endl; cin>>v1>>v2>>w;
int i=Locate(G,v1);
int j=Locate(G,v2);
G.arcs[i][j].Distance=w;
}
}
void Floyd(MGraph &G)
{ int P[MAX_VERTEX_NUM][MAX_VERTEX_NUM][MAX_VERTEX_NUM];
int d[MAX_VERTEX_NUM][MAX_VERTEX_NUM];
for (int v=0;v<G.vexnum;v++)
{ for (int w=0;w<G.vexnum;w++)
{ d[v][w]=G.arcs[v][w].Distance;
for (int u=0;u<G.vexnum;u++)
{ P[v][w][u]=0;
if (d[v][w]<INfinity)//从v到w有直接路径
{P[v][w][v]=1;P[v][w][w]=1; }
}
}
}
for (int u=0;u<G.vexnum;u++)
{for (int v=0;v<G.vexnum;v++)
{for (int w=0;w<G.vexnum;w++)
{ if (d[v][u]+d[u][w]<d[v][w])//从v经u到w的一条路径更短
{
d[v][w]=d[v][u]+d[u][w];
for (int i=0;i<G.vexnum;i++)
{P[v][w][i]=P[v][u][i]||P[u][w][i];}
}
}
}
}
for (int v=0;v<G.vexnum;v++)
{for (int w=0;w<G.vexnum;w++)
{cout <<"从"<<G.vexs[v]<<"到"<<G.vexs[w]<<"的最短路径为:"<<d[v][w]<<endl;
cout <<"途径城市为:";
for (int u=0;u<G.vexnum;u++)
{ if (P[v][w][u]==1)//P[v][w][u]为,说明u为v到w的最短路劲中的一个顶点
{cout <<G.vexs[u];}
}
cout<<""<<endl;
}
}
}
}
void main()
{MGraph *G;
G=new MGraph;
CreateDN(*G);
Floyd(*G);
}
六、总结
通过本次试验,我对于图的定义及其邻接矩阵储存方式有了进一步的了解。

同时对Flyd算法也有了更深的认识。

特别是用这种方法求求任意两点最短路径的过程比用迪杰斯特算法算n次的形式上更加简单,
时间复杂度为()3n O
,是一个简便的算法。

当然在这次实验没用到图的邻接表和十字链表表示方法,所以
在课后需要花更多的时间去熟悉这两种储存方式,同时也要去了解求网络的最短路的标号法。

相关文档
最新文档