传热学第四版重点复习题
传热学第四版1-7章试卷及答案
传热试卷一、判断题(每题2分,共10分)1、如果在水冷壁的管子里结了一层水垢,其他条件不变,管壁温度与无水垢时相比将提高(√)2、同名准则数相等,两种现象必相似。
(×)3、流体分别在较长的促管和习惯内做强制紊流对流换热,如果流速条件相等,则粗管内换热较大(√)4、根据流体流动的起因不同,把对流换热分为层流换热和湍流换热(×)5、沸腾的临界热流量q c是从不稳定膜态沸腾过渡到稳定膜态沸腾的转折点。
(×)二、简答题(每题8分,共40分)1、简述导热微分方程的三类定解条件答:第一类:规定了边界上的温度;第二类:规定了边界上的热流密度;第三类:规定了物体与周围流体间的表面传热系数h及周围流体的温度。
2、试用简明语言说明边界层的特点及引入边界层的意义。
答:特点1)流动边界层厚度δ<<l 2)有层流紊流,且紊流区有层流底层3)边界层内的速度梯度很大4)分为主流层区和边界层去意义1)缩小研究区域2)简化微分方程3、使用特征数方程时应注意哪些问题答:(1)特征长度应该按该准则式规定的方式选取(2)特征速度应该按规定方式计算(3)定性温度应该按该准则式规定的方式选取(4)准则方程不能任意推广到得到该方程的实验参数的范围以外。
4、简述沿热竖壁自然对流局部系数变化原因答:层流厚度增加,h减小;逐渐变为湍流,h增加;旺盛湍流h几乎为常量5、非稳态导热正规与非正规的区别在哪里?请用文字和数学语言描述答:正规温度分布受热边界条件的影响,oF≥0,.2;非正规温度分布受初始温度分布的影响,≤0.2三、计算题(共50分)1、(10分)一砖墙的表面积为12,厚为260mm,平均导热系数为1.5W/(m.K)。
设面向室内的表面温度为25℃,而外表面温度为-5℃,试确定次砖墙向外界散失的热量。
解:根据傅立叶定律有:2、(12分)某一瞬间,一无内热源的无限大平板中的温度分布可以表示成t 1=c1x2+c2的形式,其中c1、c2为已知的常数,试确定:ft oF2mWtA9.207626.05)(25125.1=--⨯⨯=∆=Φδλ(1) 此时刻在x=0的表面处的热流密度(2) 此时刻平板平均温度随时间的变化率,物性已知且为常数。
传热学第四版重点复习题
二—1. 试写出导热傅里叶定律的一般形式,并说明其中各个符号的意义。
答:傅立叶定律的一般形式为:n x t gradt q =-,其中:gradt 为空间某点的温度梯度;n 是通过该点的等温线上的法向单位矢量,指向温度升高的方向;q 为该处的热流密度矢量。
2. 已知导热物体中某点在x,y,z 三个方向上的热流密度分别为y x q q ,及z q ,如何获得该点的 热密度矢量?答:k q j q i q q z y x ,其中k j i ,,分别为三个方向的单位矢量量。
3. 试说明得出导热微分方程所依据的基本定律。
答:导热微分方程式所依据的基本定律有:傅立叶定律和能量守恒定律。
4. 试分别用数学语言将传热学术语说明导热问题三种类型的边界条件。
答:① 第一类边界条件:)(01 f t w 时,② 第二类边界条件:)()(02 f x t w 时 ③ 第三类边界条件:)()(f w w t t h x t5. 试说明串联热阻叠加原则的内容及其使用条件。
答:在一个串联的热量传递过程中,如果通过每个环节的热流量都相同,则各串联环节的总热阻等于各串联环节热阻的和。
使用条件是对于各个传热环节的传热面积必须相等。
6. 发生在一个短圆柱中的导热问题,在下列哪些情形下可以按一维问题来处理?答:当采用圆柱坐标系,沿半径方向的导热就可以按一维问题来处理。
三—2.在用热电偶测定气流的非稳态温度场时,怎么才能改善热电偶的温度响应特性? 答:要改善热电偶的温度响应特性,即最大限度降低热电偶的时间常数hA cv c ,形状上要降低体面比,要选择热容小的材料,要强化热电偶表面的对流换热。
4什么叫非稳态导热的正规状态或充分发展阶段?这一阶段在物理过程及数学处理上都有些什么特点?答:非稳态导热过程进行到一定程度,初始温度分布的影响就会消失,虽然各点温度仍随时间变化,但过余温度的比值已与时间无关,只是几何位置( /x )和边界条件(Bi 数)的函数,亦即无量纲温度分布不变,这一阶段称为正规状况阶段或充分发展阶段。
第四版传热学第五、六,七 八 章习题解答
第五章复习题1、试用简明的语言说明热边界层的概念。
答:在壁面附近的一个薄层内,流体温度在壁面的法线方向上发生剧烈变化,而在此薄层之外,流体的温度梯度几乎为零,固体表面附近流体温度发生剧烈变化的这一薄层称为温度边界层或热边界层。
2、与完全的能量方程相比,边界层能量方程最重要的特点是什么?答:与完全的能量方程相比,它忽略了主流方向温度的次变化率σα22x A ,因此仅适用于边界层内,不适用整个流体。
3、式(5—4)与导热问题的第三类边界条件式(2—17)有什么区别?答:=∂∆∂-=yyt th λ(5—4))()(f w t t h h t-=∂∂-λ (2—11)式(5—4)中的h 是未知量,而式(2—17)中的h 是作为已知的边界条件给出,此外(2—17)中的λ为固体导热系数而此式为流体导热系数,式(5—4)将用来导出一个包括h 的无量纲数,只是局部表面传热系数,而整个换热表面的表面系数应该把牛顿冷却公式应用到整个表面而得出。
4、式(5—4)表面,在边界上垂直壁面的热量传递完全依靠导热,那么在对流换热中,流体的流动起什么作用?答:固体表面所形成的边界层的厚度除了与流体的粘性有关外还与主流区的速度有关,流动速度越大,边界层越薄,因此导热的热阻也就越小,因此起到影响传热大小5、对流换热问题完整的数字描述应包括什么内容?既然对大多数实际对流传热问题尚无法求得其精确解,那么建立对流换热问题的数字描述有什么意义?答:对流换热问题完整的数字描述应包括:对流换热微分方程组及定解条件,定解条件包括,(1)初始条件 (2)边界条件 (速度、压力及温度)建立对流换热问题的数字描述目的在于找出影响对流换热中各物理量之间的相互制约关系,每一种关系都必须满足动量,能量和质量守恒关系,避免在研究遗漏某种物理因素。
基本概念与定性分析5-1 、对于流体外标平板的流动,试用数量级分析的方法,从动量方程引出边界层厚度的如下变化关系式:x xRe 1~δ解:对于流体外标平板的流动,其动量方程为:221xy u v dx d y u v x y u ∂+-=∂∂+∂∂ρρ 根据数量级的关系,主流方的数量级为1,y 方线的数量级为δ则有2211111111δρδδv +⨯-=⨯+⨯ 从上式可以看出等式左侧的数量级为1级,那么,等式右侧也是数量级为1级, 为使等式是数量级为1,则v 必须是2δ量级。
热学第四版考试题及答案
热学第四版考试题及答案一、选择题(每题3分,共30分)1. 热力学第一定律表明,能量守恒。
以下哪项说法是错误的?A. 系统吸收的热量等于系统内能的增加量加上对外做的功。
B. 系统对外做的功等于系统内能的减少量加上系统吸收的热量。
C. 系统吸收的热量等于系统内能的增加量减去对外做的功。
D. 系统对外做的功等于系统内能的增加量减去系统吸收的热量。
答案:D2. 两个温度不同的物体接触后,热量将从哪个物体传递到另一个物体?A. 从高温物体传递到低温物体。
B. 从低温物体传递到高温物体。
C. 热量不会传递。
D. 热量在两个物体之间来回传递。
答案:A3. 理想气体的状态方程为PV=nRT,其中P、V、n、R、T分别代表什么?A. 压力、体积、摩尔数、气体常数、温度B. 温度、体积、摩尔数、气体常数、压力C. 压力、体积、摩尔数、温度、气体常数D. 温度、摩尔数、气体常数、压力、体积答案:A4. 以下哪个量是状态函数?A. 热量B. 功C. 内能D. 熵答案:C5. 以下哪个过程是可逆过程?A. 气体的自由膨胀B. 气体的等温膨胀C. 气体的绝热膨胀D. 气体的等压膨胀答案:B6. 根据热力学第二定律,以下哪项说法是正确的?A. 热量可以从低温物体自发地传递到高温物体。
B. 热量不能从低温物体自发地传递到高温物体。
C. 热量可以从高温物体自发地传递到低温物体。
D. 热量不能从低温物体传递到高温物体。
答案:B7. 熵是热力学中描述什么的物理量?A. 能量的转换效率B. 系统的混乱程度C. 系统的有序程度D. 系统的稳定性答案:B8. 以下哪个过程是绝热过程?A. 气体的等温膨胀B. 气体的等压膨胀C. 气体的自由膨胀D. 气体的绝热膨胀答案:D9. 以下哪个过程是等熵过程?A. 气体的等温膨胀B. 气体的等压膨胀C. 气体的绝热膨胀D. 气体的等容膨胀答案:C10. 以下哪个过程是等容过程?A. 气体的等温膨胀B. 气体的等压膨胀C. 气体的绝热膨胀D. 气体的等容膨胀答案:D二、填空题(每题2分,共20分)1. 热力学第一定律的数学表达式为:ΔU = Q - W,其中ΔU代表_______,Q代表_______,W代表_______。
传热学第四版课后习题与思考题答案_高等教育出版社
第一章思考题1. 试用简练的语言说明导热、对流换热及辐射换热三种热传递方式之间的联系和区别。
答:导热和对流的区别在于:物体内部依靠微观粒子的热运动而产生的热量传递现象,称为导热;对流则是流体各部分之间发生宏观相对位移及冷热流体的相互掺混。
联系是:在发生对流换热的同时必然伴生有导热。
导热、对流这两种热量传递方式,只有在物质存在的条件下才能实现,而辐射可以在真空中传播,辐射换热时不仅有能量的转移还伴有能量形式的转换。
2. 以热流密度表示的傅立叶定律、牛顿冷却公式及斯忒藩-玻耳兹曼定律是应当熟记的传热学公式。
试写出这三个公式并说明其中每一个符号及其意义。
答:① 傅立叶定律:dx dt q λ-=,其中,q -热流密度;λ-导热系数;dx dt -沿x 方向的温度变化率,“-”表示热量传递的方向是沿着温度降低的方向。
② 牛顿冷却公式:)(f w t t h q -=,其中,q -热流密度;h -表面传热系数;w t -固体表面温度;f t -流体的温度。
③ 斯忒藩-玻耳兹曼定律:4T q σ=,其中,q -热流密度;σ-斯忒藩-玻耳兹曼常数;T -辐射物体的热力学温度。
3. 导热系数、表面传热系数及传热系数的单位各是什么?哪些是物性参数,哪些与过程有关?答:① 导热系数的单位是:W/(m.K);② 表面传热系数的单位是:W/(m 2.K);③ 传热系数的单位是:W/(m 2.K)。
这三个参数中,只有导热系数是物性参数,其它均与过程有关。
4. 当热量从壁面一侧的流体穿过壁面传给另一侧的流体时,冷、热流体之间的换热量可以通过其中任何一个环节来计算(过程是稳态的),但本章中又引入了传热方程式,并说它是“换热器热工计算的基本公式”。
试分析引入传热方程式的工程实用意义。
答:因为在许多工业换热设备中,进行热量交换的冷、热流体也常处于固体壁面的两侧,是工程技术中经常遇到的一种典型热量传递过程。
5. 用铝制的水壶烧开水时,尽管炉火很旺,但水壶仍然安然无恙。
传热学第四版课后题答案解析第五章
第五章复习题1、试用简明的语言说明热边界层的概念。
答:在壁面附近的一个薄层内,流体温度在壁面的法线方向上发生剧烈变化,而在此薄层之外,流体的温度梯度几乎为零,固体表面附近流体温度发生剧烈变化的这一薄层称为温度边界层或热边界层。
2、与完全的能量方程相比,边界层能量方程最重要的特点是什么?答:与完全的能量方程相比,它忽略了主流方向温度的次变化率σα22x A ,因此仅适用于边界层内,不适用整个流体。
3、式(5—4)与导热问题的第三类边界条件式(2—17)有什么区别?答:=∂∆∂-=yyt th λ(5—4))()(f w t t h h t-=∂∂-λ (2—11)式(5—4)中的h 是未知量,而式(2—17)中的h 是作为已知的边界条件给出,此外(2—17)中的λ为固体导热系数而此式为流体导热系数,式(5—4)将用来导出一个包括h 的无量纲数,只是局部表面传热系数,而整个换热表面的表面系数应该把牛顿冷却公式应用到整个表面而得出。
4、式(5—4)表面,在边界上垂直壁面的热量传递完全依靠导热,那么在对流换热中,流体的流动起什么作用?答:固体表面所形成的边界层的厚度除了与流体的粘性有关外还与主流区的速度有关,流动速度越大,边界层越薄,因此导热的热阻也就越小,因此起到影响传热大小5、对流换热问题完整的数字描述应包括什么内容?既然对大多数实际对流传热问题尚无法求得其精确解,那么建立对流换热问题的数字描述有什么意义?答:对流换热问题完整的数字描述应包括:对流换热微分方程组及定解条件,定解条件包括,(1)初始条件 (2)边界条件 (速度、压力及温度)建立对流换热问题的数字描述目的在于找出影响对流换热中各物理量之间的相互制约关系,每一种关系都必须满足动量,能量和质量守恒关系,避免在研究遗漏某种物理因素。
基本概念与定性分析5-1 、对于流体外标平板的流动,试用数量级分析的方法,从动量方程引出边界层厚度的如下变化关系式:x xRe 1~δ解:对于流体外标平板的流动,其动量方程为:221xy u v dx d y u v x y u ∂+-=∂∂+∂∂ρρ根据数量级的关系,主流方的数量级为1,y 方线的数量级为δ则有 2211111111δρδδv +⨯-=⨯+⨯ 从上式可以看出等式左侧的数量级为1级,那么,等式右侧也是数量级为1级, 为使等式是数量级为1,则v 必须是2δ量级。
(完整版)第四版传热学第一、二章习题解答
传热学习题集第一章思考题1. 试用简练的语言说明导热、对流换热及辐射换热三种热传递方式之间的联系和区别。
答:导热和对流的区别在于:物体内部依靠微观粒子的热运动而产生的热量传递现象,称为导热;对流则是流体各部分之间发生宏观相对位移及冷热流体的相互掺混。
联系是:在发生对流换热的同时必然伴生有导热。
导热、对流这两种热量传递方式,只有在物质存在的条件下才能实现,而辐射可以在真空中传播,辐射换热时不仅有能 量的转移还伴有能量形式的转换。
2. 以热流密度表示的傅立叶定律、牛顿冷却公式及斯忒藩-玻耳兹曼定律是应当熟记的传热学公式。
试写出这三个公式并说明其中每一个符号及其意义。
答:① 傅立叶定律:dx dt q λ-=,其中,q -热流密度;λ-导热系数;dx dt-沿x 方向的温度变化率,“-”表示热量传递的方向是沿着温度降低的方向。
② 牛顿冷却公式:)(f w t t h q -=,其中,q -热流密度;h -表面传热系数;wt -固体表面温度;ft -流体的温度。
③ 斯忒藩-玻耳兹曼定律:4T q σ=,其中,q -热流密度;σ-斯忒藩-玻耳兹曼常数;T -辐射物体的热力学温度。
3. 导热系数、表面传热系数及传热系数的单位各是什么?哪些是物性参数,哪些与过程有关?答:① 导热系数的单位是:W/(m.K);② 表面传热系数的单位是:W/(m 2.K);③ 传热系数的单位是:W/(m 2.K)。
这三个参数中,只有导热系数是物性参数,其它均与过程有关。
4. 当热量从壁面一侧的流体穿过壁面传给另一侧的流体时,冷、热流体之间的换热量可以通过其中任何一个环节来计算(过程是稳态的),但本章中又引入了传热方程式,并说它是“换热器热工计算的基本公式”。
试分析引入传热方程式的工程实用意义。
答:因为在许多工业换热设备中,进行热量交换的冷、热流体也常处于固体壁面的两侧,是工程技术中经常遇到的一种典型热量传递过程。
5. 用铝制的水壶烧开水时,尽管炉火很旺,但水壶仍然安然无恙。
传热学复习题精练版(传热学)杨世铭 陶文铨第四版
1. 传热:是指热能的传递(从空间一个位置传递到另一个位置)过程,即在温差作用下物质中发生的热量传递过程。
2. 传热学:研究热量传递规律的一门学科。
3. 热传导:温度不同的物体各部分或温度不同的两物体间直接接触时,依靠分子、原子及自由电子等微观粒子热运动而进行的热量传递现象。
4. dx dt A q λ-=Φ=Φ-热流量,单位Wq -热流密度,通过单位面积的热流量,单位W/m2“-”:热量传递方向指向温度降低方向,与温度升高方向相反A :垂直于热量传递方向的截面面积,单位m2λ:导热系数,物性参数,取决于物质的热力状态,单位 W/(K •m)单位温度梯度作用下的物体内所产生的热流量,标量,表征物体导热本领的大小5. 热对流:流体各部分之间发生相对位移时,冷热流体相互掺混所引起的热量传递过程。
6. q=Φ/A=h ∆tA -与流体接触的壁面面积h -表面传热系数,单位W/(m2·K),表征对流换热过程的强弱,是过程量-与很多因素有关(流体种类,表面形状,流体速度大小等)。
7. 1/Ah 是对流换热的热阻,Aλδ是导热热阻 8. 温度场:物体中各点温度值所组成的集合9. 同一瞬间温度相等的各点连成的线或面称为等温线或等温面10. 温度梯度:指向变化最剧烈的方向11. 导热基本定律(傅立叶定律):在导热现象中,单位时间内通过给定截面的热量,正比于垂直于该截面方向上的温度梯度和截面面积,方向与温度梯度相反。
一般表达式:→→→∂∂-=-=Φ=n n t gradt A λλq 12. 热扩散率:a=cρλ,m2/s ,物性参数,物体向与其接触的低温物体散热的能力。
λ越大,一定时间内可传递更多热量,ρc 越小,温度上升1度所需热量越少。
13. 吸热系数:λρc ,物体向与其接触的高温物体吸热的能力。
14. 圆筒:t=t1+(t2—t1))1/2ln()1/ln(r r r r R=l r r πλ2)1/2(ln 15. 套管:m=CA P λh P=d π δπd =C A16. 集中参数法:Bi=≤λ)/(h A V 0.1 Fo=2)/(A V a τhA cVρτ=c)o ex p()ex p(t 00F Bi cV hA t t t •-=-=--=∝∝τρθθ 17. 半无限大物体:①惰性时间:a 16x 2≤τ ②位置上:22x ≥τa 18. 流动边界层:当流体流过固体壁面时,由于流体粘性的作用,使得在固体壁面附近存在速度发生剧烈变化的薄层。
第四版传热学试题大全
传热学(二)本试题分两部分,第一部分为选择题, 1 页至 2 页,每二部分为非选择题, 3 页至 7 页,共 7 页;选择题 20 分,非选择题 80 分,满分 100 分。
考试时间 150 分钟。
第一部分选择题一、单项选择题(本大题共 10 小题,每小题 2 分,共 20 分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在题后的括号内。
1 .对于过热器中:高温烟气→外壁→内壁→过热的传热过程次序为(A )A .复合换热、导热、对流换热B .导热、对流换热、复合换热C .对流换热、复合换热、导热D .复合换热、对流换热、导热2 .温度对辐射换热的影响对对流换热的影响。
( B )A .等于B .大于C .小于D .可能大于、小于3 .对充换热系数为 1000W/(m 2 · K) 、温度为 77 ℃的水流经 27 ℃的壁面,其对流换热的热流密度为( D )A . 8 × 10 4 W/m 2B . 6 × 10 4 W/m 2C . 7 × 10 4 W/m 2D . 5 × 10 4 W/m24 .流体流过管内进行对流换热时,当 l/d 时,要进行入口效应的修正。
( C )A .> 50B .= 80C .< 50D .= 1005 .炉墙内壁到外壁的热传递过程为( D )A .热对流B .复合换热C .对流换热D .导热6 .下述哪个参数表示传热过程的强烈程度?( A )A . kB .λC .α cD .α7 .雷诺准则反映了的对比关系?( B )A .重力和惯性力B .惯性和粘性力C .重力和粘性力D .浮升力和粘性力8 .下列何种材料表面的法向黑度为最大? CA .磨光的银B .无光泽的黄铜C .各种颜色的油漆D .粗糙的沿9 .在热平衡的条件下,任何物体对黑体辐射的吸收率同温度下该物体的黑度。
(C )A .大于B .小于C .恒等于D .无法比较10 .五种具有实际意义的换热过程为:导热、对流换热、复合换热、传热过程和( A )A .辐射换热B .热辐射C .热对流D .无法确定第二部分非选择题二、填空题(本大题共 10 小题,每小题 2 分,共 20 分)11 .已知某大平壁的厚度为 10mm ,材料导热系数为 45W/(m · K) ,则通过该平壁单位导热面积的导热热阻为。
第四版传热学重要名词解释和简答题
1.导热基本定律 : 当导热体中进行纯导热时 , 通过导热面的热流密度 , 其值与该处温度梯度的绝对值成正比 , 而方向与温度梯度相反。
2.2. 非稳态导热: 发生在非稳态温度场内的导热过程称为非稳态导热。
或:物体中的温度分布随时间而变化的导热称为非稳态导热。
3.3. 凝结换热 : 蒸汽同低于其饱和温度的冷壁面接触时 , 蒸汽就会在壁面上发生凝结过程成为流液体。
4.4. 黑度 : 物体的辐射力与同温度下黑体辐射力之比。
5.5. 有效辐射: 单位时间内离开单位表面积的总辐射能。
6.6 .稳态导热 : 发生在稳态温度场内的导热过程称为稳态导热。
7.7.稳态温度场 : 温度场内各点的温度不随时间变化。
(或温度场不随时间变化。
)8.8 .热对流:依靠流体各部分之间的宏观运行,把热量由一处带到另一处的热传递现象。
对流换热:流体与固体壁直接接触时所发生的热传递过程.对流换热与热对流不同,既有热对流,也有导热;不是基本传热方式9.9 .传热过程 : 热量由固体壁面一侧的热流体通过固体壁面传递给另一侧冷流体的过程。
10.10.肋壁总效率 : 肋侧表面总的实际散热量与肋壁测温度均为肋基温度的理想散热量之比。
11.11. 换热器的效能(有效度) : 换热器的实际传热量与最大可能传热量之比。
或12.12. 大容器沸腾 : 高于液体饱和温度的热壁面沉浸在具有自由表面的液体中所发生的沸腾。
13.13. 准稳态导热 : 物体内各点温升速度不变的导热过程。
14.14. 黑体 : 吸收率等于 1 的物体15.15. 复合换热: 对流换热与辐射换热同时存在的综合热传递过程。
16.16. 温度场 : 温度场是指某一瞬间物体中各点温度分布的总称。
17.17. 吸收率: 外界投射到某物体表面上的辐射能,被该物体吸收的百分数。
18.18.温度边界层:对流换热时,在传热壁面附近形成的一层温度有很大变化(或温度变化率很大)的薄层。
19.19.灰体:吸收率与波长无关的物体称为灰体。
第四版传热学试卷讲解
傳熱學(一)第一部分選擇題•單項選擇題(本大題共 10 小題,每小題 2 分,共 20 分)在每小題列出の四個選項中只有一個選項是符合題目要求の,請將正確選項前の字母填在題後の括號內。
1. 在穩態導熱中 , 決定物體內溫度分布の是 ( )A. 導溫系數B. 導熱系數C. 傳熱系數D. 密度2. 下列哪個准則數反映了流體物性對對流換熱の影響 ?( )A. 雷諾數B. 雷利數C. 普朗特數D. 努謝爾特數3. 單位面積の導熱熱阻單位為 ( )A. B.C. D.4. 絕大多數情況下強制對流時の對流換熱系數 ( ) 自然對流。
A. 小於B. 等於C. 大於D. 無法比較5. 對流換熱系數為 100 、溫度為 20 ℃の空氣流經 50 ℃の壁面,其對流換熱の熱流密度為()A. B.C. D.6. 流體分別在較長の粗管和細管內作強制紊流對流換熱,如果流速等條件相同,則()A. 粗管和細管の相同B. 粗管內の大C. 細管內の大D. 無法比較7. 在相同の進出口溫度條件下,逆流和順流の平均溫差の關系為()A. 逆流大於順流B. 順流大於逆流C. 兩者相等D. 無法比較8. 單位時間內離開單位表面積の總輻射能為該表面の()A. 有效輻射B. 輻射力C. 反射輻射D. 黑度9. ()是在相同溫度條件下輻射能力最強の物體。
A. 灰體B. 磨光玻璃C. 塗料D. 黑體10. 削弱輻射換熱の有效方法是加遮熱板,而遮熱板表面の黑度應()A. 大一點好B. 小一點好C. 大、小都一樣D. 無法判斷第二部分非選擇題•填空題(本大題共 10 小題,每小題 2 分,共 20 分)11. 如果溫度場隨時間變化,則為。
12. 一般來說,紊流時の對流換熱強度要比層流時。
13. 導熱微分方程式の主要作用是確定。
14. 當 d 50 時,要考慮入口段對整個管道平均對流換熱系數の影響。
15. 一般來說,順排管束の平均對流換熱系數要比叉排時。
第四版传热学第三章习题解答
第四版传热学第三章习题解答第三章思考题1. 试说明集总参数法的物理概念及数学处理的特点答:当内外热阻之比趋于零时,影响换热的主要环节是在边界上的换热能力。
而内部由于热阻很小而温度趋于均匀,以至于不需要关心温度在空间的分布,温度只是时间的函数,数学描述上由偏微分方程转化为常微分方程、大大降低了求解难度。
2. 在用热电偶测定气流的非稳态温度场时,怎么才能改善热电偶的温度响应特性?答:要改善热电偶的温度响应特性,即最大限度降低热电偶的时间常数hA cvc ρτ=,形状上要降低体面比,要选择热容小的材料,要强化热电偶表面的对流换热。
3. 试说明”无限大平板”物理概念,并举出一二个可以按无限大平板处理的非稳态导热问题答;所谓“无限大”平板,是指其长宽尺度远大于其厚度,从边缘交换的热量可以忽略不计,当平板两侧换热均匀时,热量只垂直于板面方向流动。
如薄板两侧均匀加热或冷却、炉墙或冷库的保温层导热等情况可以按无限大平板处理。
4. 什么叫非稳态导热的正规状态或充分发展阶段?这一阶段在物理过程及数学处理上都有些什么特点?答:非稳态导热过程进行到一定程度,初始温度分布的影响就会消失,虽然各点温度仍随时间变化,但过余温度的比值已与时间无关,只是几何位置(δ/x )和边界条件(Bi 数) 的函数,亦即无量纲温度分布不变,这一阶段称为正规状况阶段或充分发展阶段。
这一阶段的数学处理十分便利,温度分布计算只需取无穷级数的首项进行计算。
5. 有人认为,当非稳态导热过程经历时间很长时,采用图3-7记算所得的结果是错误的.理由是:这个图表明,物体中各点的过余温度的比值与几何位置及Bi 有关,而与时间无关.但当时间趋于无限大时,物体中各点的温度应趋近流体温度,所以两者是有矛盾的。
你是否同意这种看法,说明你的理由。
答:我不同意这种看法,因为随着时间的推移,虽然物体中各点过余温度的比值不变但各点温度的绝对值在无限接近。
这与物体中各点温度趋近流体温度的事实并不矛盾。
《传热学》第四版 对流换热复习
各相似准则数的定义及物理意义
常见的对流换热问题的对流换热计算关系式
沿平板强迫对流换热准则数关联式汇总
注意:定性温度为边界层的平均温度, 注意:定性温度为边界层的平均温度,即
管内强迫对流换热
凝结换热
蒸汽与温度低于其饱和温度的固体壁面接触时, 蒸汽与温度低于其饱和温度的固体壁面接触时,就会放出汽化 潜热而凝结成液体依附于壁面上。根据冷凝液的流动状况, 潜热而凝结成液体依附于壁面上。根据冷凝液的流动状况,凝 结换热可分为膜状凝结和珠状凝结。 结换热可分为膜状凝结和珠状凝结。
⑷当Pr=1时:热边界层厚度与流动边界层相同。且无因次速度分布和无 时 热边界层厚度与流动边界层相同。 因次温度分布相同。 因次温度分布相同。 ⑸微分方程式具有准则方程形式的解。 微分方程式具有准则方程形式的解。
相似理论
彼此相似的现象,它们的同名相似特征数相等 彼此相似的现象,它们的同名相似特征数相等. 描述物理过程的微分方程的积分结果,可以用相似特 描述物理过程的微分方程的积分结果 可以用相似特 征数之间的函数关系来表示. 征数之间的函数关系来表示 凡同类现象、单值性条件相似、 凡同类现象、单值性条件相似、同名已定特征数相 那么现象必定相似. 等,那么现象必定相似
当流体流过与其温度不同的壁面时, 当流体流过与其温度不同的壁面时,除了会形成一个流动 边界层之外,还因受热或冷却, 边界层之外,还因受热或冷却,使靠近壁面附近的流体温 度发生变化,即产生如图的温度分布。 度发生变化,即产生如图的温度分布。
Tw
三、边界层的发展
四、对流换热过程微分方程式
边界层换热微分方程组
三、对流换热影响因素
对流换热过程是热对流与导热综合作用的结果 1. 流动的起因和流态 h强迫>h自然;h层流<h紊流 强迫> 自然 自然; 层流 层流< 紊流 强迫 2. 流体的热物理性质 3. 换热表面的几何参数 4. 流体有无相变:h单相 相变 流体有无相变: 单相 单相<h相变
《传热学》第四版 热传导复习
导热基本定律—傅立叶定律 导热基本定律 傅立叶定律 单位时间内通过该层的导热热量与当地的温度变化率 及平板面积A成正比 及平板面积 成正比
dt Φ = − Aλ dx
负号 热流量
Φ dt q = = −λ A dx
热量传递的方向与温度升高的方向相反 单位时间内通过某一给定面积的热量
热流密度(面积热流量) 热流密度(面积热流量) 单位时间内通过单位面积的热量 导热系数 表征材料导热性能优劣的参数 热物性参数
温度梯度是向量; 温度梯度是向量;正向朝着温度增加的方向
5 导热基本定律
在导热现象中, 在导热现象中 , 单位时间内通过给定截面所传递的 热量, 正比于垂直该截面方向上的温度变化率, 热量 , 正比于垂直该截面方向上的温度变化率 , 而 热量传递的方向与温度升高的方向相反, 热量传递的方向与温度升高的方向相反,即
λ金属 > λ非金属固体 > λ液体 > λ气体
热对流
热对流定义:是指由于流体的宏观运动, 热对流定义:是指由于流体的宏观运动,从而使流体各部 分之间发生相对位移 相对位移, 分之间发生相对位移,冷热流体相互掺混所引起的热量传 递过程。 递过程。 自然界不存在单一的热对流。 自然界不存在单一的热对流。 对流换热:流体流过一个物体表面时的热量传递过程, 对流换热 流体流过一个物体表面时的热量传递过程,称 流体流过一个物体表面时的热量传递过程 为对流换热。 为对流换热。 对流换热的特点:必须有流体的宏观运动,必须有温差; 对流换热的特点:必须有流体的宏观运动,必须有温差;必 须有直接接触(流体与壁面);不是基本的热量传递方式。 );不是基本的热量传递方式 须有直接接触(流体与壁面);不是基本的热量传递方式。
三维稳态温度场: 三维稳态温度场: 一维稳态温度场: 一维稳态温度场:
传热学复习题及其答案
传热学复习题及其答案传热学是研究热量传递规律的学科,它在工程实践中有着广泛的应用。
以下是一些传热学的复习题及其答案,供学习者参考。
# 一、选择题1. 传热的基本方式有哪三种?- A. 对流- B. 辐射- C. 导热- D. 所有选项都是答案:D2. 傅里叶定律描述的是哪种传热方式?- A. 对流- B. 辐射- C. 导热- D. 都不是答案:C# 二、填空题1. 导热系数是描述材料______能力的物理量。
答案:导热2. 对流换热的特点是热量通过______来传递。
答案:流体的宏观运动# 三、简答题1. 请简述牛顿冷却定律的内容。
答案:牛顿冷却定律指出,物体表面与周围环境之间的热交换速率与它们之间的温差成正比。
2. 什么是黑体辐射定律?其数学表达式是什么?答案:黑体辐射定律描述了理想化的物体(黑体)在不同温度下发出的辐射能量与波长的关系。
其数学表达式为:E(λ,T) = (2πhc^2) / (λ^5) * 1 / (e^(hc/(λkT)) - 1),其中E(λ,T)是波长为λ在温度T下的辐射强度,h是普朗克常数,c是光速,k是玻尔兹曼常数。
# 四、计算题1. 假设有一厚度为0.05m的墙体,其导热系数为0.6 W/m·K,两侧温差为10°C。
求墙体的热流量。
答案:根据傅里叶定律,热流量Q = k * A * ΔT / d,其中A是面积,ΔT是温差,d是厚度。
假设面积A足够大,可以忽略不计,那么Q = 0.6 * 10 / 0.05 = 120 W。
2. 已知一物体表面温度为300 K,环境温度为20°C,求该物体表面与环境之间的热交换速率,假设对流换热系数为10 W/m²·K。
答案:热交换速率Q = h * A * ΔT,其中h是对流换热系数,A是物体表面积,ΔT是温差。
假设A足够大,可以忽略不计,那么Q = 10 * (300 - 273) = 270 W。
《传热学》第四章复习题答案
《传热学(第四版)》第四章复习题答案1.试简要说明对导热问题进行有限差分数值计算的基本思想与步骤。
答:基本思想:把原来在时间、空间坐标系中连续的物理量的场,用有限个离散点上的值的集合来代替,通过求解按一定方法建立起来的关于这些值的代数方程,来获得离散点上被求物理量的值。
这些离散点上被求物理量值的集合称为该物理量的数值解。
步骤:①建立控制方程及定解条件;②区域离散化;③建立物理量的代数方程;④用迭代法求解时,设立迭代初场;⑤求解代数方程组;⑥解的分析。
2.试说明用热平衡法对节点建立温度离散方程的基本思想。
答:对以节点所代表的元体用傅立叶定律直接写出其能量守恒表达式,得到以元体为研究对象的传热代数方程。
3.推导导热微分方程的步骤和过程与用热平衡法建立节点温度离散方程的过程十分相似,为什么前者得到的是精确描写,而由后者解出的却是近似解。
答:因为微分方程的研究对象是微元体,而用热平衡法建立的节点温度离散方程的研究对象是元体。
微分方程的微元体可以达到无限小,从而可准确描述物体内任一点的连续函数。
而热平衡法对有限大小元体内的分布函数用节点处的值代替,从而得到近似解,不能得到准确解。
4.第三类边界条件边界节点的离散方程,也可用将第三类边界条件表达式中的一阶导数用差分公式来建立。
试比较这样建立起来的离散方程与用热平衡法建立起来的离散方程的异同与优劣。
答:由教材P175 式(a),(b)可得:在x方向上有:ðt ðx |m,n≈t m+1,n−t m,nΔxðt ðx |m,n≈t m,n−t m−1,nΔx同理在y方向上有:ðt ðy |m,n≈t m,n+1−t m,nΔyðt ðy |m,n≈t m,n−t m,n−1Δy从而可得:−λðtðx|m,n≈−λt m+1,n−t m,n∆x=ℎ(t f−t m,n)t m,n=t m,n−1−ℎΔxλt f+ℎΔxλt m,n⇒(1−ℎΔxλ)t m,n=t m,n−1−ℎΔxλt f其它式子可类似导出。
第四版传热学第三章习题解答
第三章思考题1. 试说明集总参数法的物理概念及数学处理的特点答:当内外热阻之比趋于零时,影响换热的主要环节是在边界上的换热能力。
而内部由于热阻很小而温度趋于均匀,以至于不需要关心温度在空间的分布,温度只是时间的函数, 数学描述上由偏微分方程转化为常微分方程、大大降低了求解难度。
2. 在用热电偶测定气流的非稳态温度场时,怎么才能改善热电偶的温度响应特性?答:要改善热电偶的温度响应特性,即最大限度降低热电偶的时间常数hA cvc ρτ=,形状上要降低体面比,要选择热容小的材料,要强化热电偶表面的对流换热。
3. 试说明”无限大平板”物理概念,并举出一二个可以按无限大平板处理的非稳态导热问题 答;所谓“无限大”平板,是指其长宽尺度远大于其厚度,从边缘交换的热量可以忽略 不计,当平板两侧换热均匀时,热量只垂直于板面方向流动。
如薄板两侧均匀加热或冷却、 炉墙或冷库的保温层导热等情况可以按无限大平板处理。
4. 什么叫非稳态导热的正规状态或充分发展阶段?这一阶段在物理过程及数学处理上都有些什么特点?答:非稳态导热过程进行到一定程度,初始温度分布的影响就会消失,虽然各点温度仍 随时间变化,但过余温度的比值已与时间无关,只是几何位置(δ/x )和边界条件(Bi 数) 的函数,亦即无量纲温度分布不变,这一阶段称为正规状况阶段或充分发展阶段。
这一阶段的数学处理十分便利,温度分布计算只需取无穷级数的首项进行计算。
5. 有人认为,当非稳态导热过程经历时间很长时,采用图3-7记算所得的结果是错误的.理由是: 这个图表明,物体中各点的过余温度的比值与几何位置及Bi 有关,而与时间无关.但当时间趋于无限大时,物体中各点的温度应趋近流体温度,所以两者是有矛盾的。
你是否同意这种看法,说明你的理由。
答:我不同意这种看法,因为随着时间的推移,虽然物体中各点过余温度的比值不变 但各点温度的绝对值在无限接近。
这与物体中各点温度趋近流体温度的事实并不矛盾。
传热学课后复习题答案(第四版)
第1章1-3 解:电热器的加热功率: kW W tcm QP 95.16.195060)1543(101000101018.4633==-⨯⨯⨯⨯⨯=∆==-ττ 15分钟可节省的能量:kJ J t cm Q 4.752752400)1527(15101000101018.4633==-⨯⨯⨯⨯⨯⨯=∆=-1-33 解:W h h t t A w f 7.45601044.02.061)]10(2[6311)(2121=++--⨯=++-=Φλδ 如果取K m W h ./3022=,则W h h t t A w f 52.45301044.02.061)]10(2[6311)(2121=++--⨯=++-=Φλδ 即随室外风力减弱,散热量减小。
但因墙的热阻主要在绝热层上,室外风力变化对散热量的影响不大。
第2章2-4 解:按热平衡关系有:)(1222121f w B B A A w f t t h h t t -=++-λδλδ,得: )2550(5.906.01.025*******-=++-B B δδ,由此得:,0794.0,0397.0m m A B ==δδ 2-9 解:由0)(2121=+=w w m t t t ℃从附录5查得空气层的导热系数为K m W ⋅/0244.0空气λ 双层时:W t t A w w s 95.410244.0008.078.0006.02)]20(20[6.06.02)(21=+⨯--⨯⨯=+-=Φ空气空气玻璃玻璃λδλδ 单层时:W t t A w w d 187278.0/006.0)]20(20[6.06.0/)(21=--⨯⨯=-=Φ玻璃玻璃λδ 两种情况下的热损失之比:)(6.4495.411872倍==ΦΦs d题2-15解:这是一个通过双层圆筒壁的稳态导热问题。
由附录4可查得煤灰泡沫砖的最高允许温度为300℃。
设矿渣棉与媒灰泡沫砖交界面处的温度为t w ,则有 23212121ln 21ln 21)(d d l d d l t t πλπλ+-=Φ (a ) 23221211ln )(2ln )(2d d t t l d d t t l w w -=-=Φπλπλ (b ) 65110ln )50(12.02565ln )400(11.0:-⨯=-⨯w w t t 即由此可解得:4.167=w t ℃<300℃ 又由式(a )可知,在其他条件均不变的情况下,增加煤灰泡沫砖的厚度δ2对将使3d 增大,从而损失将减小;又由式(b )左边可知t w 将会升高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二—1. 试写出导热傅里叶定律的一般形式,并说明其中各个符号的意义。
答:傅立叶定律的一般形式为:,其中:为空间某点的温度梯度;是通过该点的等温线上的法向单位矢量,指向温度升高的方向;为该处的热流密度矢量。
2. 已知导热物体中某点在x,y,z 三个方向上的热流密度分别为及,如何获得该点的 热密度矢量?答:,其中分别为三个方向的单位矢量量。
3. 试说明得出导热微分方程所依据的基本定律。
答:导热微分方程式所依据的基本定律有:傅立叶定律和能量守恒定律。
4. 试分别用数学语言将传热学术语说明导热问题三种类型的边界条件。
答:① 第一类边界条件: ② 第二类边界条件:③ 第三类边界条件:5. 试说明串联热阻叠加原则的内容及其使用条件。
答:在一个串联的热量传递过程中,如果通过每个环节的热流量都相同,则各串联环节的总热阻等于各串联环节热阻的和。
使用条件是对于各个传热环节的传热面积必须相等。
6. 发生在一个短圆柱中的导热问题,在下列哪些情形下可以按一维问题来处理?答:当采用圆柱坐标系,沿半径方向的导热就可以按一维问题来处理。
三—2.在用热电偶测定气流的非稳态温度场时,怎么才能改善热电偶的温度响应特性? 答:要改善热电偶的温度响应特性,即最大限度降低热电偶的时间常数,形状上要降低体面比,要选择热容小的材料,要强化热电偶表面的对流换热。
4什么叫非稳态导热的正规状态或充分发展阶段?这一阶段在物理过程及数学处理上都有些什么特点?答:非稳态导热过程进行到一定程度,初始温度分布的影响就会消失,虽然各点温度仍 随时间变化,但过余温度的比值已与时间无关,只是几何位置()和边界条件(Bi 数) 的函数,亦即无量纲温度分布不变,这一阶段称为正规状况阶段或充分发展阶段。
这一阶段的数学处理十分便利,温度分布计算只需取无穷级数的首项进行计算。
n x t gradt q ∂∂-=λλ=-gradt n q y x q q ,z q k q j q i q q z y x ⋅+⋅+⋅=k j i ,,)(01ττf t w =>时,)()(02τλτf x t w =∂∂->时)()(f w w t t h x t -=∂∂-λhA cvc ρτ=δ/x6试说明Bi 数的物理意义。
及各代表什么样的换热条件?有人认为, 代表了绝热工况,你是否赞同这一观点,为什么?答;Bi 数是物体内外热阻之比的相对值。
时说明传热热阻主要在边界,内部温度趋于均匀,可以用集总参数法进行分析求解;时,说明传热热阻主要在内部,可以近似认为壁温就是流体温度。
认为代表绝热工况是不正确的,该工况是指边界热阻相对于内部热阻较大,而绝热工况下边界热阻无限大。
7什么是分非稳态导热问题的乘积解法,他的使用条件是什么?答;对于二维或三维非稳态导热问题的解等于对应几个一维问题解的乘积,其解的形式是无量纲过余温度,这就是非稳态导热问题的乘积解法,其使用条件是恒温介质,第三类边界条件或边界温度为定值、初始温度为常数的情况。
8.什么是”半无限大”的物体?半无限大物体的非稳态导热存在正规阶段吗?答:所谓“半大限大”物体是指平面一侧空间无限延伸的物体:因为物体向纵深无限延 伸,初脸温度的影响永远不会消除,所以半死限大物体的非稳念导热不存在正规状况阶段。
六—1、什么叫做两个现象相似,它们有什么共性?答:指那些用相同形式并具有相同内容的微分方程式所描述的现象,如果在相应的时与相应的地点上与现象有关的物理量一一对于成比例,则称为两个现象相似。
凡相似的现象,都有一个十分重要的特性,即描述该现象的同名特征数(准则)对应相等。
(1)初始条件。
指非稳态问题中初始时刻的物理量分布。
(2)边界条件。
所研究系统边界上的温度(或热六密度)、速度分布等条件。
(3)几何条件。
换热表面的几何形状、位置、以及表面的粗糙度等。
(4) 物理条件。
物体的种类与物性。
4.外掠单管与管内流动这两个流动现象在本质上有什么不同?答:区别主要在于流动便捷岑与流道壁面之间的现对关系不同:在外部流动中,换热壁面上的流体边界层可以自由发展,不会受到流道壁面的阻碍或限制。
5、对于外接管束的换热,整个管束的平均表面传热系数只有在流动方向管排数大于一定值后才与排数无关,试分析原因。
答:因后排管受到前排管尾流的影响(扰动)作用对平均表面传热系数的影响直到10排管子以上的管子才能消失。
6、试简述充分发展的管内流动与换热这一概念的含义。
答:由于流体由大空间进入管内时,管内形成的边界层由零开始发展直到管子的中心线位置,这种影响才不发生变法,同样在此时对流换热系数才不受局部对流换热系数的影响。
7、什么叫大空间自然对流换热?什么叫有限自然对流换热?这与强制对流中的外部流动和o Bi →∞→Bi ∞→Bi o Bi →∞→Bi o Bi →内部流动有什么异同?答:大空间作自然对流时,流体的冷却过程与加热过程互不影响,当其流动时形成的边界层相互干扰时,称为有限空间自然对流。
这与外部流动和内部流动的划分有类似的地方,但流动的动因不同,一个由外在因素引起的流动,一个是由流体的温度不同而引起的流动。
七—1.什么叫膜状凝结,什么叫珠状凝结?膜状凝结时热量传递过程的主要阻力在什么地方?答:凝结液体在壁面上铺展成膜的凝结叫膜状凝结,膜状凝结的主要热阻在液膜层,凝结液体在壁面上形成液珠的凝结叫珠状凝结。
5.试说明大容器沸腾的曲线中各部分的换热机理。
答:1.自然对流区:传热属于自然对流工况2.核态沸腾区:温压小,传热强3.过度沸腾区:热流密度不仅不随Δt 的升高而提高,反而越来越降低。
是很不稳定的过程。
4.膜态沸腾区:传热系数很小,因为经过了q 的峰值可能导致设备烧毁。
6.对于热流密度可控及壁面温度可控的两种换热情形,分别说明控制热流密度小于临界热流密度及温差小于临界温差的意义,并针对上述两种情形分别举出一个工程应用实例。
答:对于热流密度可控的设备,如电加热器,控制热流密度小于临界热流密度,是为了防止设备被烧毁,对于壁温可控的设备,如冷凝蒸发器,控制温差小于临界温差,是为了防止设备换热量下降。
8.从换热表面的结构而言,强化凝结换热的基本思想是什么?强化沸腾换热的基本思想是什么?答:从换热表面的结构而言,强化凝结换热的基本思想是尽量减薄粘滞在换热表面上液膜的厚度,强化沸腾换热的基本思想是尽量增加换热表面的汽化核心数。
八—6什么叫光谱吸收比在不同光源的照耀下物体常呈现不同的颜色如何解释 答所谓光谱吸收比是指物体对某一波长投入辐射的吸收份额物体的颜色是物体对光源某种波长光波的强烈反射不同光源的光谱不同所以物体呈现不同颜色。
7对于一般物体吸收比等于发射率在什么条件下成立 答任何物体在与黑体处于热平衡的条件下对来自黑体辐射的吸收比等于同温度下该物体的发射率。
8说明灰体的定义以及引入灰体的简化对工程辐射换热计算的意义。
答光谱吸收比与波长无关的物体叫做灰体灰体的吸收比恒等于同温度下的发射率t q ~把实际物体当做灰体如理可以不必考虑投入辐射的特性将大大简化辐射换热的计算。
九—1、试述角系数的定义。
“角系数是一个纯几何因子”的结论是在什么前提下得出的?答:表面1发出的辐射能落到表面2上的份额称为表面]对表面2的角系数。
“角系数是一个纯几何因子”的结论是在物体表面性质及表面湿度均匀、物体辐射服从兰贝特定律的前提下得出的。
2、角系数有哪些特性?这些特性的物理背景是什么?答:角系数有相对性、完整性和可加性。
相对性是在两物体处于热平衡时,净辐射换热量为零的条件下导得的;完整性反映了一个由几个表面组成的封闭系统中。
任一表面所发生的辐射能必全部落到封闭系统的各个表面上;可加性是说明从表面1发出而落到表面2上的总能量等于落到表面2上各部份的辐射能之和。
3、为什么计算—个表面与外界之间的净辐射换热量时要采用封闭腔的模型?答:因为任一表面与外界的辐射换热包括了该表面向空间各个方向发出的辐射能和从各个方向投入到该表面上的辐射能。
4、实际表面系统与黑体系统相比,辐射换热计算增加了哪些复杂性?答:实际表面系统的辐射换热存在表面间的多次重复反射和吸收,光谱辐射力不服从普朗克定律,光谱吸收比与波长有关,辐射能在空间的分布不服从兰贝特定律,这都给辐射换热计算带来了复杂性。
5、什么是一个表面的自身辆射、投入辐射及有效辐射?有效辐射的引入对于灰体表面系统辐射换热的计算有什么作用?答:由物体内能转变成辐射能叫做自身辐射,投向辐射表而的辐射叫做投入辐射,离开辐射表面的辐射叫做有效辐射,有效辐射概念的引入可以避免计算辐射换热计算时出现多次吸收和反射的复杂性。
6、对于温度已知的多表面系统,试总结求解每一表面净辐射换热量的基本步骤。
答:(1)画出辐射网络图,写出端点辐射力、表面热阻和空间热阻;(2)写出由中间节点方程组成的方程组;(3)解方程组得到各点有效辐射;(4)由端点辐射力,有效辐射和表面热阻计算各表面净辐射换热量。
7、什么是辐射表面热阻?什么是辐射空间热阻?网络法的实际作用你是怎样认识的?答:出辐射表面特性引起的热阻称为辐射表面热阻,由辐射表面形状和空间位置引起的热阻称为辐射空间热阻,网络法的实际作用是为实际物体表面之间的辐射换热描述了清晰的物理概念和提供了简洁的解题方法。
8、什么是遮热板?试根据自己的切身经历举出几个应用遮热板的例子。
答:所谓遮热板是指插人两个辐射表面之间以削弱换热的薄板。
如屋顶隔热板、遮阳伞都是我们生活中应用遮热板的例子。