相反数、数轴、绝对值培优训练之令狐文艳创作
数轴、相反数、绝对值专题练习(含答案)之令狐文艳创作
数轴、相反数、绝对值专题训练1.令狐文艳2. 若上升5m 记作+5m ,则-8m 表示___________;如果-10元表示支出10元,那么+50元表示_____________;如果零上5℃记作5℃,那么零下2℃记作__________;太平洋中的马里亚纳海沟深达11 034m ,可记作海拔11 034m (即低于海平面11 034m ),则比海平面高50m 的地方,它的高度记作海拔___________,比海平面低30m 的地方,它的高度记作海拔___________.3. 把下列各数填入它所在的集合里:-2,7,32-,0,2 013,0.618,3.14,-1.732,-5,+3①正数集合:{…} ②负数集合:{…} ③整数集合:{…} ④非正数集合:{…} ⑤非负整数集合:{…} ⑥有理数集合:{…}4. a ,b 为有理数,在数轴上的位置如图所示,则下列关于a ,b ,0三者之间的大小关系,正确的是( )A .0<a <bB .a <0<bC .b <0<aD .a <b <05. 在数轴上表示下列各数:0,0.5,112,1,+3,223-,并比较它们的大小.6.在数轴上大于-4.12的负整数有______________________.7.到原点的距离等于3的数是____________.8.数轴上表示-2和-101的两个点分别为A,B,则A,B两点间的距离是______________.9.已知数轴上点A与原点的距离为2,则点A对应的有理数是____________点B与点A之间的距离为3,则点B对应的有理数是________________.10.在数轴上,点M表示的数是-2,将它先向右移4.5个单位,再向左移5个单位到达点N,则点N表示的数是_________.11.文具店、书店和玩具店依次坐落在一条东西走向的大街上,文具店在书店西边20米处,玩具店位于书店东边100米处,小明从书店沿街向东走了40米,接着又向东走了-60米,此时小明的位置在()A.玩具店 B.文具店 C.文具店西边40米 D.玩具店东边-60米12.如图是正方体的表面展开图,请你在其余三个空格内填入适当的数,使折成正方体后相对的面上的两个数互为相反数.第11题图第12题图13.上图是一个正方体盒子的展开图,请把-10,8,10,-3,-8,3这六个数字分别填入六个小正方形,使得折成正方体后相对的面上的数字互为相反数.14. 下列各组数中,互为相反数的是( )A .0.4与-0.41B .3.8与-2.9C .)8(--与8-D .)3(+-与(3)+-15. 下列化简不正确的是( )A.( 4.9) 4.9--=+ B .9.4)9.4(-=+-C .9.4)]9.4([+=-+-D .[( 4.9)] 4.9+-+=+16. 下列各数中,属于正数的是( )A .)2(-+B .-3的相反数C .)(a --D .-3的相反数的相反数17. a ,b 是有理数,它们在数轴上的对应点的位置如图所示,把a ,-a ,b ,-b按照从小到大的顺序排列正确的是( )baA .-b <-a <a <bB .b >-a >a >-bC .-b <a <-a <bD .-b <b <-a <a18. 有理数的绝对值一定是( )A .正数B .整数C .正数或零D .非正数19. 下列各数中:-2,31+,3-,0,2-+,-(-2),2--,是正数的有_______________________________.20. 填空:5.3-=______;21+=_______;5--=_______;3+=_______;_______=1;_______=-2.21. 若x <0,则|-x |=_______;若m <n ,则|m -n |=________. 22. 若|x |=-x ,则x 的取值范围是( )A .x =-1B .x =0C .x ≥0D .x ≤023. 若|a |=3,则a =______;若|3|=a ,则a =______;若|a |=2,a <0,则a =______.24. 若|a |=|b |,b =7,则a =______;若|a |=|b |,b =7,a ≠b ,则a =______.25. 填空:(1)311--=_______;(2)2.42.4--=____-____=_____; (3)53++-=___+____=____;(4)22--+=|_____-____|=_____;(5)3 6.2-⨯=____×____=_____; (6)21433-÷-=____÷____=____×____=_____.25、化简下列各数的符号:(1)-(-173); (2)-(+233); (3)+(+3);(4)-[-(+9)]26、若|x|=4,则x=_______________;若|a-b|=1,则a-b=_________________; 27、若-m>0,|m|=7,求m.28、若|a+b|+|b+z|=0,求a,b 的值。
数轴相反数绝对值提高训练
数轴,相反数,绝对值一强训题(培优专用)填空专练:1、假设卜H=4,那么X=:假设∣x-3∣=0,那么X=:假设IX-3|=1,那么X=2、化简TT⅛4)∣的结果为3、如果卜陵|=2,那么。
的取值范围是()A、4>OB、a≥0C、a≤OD、a<O4、代数式,一2|+3的最小值是()A、OB、2C、3D、55、a、力为有理数,且avθ,b>O,∣11∣>∣φ那么()A、a<-b<b<-aB、-b<a<b<-aC、-a<b<-b<aD、-b<b<-a<a6、绝对值化简求值(1)∣-4l+∣-7l×5+l5-21(2)I-2jI×I÷∣I÷II7、求以下各式中的X的值(1)Ix∣-3=O (2)2∣x∣+3=67、绝对值小于n的整数有8、当α>O时,同=,当αvθ时,∣4=,9、如果4>3,那么∣"3∣=,B一司=.io、假设®=1,那么X是一(选填“正”或“负”)数:假设凶=-1,那么K是—(选填“正X X 或“负”)数;11、W=3,3=4,且x<y,那么x+y=数轴,相反数,绝对值一强训题(培优专用)12^∣X-4∣÷∣y+2∣=0,求X,y的值13、实数a、b在数轴上的位置如下图,那么化简∣a-b∣-同的结果是b OaA、2a-bB、b C>-b D^-2a+b4、以人互为相反数,c、d互为倒数,m的绝对值等于2,求"+力+N”"的值.a+b+c5、有理数a、b、C在数轴上的位置如下图,化简Ta+同TolTd_____ 1Il I、a bθc~6、同=3,网=2,同=1且α<"c,求α+人+c的值数轴,相反数,绝对值一强训题(培优专用)重点中学自主招生欣赏:1 .假设,一3|与仅+5|互为相反数,求的值。
初一上数轴绝对值拔高题之令狐文艳创作
七年级数学数轴、相反数、绝对值(有理数及其运算)拔高练习令狐文艳单选题(本大题共15小题,共120分)1.(本小题8分)代数式10-|x+y|的最大值是(),当取最大值时,x与y的关系是().• A. 10 ;互为相反数• B. 10;相等• C. 20 ;相等• D. 20;互为相反数2.(本小题8分)设有理数a,b,c在数轴上的对应点如图所示,化简|b-a|+|a+c|+|c-b|=().• A. 2b-2c• B. 2c-2b• C. 2b• D. -2c3.(本小题8分)已知x<-3,化简:|x+|2-|1+x|||=().• A. -x• B. 1• C. 3• D. x4.(本小题8分)当式子|x+1|+|x-2|取最小值时,相应的x的取值范围是().• A. x>2• B. -1≤x≤2• C. -1<x<2• D. x<-15.(本小题8分)方程|x-2|+|x+3|=6的解的个数是().• A. 无数个• B. 3• C. 2.5或-3.5• D. 26.(本小题8分)a是最小的正整数,b的相反数还是它本身,c比最大的负整数大3,计算(2a+3c)b的值为()• A. 0• B. 1• C. 2• D. 37.(本小题8分)|x-1|+|x-2|+|x-3|的最小值为()• A. 1• B. 2• C. 3• D. 48.(本小题8分)若a、b互为相反数,c、d互为倒数,且m的绝对值为2,求为()• A. 1• B. -1• C. 2• D. -29.(本小题8分)若|a|=4,|b|=2,则|a+b|的值是()• A. 2• B. 6• C. -6或-2• D. 6或210.(本小题8分)如果a>0,b<0,,判断a,b,—a,—b这4个数从小到大的顺序是()• A. a<b<-a<-b• B. b<-a<-b<a• C. b<-a<a<-b• D. -a<-b<b<a11.(本小题8分)若|x|=3,|y|=2,且|x-y|=y-x,则x+y=()• A. -1• B. 1• C. 1或-1• D. -1或-512.(本小题8分)一个数大于另一个数的绝对值,则这两个数的和一定()0.• A. >• B. <• C. =• D.13.(本小题8分)若abc≠0,求的值是()• A. -1• B. 3• C. 3或-3• D. 3或-3 或-1或114.(本小题8分)若abc≠0,则的值是()• A. 0• B. 4• C. 4或-4• D. 0或4 或-415.(本小题8分)如果,那么x的取值范围是( ) .• A.• B. • C. • D. x>2。
中考数学高频考点之令狐文艳创作
高频命题点令狐文艳一、选择题、填空题常考点1、相反数、绝对值、倒数①相反数:a 的相反数为a -(解题时找其数字一样,符号不一样的) ②绝对值:(0)0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩ ③倒数:ab 的倒数为b a ,倒数等于本身的数为±1(解题时找符号一样,分子、分母颠倒的)性质:①实数a 、b 互为相反数⇔0a b +=;②实数a 、b 互为倒数⇔1ab =2、科学记数法:10n a ⨯⑴确定a :110a ≤<;⑵确定n :①当原数≥10时,n 等于原数的整数位数减去1;②当0<原数<1时,n 是负整数,n 的绝对值等于原数中左起第一个非零数前零的个数(含整数位数的零)。
3、幂的运算①同底数幂相乘:m n m n a a a +⋅=; ②同底数幂相除:m n m n a a a -÷=; ③幂的乘方:()()m n mn n m a a a ==④积的乘方:()n n n ab a b =; ⑤零次幂:01(0)a a =≠;⑥负整数次幂:1n na a -=4、整式运算①合并同类项:字母和指数不变,系数相加减;②幂的运算:(同3; ④平方差公式:22()()a b a b a b +-=-,完全平方公式:222()2a b a ab b ±=±+。
5、因式分解(1)方法:①提公因式法:()pa pb pc p a b c ++=++;②公式法22222:()():2()a b a b a b a ab b a b ⎧-=+-⎨±+=±⎩平方差公式逆用完全平方公式逆用 (2)步骤:一提二套三检查6、二次根式⑴性质:①2(0)a a =≥a =(同1-②)。
==先将二次根式化为最简二次根式,再将被开方数相同的二次根式进行合并。
7、不等式组解法及解集表示⑴、解法步骤:去分母,移项,合并同类项,系数化为1.⑵、注意事项:①不等式两边同时除以或乘以一个负数,不等号要改变方向;②求不等式组的解集有两种方法:第一种,口诀法:同大取大,同小取小,大小小大取中间,小小大大去不了;第二种,数形结合法:用数轴表示;③边界:有等号用实心圆点,无等号用空心圆圈;方向:大于向右,小于向左.8、函数自变量取值范围(1)分式:分母不能为0;(2)二次根式:被开方数大于等于0;(3)分式+二次根式:分母不能为0和被开方数大于等于0.9、利用平行线的性质计算角度性质:两直线平行,同位角相等,内错角相等,同旁内角互补.考法:结合余角、补角、对顶角、内错角以及三角形内角和、内外角关系等知识考查.10、利用圆周角定理及推论求角度定理:一条弧多对的圆周角等于它所对的圆心角的一半。
去绝对值常用方法之令狐文艳创作
去绝对值常用“六招”(初一)令狐文艳去绝对值常用“六招” (初一)绝对值是初中数学的一个重要概念,是后续学习的必备知识。
解绝对值问题要求高,难度大,不易把握,解题易陷入困境。
下面就教同学们去绝对值的常用几招。
一、根据定义去绝对值例1、当a = -5,b = 2, c = - 8时,求3│a│-2│b│- │c│的值分析:这里给出的是确定的数,所以根据绝对值的意义即正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
代值后即可去掉绝对值。
解:因为:a = -5<0,b =2>0, c = -8<0所以由绝对值的意义,原式 = 3 [ -(-5)] –2 ×2 -[ - ( - 8 ) ] = 7二、从数轴上“读取”相关信息去绝对值例2、有理数a、b、c在数轴上的位置如图所示,且│a│=│b│,化简│c-a│+│c-b│+│a+b│-│a│分析:本题的关键是确定c - a、c-b、a + b的正负性,由数轴上点的位置特征,即可去绝对值。
解:由已知及数轴上点的位置特征知:a<0<c<b 且- a = b 从而 c – a >0 , c - b<0, a + b = 0 故原式 = c - a + [ - ( c – b ) ] + 0 - ( - a ) = b三、由非负数性质去绝对值例3:已知│a2-25│+ ( b – 2 )2= 0,求ab的值。
分析:因为绝对值、完全平方数为非负数,几个非负数的和为零,则这几个数均为“0”。
解:因为│a2-25│+ ( b – 2 )2= 0 由绝对值和非负数的性质:a2-25 = 0 且 b – 2 = 0即 a = 5 b = 2 或 a = - 5 b = 2 故 ab = 10或 ab = - 10四、用分类讨论法去绝对值例4、若abc≠0,求 + + 的值。
分析:因abc≠0,所以只需考虑a、b、c同为正号还是同为负号;两个同为正(负)号,另一个为负(正)号,共八种情况。
中考数学压轴题十大类型经典题目之令狐文艳创作
中考数学压轴题十大类型令狐文艳目录第一讲中考压轴题十大类型之动点问题1第二讲中考压轴题十大类型之函数类问题7第三讲中考压轴题十大类型之面积问题13第四讲中考压轴题十大类型之三角形存在性问题19第五讲中考压轴题十大类型之四边形存在性问题25第六讲中考压轴题十大类型之线段之间的关系31第七讲中考压轴题十大类型之定值问题38第八讲中考压轴题十大类型之几何三大变换问题44第九讲中考压轴题十大类型之实践操作、问题探究50第十讲中考压轴题十大类型之圆56第十一讲中考压轴题综合训练一62第十二讲中考压轴题综合训练二68第一讲中考压轴题十大类型之动点问题1.(2011吉林)如图,梯形ABCD中,AD∥BC,∠BAD=90°,CE⊥AD于点E,AD=8cm,BC=4cm,AB=5cm.从初始时刻开始,动点P,Q分别从点A,B同时出发,运动速度均为1cm/s,动点P沿A-B-C-E方向运动,到点E停止;动点Q沿B-C-E-D方向运动,到点D停止,设运动时间为x s,△PAQ的面积为y cm2,(这里规定:线段是面积为0的三角形)解答下列问题:s (1)当x=2s时,y=_____ cm2;当x=92时,y=_______ cm2.(2)当5 ≤ x≤ 14时,求y与x之间的函数关系式.(3)当动点P在线段BC上运动时,求出154 y S 梯形ABCD 时x 的值.(4)直接写出在整个..运动过程中,使PQ 与四边形ABCE 的对角线平行的所有x 的值. 2. (2007河北)如图,在等腰梯形ABCD 中,AD ∥BC ,AB =DC =50,AD =75,BC =135.点P 从点B 出发沿折线段BA -AD -DC 以每秒5个单位长的速度向点C 匀速运动;点Q 从点C 出发沿线段CB 方向以每秒3个单位长的速度匀速运动,过点Q 向上作射线QK ⊥BC ,交折线段CD -DA -AB 于点E .点P 、Q 同时开始运动,当点P 与点C 重合时停止运动,点Q 也随之停止.设点P 、Q 运动的时间是t 秒(t >0).(1)当点P 到达终点C 时,求t 的值,并指出此时BQ 的长;(2)当点P 运动到AD 上时,t 为何值能使PQ ∥DC ?(3)设射线QK 扫过梯形ABCD 的面积为S ,D C BA 分别求出点E 运动到CD 、DA 上时,S 与t 的关系式;(△PQE 能否成为直角三角形?若能,写出t 的取值范围;若不能,请说明理由.备用图3. (2008河北)如图,在Rt ABC △中,∠C=90°,AB =50,AC =30,D ,E ,F 分别是AC ,AB ,B C 的中点.点P 从点D 出发沿折线DE -EF -FC -CD 以每秒7个单位长的速度匀速运动;点Q 从点B 出发沿BA 方向以每秒4个单位长的速度匀速运动,过点Q 作射线QK AB ,交折线BC -CA 于点G .点P Q ,同时出发,当点P 绕行一周回到点D 时停止运动,点Q 也随之停止.设点P Q ,运动的时间是t秒(0t>).(1)D F,两点间的距离是;(2)射线QK能否把四边形CDEF分成面积相等的两部分?若能,求出t的值.若不能,说明理由;(3)当点P运动到折线EF FC-上,且点P又恰好落在射线QK上时,求t的值;(4)连结PG,当PG AB∥时,请直接..写出t 的值.4.(2011山西太原)如图,在平面直角坐标系中,四边形OABC是平行四边形.直线l经过O、C两点.点A的坐标为(8,0),点B的坐标为(11,4),动点P在线段OA上从点O出发以每秒1个单位的速度向点A运动,同时动点Q从点A出发以每秒2个单位的速度沿A→B→C的方向向点C运动,过点P作PM垂直于x轴,与折线O-C-B相交于点M.当P、Q两点中有一点到达终点时,另一点也随之停止运动,设点P、Q运动的时间为t秒(0t ),△MPQ的面积为S.(1)点C的坐标为________,直线l的解析式为__________.(2)试求点Q与点M相遇前S与t的函数关系式,并写出相应的t的取值范围.(3)试求题(2)中当t为何值时,S的值最大,并求出S的最大值.(4)随着P、Q两点的运动,当点M在线段CB上运动时,设PM的延长线与直线l相交于Array点N.试探究:当t腰三角形?请直接写出t5.(2011=6,BC=23,点O是AB的中点,点P在AB的延长线上,且BP=3.一动点E从O点出发,以每秒1个单位长度的速度沿OA匀速运动,到达A点后,立即以原速度沿AO返回;另一动点F从P点出发,以每秒1个单位长度的速度沿射线PA匀速运动,点E、F同时出发,当两点相遇时停止运动.在点E、F的运动过程中,以EF为边作等边△EFG,使△EFG和矩形ABCD在射线PA的同侧,设运动的时间为t秒(t≥0).(1)当等边△EFG的边FG恰好经过点C时,求运动时间t的值;(2)在整个运动过程中,设等边△EFG和矩形ABCD重叠部分的面积为S,请直接写出S 与t之间的函数关系式和相应的自变量t的取值范围;(3)设EG与矩形ABCD的对角线AC的交点为H,是否存在这样的t,使△AOH是等腰三角形?若存在,求出对应的t的值;若不存在,请说明理由.备用图1备用三、测试提高 1. (2011山东烟台)如图,在直角坐标系中,梯形ABCD 的底边AB 在x 轴上,底边CD 的端点D 在y 轴上.直线CB 的表达式为41633y x =-+,点A 、D 的坐标分别为(-4,0),(0,4).动点P 自A 点出发,在AB 上匀速运动.动点Q 自点B 出发,在折线BCD 上匀速运动,速度均为每秒1个单位.当其中一个动点到达终点时,它们同时停止运动.设点P 运动t (秒)时,△OPQ 的面积为S (不能构成△OPQ 的动点除外).(1)求出点B 、C 的坐标;(2)求S 随t 变化的函数关系式;(3)当t 为何值时S 有最大值?并求出最大值.备第二讲中考压轴题十大类型之函数类问题1.(2011浙江温州)如图,在平面直角坐标系中,O是坐标原点,点A的坐标为(-4,0),点B的坐标为(0,b)(b>0).P是直线AB上的一个动点,作PC⊥x轴,垂足为C,记点P关于y轴的对称点为P′ (点P′不在y轴上),连结P P′,P′A,P′C,设点P的横坐标为a.(1)当b=3时,①直线AB的解析式;②若点P′的坐标是(-1,m),求m的值;(2)若点P在第一象限,记直线AB与P′C 的交点为D.当P′D:DC=1:3时,求a的值;(3)是否同时存在a,yP'D BPb,使△P′CA为等腰直角三角形?若存在,请求出所有满足要求的a,b的值;若不存在,请说明理由.2.(2010武汉)如图,抛物线212y ax ax b=-+经过A(-1,0),C(2,32)两点,与x轴交于另一点B.(1)求此抛物线的解析式;(2)若抛物线的顶点为M,点P为线段OB 上一动点 (不与点B重合),点Q在线段MB 上移动,且∠MPQ=45°,设线段OP=x,MQ=22y,求y2与x的函数关系式,并直接写出自变量x的取值范围;(3)在同一平面直角坐标系中,两条直线x=m,x=n分别与抛物线交于点E,G,与(2)中的函数图象交于点F,H.问四边形EFHG 能否为平行四边形? 若能,求m,n之间的数量关系;若不能,请说明理由.备用图3.(2011江苏镇江)在平面直角坐标系xOy中,直线l过点A(1,0)且与y轴平行,直线2l过1点B(0,2)且与x轴平行,直线l与2l相交于1点P.点E为直线l上一点,反比例函数2k(k>0)的图象过点E且与直线1l相交于点yxF.(1)若点E与点P重合,求k的值;(2)连接OE、OF、EF.若k>2,且△OEF的面积为△PEF的面积2倍,求点E的坐标;(3)是否存在点E及y轴上的点M,使得以点M、E、F为顶点的三角形与△PEF全等?若存在,求E点坐标;若不存在,请说明理由.4.(2010浙江舟山)△ABC中,∠A=∠ABC放在平面直角坐B=30°,AB=图),△ABC可以绕点O作任意角度的旋转.(1)当点B求点B 的横坐标;(2)如果抛物线2y ax bx c =++(a ≠0)的对称轴经过点C ,请你探究:①当a ,12b =-,c =A ,B 两点是否都在这条抛物线上?并说明理由; ②设b =-2am ,是否存在这样的m 值,使A ,B在,直接写出m 由.5. 示. (1)求二次函数的解析式及抛物线顶点M的坐标;(2)若点N 为线段BM 上的一点,过点N 作x 轴的垂线,垂足为点Q .当点N 在线段BM 上运动时(点N 不与点B ,点M 重合),设OQ的长为t ,四边形NQAC 面积为S ,求S 与t 之间的函数关系式及自变量t 的取值范围;(3)在对称轴右侧的抛物线上是否存在点P ,使△PAC 为直角三角形?若存在,求出所有符合条件的点P 的坐标;若不存在,请说明理由;(4)将△OAC 补成矩形,使得△OAC 的两个顶点成为矩形一边的两个顶点,第三个顶点落在矩形这一边的对边上,试直接写出矩形的未知的顶点坐标(不需要计算过程).三、测试提高1. (2011山东东营)如图所示,四边形OABC是矩形,点A 、C 的坐标分别为(30-,),(0,1),点D 是线段BC 上的动点(与端点B 、C 不重合),过点D 作直线12y x b =+交折线OAB 于点E .(1)记△ODE 的面积为S .求S 与b 的函数关系式;(2)当点E 在线段OA 上时,且tan ∠DEO =12.若矩形OABC 关于直线DE 的对称图形为四边形1111O A B C .试探究四边形1111O A B C 与矩形OABC 的重叠部分的面积是否发生变化,若不变,求出该重叠部分的面积;若改变,请说明理由.第三讲 中考压轴题十大类型之面积问题 1. (2011辽宁大连)如图,抛物线y =ax 2+bx +c 经过A (-1,0)、B (3,0)、C (0,3)三点,对称轴与抛物线相交于点P 、与直线BC 相交于点M ,连接PB .(1)求该抛物线的解析式;(2)抛物线上是否存在一点Q ,使△QMB 与△PMB 的面积相等,若存在,求点Q 的坐标;若不存在,说明理由;(3)在第一象限、对称轴右侧的抛物线上是否存在一点R ,使△在,说明理由.2.(2011湖北十堰)如图,己知抛物线y=x2+bx+c与x轴交于点A(1,0)和点B,与y轴交于点C(0,-3).(1)求抛物线的解析式;(2)如图(1),己知点H(0,-1).问在抛物线上是否存在点G(点G在y轴的左侧),使得S△GHC=S△GHA?若存在,求出点G的坐标,若不存在,请说明理由:(3)如图(2),抛物线上点D在x轴上的正投影为点E(﹣2,0),F是OC的中点,连接DF,P为线段BD上的一点,若∠EPF=∠BDF,求线段PE的长.3.(2010天津)在平面直角坐标系中,已知抛物线2=-+y x bxc+与x轴交于点A、B(点A在点B的左侧),与y轴的正半轴交于点C,顶点为E.(Ⅰ)若2c=,求此时抛物线顶点E的b=,3坐标;(Ⅱ)将(Ⅰ)中的抛物线向下平移,若平移后,在四边形ABEC 中满足S △BCE = S △ABC ,求此时直线BC 的解析式;(Ⅲ)将(Ⅰ)中的抛物线作适当的平移,若平移后,在四边形ABEC 中满足S △BCE =2S △AOC ,且顶点E 恰好落在直线43y x =-+上,求此时抛物线的解析式.4. (2011山东聊城)如图,在矩形ABCD 中,AB=12cm ,BC =8cm .点E 、F 、G 分别从点A 、B 、C 同时出发,沿矩形的边按逆时针方向移动,点E 、G 的速度均为2cm/s ,点F 的速度为4cm/s ,当点F 追上点G (即点F 与点G 重合)时,三个点随之停止移动.设移动开始后第t s 时,△EFG 的面积为S cm 2.(1)当t =1s 时,S 的值是多少?(2)写出S 与t 之间的函数解析式,并指出自变量t 的取值范围;(3)若点F 在矩形的边BC 上移动,当t 为何值时,以点B 、E 、F 为顶点的三角形与以C 、F 、G 为顶点的三角形相似?请说明理由.5. (2011江苏淮安)如图,在Rt△ABC 中,∠C =90°,AC =8,BC =6,点P 在AB 上,AP =2,点E 、F 同时从点P 出发,分别沿PA 、PB 以每秒1个单位长度的速度向点A 、B 匀速运动,点E 到达点A 后立刻以原速度沿AB 向点B 运动,点F 运动到点B 时停止,点E 也随之停止.在点E 、F 运动过程中,以EF 为边作正方形EFGH ,使它与△ABC 在线段AB 的同侧.设E 、F 运动的时间为t 秒(t >0),正方形EFGH 与△ABC 重叠部分面积为S .(1)当t =1时,正方形EFGH 的边长是.当t =3时,正方形EFGH 的边长是.(2)当0<t ≤2时,求S 与t 的函数关系A EB F G D式;(3)直接答出:在整个运动过程中,当t为何值时,S最大?最大面积是多少?BA备用图三、测试提高1.(2010山东东营)如图,在锐角三角形ABC中,BC=12,△ABC的面积为48,D,E分别是边AB,AC上的两个动点(D不与A,B重合),且保持DE∥BC,以DE为边,在点A的异侧作正方形DEFG.(1)当正方形DEFG的边GF在BC上时,求正方形DEFG的边长;(2)设DE = x,△ABC与正方形DEFG重叠部分的面积为y,试求y关于x的函数关系式,写出x 的取值范围,并求出y 的最大值.第四讲 中考压轴题十大类型之 三角形存在性问题板块一、等腰三角形存在性1. (2011江苏盐城)如图,已知一次函数7y x =-+与正比例函数34y x =的图象交于点A ,且与x 轴交于点B .(1)求点A 和点B 的坐标;(2)过点A 作AC ⊥y 轴于点C ,过点B 作直线l ∥y 轴.动点P 从点O 出发,以每秒1个单位长的速度,沿O —C —A 的路线向点A 运动;同时直线l 从点B 出发,以相同速度向左平移,在平移过程中,直线l 交x 轴于点R ,交线段BA 或线段AO 于点Q .当点P 到达点A 时,点P 和直线l 都停止运动.在运动过程中,设动点P 运动的时间为t 秒.是否存在以A 、P 、Q 为顶点的三角形是等腰三角形?若存在,求t 的值;若不存在,请说明理由.(A DE F G C 备用图(1) A C 备用图(2) A C备用图)2. (2009湖北黄冈)如图,在平面直角坐标系xOy 中,抛物线21410189y x x =--与x 轴的交点为点A ,与y 轴的交点为点B ,过点B 作x 轴的平行线BC ,交抛物线于点C ,连结AC .现有两动点P ,Q 分别从O ,C 两点同时出发,点P 以每秒4个单位的速度沿OA 向终点A 移动,点Q 以每秒1个单位的速度沿CB 向点B 移动,点P 停止运动时,点Q 也同时停止运动,线段OC ,PQ 相交于点D ,过点D 作DE ∥OA ,交CA 于点E ,射线QE 交x 轴于点F .设动点P ,Q 移动的时间为t (单位:秒)(1)求A ,B ,C 三点的坐标和抛物线的顶点的坐标;(2)当t 为何值时,四边形PQCA 为平行四边形?请写出计算过程;(3)当902t <<时,△PQF 的面积是否总为定值?若是,求出此定值,若不是,请说明理由;(4)当t 为何值时,△PQF 为等腰三角形?请写出解答过程.板块二、直角三角形3. (2009四川眉山)如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0).(1)求该抛物线的解析式;(2)动点P 在x 轴上移动,当△PAE 是直角三角形时,求点P 的坐标.4. (2010广东中山)如图所示,矩形ABCD 的边长AB =6,BC =4,点F 在DC 上,DF =2.动点M 、N 分别从点D 、B 同时出发,沿射线DA 、线段BA 向点A 的方向运动(点M 可运动到DA 的延长线上),当动点N 运动到点A 时,M 、N 两点同时停止运动.连接FM 、FN ,当F 、N 、M 不在同一直线上时,可得△FMN ,过△FMN 三边的中点作△PWQ .设动点M 、N 的速度都是1个单位/秒,M 、N 运动的时间为x 秒.试解答下列问题:(1)说明△FMN ∽△QWP ;(2)设04x ≤≤(即M 从D 到A 运动的时间段).试问x 为何值时,△PWQ 为直角三角形?当x 在何范围时,△PQW 不为直角三角形?(3)问当x 为何值时,线段MN 最短?求此时MN 的值.板块三、相似三角形存在性5. (2011湖北天门)在平面直角坐标系中,抛物线2y ax bx =+3+与x 轴的两个交点分别为A (-3,0)、B(1,0),过顶点C 作CH ⊥x 轴于点H .(1)直接填写:a =,b =,顶点C 的坐标为;(2)在y 轴上是否存在点D ,使得△ACD 是以AC 为斜边的直角三角形?若存在,求出点D 的坐标;若不存在,说明理由;(3)若点P 为x 轴上方的抛物线上一动点(点P 与顶点C 不重合),PQ ⊥AC 于点Q ,当△PCQ 与△ACH 相似时,求点P 的坐标.W Q P N M F D B A(备用图)三、测试提高1. (2009广西钦州)如图,已知抛物线234y x bx c =++与坐标轴交于A 、B 、C 三点, A 点的坐标为(-1,0),过点C 的直线334y x t =-与x 轴交于点Q ,点P 是线段BC 上的一个动点,过P 作PH ⊥OB 于点H .若PB =5t ,且01t <<.(1)填空:点C 的坐标是_____,b =_____,c =_____;(2)求线段QH 的长(用含t 的式子表示);(3)依点P 的变化,是否存在t 的值,使以P 、H 、Q 为顶点的三角形与△COQ 相似?若存在,求出所有t 的值;若不存在,说明理由.第五讲 中考压轴题十大类型之四边形存在性问题1. (2009黑龙江齐齐哈尔)直线364y x =-+与坐标轴分别交于A 、B 两点,动点P 、Q 同时从O 点出发,同时到达A 点,运动停止.点Q沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动.(1)直接写出A 、B 两点的坐标;(2)设点Q 的运动时间为t 秒,△OPQ 的面积为S ,求出S 与t 之间的函数关系式;(3)当485S =时,求出点P 的坐标,并直接写出以点O 、P 、Q 为顶点的平行四边形的第四个顶点M 的坐标.2. (2010河南)在平面直角坐标系中,已知抛物线经过A (40),-,B (04),-,C (20),三点.(1)求抛物线的解析式;(2)若点M 为第三象限内抛物线上一动点,点M 的横坐标为m ,△AMB 的面积为S .求S 关于m 的函数关系式,并求出S 的最大值.(3)若点P 是抛物线上的动点,点Q 是直线x y -=上的动点,判断有几个位置能够使得点P 、Q 、B 、O 为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.3.(2011黑龙江鸡西)已知直线y=+x轴、y轴分别交于A、B两点,∠ABC=60°,BC与x轴交于点C.(1)试确定直线BC的解析式;(2)若动点P从A点出发沿AC向点C运动(不与A、C重合),同时动点Q从C点出发沿CBA向点A运动(不与C、A重合),动点P的运动速度是每秒1个单位长度,动点Q的运动速度是每秒2个单位长度.设△APQ的面积为S,P点的运动时间为t秒,求S与t的函数关系式,并写出自变量的取值范围;(3)在(2)的条件下,当△APQ的面积最大时,y轴上有一点M,平面内是否存在一点N,使以A、Q、M、N为顶点的四边形为菱形?若存在,请直接写出N点的坐标;若不存在,请说明理由.4. (2007河南)如图,对称轴为直线x =27的抛物线经过点A (6,0)和B (0,4).(1)求抛物线解析式及顶点坐标;(2)设点E (x ,y )是抛物线上一动点,且位于第四象限,四边形OEAF 是以OA 为对角线的平行四边形,求四边形OEAF 的面积S 与x 之间的函数关系式,并写出自变量x 的取值范围;(3)①当四边形OEAF 的面积为24时,请判断OEAF 是否为菱形?②是否存在点E ,使四边形OEAF 为正方形?若存在,求出点E 的坐标;若不存在,请说明理由.5. (2010黑龙江大兴安岭)如图,在平面直角坐标系中,函数2y x =+12的图象分别交x 轴、y 轴于A 、B 两点.过点A 的直线交y 轴正半轴于点M ,且点M 为线段OB 的中点.(1)求直线AM 的解析式;(2)试在直线AM 上找一点P ,使得S △ABP =S △AOB ,请直接写出点P 的坐标;(3)若点H 为坐标平面内任意一点,在坐标平面内是否存在这样的点H ,使以A 、B 、M、H为顶点的四边形是等腰梯形?若存在,请直接写出点H的坐标;若不存在,请说明理由.三、测试提高6.(2009辽宁抚顺)已知:如图所示,关于x的抛物线2y ax x c(a≠0)与x轴交于点A(-2,=++0)、点B(6,0),与y轴交于点C.(1)求出此抛物线的解析式,并写出顶点坐标;(2)在抛物线上有一点D,使四边形ABDC 为等腰梯形,写出点D的坐标,并求出直线AD的解析式;(3)在(2)中的直线AD交抛物线的对称轴于点M,抛物线上有一动点P,x轴上有一动点Q.是否存在以A、M、P、Q为顶点的平行四边形?如果存在,请直接写出点Q 的坐标;如果不存在,请说明理由.第六讲中考压轴题十大类型之线段之间的关系1.(2010天津)在平面直角坐标系中,矩形OACB的顶点O在坐标原点,顶点A、B分别在x轴、y轴的正半轴上,3OB=,DOA=,4为边OB的中点.(Ⅰ)若E为边OA上的一个动点,当△CDEEFE2.(形,BC∥AD,∠BAD=90°,BC与y轴相交于点M,且M是BC的中点,A、B、D三点的坐标分别是A( 1 0-,),D(3,0).连接-,),B( 1 2DM,并把线段DM沿DA方向平移到ON.若抛物线2=++经过点D、M、N.y ax bx c(1)求抛物线的解析式;(2)抛物线上是否存在点P,使得PA=PC,若存在,求出点P的坐标;若不存在,请说明理由;(3)设抛物线与x轴的另一个交点为E,点Q是抛物线的对称轴上的一个动点,当点Q在什么位置时有|QE-QC|最大?并求出最大值.3.(2011四川眉山)如图,在直角坐标系中,已知点A(0,1),B(4-,4),将点B绕点A 顺时针方向旋转90°得到点C,顶点在坐标原点的抛物线经过点B.(1) 求抛物线的解析式和点C的坐标;(2) 抛物线上有一动点P,设点P到x轴的距离为1d,点P到点A的距离为2d,试说明211d d=+;(3) 在(2)的条件下,请探究当点P位于何处时,△PAC的周长有最小值,并求出△PAC的周长的最小值.4.(2011福建福州)已知,如图,二次函数223=+-(0)y ax ax aa≠图象的顶点为H,与x轴交于A、B两点(B在A点右侧),点H、B关于直线=+:l y x(1)求A、B两点坐标,并证明点A在直线l上;(2)求二次函数解析式;(3)过点B作直线BK∥AH交直线l于K 点,M、N分别为直线AH和直线l上的两个动点,连接HN、NM、MK,求HN+NM+MK和的最小值.5.(2009湖南郴州)如图1,已知正比例函数和反比例函数的图象都经过点M(-2,-1),且P(-1,-2)为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB 垂直于y轴,垂足分别是A、B.(1)写出正比例函数和反比例函数的关系式;(2)当点Q 在直线MO 上运动时,直线MO 上是否存在这样的点Q ,使得△OBQ 与△OAP 面积相等?如果存在,请求出点Q 的坐标,如果不存在,请说明理由;(3)如图2,当点Q 在第一象限中的双曲线上运动时,作以OP 、OQ OPCQ ,求平行四边形图6. (2010线与y 轴交于点B 别为(3,0)、(0,4(1)求抛物线的解析式;(2)设()M m n ,是抛物线上的一点(m n 、为正整数),且它位于对称轴的右侧.若以M B O A 、、、为顶点的四边形四条边的长度是四个连续的正整数,求点M 的坐标;(3)在(2)的条件下,试问:对于抛物线对称轴上的任意一点P,22228++>是PA PB PM 否总成立?请说明理由.三、测试提高1.(2009浙江舟山)如图,已知点A(-4,8)和点B(2,n)在抛物线2y ax上.=(1)求a的值及点B关于x轴对称点P的坐标,并在x轴上找一点Q,使得AQ+QB最短,求出点Q的坐标;(2)平移抛物线2y ax,记平移后点A的对=应点为A′,点B的对应点为B′,点C(-2,0)和点D(-4,0)是x轴上的两个定点.①当抛物线向左平移到某个位置时,A′C+CB′最短,求此时抛物线的函数解析式;②当抛物线向左或向右平移时,是否存在某个位置,使四边形A′B′CD的周长最短?若存在,求出此时抛物线的函数解析式;若不存在,请说明理由.第七讲 中考压轴题十大类型之定值问题1. (2011天津)已知抛物线1C :21112y x x =-+,点F (1,1).(Ⅰ)求抛物线1C 的顶点坐标;(Ⅱ)①若抛物线1C 与y 轴的交点为A ,连接AF ,并延长交抛物线1C 于点B ,求证:112AF BF +=;②抛物线1C 上任意一点P (P P x y ,)(01P x <<),连接PF ,并延长交抛物线1C 于点Q (Q Q x y ,),试判断112PF QF+=是否成立?请说明理由;(Ⅲ)将抛物线1C 作适当的平移,得抛物线2C : 221()2y x h =-,若2x m <≤时,2y x ≤恒成立,求m的最大值.2.(2009湖南株洲)如图,已知△ABC为直角三角形,90=,点A、C在x∠=︒,AC BCACB轴上,点B坐标为(3,m)(0m>),线段AB与y轴相交于点D,以P(1,0)为顶点的抛物线过点B、D.(1)求点A的坐标(用m表示);(2)求抛物线的解析式;(3)设点Q为抛物线上点P至点B之间的一动点,连结PQ并延长交BC于点E,连结BQ 并延长交AC于点F,试证明:()+为FC AC EC定值.3.(2008山东济南)已知:抛物线2=++(a≠0),顶y ax bx c点C (1,3-),与x轴交于A、B两点,A-,.(10)(1)求这条抛物线的解析式;(2)如图,以AB为直径作圆,与抛物线交于点D,与抛物线对称轴交于点E,依次连接A、D、B、E,点P为线段AB上一个动点(P与A、B两点不重合),过点P作PM⊥AE于M,PN⊥DB于N,请判断PM PN+是否为定值?BE AD若是,请求出此定值;若不是,请说明理由;(3)在(2)的条件下,若点S是线段EP 上一点,过点S作FG⊥EP,FG分别与边.AE、BE相交于点F、G(F与A、E不重合,G与E、B不重合),请判断PA EF=是否成PB EG立.若成立,请给出证明;若不成立,请说明理由.4.(2011湖南株洲)孔明是一个喜欢探究钻研的同学,他在和同学们一起研究某条抛物线2(0)y ax a=<的性质时,将一把直角三角板的直角顶点置于平面直角坐标系的原点O,两直角边与该抛物线交于A、B两点,请解答以下问题:(1)若测得OA OB==1),求a的值;(2)对同一条抛物线,孔明将三角板绕点O 旋转到如图2所示位置时,过B作BF x⊥轴于点F,测得1OF=,写出此时点B的坐标,并求点A的横坐标...;(3)对该抛物线,孔明将三角板绕点O旋转任意角度时惊奇地发现,交点A、B的连线段总经过一个固定的点,试说明理由并求出该点的坐标.5.(2009湖北武汉)如图,抛物线24y ax bx a=+-经过()04C,两点,与xA-,、()10轴交于另一点B.(1)求抛物线的解析式;(2)已知点(),1D m m+在第一象限的抛物线上,求点D关于直线BC对称的点的坐标;(3)在(2)的条件下,连接BD,点P为抛物线上一点,且45∠=︒,求点P的坐标.DBP Array三、测试提高1.(2009物线2=++y x bx c与x轴交于两点A、B,与中A在B的左侧,B的坐标是(3,0).将直线y kx=沿y轴向上平移3个单位长度后恰好经过点B、C.(1)求k的值;(2)求直线BC和抛物线的解析式;(3)求△ABC的面积;(4)设抛物线顶点为D,点P在抛物线的对称轴上,且∠APD=∠ACB,求点P的坐标.、第八讲中考压轴题十大类型之几何三大变换问题1. (2009山西太原)问题解决:如图(1),将正方形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C ,D 重合),压平后得到折痕MN .当12CE CD =时,求AM BN 的值. 类比归纳:在图(1)中,若13CE CD =,则AM BN 的值等于;若14CE CD =,则AM BN 的值等于;若1CE CD n =(n 为整数),则AM BN 的值等于.(用含n 的式子表示)联系拓广: 如图(2),将矩形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C D ,重合),压平后得到折痕MN ,设()111AB CE m BC m CD n =>=,,则AM BN 的值等于.(用含m n ,的式子表示)2. (2011陕西)如图①,在矩形ABCD 中,将矩形折叠,使B 落在边AD (含端点)上,落点记为E ,这时折痕与边BC 或边CD (含端点)交于点F ,然后再展开铺平,则以B 、方法指导: 为了求得AM BN 的值,可先求BN 、AM 的长,不妨设:AB =2图N A BC DE F M 图A B CD E F M NB 2B A 2E 、F 为顶点的△BEF 称为矩形ABCD 的“折痕三角形”.(1)由“折痕三角形”的定义可知,矩形ABCD 的任意一个“折痕△BEF ”是一个_________三角形;(2)如图②,在矩形ABCD 中,AB =2,BC =4.当它的“折痕△BEF ”的顶点E 位于边AD 的中点时,画出这个“折痕△BEF ”,并求出点F 的坐标;(3)如图③,在矩形ABCD 中, AB =2,BC =4,该矩形是否存在面积最大的“折痕△BEF ”?若存在,说明理由,并求出此时点E 的坐标;若不存在,为什么?图① 图② 图③3. (2010江西南昌)课题:两个重叠的正多边形,其中的一个绕某一个顶点旋转所形成的有关问题.实验与论证设旋转角∠A 1A 0B 1=α(α<∠A 1A 0A 2),θ1,θ2,θ3,θ4,θ5,θ6所表示的角如图所示.(1)用含α的式子表示:θ3=_________,θ4=_________,θ5=_________;(2)图1-图4中,连接A0H时,在不添加其他辅助线的情况下,是否存在与直线A0H 垂直且被它平分的线段?若存在,请选择其中的一个图给出证明;若不存在,请说明理由;归纳与猜想设正n边形A0A1A2…A n-1与正n边形A0B1B2…B n-1重合(其中,A1与B1重合),现将正n边形A0B1B2…B n-1绕顶点A0逆时针旋转α(n1800<<α).(3)设θn与上述“θ3,θ4,…”的意义一样,请直接写出θn的度数;(4)试猜想在n边形且不添加其他辅助线的情形下,是否存在与直线A0H垂直且被它。
7.初一上册数学绝对值专项练习带答案之令狐文艳创作
绝对值令狐文艳一.选择题(共16小题)1.相反数不大于它本身的数是()A.正数B.负数C.非正数D.非负数2.下列各对数中,互为相反数的是()A.2和B.﹣0.5和C.﹣3和D.和﹣23.a,b互为相反数,下列各数中,互为相反数的一组为()A.a2与b2B.a3与b5C.a2n与b2n(n为正整数)D.a2n+1与b2n+1(n为正整数)4.下列式子化简不正确的是()A.+(﹣5)=﹣5B.﹣(﹣0.5)=0.5C.﹣|+3|=﹣3D.﹣(+1)=15.若a+b=0,则下列各组中不互为相反数的数是()A.a3和b3B.a2和b2C.﹣a和﹣bD .和6.若a和b互为相反数,且a≠0,则下列各组中,不是互为相反数的一组是()A.﹣2a3和﹣2b3B.a2和b2 C.﹣a和﹣bD.3a和3b 7.﹣2018的相反数是()A.﹣2018B.2018C.±2018D .﹣8.﹣2018的相反数是()A.2018B.﹣2018C .D .﹣9.下列各组数中,互为相反数的是()A.﹣1与(﹣1)2B.1与(﹣1)2C.2与D.2与|﹣2|10.如图,图中数轴的单位长度为1.如果点B,C表示的数的绝对值相等,那么点A 表示的数是()A.﹣4B.﹣5C.﹣6D.﹣2 11.化简|a﹣1|+a﹣1=()A.2a﹣2B.0C.2a﹣2或0D.2﹣2a12.如图,M,N,P,R分别是数轴上四个整数所对应的点,其中有一点是原点,并且MN=NP=PR=1.数a对应的点在M与N之间,数b对应的点在P与R之间,若|a|+|b|=3,则原点是()A.M或RB.N或PC.M或ND.P或R13.已知:a>0,b<0,|a|<|b|<1,那么以下判断正确的是()A.1﹣b>﹣b>1+a>aB.1+a >a>1﹣b>﹣bC.1+a>1﹣b>a>﹣bD.1﹣b>1+a>﹣b>a 14.点A,B在数轴上的位置如图所示,其对应的数分别是a和b.对于以下结论:甲:b﹣a<0乙:a+b>0丙:|a|<|b|丁:>0其中正确的是()A.甲乙B.丙丁C.甲丙D.乙丁15.有理数a、b在数轴上的位置如图所示,则下列各式中错误的是()A.b<aB.|b|>|a|C.a+b>0D.ab<016.﹣3的绝对值是()A.3B.﹣3C .D .二.填空题(共10小题)17.|x+1|+|x﹣2|+|x﹣3|的值为.18.已知|x|=4,|y|=2,且xy<0,则x﹣y的值等于.19.﹣2的绝对值是,﹣2的相反数是.20.一个数的绝对值是4,则这个数是.21.﹣2018的绝对值是.22.如果x、y都是不为0的有理数,则代数式的最大值是.23.已知+=0,则的值为.24.计算:|﹣5+3|的结果是.25.已知|x|=3,则x的值是.26.计算:|﹣3|=.三.解答题(共14小题)27.阅读下列材料并解决有关问题:我们知道,|m|=.现在我们可以用这一结论来化简含有绝对值的代数式,如化简代数式|m+1|+|m﹣2|时,可令m+1=0和m﹣2=0,分别求得m=﹣1,m=2(称﹣1,2分别为|m+1|与|m﹣2|的零点值).在实数范围内,零点值m=﹣1和m=2可将全体实数分成不重复且不遗漏的如下3种情况:(1)m<﹣1;(2)﹣1≤m<2;(3)m≥2.从而化简代数式|m+1|+|m ﹣2|可分以下3种情况:(1)当m<﹣1时,原式=﹣(m+1)﹣(m﹣2)=﹣2m+1;(2)当﹣1≤m<2时,原式=m+1﹣(m﹣2)=3;(3)当m≥2时,原式=m+1+m﹣2=2m﹣1.综上讨论,原式=通过以上阅读,请你解决以下问题:(1)分别求出|x﹣5|和|x﹣4|的零点值;(2)化简代数式|x﹣5|+|x ﹣4|;(3)求代数式|x﹣5|+|x﹣4|的最小值.28.同学们都知道|5﹣(﹣2)|表示5与(﹣2)之差的绝对值,也可理解为5与﹣2两数在数轴上所对的两点之间的距离,试探索:(1)求|5﹣(﹣2)|=.(2)找出所有符合条件的整数x,使得|x+5|+|x﹣2|=7成立的整数是.(3)由以上探索猜想,对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有,写出最小值;如果没有,说明理由.29.计算:已知|x|=,|y|=,且x<y<0,求6÷(x﹣y)的值.30.求下列各数的绝对值.2,﹣,3,0,﹣4.31.结合数轴与绝对值的知识回答下列问题:(1)探究:①数轴上表示5和2的两点之间的距离是;②数轴上表示﹣2和﹣6的两点之间的距离是;③数轴上表示﹣4和3的两点之间的距离是;(2)归纳:一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.(3)应用:①如果表示数a 和3的两点之间的距离是7,则可记为:|a﹣3|=7,那么a=;②若数轴上表示数a的点位于﹣4与3之间,求|a+4|+|a﹣3|的值;③当a 取何值时,|a+4|+|a﹣1|+|a ﹣3|的值最小,最小值是多少?请说明理由.32.计算:|x+1|+|x﹣2|+|x ﹣3|.33.已知数轴上三点A,O,B 表示的数分别为﹣3,0,1,点P为数轴上任意一点,其表示的数为x.(1)如果点P到点A,点B的距离相等,那么x=;(2)当x=时,点P 到点A,点B的距离之和是6;(3)若点P到点A,点B 的距离之和最小,则x的取值范围是;(4)在数轴上,点M,N表示的数分别为x1,x2,我们把x1,x2之差的绝对值叫做点M,N之间的距离,即MN=|x1﹣x2|.若点P以每秒3个单位长度的速度从点O 沿着数轴的负方向运动时,点E以每秒1个单位长度的速度从点A沿着数轴的负方向运动、点F以每秒4个单位长度的速度从点B沿着数轴的负方向运动,且三个点同时出发,那么运动秒时,点P到点E,点F的距离相等.34.阅读下面材料:如图,点A、B在数轴上分别表示有理数a、b,则A、B两点之间的距离可以表示为|a﹣b|.根据阅读材料与你的理解回答下列问题:(1)数轴上表示3与﹣2的两点之间的距离是.(2)数轴上有理数x与有理数7所对应两点之间的距离用绝对值符号可以表示为.(3)代数式|x+8|可以表示数轴上有理数x与有理数所对应的两点之间的距离;若|x+8|=5,则x=.(4)求代数式|x+1008|+|x+504|+|x﹣1007|的最小值.35.已知|a|=8,|b|=2,|a ﹣b|=b﹣a,求b+a的值.36.如图,数轴上的三点A,B,C分别表示有理数a,b,c,化简|a﹣b|﹣|a+c|+|b﹣c|.37.若ab>0,化简:+.38.若a、b都是有理数,试比较|a+b|与|a|+|b|大小.39.若a>b,计算:(a﹣b)﹢|a﹣b|.40.当a≠0时,请解答下列问题:(1)求的值;(2)若b≠0,且,求的值.参考答案与试题解析一.选择题(共16小题)1. D.2. B.3. D.4.D.5. B.6.B.7. B.8. A.9. A.10. A.11. C.12.A.13. D.14.C.15.C.16. A.二.填空题(共10小题)17..18.6或﹣6 .19. 2 , 2 .20.4,﹣4 .21.2018 .22. 1 .23.﹣1 .24. 2 .25.±3 .26. = 3 .三.解答题(共14小题)27.【解答】(1)令x﹣5=0,x﹣4=0,解得:x=5和x=4,故|x﹣5|和|x﹣4|的零点值分别为5和4;(2)当x<4时,原式=5﹣x+4﹣x=9﹣2x;当4≤x<5时,原式=5﹣x+x ﹣4=1;当x≥5时,原式=x﹣5+x﹣4=2x﹣9.综上讨论,原式=.(3)当x<4时,原式=9﹣2x>1;当4≤x<5时,原式=1;当x≥5时,原式=2x﹣9>1.故代数式的最小值是1.28.解:(1)原式=|5+2|=7故答案为:7;(2)令x+5=0或x﹣2=0时,则x=﹣5或x=2当x<﹣5时,∴﹣(x+5)﹣(x﹣2)=7,﹣x﹣5﹣x+2=7,x=5(范围内不成立)当﹣5<x<2时,∴(x+5)﹣(x﹣2)=7,x+5﹣x+2=7,7=7,∴x=﹣4,﹣3,﹣2,﹣1,0,1当x>2时,∴(x+5)+(x﹣2)=7,x+5+x﹣2=7,2x=4,x=2,x=2(范围内不成立)∴综上所述,符合条件的整数x有:﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2;故答案为:﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2;(3)由(2)的探索猜想,对于任何有理数x,|x﹣3|+|x﹣6|有最小值为3.29.解:∵|x|=,|y|=,且x<y<0,∴x=﹣,y=﹣,∴6÷(x﹣y)=6÷(﹣+)=﹣36.30.【解答】解:|2|=2,|﹣|=,|3|=3,|0|=0,|﹣4|=4.31.解:探究:①数轴上表示5和2的两点之间的距离是3,②数轴上表示﹣2和﹣6的两点之间的距离是4,③数轴上表示﹣4和3的两点之间的距离是7;(3)应用:①如果表示数a 和3的两点之间的距离是7,则可记为:|a﹣3|=7,那么a=10或a=﹣4,②若数轴上表示数a的点位于﹣4与3之间,|a+4|+|a﹣3|=a+4﹣a+3=7,a=1时,|a+4|+|a﹣1|+|a﹣3|最小=7,|a+4|+|a﹣1|+|a﹣3|是3与﹣4两点间的距离.32.解:x<﹣1时,|x+1|+|x﹣2|+|x﹣3|=﹣(x+1)﹣(x﹣2)﹣(x﹣3)=﹣x﹣1﹣x+2﹣x+3=﹣3x+4;﹣1≤x≤2时,|x+1|+|x﹣2|+|x﹣3|=(x+1)﹣(x﹣2)﹣(x﹣3)=x+1﹣x+2﹣x+3=﹣x+6;2<x≤3时,|x+1|+|x﹣2|+|x﹣3|=(x+1)+(x﹣2)﹣(x﹣3)=x+1+x﹣2﹣x+3=x+2;x>3时,|x+1|+|x﹣2|+|x﹣3|=(x+1)+(x﹣2)+(x﹣3)=x+1+x﹣2+x﹣3=3x﹣4.33.解:(1)由题意得,|x ﹣(﹣3)|=|x﹣1|,解得x=﹣1;(2)∵AB=|1﹣(﹣3)|=4,点P到点A,点B的距离之和是6,∴点P在点A的左边时,﹣3﹣x+1﹣x=6,解得x=﹣4,点P在点B的右边时,x﹣1+x﹣(﹣3)=6,解得x=2,综上所述,x=﹣4或2;(3)由两点之间线段最短可知,点P在AB之间时点P到点A,点B的距离之和最小,所以x的取值范围是﹣3≤x ≤1;(4)设运动时间为t,点P 表示的数为﹣3t,点E表示的数为﹣3﹣t,点F表示的数为1﹣4t,∵点P到点E,点F的距离相等,∴|﹣3t﹣(﹣3﹣t)|=|﹣3t﹣(1﹣4t)|,∴﹣2t+3=t﹣1或﹣2t+3=1﹣t,解得t=或t=2.故答案为:(1)﹣1;(2)﹣4或2;(3)﹣3≤x≤1;(4)或2.34.解:(1)|3﹣(﹣2)|=5,(2)数轴上有理数x与有理数7所对应两点之间的距离用绝对值符号可以表示为|x ﹣7|,(3)代数式|x+8|可以表示数轴上有理数x与有理数﹣8所对应的两点之间的距离;若|x+8|=5,则x=﹣3或﹣13,(4)如图,|x+1008|+|x+504|+|x﹣1007|的最小值即|1007﹣(﹣1008)|=2015.故答案为:5,|x﹣7|,﹣8,=﹣3或﹣13.35.解:∵|a|=8,|b|=2,∴a=±8,b=±2,∵|a﹣b|=b﹣a,∴a﹣b≤0.①当a=8,b=2时,因为a﹣b=6>0,不符题意,舍去;②当a=8,b=﹣2时,因为a﹣b=10>0,不符题意,舍去;③当a=﹣8,b=2时,因为a﹣b=﹣10<0,符题意;所以a+b=﹣6;④当a=﹣8,b=﹣2时,因为a﹣b=﹣6<0,符题意,所以a+b=﹣10.综上所述a+b=﹣10或﹣6.36.解:由数轴得,c>0,a <b<0,因而a﹣b<0,a+c<0,b﹣c <0.∴原式=b﹣a+a+c+c﹣b=2c.37.解:∵ab>0,∴①当a>0,b>0时,+=1+1=2.②当a<0,b<0时,+=﹣1﹣1=﹣2.综上所述:+=2或﹣2.38.解:①当a,b同号时,|a+b|=|a|+|b|,②当a,b中至少有一个0时,|a+b|=|a|+|b|,③当a,b异号时,|a+b|<|a|+|b|,综上所述|a+b|≤|a|+|b|.39.解:∵a>b,∴a﹣b>0,∴(a﹣b)﹢|a﹣b|=(a﹣b)+(a﹣b)=2a﹣2b.40.解:(1)当a>0时,=1;当a<0时,=﹣1;(2)∵,∴a,b 异号,当a>0,b<0时,=﹣1;当a<0,b>0时,=﹣1;。
初一下册数学压轴题精练答案之令狐文艳创作
初一下册数学压轴题精练答案令狐文艳参考答案与试题解析一.解答题(共9小题)1.如图1,在平面直角坐标系中,△AOB是直角三角形,∠AOB=90°,斜边AB与y轴交于点C.(1)若∠A=∠AOC,求证:∠B=∠BOC;(2)如图2,延长AB交x轴于点E,过O作OD⊥AB,若∠DOB=∠EOB,∠A=∠E,求∠A的度数;(3)如图3,OF平分∠AOM,∠BCO的平分线交FO的延长线于点P,∠A=40°,当△ABO绕O点旋转时(斜边AB与y轴正半轴始终相交于点C),问∠P的度数是否发生改变?若不变,求其度数;若改变,请说明理由.考点:三角形内角和定理;坐标与图形性质.专题:证明题.分析:(1)由直角三角形两锐角互余及等角的余角相等即可证明;(2)由直角三角形两锐角互余、等量代换求得∠DOB=∠EOB=∠OAE=∠E;然后根据外角定理知∠DOB+∠EOB+∠OEA=90°;从而求得∠DOB=30°,即∠A=30°;(3)由角平分线的性质知∠FOM=45°﹣∠AOC ①,∠PCO=∠A+∠AOC ②,根据①②解得∠PCO+∠FOM=45°+∠A,最后根据三角形内角和定理求得旋转后的∠P的度数.解答:(1)证明:∵△AOB是直角三角形,∴∠A+∠B=90°,∠AOC+∠BOC=90°,∵∠A=∠AOC,∴∠B=∠BOC;解:(2)∵∠A+∠ABO=90°,∠DOB+∠ABO=90°,∴∠A=∠DOB,又∵∠DOB=∠EOB,∠A=∠E,∴∠DOB=∠EOB=∠OAE=∠OEA,∵∠DOB+∠EOB+∠OEA=90°,∴∠A=30°;(3)∠P的度数不变,∠P=25°.理由如下:(只答不变不得分)∵∠AOM=90°﹣∠AOC,∠BCO=∠A+∠AOC,又∵OF平分∠AOM,CP平分∠BCO,∴∠FOM=45°﹣∠AOC ①,∠PCO=∠A+∠AOC ②,①+②得:∠PCO+∠FOM=45°+∠A,∴∠P=180°﹣(∠PCO+∠FOM+90°)=180°﹣(45°+∠A+90°)=180°﹣(45°+20°+90°)=25°.点评:本题综合考查了三角形内角和定理、坐标与图形的性质.解答时,需注意,△ABO 旋转后的形状与大小均无变化.2.在平面直角坐标系中,A(﹣1,0),B(0,2),点C 在x轴上.(1)如图(1),若△ABC的面积为3,则点C的坐标为(2,0)或(﹣4,0).(2)如图(2),过点B点作y轴的垂线BM,点E是射线BM上的一动点,∠AOE的平分线交直线BM于F,OG⊥OF且交直线BM于G,当点E在射线BM上滑动时,的值是否变化?若不变,请求出其值;若变化,请说明理由.考点:三角形内角和定理;坐标与图形性质;垂线;平行线的性质;三角形的面积;三角形的外角性质.分析:(1)利用A,B点坐标,△ABC的面积为3,得出AC的长,进而得出C点坐标;(2)首先根据已知得出∠EOG=∠EOx,进而得出FM∥x轴,再利用已知得出∠BOF=∠EGO,即可得出∠BEO=2∠BOF,得出答案即可.解答:解:(1)∵A(﹣1,0),B(0,2),点C在x轴上.△ABC的面积为3,∴AC的长为3,则点C的坐标为(2,0)或(﹣4,0);故答案为:(2,0)或(﹣4,0);(2)∵∠AOE+∠EOx=180°,∴∠AOE+∠EOx=90°,即∠EOF+∠EOx=90°∵∠EOF+∠EOG=90°,∴∠EOG=∠EOx,∴FM∥x轴,∴∠GOx=∠EGO,∴∠EOG=∠EGO,∴∠BEO=2∠EGO,∵∠FOG=90°,∴∠EGO+∠OFG=90°,∵FM⊥y轴,∴∠BOF+∠OFG=90°,∴∠BOF=∠EGO,∴∠BEO=2∠BOF,∴=2.点评:此题主要考查了三角形内角和定理应用以及平行线的判定和三角形面积求法等知识,根据已知得出FM∥x轴以及∠BOF=∠EGO是解题关键.3.如图1,在平面直角坐标系中,A(a,0),B(b,0),C(﹣1,2),且|2a+b+1|+(a+2b﹣4)2=0.(1)求a,b的值;(2)①在x轴的正半轴上存在一点M,使△COM的面积=△ABC的面积,求出点M的坐标;②在坐标轴的其它位置是否存在点M,使△COM的面积=△ABC的面积仍然成立?若存在,请直接写出符合条件的点M 的坐标;(3)如图2,过点C作CD⊥y轴交y轴于点D,点P为线段CD延长线上一动点,连接OP,OE平分∠AOP,OF⊥OE.当点P运动时,的值是否会改变?若不变,求其值;若改变,说明理由.考点:三角形内角和定理;非负数的性质:绝对值;非负数的性质:偶次方;解二元一次方程组;三角形的面积;三角形的外角性质.分析:(1)根据非负数的性质即可列出关于a,b的方程组求得a,b的值;(2)①过点C做CT⊥x轴,CS⊥y轴,垂足分别为T、S,根据三角形的面积公式即可求得OM的长,则M的坐标即可求得;②根据三角形的面积公式,即可写出M的坐标;(3)利用∠BOF根据平行线的性质,以及角平分线的定义表示出∠OPD和∠DOE 即可求解.解答:解:(1)∵|2a+b+1|+(a+2b﹣4)2=0,又∵|2a+b+1|≥0,(a+2b﹣4)2≥0,∴|2a+b+1|=0且(a+2b﹣4)2=0.∴∴即a=﹣2,b=3.(2)①过点C做CT⊥x轴,CS⊥y轴,垂足分别为T、S.∵A(﹣2,0),B(3,0),∴AB=5,因为C(﹣1,2),∴CT=2,CS=1,△ABC的面积=AB•CT=5,要使△COM的面积=△ABC的面积,即△COM的面积=,所以OM•CT=,∴OM=2.5.所以M的坐标为(2.5,0).②存在.点M的坐标为(0,5)或(﹣2.5,0)或(0,﹣5).(3)的值不变,理由如下:∵CD⊥y轴,AB⊥y轴∴∠CDO=∠DOB=90°∴AB∥CD∴∠OPD=∠POB∵OF⊥OE∴∠POF+∠POE=90°,∠BOF+∠AOE=90°∵OE平分∠AOP∴∠POE=∠AOE∴∠POF=∠BOF∴∠OPD=∠POB=2∠BOF∵∠DOE+∠DOF=∠BOF+∠DOF=90°∴∠DOE=∠BOF∴∠OPD=2∠BOF=2∠DOE∴.点评:本题考查了非负数的性质,三角形的面积公式,以及角平分线的定义,平行线的性质,求点的坐标问题常用的方法就是转化成求线段的长的问题.4.长方形OABC,O为平面直角坐标系的原点,OA=5,OC=3,点B在第三象限.(1)求点B的坐标;(2)如图1,若过点B的直线BP与长方形OABC的边交于点P,且将长方形OABC的面积分为1:4两部分,求点P 的坐标;(3)如图2,M为x轴负半轴上一点,且∠CBM=∠CMB,N 是x轴正半轴上一动点,∠MCN的平分线CD交BM的延长线于点D,在点N运动的过程中,的值是否变化?若不变,求出其值;若变化,请说明理由.考点:平行线的判定与性质;坐标与图形性质;三角形的面积.分析:(1)根据第三象限点的坐标性质得出答案;(2)利用长方形OABC的面积分为1:4两部分,得出等式求出AP的长,即可得出P点坐标,再求出PC的长,即可得出OP的长,进而得出答案;(3)首先求出∠MCF=2∠CMB,即可得出∠CNM=∠NCF=∠MCF﹣∠NCM=2∠BMC﹣2∠DCM,得出答案.解答:解:(1)∵四边形OABC为长方形,OA=5,OB=3,且点B在第三象限,∴B(﹣5,﹣3).(2)若过点B的直线BP与边OA交于点P,依题意可知:×AB×AP=×OA×OC,即×3×AP=×5×3,∴AP=2∵OA=5,∴OP=3,∴P(﹣3,0),若过点B的直线BP与边OC交于点P,依题意可知:×BC×PC=×OA×OC,即×5×PC=×5×3,∴PC=∵OC=3,∴OP=,∴P(0,﹣).综上所述,点P的坐标为(﹣3,0)或(0,﹣).(3)延长BC至点F,∵四边形OABC为长方形,∴OA∥BC.∴∠CBM=∠AMB,∠AMC=∠MCF.∵∠CBM=∠CMB,∴∠MCF=2∠CMB.过点M作ME∥CD交BC于点E,∴∠EMC=∠MCD.又∵CD平分∠MCN,∴∠NCM=2∠EMC.∴∠D=∠BME=∠CMB﹣∠EMC,∠CNM=∠NCF=∠MCF﹣∠NCM=2∠BMC﹣2∠DCM=2∠D,∴=.点评:此题主要考查了平行线的性质以及矩形的性质、图形面积求法等知识,利用数形结合得出的是解题关键.5.如图,直线AB∥CD.(1)在图1中,∠BME、∠E,∠END的数量关系为:∠E=∠BME+∠END;(不需证明)在图2中,∠BMF、∠F,∠FND的数量关系为:∠BMF=∠F+∠FND;(不需证明)(2)如图3,NE平分∠FND,MB平分∠FME,且2∠E与∠F互补,求∠FME的大小.(3)如图4中,∠BME=60°,EF平分∠MEN,NP平分∠END,EQ∥NP,则∠FEQ的大小是否发生变化?若变化,说明理由;若不变化,求∠FEQ的度数.考点:平行线的性质.分析:(1)过点E作EF∥AB,根据两直线平行,内错角相等可得∠BME=∠1,∠END=∠2,然后相加即可得解;先根据两直线平行,同位角相等求出∠3=∠FND,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解;(2)设∠END=x°,∠BNE=y°,根据(1)的结论可得x+y=∠E,2x+∠F=y,然后消掉x并表示出y,再根据2∠E与∠F互补求出y,然后根据角平分线的定义求解即可;(3)根据(1)的结论表示出∠MEN,再根据角平分线的定义表示出∠FEN和∠ENP,再根据两直线平行,内错角相等可得∠NEQ=∠ENP,然后根据∠FEQ=∠FEN﹣∠NEQ整理即可得解.解答:解:(1)如图1,过点E作EF∥AB,∵AB∥CD,∴AB∥EF∥CD,∴∠BME=∠1,∠END=∠2,∴∠1+∠2=∠BME+∠END,即∠E=∠BME+∠END;如图2,∵AB∥CD,∴∠3=∠FND,∴∠BMF=∠F+∠3=∠F+∠FND,即∠BMF=∠F+∠FND;故答案为:∠E=∠BME+∠END;∠BMF=∠F+∠FND;(2)如图3,设∠END=x°,∠BNE=y°,由(1)的结论可得x+y=∠E,2x+∠F=y,消掉x得,3y=2∠E+∠F,∵2∠E与∠F互补,∴2∠E+∠F=180°,∴3y=180°,解得y=60°,∵MB平分∠FME,∴∠FME=2y=2×60°=120°;(3)由(1)的结论得,∠MEN=∠BME+∠END,∵EF平分∠MEN,NP平分∠END,∴∠FEN=∠MEN=(∠BME+∠END),∠ENP=∠END,∵EQ∥NP,∴∠NEQ=∠ENP,∴∠FEQ=∠FEN﹣∠NEQ=(∠BME+∠END)﹣∠END=∠BME,∵∠BME=60°,∴∠FEQ=×60°=30°.点评:本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,此类题目,过拐点作平行线是解题的关键,准确识图理清图中各角度之间的关系也很重要.6.在平面直角坐标系中,点B(0,4),C(﹣5,4),点A是x轴负半轴上一点,S四边形AOBC=24.(1)线段BC的长为5,点A的坐标为(﹣7,0);(2)如图1,BM平分∠CBO,CM平分∠ACB,BM交CM于点M,试给出∠CMB与∠CAO之间满足的数量关系式,并说明理由;(3)若点P是在直线CB与直线AO之间的一点,连接BP、OP,BN平分∠CBP,ON平分∠AOP,BN交ON于N,请依题意画出图形,给出∠BPO与∠BNO之间满足的数量关系式,并说明理由.考点:三角形内角和定理;坐标与图形性质;三角形的面积;三角形的外角性质.专题:分类讨论.分析:(1)根据点B、C的横坐标求出BC的长度即可;再根据四边形的面积求出OA的长度,然后根据点A在y轴的负半轴写出点A的坐标;(2)根据两直线平行,同旁内角互补用∠CAO表示出∠ACB,再根据角平分线的定义表示出∠MAB和∠MBC,然后利用三角形的内角和定理列式整理即可得解;(3)分①点P在OB的左边时,根据三角形的内角和定理表示出∠PBO+∠POB,再根据两直线平行,同旁内角互补和角平分线的定义表示出∠NBP+∠NOP,然后在△NBO中,利用三角形的内角和定理列式整理即可得解;②点P在OB的右边时,求出∠CBP+∠AOP+∠BPO=360°,再根据角平分线的定义表示出∠PBN+∠PON,然后利用四边形的内角和定理列式整理即可得解.解答:解:(1)∵点B(0,4),C(﹣5,4),∴BC=5,S四边形AOBC=(BC+OA)•OB=(5+OA)•4=24,解得OA=7,所以,点A的坐标为(﹣7,0);(2)∵点B、C的纵坐标相同,∴BC∥OA,∴∠ACB=180°﹣∠CAO,∠CBO=90°,∵BM平分∠CBO,CM平分∠ACB,∴∠MCB=(180°﹣∠CAO)=90°﹣∠CAO,∠MBC=∠CBO=×90°=45°,在△MBC中,∠CMB+∠MCB+∠MBC=180°,即∠CMB+90°﹣∠CAO+45°=180°,解得∠CMB=45°+∠CAO;(3)①如图1,当点P在OB左侧时,∠BPO=2∠BNO.理由如下:在△BPO中,∠PBO+∠POB=180°﹣∠BPO,∵BC∥OA,BN平分∠CBP,ON平分∠AOP,∴∠NBP+∠NOP=(180°﹣∠PBO﹣∠POB),在△NOB中,∠BNO=180°﹣(∠NBP+∠NOP+∠PBO+∠POB),=180°﹣[(180°﹣∠PBO﹣∠POB)+∠PBO+∠POB],=90°﹣(∠PBO+∠POB),=90°﹣(180°﹣∠BPO),=∠BPO,∴∠BPO=2∠BNO;②如图2,当点P在OB右侧时,∠BNO+∠BPO=180°.理由如下:∵BC∥OA,∴∠CBP+∠AOP+∠BPO=360°,∵BN平分∠CBP,ON平分∠AOP,∴∠PBN+∠PON+∠BPO=×360°=180°,∴∠PBN+∠PON=180°﹣∠BPO,在四边形BNOP中,∠BNO=360°﹣∠PBN﹣∠PON﹣∠BPO=360°﹣(180°﹣∠BPO)﹣∠BPO=180°﹣∠BPO,∴∠BNO+∠BPO=180°.点评:本题考查了三角形的内角和定理,角平分线的定义,平行线的性质,以及坐标与图形性质,准确识图理清图中各角度之间的关系是解题关键,(3)要注意分情况讨论.7.如图1,在平面直角坐标系中,四边形OBCD各个顶点的坐标分别是O(0,0),B(2,6),C(8,9),D (10,0);(1)三角形BCD的面积=30(2)将点C平移,平移后的坐标为C′(2,8+m);①若S△BDC′=32,求m的值;②当C′在第四象限时,作∠C′OD的平分线OM,OM交于C′C于M,作∠C′CD的平分线CN,CN交OD于N,OM与CN相交于点P(如图2),求的值.考点:作图-平移变换;坐标与图形性质;三角形内角和定理.分析:(1)三角形BCD的面积=正方形的面积﹣3个小三角形的面积;(2)①分平移后的坐标为C′在B点的上方;在B点的下方两种情况讨论可求m 的值;②利用外角以及角平分线的性质得出∠ODC+∠CC′O=2∠P,即可得出答案.解答:解:(1)三角形BCD的面积为:×6×10=30;故答案为:30;(2)①当C在x轴上方,如图1所示:∵S△BDC′=32,D到BC″的距离为8,∴BC″=8,∵B(2,6),∴8+m=14,∴m=6,∵AB=6,BC′=8,∴C′在x轴下方,且AC′=2,∴8+m=﹣2,∴m=﹣10,即m=6或m=﹣10;②如图2,在△OC′M中,∵∠OMC是∠OMC′的外角,∴∠2+∠6=∠OMC,在△PMC中,∵∠OMC是∠CMP的外角,∴∠4+∠P=∠OMC,∴∠2+∠6=∠4+∠P,在△CND中,∵∠ONC是∠CND的外角,∴∠3+∠7=∠ONC,在△ONP中,∵∠ONC是∠ONP的外角,∴∠1+∠P=∠ONC,∴∠3+∠7=∠1+∠P,∴∠3+∠7+∠2+∠6=∠4+∠P+∠1+∠P,∵∠2=∠1,∠3=∠4,∴∠6+∠7=2∠P,∴∠ODC+∠CC′O=2∠P,∴=.点评:此题主要考查了外角的性质以及三角形面积求法和点坐标性质等知识,利用数形结合得出C′的不同位置是解题关键.8.如图,四边形ABCD中,AD∥BC,DE平分∠ADB,∠BDC=∠BCD.(1)求证:∠1+∠2=90°;(2)若∠ABD的平分线与CD的延长线交于F,且∠F=55°,求∠ABC;(3)若H是BC上一动点,F是BA延长线上一点,FH交BD于M,FG平分∠BFH,交DE于N,交BC于G.当H在BC上运动时(不与B点重合),的值是否变化?如果变化,说明理由;如果不变,试求出其值.考点:等腰三角形的性质;角平分线的定义;平行线的性质.专题:综合题.分析:本题考查了等腰三角形的性质、角平分线的性质以及平行线的性质,解决问题的关键在于熟悉掌握知识要点,并且善于运用角与角之间的联系进行传递.(1)由AD∥BC,DE平分∠ADB,得∠ADC+∠BCD=180,∠BDC=∠BCD,得出∠1+∠2=90°;(2)由DE平分∠ADB,CD平分∠ABD,四边形ABCD中,AD∥BC,∠F=55°,得出∠ABC=∠ABD+∠DBC=∠ABD+∠ADB,即∠ABC=70°;(3)在△BMF中,根据角之间的关系∠BMF=180°﹣∠ABD﹣∠BFH,得∠GND=180°﹣∠AED﹣∠BFG,再根据角之间的关系得∠BAD=﹣∠DBC,在综上得出答案.解答:(1)证明:AD∥BC,∠ADC+∠BCD=180,∵DE平分∠ADB,∠BDC=∠BCD,∴∠ADE=∠EDB,∠BDC=∠BCD,∵∠ADC+∠BCD=180°,∴∠EDB+∠BDC=90°,∠1+∠2=90°.解:(2)∠FBD+∠BDE=90°﹣∠F=35°,∵DE平分∠ADB,BF平分∠ABD,∴∠ADB+∠ABD=2(∠FBD+∠BDE)=70°,又∵四边形ABCD中,AD∥BC,∴∠DBC=∠ADB,∴∠ABC=∠ABD+∠DBC=∠ABD+∠ADB,即∠ABC=70°;(3)的值不变.证明:在△BMF中,∠BMF=∠DMH=180°﹣∠ABD﹣∠BFH,又∵∠BAD=180°﹣(∠ABD+∠ADB),∠DMH+∠BAD=(180°﹣∠ABD﹣∠BFH)+(180°﹣∠ABD﹣∠ADB),=360﹣∠BFH﹣2∠ABD﹣∠ADB,∠DNG=∠FNE=180°﹣∠BFH﹣∠AED,=180°﹣∠BFH﹣∠ABD﹣∠ADB,=(∠DMH+∠BAD),∴=2.点评:本题考查等腰三角形的性质及三角形内角和定理;此题为探索题,比较新颖,实际涉及的知识不多.9.如图(1)所示,一副三角板中,含45°角的一条直角边AC在y轴上,斜边AB交x轴于点G.含30°角的三角板的顶点与点A重合,直角边AE和斜边AD分别交x轴于点F、H.(1)若AB∥ED,求∠AHO的度数;(2)如图2,将三角板ADE绕点A旋转.在旋转过程中,∠AGH的平分线GM与∠AHF的平分线HM相交于点M,∠COF的平分线ON与∠OFE的平分线FN相交于点N.①当∠AHO=60°时,求∠M的度数;②试问∠N+∠M的度数是否发生变化?若改变,求出变化范围;若保持不变,请说明理由.考点:三角形内角和定理;角平分线的定义;平行线的性质;三角形的外角性质.专题:综合题.分析:(1)由AB∥ED可以得到∠BAD=∠D=60°,即∠BAC+∠CAD=60°,然后根据已知条件即可求出∠AHO;(2)①由∠AHO+∠AHF=180°,∠AHO=60°,可以求出∠AHF,而HM是∠AHF 的平分线,GM是∠AGH的平分线,∠MHF=∠MGH+∠M,由此即可求出∠M;②∠N+∠M的度数不变,当∠BAC与∠DAE没有重合部分时,∠GAH﹣∠OAF=(45°+∠OAH)﹣(30°+∠OAH)=15°;当AC与AD在一条直线上时,∠GAH﹣∠OAF=45°﹣30°=15°;当∠BAC与∠DAE有重合部分时,∠GAH﹣∠OAF=(45°﹣∠OAH)﹣(30°﹣∠OAH)=15°,即∠GAH﹣∠OAF=15°.而根据已知条件∠M=∠MHF﹣∠MGH=∠AHF﹣∠AGH=∠GAH,∠N=180°﹣(∠OFE+90°)=180°﹣(∠OAF+90°)﹣90°=90°﹣∠OAF,由此即可得到结论.解答:解:(1)∵AB∥ED∴∠BAD=∠D=60°(两直线平行,内错角相等),即∠BAC+∠CAD=60°.∵∠BAC=45°,∴∠CAD=60°﹣45°=15°,∠AHO=90°﹣∠CAD=75°;(2)①∵∠AHO+∠AHF=180°,∠AHO=60°,∴∠AHF=180°﹣60°=120°∵HM是∠AHF的平分线,∴∠MHF=∠AHF=60°(角平分线的定义).∵GM是∠AGH的平分线,∠AGH=45°,∴∠MGH=∠AGH=22.5°,∵∠MHF=∠MGH+∠M,∴∠M=60°﹣22.5°=37.5°;②∠N+∠M的度数不变,理由是:当∠BAC与∠DAE没有重合部分时,∠GAH﹣∠OAF=(45°+∠OAH)﹣(30°+∠OAH)=15°;当AC与AD在一条直线上时,∠GAH﹣∠OAF=45°﹣30°=15°;当∠BAC与∠DAE有重合部分时,∠GAH﹣∠OAF=(45°﹣∠OAH)﹣(30°﹣∠OAH)=15°;∴∠GAH﹣∠OAF=15°.易得出∠M=∠MHF﹣∠MGH=∠AHF﹣∠AGH=∠GAH,∠N=180°﹣(∠OFE+90°)=180°﹣(∠OAF+90°)﹣90°=90°﹣∠OAF,∴∠M+∠N=∠GAH+90°﹣∠OAF=90°+×15°=97.5°(定值).点评:此题比较复杂,考查了三角形的内角和、三角形的外角的性质、角平分线的性质、平行线的性质等多个知识,综合性比较强,难度比较大,学生首先心理上要相信自己,才能有信心解决问题.。
含绝对值函数的最值问题之令狐文艳创作
专题三: 含绝对值函数的最值问题1.令狐文艳2. 已知函数2()2||f x x x a =--(0>a ),若对任意的[0,)x ∈+∞,不等式(1)2()f x f x -≥恒成立,求实数a 的取值范围. 不等式()()12f x f x -≥化为()2212124x x a x x a----≥--即:()242121x a x a x x ---+≤+-(*)对任意的[)0,x ∈+∞恒成立因为0a >,所以分如下情况讨论:[来源:学科网ZXXK]①当0x a ≤≤时,不等式(*)24120[0,]x x a x a ++-≥∀∈对恒成立②当1a x a <≤+时,不等式(*)即24160(,1]x x a x a a -++≥∀∈+对恒成立由①知102a <≤,2()416(,1]h x x x a a a ∴=-+++在上单调递减2.已知函数f (x )=|x -a |,g (x )=x 2+2ax +1(a 为正数),且函数f (x )与g (x )的图象在y 轴上的截距相等.(1)求a 的值;(2)求函数f (x )+g (x )的最值.【解析】(1)由题意f (0)=g (0),∴|a |=1.又∵a >0,∴a =1. (2)由题意f (x )+g (x )=|x -1|+x 2+2x +1.当x ≥1时,f (x )+g (x )=x 2+3x 在[1,+∞)上单调递增,2min ()4120[0,]()(0)120102g x x x a a g x g a a =++-≥∴==-≥∴<≤在上单调递增只需当x <1时,f (x )+g (x )=x 2+x +2在⎣⎢⎢⎡⎭⎪⎪⎫-12,1上单调递增,在(-∞,12-]上单调递减.因此,函数f (x )+g (x )在(-∞,12-]上单调递减,在⎣⎢⎢⎡⎭⎪⎪⎫-12,+∞上单调递增. 所以,当x =12-时,函数f (x )+g (x )的最小值为74;函数无最大值. 5.已知函数2()2f x x x x a=+-,其中a R ∈.(Ⅰ)求函数()f x 的单调区间;(Ⅱ)若不等式4()16f x ≤≤在[1,2]x ∈上恒成立,求a 的取值范围. 6.设函数ba x x x f +-=||)(,,a b R∈[来源:学科网](1)若11,4a b ==-,求函数()f x 的零点;(2)若函数)(x f 在]1,0[上存在零点,求实数b 的取值范围. 解:(Ⅰ)分类讨论解得:112,22x x +==...................................................4分(Ⅱ)函数)(x f 在]1,0[上存在零点,即||x x a b -=-,[0,1]x ∈上有解, 令()||g x x x a =-,只需{|(),[0,1]}b y y g x x -∈=∈ (5)分当0a ≤时,2()()g x x x a x ax =-=-,在]1,0[递增, 所以()[0,1]g x a ∈-,即10a b -≤≤...............................................................................7分当1a ≥时,2()()g x x a x xax =-=-+,对称轴2ax =又当2a ≥()g x 在]1,0[递增,所以()[0,1]g x a ∈-,即10a b -≤≤当12a <<()g x 在[0,]2a 递增,[,1]2a递减,且所以2()[0,]4a g x ∈,即204a b -≤≤...............................................................................................................................................10分当01a <<时,22[0,]()() [,1]x ax x a g x x a x x ax x a ⎧-+∈⎪=-=⎨-∈⎪⎩ 易知,()g x 在[0,]2a 递增,[,]2aa 递减,[,1]a 递减,所以min ()0f x =,2max(){(),(1)}{,1}4a f x f a f a ==-,当01)a <≤,max ()(1)1f x f a==-,所以()[0,1]g x a ∈-,即10a b -≤≤当1)1a <<,2max()()4a f x f a ==,所以2()[0,]4a g x ∈,即204a b -≤≤.....................................................................................................................................................14分综上所述:当1)a ≤时,10a b -≤≤当1)2a <<,24a b -≤≤当2a ≥,10a b -≤≤........................................................................................15 分7.已知函数()()243f x x a x a=+-+-.(I )若()f x 在区间[]0,1上不单调,求a 的取值范围;(II )若对于任意的(0,4)a ∈,存在[]00,2x ∈,使得()0f x t ≥,求t 的取值范围. 解:401242a a -<-<⇒<< (5)分(II ) 解法:()()()()||12113f x x a x x x a =-+--=-+-⎡⎤⎣⎦ (9)分011x -≤,{}03max 1,3x a a a +-≤--……………13分且上述两个不等式的等号均为0x =或2时取到,故()max 1,24||3,02a a f x a a -≤<⎧=⎨-<<⎩故()max ||1f x ≥,所以1t ≤ (15)分、8.已知函数2()1,()|1|f x x g x a x =-=-.(Ⅰ)若当x ∈R 时,不等式()()f x g x ≥恒成立,求实数a 的取值范围;(Ⅱ)求函数()|()|()h x f x g x =+在区间[2,2]-上的最大值. 解:(1)不等式()()f x g x ≥对x ∈R 恒成立,即2(1)|1|x a x --≥(*)对x ∈R 恒成立,①当1x =时,(*)显然成立,此时a ∈R ;②当1x ≠时,(*)可变形为21|1|x a x -≤-,令21,(1),1()(1),(1).|1|x x x x x x x ϕ+>⎧-==⎨-+<-⎩因为当1x >时,()2x ϕ>,当1x <时,()2x ϕ>-,所以()2x ϕ>-,故此时2a -≤.综合①②,得所求实数a 的取值范围是2a -≤.(2)因为2()|()|()|1||1|h x f x g x x a x =+=-+-=2221,(1),1,(11),1,(1).x ax a x x ax a x x ax a x ⎧+--⎪--++-<⎨⎪-+-<-⎩≤≥…10分①当1,22aa >>即时,结合图形可知()h x 在[2,1]-上递减,在[1,2]上递增,且(2)33,(2)3h a h a -=+=+,经比较,此时()h x 在[2,2]-上的最大值为33a +.②当01,22a a 即0≤≤≤≤时,结合图形可知()h x 在[2,1]--,[,1]2a -上递减, 在[1,]2a--,[1,2]上递增,且(2)33,(2)3h a h a -=+=+,2()124a a h a -=++,经比较,知此时()h x 在[2,2]-上的最大值为33a +. ③当10,02aa -<<即-2≤≤时,结合图形可知()h x 在[2,1]--,[,1]2a -上递减,在[1,]2a --,[1,2]上递增,且(2)33,(2)3h a h a -=+=+,2()124a a h a -=++,经比较,知此时()h x 在[2,2]-上的最大值为3a +.④当31,222a a -<-<-即-3≤≤时,结合图形可知()h x 在[2,]2a -,[1,]2a -上递减,在[,1]2a ,[,2]2a -上递增,且(2)330h a -=+<, (2)30h a =+≥,经比较,知此时()h x 在[2,2]-上的最大值为3a +.当3,322a a <-<-即时,结合图形可知()h x 在[2,1]-上递减,在[1,2]上递增,故此时()h x 在[2,2]-上的最大值为(1)0h =.综上所述,当0a ≥时,()h x 在[2,2]-上的最大值为33a +; 当30a -<≤时,()h x 在[2,2]-上的最大值为3a +; 当3a <-时,()h x 在[2,2]-上的最大值为0.。
中考数学公式大全之令狐文艳创作
初中数学常用公式定理(务必全部理解并记住)令狐文艳1、整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数.如:-3,,0.231,0.737373…,,.无限不环循小数叫做无理数.如:π,-,0.1010010001…(两个1之间依次多1个0).有理数和无理数统称为实数.2、绝对值:a≥0丨a丨=a;a≤0丨a丨=-a.如:丨-丨=;丨3.14-π丨=π-3.14.3、一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.如:0.05972精确到0.001得0.060,结果有两个有效数字6,0.4、把一个数写成±a×10n的形式(其中1≤a<10,n是整数),这种记数法叫做科学记数法.如:-40700=-4.07×105,0.000043=4.3×10-5.5、乘法公式(反过来就是因式分解的公式):①(a+b)(a-b)=a2-b2.②(a±b)2=a2±2ab+b2.③a2+b2=(a+b)2-2ab,(a-b)2=(a+b)2-4ab.6、幂的运算性质:①a m×a n=a m+n.②a m÷a n=a m-n.③(a m)n=a mn .④(ab )n =a n b n .⑤()n =n .⑥a -n =1n a ,特别:()-n =()n .⑦a 0=1(a ≠0).如:a 3×a 2=a 5,a 6÷a 2=a 4,(a 3)2=a 6,(3a 3)3=27a 9,(-3)-1=-,5-2==,()-2=()2=,(-3.14)º=1,(-)0=1.7、二次根式:①()2=a (a ≥0),②=丨a 丨,③=×,④=(a >0,b ≥0).如:①(3)2=45.②=6.③a <0时,=-a -.④的平方根=4的平方根=±2.8、一元二次方程:对于方程:ax 2+bx +c =0:①求根公式是x =242b b ac a -±-,其中△=b 2-4ac 叫做根的判别式.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.注意:当△≥0时,方程有实数根.②若方程有两个实数根x 1和x 2,并且二次三项式ax 2+bx +c可分解为a (x -x 1)(x -x 2).③以a 和b 为根的一元二次方程是x 2-(a +b )x +ab =0.9、一次函数y =kx +b (k ≠0)的图象是一条直线(b 是直线与y 轴的交点的纵坐标即一次函数在y 轴上的截距)当k >0时,y 随x 的增大而增大(直线从左向右上升);当k<0时,y随x的增大而减小(直线从左向右下降).特别:当b=0时,y=kx(k≠0)又叫做正比例函数(y与x成正比例),图象必过原点.10、反比例函数y=(k≠0)的图象叫做双曲线.当k>0时,双曲线在一、三象限(在每一象限内,从左向右降);当k<0时,双曲线在二、四象限(在每一象限内,从左向右上升).因此,它的增减性与一次函数相反.11、统计初步:(1)概念:①所要考察的对象的全体叫做总体,其中每一个考察对象叫做个体.从总体中抽取的一部份个体叫做总体的一个样本,样本中个体的数目叫做样本容量.②在一组数据中,出现次数最多的数(有时不止一个),叫做这组数据的众数.③将一组数据按大小顺序排列,把处在最中间的一个数(或两个数的平均数)叫做这组数据的中位数.(2)公式:设有n个数x1,x2,…,x n,那么:平均数为:12......nx x xxn;12、频率与概率:(1)频率=总数频数,各小组的频数之和等于总数,各小组的频率之和等于1,频率分布直方图中各个小长方形的面积为各组频率。
初一(七年级)数学绝对值练习题及答案解析之令狐文艳创作
初一(七年级)数学上册绝对值同步练习题令狐文艳基础检测:1.-8的绝对值是,记做。
2.绝对值等于5的数有。
3.若︱a︱= a , 则 a 。
4.的绝对值是2004,0的绝对值是。
5一个数的绝对值是指在上表示这个数的点到的距离。
6.如果 x < y < 0, 那么︱x ︱︱y︱。
7.︱x - 1 ︱ =3 ,则 x =。
8.若︱x+3︱+︱y -4︱= 0,则 x + y = 。
9.有理数a ,b在数轴上的位置如图所示,则a b,︱a︱︱b︱。
10.︱x ︱<л,则整数x = 。
11.已知︱x︱-︱y︱=2,且y =-4,则 x = 。
12.已知︱x︱=2 ,︱y︱=3,则x +y = 。
13.已知︱x +1 ︱与︱y -2︱互为相反数,则︱x ︱+︱y︱= 。
14. 式子︱x +1 ︱的最小值是,这时,x值为。
15. 下列说法错误的是()A 一个正数的绝对值一定是正数B 一个负数的绝对值一定是正数C 任何数的绝对值一定是正数D 任何数的绝对值都不是负数16.下列说法错误的个数是 ( )(1) 绝对值是它本身的数有两个,是0和1(2) 任何有理数的绝对值都不是负数(3) 一个有理数的绝对值必为正数(4) 绝对值等于相反数的数一定是非负数A 3B 2C 1D 017.设a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,则 a + b + c 等于 ( )A -1B 0C 1D 2拓展提高:18.如果 a , b 互为相反数,c, d 互为倒数,m 的绝对值为2,求式子a ba b c +++ + m -cd 的值。
19.某司机在东西路上开车接送乘客,他早晨从A 地出发,(去向东的方向正方向),到晚上送走最后一位客人为止,他一天行驶的的里程记录如下(单位:㎞)+10 ,— 5, —15 ,+ 30 ,—20 ,—16 ,+ 14(1) 若该车每百公里耗油 3 L ,则这车今天共耗油 多少升?(2)据记录的情况,你能否知道该车送完最后一个乘客是,他在A地的什么方向?距A地多远?20.工厂生产的乒乓球超过标准重量的克数记作正数,低于标准重量的克数记作负数,现对5个乒乓球称重情况如下表所示,分析下表,根据绝对值的定义判断哪个球的重量最接近标准?初一(七年级)数学上册绝对值同步练习答案基础检测:1.-8的绝对值是 8 ,记做︱-8︱。
初中数学内容提纲之令狐文艳创作
初中数学内容提纲令狐文艳代数部分(一)有理数1.有理数的概念有理数。
数轴。
相反数。
数的绝对值。
有理数大小的比较。
(1)有理数的意义,用正数与负数表示相反意义的量,把给出的有理数归类。
(2)数轴、相反数、绝对值等概念和数轴的画法,用数轴上的点表示整数或分数(以刻度尺为工具),求有理数的相反数与绝对值(绝对值符号内不含字母)。
(3)有理数大小比较的法则,用不等号连接两个或两个以上不同的有理数。
2.有理数的运算有理数的加法与减法。
代数和。
加法运算律。
有理数的乘法与除法。
倒数。
乘法运算律。
有理数的乘方。
有理数的混的运算。
科学记数法。
近似数与有效数字。
(1)有理数的加、减、乘、除、乘方的意义,有理数的运算法则、运算律、运算顺序以及有理数的混合运算(不超过6个数),运用运算律简化运算。
(2)倒数概念,求有理数的倒数。
(3)大于10的有理数的科学记数法。
(4)近似数与有效数字的概念,根据指定的精确度或有效数字的个数,用四舍五入法求有理数的近似数;用计算器求一个数的平方与立方(尚无条件的学校可使用算表)。
(5)有理数的加法与减法、乘法与除法可以相互转化。
(二)整式的加减代数式。
代数式的值。
整式。
单项式。
多项式。
合并同类项。
去括号与添括号。
数与整式相乘。
整式的加减法。
(1)用字母表示有理数。
(2)代数式、代数式的值的概念,列出代数式表示简单的数量关系,求代数式的值。
(3)整式、单项式及其系数与次数、多项式次数、项与项数的概念,把一个多项式按某个字母降幂排列或升幂排列。
(4)合并同类项的方法,去括号、添括号的法则,数与整式相乘的运算以及整式的加减运算。
(5)用字母表示数、列代数式和求代数式的值、整式的加减,抽象概括的思维方法和特殊与一般的辩证关系。
(三)一元一次方程等式。
等式的基本性质。
方程和方程的解。
解方程。
一元一次方程及其解法。
一元一次方程的应用。
(1)等式和方程的有关概念,等式的基本性质,检验一个数是不是某个一元方程的解。
七年级下册数学难题提高练习之令狐文艳创作
1.当x 变化时, 时有最小值2,则t =____________.令狐文艳2.对于正数x ,规定f(x)=,例如f(3)==f(4)==,,计算f()+f()+f()+…+f()+f()+f(1)+f(2)+f(3)+…+f (2013)+f (2014)+f (2015)=______设[x]表示不小于x 的最小整数,如[3.4]=4,[4]=4,[3.8]=4,[-1.2)=-1,则下列结论中正确的是_____.(填写所有正确结论的序号)①[0]=0②[x]-x 的最小值是0③[x]-x 的最大值是0④存在实数x ,使[x]-x=0.5成立.3.我们常用的数是十进制数,计算机程序使用的是二进制数(只有数码0和1),它们两者之间可以互相换算,如将(101)2,(1011)2换算成十进制数应为:1121212021)1011(01232=⨯+⨯+⨯+⨯=,按此方式,将二进制(1001)2换算成十进制数的结果是_______________. 94.观察下列各式:()1121230123⨯=⨯⨯-⨯⨯;()1232341233⨯=⨯⨯-⨯⨯;()1343452343⨯=⨯⨯-⨯⨯……计算:3×(1×2+2×3+3×4+…+99×100)=( )5x x t-++……图③图②图① A .97×98×99 B .98×99×100 C .99×100×101D .100×101×1025.直线上有2018个点,我们进行如下操作:在每相邻两点间插入1个点,经过3次这样的操作后,直线上共有▲个点.6. (2010年安徽中考)下面两个多位数1248624……、6248624……,都是按照如下方法得到的:将第一位数字乘以2,若积为一位数,将其写在第2位上,若积为两位数,则将其个位数字写在第2位。
中考数学初中数学易错题集锦之令狐文艳创作
中考数学易错题集锦令狐文艳一、选择题1、A、B是数轴上原点两旁的点,则它们表示的两个有理数是()A、互为相反数B、绝对值相等C、是符号不同的数D、都是负数2、有理数a、b在数轴上的位置如图所示,则化简|a-b|-|a+b|的结果是()A、2aB、2bbC、2a-2bD、2a+b3、轮船顺流航行时m千米/小时,逆流航行时(m-6)千米/小时,则水流速度()A、2千米/小时B、3千米/小时C、6千米/小时D、不能确定4、方程2x+3y=20的正整数解有()A、1个B、3个C、4个D、无数个5、下列说法错误的是()A、两点确定一条直线B、线段是直线的一部分C、一条直线不是平角D、把线段向两边延长即是直线6、函数y=(m2-1)x2-(3m-1)x+2的图象与x轴的交点情况是 ( )A、当m≠3时,有一个交点B、1±m≠时,有两个交点C、当1±m时,有一个交点D、不=论m为何值,均无交点7、如果两圆的半径分别为R和r(R>r),圆心距为d,且(d-r)2=R2,则两圆的位置关系是()A、内切B、外切C、内切或外切D、不能确定8、在数轴上表示有理数a、b、c的小点分别是A、B、C且b<a<c,则下列图形正确的是()9、有理数中,绝对值最小的数是()A、-1B、1C、0D、不存在10、1的倒数的相反数是()2A、-2B、2C、-12D、1211、若|x|=x,则-x一定是()A、正数B、非负数C、负数D、非正数12、两个有理数的和除以这两个有理数的积,其商为0,则这两个有理数为()A、互为相反数B、互为倒数C、互为相反数且不为0D、有一个为013、长方形的周长为x,宽为2,则这个长方形的面积为()A、2xB、2(x-2)C、x-4D、2·(x-2)/214、“比x的相反数大3的数”可表示为()A、-x-3B、-(x+3)C、3-xD、x+315、如果0<a<1,那么下列说法正确的是()A、a2比a大B、a2比a小C、a2与a相等D、a2与a的大小不能确定16、数轴上,A点表示-1,现在A开始移动,先向左移动3个单位,再向右移动9个单位,又向左移动5个单位,这时,A点表示的数是()A、-1B、0C、1D、817、线段AB=4cm,延长AB到C,使BC=AB再延长BA到D,使AD=AB,则线段CD的长为()A、12cmB、10cmC、8cmD、4cm18、21-的相反数是()A、2-1-1+B、12-C、2D 、12+-19、方程x(x-1)(x-2)=x 的根是( ) A 、x 1=1, x 2=2B 、x 1=0, x 2=1, x 3=2C 、x 1=253+, x 2=253-D 、x 1=0,x 2=353+,x 3=253-20、解方程04)1(5)1(322=-+++xx x x 时,若设y xx =+1,则原方程可化为( ) A 、3y 2+5y-4=0 B 、3y 2+5y-10=0C 、3y 2+5y-2=0 D 、3y 2+5y+2=021、方程x 2+1=2|x|有( ) A 、两个相等的实数根 B 、两个不相等的实数根C 、三个不相等的实数根D 、没有实数根 22、一次函数y=2(x-4)在y 轴上的截距为( ) A 、-4 B 、4 C 、-8D 、823、解关于x 的不等式⎩⎨⎧-<>ax ax ,正确的结论是( )A 、无解B 、解为全体实数 C、当a>0时无解D 、当a<0时无解24、反比例函数x y 2 ,当x ≤3时,y 的取值范围是( )A 、y ≤32 B 、y ≥32 C 、y ≥32或y<0D 、0<y ≤3225、0.4的算术平方根是( ) A 、0.2 B 、±0.2 C 、510D 、±51026、李明骑车上学,一开始以某一速度行驶,途中车子发生故障,只好停车修理,车修好后,因怕123n 方差为s 2,则另一数组kx 1, kx 2, kx 3, …, kx n 的平均数与方差分别是( ) A 、k x , k 2s 2B 、x, s 2C 、kx, ks2D 、k 2x , ks 228、若关于x 的方程21=+-ax x 有解,则a 的取值范围是( ) A 、a ≠1 B 、a ≠-1 C、a≠2D 、a ≠±129、下列图形中既是中心对称图形,又是轴对称图形的是( ) A 、线段 B 、正三角形 C 、平行四边形D 、等腰梯形30、已知d c b a =,下列各式中不成立的是( )A 、d c b a d c b a ++=--B 、db ca d c 33++=C 、bd ac b a 23++=D 、ad=bc31、一个三角形的三个内角不相等,则它的最小角不大于( ) A 、300B 、450C 、550D 、60032、已知三角形内的一个点到它的三边距离相等,那么这个点是( ) A 、三角形的外心 B 、三角形的重心 C、三角形的内心D 、三角形的垂心33、下列三角形中是直角三角形的个数有( ) ①三边长分别为3:1:2的三角形 ②三边长之比为1:2:3的三角形③三个内角的度数之比为3:4:5的三角形 ④一边上的中线等于该边一半的三角形A 、1个B 、2个C 、3个D 、4个34、如图,设AB=1,S △OAB =43cm 2,则弧AB 长为( ) A 、3πcm B 、32πcmC 、6πcm D 、2πcm35、平行四边形的一边长为5cm ,则它的两条对角线长可以是( ) A 、4cm, 6cm B 、4cm, 3cmC 、2cm, 12cmD 、4cm, 8cm36、如图,△ABC 与△BDE 都是正三角形,且AB<BD ,若△ABC 不动,将△BDE 绕B旋转过程中,AE 与CD 的大小关系是( A 、AE=CD B 、AE>CDABC、AE>CDD、无法确定37、顺次连结四边形各边中点得到一个菱形,则原四边形必是()A、矩形B、梯形C、两条对角线互相垂直的四边形D、两条对角线相等的四边形38、在圆O中,弧AB=2CD,那么弦AB和弦CD的关系是()A、AB=2CDB、AB>2CDC、AB<2CDD、AB 与CD不可能相等39、在等边三角形ABC外有一点D,满足AD=AC,则∠BDC的度数为()A、300B、600C、1500D、300或150040、△ABC的三边a、b、c满足a≤b≤c,△ABC 的周长为18,则()A、a≤6B、b<6C、c>6D、a、b、c中有一个等于641、如图,在△ABC中,∠ACB=Rt∠,AC=1,BC=2,则下列说法正确的是()A 、∠B=300B 、斜边上的中线长为1C 、斜边上的高线长为552D 、该三角形外接圆的半径为142、如图,把直角三角形纸片沿过顶点B 的直线BE (BE 交CA 于E )折叠,直角顶点C上,如果折叠后得到等腰三角形EBA 论中(1)∠A=300(2)点C 与AB (3)点E 到AB 的距离等于CE 是( ) A 、0B 、1C 、2D 、343、不等式6322+>+x x 的解是( )A 、x>2B 、x>-2 C、x<2D 、x<-244、已知一元二次方程(m-1)x 2-4mx+4m-2=0有实数根,则m 的取值范围是( ) A 、m ≤1 B 、m ≤1且m ≠1C 、m ≥1D 、-1<m ≤1A45、函数y=kx+b(b>0)和y=x k -(k ≠0),在同一坐标系中的图象可能是( )46、在一次函数y=2x-1的图象上,到两坐标轴距离相等的点有( )A 、1个B 、2个C 、3个D 、无数个 47、若点(-2,y 1)、(-1,y 2)、(1,y 3)在反比例函数xy 1=的图像上,则下列结论中正确的是( )A 、y 1>y 2>y 3 B、y 1<y 2<y 3C 、y 2>y 1>y 3 D 、y 3>y 1>y 248、下列根式是最简二次根式的是( )A 、a 8 B 、22b a + C 、x 1.0 D 、5a49、下列计算哪个是正确的( )A 、523=+ B 、5252=+ C 、b a b a +=+22 D 、212221221+=-50、把a a1--(a 不限定为正数)化简,结果为( )A 、aB 、a -C 、-aD 、-a- 51、若a+|a|=0,则22)2(a a +-等于( ) A 、2-2aB 、2a-2C 、-2D 、2 52、已知02112=-+-x x ,则122+-x x 的值( )A 、1B 、±21C 、21D 、-21 53、设a 、b 是方程x 2-12x+9=0的两个根,则b a +等于( )A 、18B 、6C 、23 D 、±23 54、下列命题中,正确的个数是( )①等边三角形都相似 ②直角三角形都相似 ③等腰三角形都相似④锐角三角形都相似 ⑤等腰三角形都全等 ⑥有一个角相等的等腰三角形相似⑦有一个钝角相等的两个等腰三角形相似 ⑧全等三角形相似A、2个B、3个C、4个D、5个二、填空题1、如果一个数的绝对值等于它的相反数,那么这个数一定是_________。
一次函数经典题型之令狐文艳创作
一次函数经典题型令狐文艳题型一、点的坐标方法: x轴上的点纵坐标为0,y轴上的点横坐标为0;若两个点关于x轴对称,则他们的横坐标相同,纵坐标互为相反数;若两个点关于y轴对称,则它们的纵坐标相同,横坐标互为相反数;若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数;1、若点A(m,n)在第二象限,则点(|m|,-n)在第____象限;2、若点P(2a-1,2-3b)是第二象限的点,则a,b的范围为______________________;3、已知A(4,b),B(a,-2),若A,B关于x轴对称,则a=_____,b=_____;若A,B关于y轴对称,则a=_____,b=_____;若若A,B关于原点对称,则a=_______,b=_________;4、若点M(1-x,1-y)在第二象限,那么点N(1-x,y-1)关于原点的对称点在第_____象限。
题型二、关于点的距离的问题方法:点到x轴的距离用纵坐标的绝对值表示,点到y轴的距离用横坐标的绝对值表示;任意两点(,),(,)A A B B A x y B x y ; 若AB ∥x 轴,则(,0),(,0)A B A x B x 的距离为A B x x -; 若AB ∥y 轴,则(0,),(0,)A B A y B y 的距离为A B y y -;点(,)A A A x y 1、 点B (2,-2)到x 轴的距离是_________;到y 轴的距离是____________;2、 点C (0,-5)到x 轴的距离是______;到y 轴的距离是_____;到原点的距离是______;3、 点D (a,b )到x 轴的距离是______;到y 轴的距离是______;到原点的距离是______4、 已知点P (3,0),Q(-2,0),则PQ=_____,已知点110,,0,22M N ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,则MQ=_____;()()2,1,2,8E F --,则EF 两点之间的距离是_______;已知点G (2,-3)、H (3,4),则G 、H 两点之间的距离是_________;5、 两点(3,-4)、(5,a )间的距离是2,则a 的值为__________;6、 点A (0,2)、B (-3,-2)、C (a,b ),若C 点在x 轴上,且∠ACB=90°,则C 点坐标为_________.题型三、一次函数与正比例函数的识别方法:若y=kx+b(k,b 是常数,k ≠0),那么y 叫做x 的一次函数,特别的,当b=0时,一次函数就成为y=kx(k 是常数,k ≠0),这时,y 叫做x 的正比例函数,当k=0时,一次函数就成为若y=b ,这时,y 叫做常函数。
新人教版七年级上册第一章有理数全部 课堂同步练习之令狐文艳创作
新人教版七年级上册第一章有理数全部课堂同步练习令狐文艳第1课正数和负数1.如果向南走5米,记作+5米,那么向北走8米应记作___________.2.如果温度上升3℃记作+3℃,那么下降5℃记作____________.3.海拔高度是+1356m,表示________,海拔高度是-254m,表示______.4.一种零件的内径尺寸在图纸上是30±0.05(单位:毫米),表示这种零件的标准尺寸是30毫米,加工要求最大不超过标准尺寸______毫米,最小不低于标准尺寸______毫米.5.如果全班某次数学测试的平均成绩为83分,某同学考了85分,记作+2分,得分90分和80分应分别记作_________________________.6.粮食产量增产11%,记作+11%,则减产6%应记作______________.7.如果向西走12米记作+12米,则向东走-120米表示的意义是___.8.味精袋上标有“500±5克”字样中,+5表示_____________,-5表示____________.9.在下列横线上填上适当的词,使前后构成意义相反的量: (1)收入1300元,800元;(2)80米,下降64米;(3)向北前进30米,50米.10.观察下列排列的每一列数,研究它的排列有什么规律?并填出空格上的数.(1)1,-2,1,-2,1,-2,,,,…(2)-2,4,-6,8,-10,,,…(3)1,0,-1,1,0,-1,,,,…11.甲冷库的温度是-12°C,乙冷库的温度比甲冷酷低5°C,则乙冷库的温度是.12.一种零件的内径尺寸在图纸上是9±0.05(单位:mm),表示这种零件的标准尺寸是9mm,加工要求最大不超过标准尺寸多少?最小不小于标准尺寸多少?13.测量一座公路桥的长度,各次测得的数据是:255米,270米,265米,267米,258米.(1)求这五次测量的平均值; (2)如以求出的平均值为基准数,用正、负数表示出各次测量的数值与平均值的差;第2课有理数测试1、___、___和___统称为整数;___和___统称为分数;___、___、___、___和___统称为有理数;___和___统称为非负数;___和___统称为非正数;___和___统称为非正整数;___和___统称为非负整数;2、6,2005,212,0,-3,+1,41-,-6.8中,正整数和负分数共有…( )A .3个B .4个C .5个D .6个3、下列不是有理数的是( )A 、-3.14B 、0C 、37D 、π4、既是分数又是正数的是( )A 、+2B 、-314 C 、0 D 、2.35、下列说法正确的是( )A 、正数、0、负数统称为有理数B 、分数和整数统称为有理数C 、正有理数、负有理数统称为有理数D 、以上都不对6、-a 一定是( )A 、正数B 、负数C 、正数或负数D 、正数或零或负数7、下列说法中,错误的有( ) ①742-是负分数;②1.5不是整数;③非负有理数不包括0;④整数和分数统称为有理数;⑤0是最小的有理数;⑥-1是最小的负整数。
七下实数提高题与常考题型压轴题(含解析) 之令狐文艳创作
实数提高题与常考题型压轴题(含解析)令狐文艳一.选择题(共15小题)1.的平方根是()A.4B.±4C.2D.±22.已知a=,b=,则=()A.2aB.abC.a2bD.ab23.实数的相反数是()A.﹣B.C.﹣D.4.实数﹣π,﹣3.14,0,四个数中,最小的是()A.﹣πB.﹣3.14C.D.05.下列语句中,正确的是()A.正整数、负整数统称整数B.正数、0、负数统称有理数C.开方开不尽的数和π统称无理数D.有理数、无理数统称实数6.下列说法中:(1)是实数;(2)是无限不循环小数;(3)是无理数;(4)的值等于 2.236,正确的说法有()A.4个B.3个C.2个D.1个7.实数a、b满足+4a2+4ab+b2=0,则b a的值为()A.2B.C.﹣2D.﹣8.的算术平方根是()A.2B.±2C .D .9.下列实数中的无理数是()A.0.7B .C.πD.﹣810.关于的叙述,错误的是()A .是有理数B.面积为12的正方形边长是C .=2D .在数轴上可以找到表示的点11.已知实数a、b在数轴上对应的点如图所示,则下列式子正确的是()A.a•b>0B.a+b<0C.|a|<|b|D.a﹣b>012.如图,四个实数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若n+q=0,则m,n,p,q四个实数中,绝对值最大的一个是()A.pB.qC.mD.n13.估计+1的值()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间14.估计的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间15.我们根据指数运算,得出了一种新的运算,如表是两种运算对应关系的一组实例:21=222=423=8…31=332=933=27…指数运算log22=1log24=2log28=3…log33=1log39=2log327=3…新运算根据上表规律,某同学写出了三个式子:①log216=4,②log525=5,③log 2=﹣1.其中正确的是()A.①②B.①③C.②③D.①②③二.填空题(共10小题)16.﹣2的绝对值是.17.在﹣4,,0,π,1,﹣,1.这些数中,是无理数的是.18.能够说明“=x不成立”的x的值是(写出一个即可).19.若实数x,y满足(2x+3)2+|9﹣4y|=0,则xy的立方根为.20.实数a,n,m,b满足a<n<m<b,这四个数在数轴上对应的点分别为A,N,M,B(如图),若AM2=BM•AB,BN2=AN•AB,则称m为a,b的“大黄金数”,n为a,b的“小黄金数”,当b﹣a=2时,a,b的大黄金数与小黄金数之差m ﹣n=.21.规定:log a b(a>0,a≠1,b>0)表示a,b之间的一种运算.现有如下的运算法则:log a a n=n.log N M=(a>0,a≠1,N>0,N≠1,M>0).例如:log223=3,log25=,则log1001000=.22.对于实数a,b,定义运算“*”:a*b=,例如:因为4>2,所以4*2=42﹣4×2=8,则(﹣3)*(﹣2)=.23.观察分析下列数据,并寻找规律:,,2,,,,…根据规律可知第n个数据应是.24.下面是一个某种规律排列的数阵:根据数阵的规律,第n行倒数第二个数是.(用含n的代数式表示)25.阅读下列材料:设=0.333…①,则10x=3.333…②,则由②﹣①得:9x=3,即.所以=0.333…=.根据上述提供的方法把下列两个数化成分数.=,=.三.解答题(共15小题)26.计算下列各式:(1)(﹣+﹣)x(﹣18)(2)﹣12+﹣(﹣2)×.27.化简求值:(),其中a=2+.28.计算:|﹣3|﹣×+(﹣2)2.29.如图,在一张长方形纸条上画一条数轴.(1)若折叠纸条,数轴上表示﹣3的点与表示1的点重合,则折痕与数轴的交点表示的数为;(2)若经过某次折叠后,该数轴上的两个数a和b表示的点恰好重合,则折痕与数轴的交点表示的数为(用含a,b的代数式表示);(3)若将此纸条沿虚线处剪开,将中间的一段纸条对折,使其左右两端重合,这样连续对折n次后,再将其展开,请分别求出最左端的折痕和最右端的折痕与数轴的交点表示的数.(用含n的代数式表示)30.我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n 的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所有3×4是12的最佳分解,所以F(12)=.(1)如果一个正整数a是另外一个正整数b的平方,我们称正整数a是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t为“吉祥数”,求所有“吉祥数”中F(t)的最大值.31.(1)定义新运算:对于任意实数a,b,都有a⊕b=a(a ﹣b)+1,等式右边是通常的加法、减法及乘法运算,比如,数字2和5在该新运算下结果为﹣5.计算如下:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5求(﹣2)⊕3的值;(2)请你定义一种新运算,使得数字﹣4和6在你定义的新运算下结果为20.写出你定义的新运算.32.已知2m+2的平方根是±4,3m+n+1的平方根是±5,求m+3n的平方根.33.已知一个正数x的两个平方根分别是2a﹣3和5﹣a,求a 和x的值.34.已知m+n与m﹣n分别是9的两个平方根,m+n﹣p的立方根是1,求n+p的值.35.先填写下表,观察后回答下列问题:00.000111000…a…﹣0.0001…﹣0.101…(1)被开方数a的小数点位置移动和它的立方方根的小数点位置移动有无规律?若有规律,请写出它的移动规律.(2)已知:=﹣50,=0.5,你能求出a的值吗?36.阅读理解下面内容,并解决问题:据说,我国著名数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:一个数是59319,希望求出它的立方根,华罗庚脱口而出地报出答案,邻座的乘客十分惊奇,忙问计算的奥秘.(1)由103=1000,1003=1000000,你能确定是几位数吗?∵1000<59319<1000000,∴10<<100.∴是两位数;(2)由59319的个位上的数是9,你能确定的个位上的数是几吗?∵只有个位数是9的立方数是个位数依然是9,∴的个位数是9;(3)如果划去59319后面的三位319得到59,而33=27,43=64,由此你能确定的十位上的数是几吗?∵27<59<64,∴30<<40.∴的十位数是3.所以,的立方根是39.已知整数50653是整数的立方,求的值.37.按要求填空:(1)填表:a0.00040.04 4 400(2)根据你发现规律填空:已知:=2.638,则=,=;已知:=0.06164,=61.64,则x=.38.下面是往来是在数学课堂上给同学们出的一道数学题,要求对以下实数进行分类填空:﹣,0,0.3(3无限循环),,18,,,1.21(21无限循环),3.14159,1.21,,,0.8080080008…,﹣(1)有理数集合:;(2)无理数集合:;(3)非负整数集合:;王老师评讲的时候说,每一个无限循环的小数都属于有理数,而且都可以化为分数.比如:0.3(3无限循环)=,那么将1.21(21无限循环)化为分数,则1.21(21无限循环)=(填分数)39.将下列各数的序号填在相应的集合里:①﹣,②2π,③3.1415926,④﹣0.86,⑤3.030030003…相邻两个3之间0的个数逐渐多1),⑥2,⑦,⑧﹣.有理数集合:{}.无理数集合:{}.负实数集合:{}.40.观察下列各式,发现规律:=2;=3;=4;…(1)填空:=,=;(2)计算(写出计算过程):;(3)请用含自然数n(n≥1)的代数式把你所发现的规律表示出来.实数提高题与常考题型压轴题(含解析)参考答案与试题解析一.选择题(共15小题)1.(2017•微山县模拟)的平方根是()A.4B.±4C.2D.±2【分析】先化简=4,然后求4的平方根.【解答】解:=4,4的平方根是±2.故选:D.【点评】本题考查平方根的求法,关键是知道先化简.2.(2017•河北一模)已知a=,b=,则=()A.2aB.abC.a2bD.ab2【分析】将18写成2×3×3,然后根据算术平方根的定义解答即可.【解答】解:==××=a•b•b=ab2.故选D.【点评】本题考查了算术平方根的定义,是基础题,难点在于对18的分解因数.3.(2017•南岗区一模)实数的相反数是()A.﹣B.C.﹣D.【分析】根据相反数的定义,可得答案.【解答】解:的相反数是﹣,故选:C.【点评】本题考查了实数的性质,在一个数的前面加上符号就是这个数的相反数.4.(2017•禹州市一模)实数﹣π,﹣3.14,0,四个数中,最小的是()A.﹣πB.﹣3.14C.D.0【分析】先计算|﹣π|=π,|﹣3.14|=3.14,根据两个负实数绝对值大的反而小得﹣π<﹣3.14,再根据正数大于0,负数小于0得到﹣π<﹣3.14<0<.【解答】解:∵|﹣π|=π,|﹣3.14|=3.14,∴﹣π<﹣3.14,∴﹣π,﹣3.14,0,这四个数的大小关系为﹣π<﹣3.14<0<.故选A.【点评】本题考查了有理数大小比较:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.5.(2017春•滨海县月考)下列语句中,正确的是()A.正整数、负整数统称整数B.正数、0、负数统称有理数C.开方开不尽的数和π统称无理数D.有理数、无理数统称实数【分析】根据整数的分类,可的判断A;根据有理数的分类,可判断B;根据无理数的定义,可判断C;根据实数的分类,可判断D.【解答】解:A、正整数、零和负整数统称整数,故A错误;B、正有理数、零、负有理数统称有理数,故B错误;C、无限不循环小数是无理数,故C错误;D、有理数和无理数统称实数,故D正确;故选:D.【点评】此题主要考查了实数,实数包括有理数和无理数;实数可分为正数、负数和0.6.(2017春•海宁市校级月考)下列说法中:(1)是实数;(2)是无限不循环小数;(3)是无理数;(4)的值等于2.236,正确的说法有()A.4个B.3个C.2个D.1个【分析】根据实数的分类进行判断即可.【解答】解:(1)是实数,故正确;(2)是无限不循环小数,故正确;(3)是无理数,故正确;(4)的值等于2.236,故错误;故选B.【点评】本题考查了实数的分类,掌握实数包括有理数和无理数,有理数是有限小数和无限循环小数,而无理数是无限不循环小数.7.(2016•泰州)实数a、b满足+4a2+4ab+b2=0,则b a的值为()A.2B.C.﹣2D.﹣【分析】先根据完全平方公式整理,再根据非负数的性质列方程求出a、b的值,然后代入代数式进行计算即可得解.【解答】解:整理得,+(2a+b)2=0,所以,a+1=0,2a+b=0,解得a=﹣1,b=2,所以,b a=2﹣1=.故选B.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.8.(2016•毕节市)的算术平方根是()A.2B.±2C.D.【分析】首先根据立方根的定义求出的值,然后再利用算术平方根的定义即可求出结果.【解答】解:=2,2的算术平方根是.故选:C.【点评】此题主要考查了算术平方根的定义,注意关键是要首先计算=2.9.(2016•福州)下列实数中的无理数是()A.0.7B.C.πD.﹣8【分析】无理数就是无限不循环小数,最典型就是π,选出答案即可.【解答】解:∵无理数就是无限不循环小数,且0.7为有限小数,为有限小数,﹣8为正数,都属于有理数,π为无限不循环小数,∴π为无理数.故选:C.【点评】题目考查了无理数的定义,题目整体较简单,是要熟记无理数的性质,即可解决此类问题.10.(2016•河北)关于的叙述,错误的是()A.是有理数B.面积为12的正方形边长是C.=2D.在数轴上可以找到表示的点【分析】根据无理数的定义:无理数是开方开不尽的实数或者无限不循环小数或π;由此即可判定选择项.【解答】解:A、是无理数,原来的说法错误,符合题意;B、面积为12的正方形边长是,原来的说法正确,不符合题意;C、=2,原来的说法正确,不符合题意;D、在数轴上可以找到表示的点,原来的说法正确,不符合题意.故选:A.【点评】本题主要考查了实数,有理数,无理数的定义,要求掌握实数,有理数,无理数的范围以及分类方法.11.(2016•大庆)已知实数a、b在数轴上对应的点如图所示,则下列式子正确的是()A.a•b>0B.a+b<0C.|a|<|b|D.a﹣b>0【分析】根据点a、b在数轴上的位置可判断出a、b的取值范围,然后即可作出判断.【解答】解:根据点a、b在数轴上的位置可知1<a<2,﹣1<b<0,∴ab<0,a+b>0,|a|>|b|,a﹣b>0,.故选:D.【点评】本题主要考查的是数轴的认识、有理数的加法、减法、乘法法则的应用,掌握法则是解题的关键.12.(2016•泰安)如图,四个实数m,n,p,q在数轴上对应的点分别为M,N,P,Q,若n+q=0,则m,n,p,q四个实数中,绝对值最大的一个是()A.pB.qC.mD.n【分析】根据n+q=0可以得到n、q的关系,从而可以判定原点的位置,从而可以得到哪个数的绝对值最大,本题得以解决.【解答】解:∵n+q=0,∴n和q互为相反数,0在线段NQ的中点处,∴绝对值最大的点P表示的数p,故选A.【点评】本题考查实数与数轴,解题的关键是明确数轴的特点,利用数形结合的思想解答.13.(2016•淮安)估计+1的值()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间【分析】直接利用已知无理数得出的取值范围,进而得出答案.【解答】解:∵2<<3,∴3<+1<4,∴+1在在3和4之间.故选:C.【点评】此题主要考查了估算无理数大小,正确得出的取值范围是解题关键.14.(2016•天津)估计的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【分析】直接利用二次根式的性质得出的取值范围.【解答】解:∵<<,∴的值在4和5之间.故选:C.【点评】此题主要考查了估算无理数大小,正确把握最接近的有理数是解题关键.15.(2016•永州)我们根据指数运算,得出了一种新的运算,如表是两种运算对应关系的一组实例:21=222=423=8…31=332=933=27…指数运算log22=1log24=2log28=3…log33=1log39=2log327=3…新运算根据上表规律,某同学写出了三个式子:①log216=4,②log525=5,③log 2=﹣1.其中正确的是()A.①②B.①③C.②③D.①②③【分析】根据指数运算和新的运算法则得出规律,根据规律运算可得结论.【解答】解:①因为24=16,所以此选项正确;②因为55=3125≠25,所以此选项错误;③因为2﹣1=,所以此选项正确;故选B.【点评】此题考查了指数运算和新定义运算,发现运算规律是解答此题的关键.二.填空题(共10小题)16.(2017•涿州市一模)﹣2的绝对值是2﹣.【分析】根据负数的绝对值等于它的相反数解答.【解答】解:﹣2的绝对值是2﹣.即|﹣2|=2﹣.故答案为:2﹣.【点评】本题考查了实数的性质,主要利用了绝对值的性质.17.(2016秋•南京期中)在﹣4,,0,π,1,﹣,1.这些数中,是无理数的是π.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:无理数只有:π.故答案是:π.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.18.(2016•金华)能够说明“=x不成立”的x的值是﹣1 (写出一个即可).【分析】举一个反例,例如x=﹣1,说明原式不成立即可.【解答】解:能够说明“=x不成立”的x的值是﹣1,故答案为:﹣1【点评】此题考查了算术平方根,熟练掌握算术平方根的定义是解本题的关键.19.(2016•德阳)若实数x,y满足(2x+3)2+|9﹣4y|=0,则xy的立方根为﹣.【分析】根据偶次方和绝对值的非负性得出方程,求出方程的解,再代入求出立方根即可.【解答】解:∵(2x+3)2+|9﹣4y|=0,∴2x+3=0,解得x=﹣,9﹣4y=0,解得y=,xy=﹣×=﹣,∴xy的立方根为﹣.故答案为:﹣.【点评】本题考查了偶次方和绝对值,方程的思想,立方根的应用,关键是求出x、y的值.20.(2016•成都)实数a,n,m,b满足a<n<m<b,这四个数在数轴上对应的点分别为A,N,M,B(如图),若AM2=BM•AB,BN2=AN•AB,则称m为a,b的“大黄金数”,n为a,b的“小黄金数”,当b﹣a=2时,a,b的大黄金数与小黄金数之差m﹣n= 2﹣4 .【分析】设AM=x,根据AM2=BM•AB列一元二次方程,求出x,得出AM=BN=﹣1,从而求出MN的长,即m﹣n的长.【解答】解:由题意得:AB=b﹣a=2设AM=x,则BM=2﹣xx2=2(2﹣x)x=﹣1±x 1=﹣1+,x2=﹣1﹣(舍)则AM=BN=﹣1∴MN=m﹣n=AM+BN﹣2=2(﹣1)﹣2=2﹣4故答案为:2﹣4.【点评】本题考查了数轴上两点的距离和黄金分割的定义及一元二次方程,做好此题的关键是能正确表示数轴上两点的距离:若A表示x A、B表示x B,则AB=|x B﹣x A|;同时会用配方法解一元二次方程,理解线段的和、差关系.21.(2016•宜宾)规定:log a b(a>0,a≠1,b>0)表示a,b之间的一种运算.现有如下的运算法则:log a a n=n.log N M=(a>0,a≠1,N>0,N≠1,M>0).例如:log223=3,log25=,则log1001000=.【分析】先根据log N M=(a>0,a≠1,N>0,N≠1,M>0)将所求式子化成以10为底的对数形式,再利用公式进行计算.【解答】解:log1001000===.故答案为:.【点评】本题考查了实数的运算,这是一个新的定义,利用已知所给的新的公式进行计算.认真阅读,理解公式的真正意义;解决此类题的思路为:观察所求式子与公式的联系,发现1000与100都与10有关,且都能写成10的次方的形式,从而使问题得以解决.22.(2016•河池)对于实数a,b,定义运算“*”:a*b=,例如:因为4>2,所以4*2=42﹣4×2=8,则(﹣3)*(﹣2)= ﹣1 .【分析】原式利用题中的新定义计算即可得到结果.【解答】解:根据题中的新定义得:(﹣3)*(﹣2)=﹣3﹣(﹣2)=﹣3+2=﹣1,故答案为:﹣1【点评】此题考查了实数的运算,弄清题中的新定义是解本题的关键.23.(2016•瑞昌市一模)观察分析下列数据,并寻找规律:,,2,,,,…根据规律可知第n个数据应是.【分析】根据2=,结合给定数中被开方数的变化找出变化规律“第n个数据中被开方数为:3n﹣1”,依此即可得出结论.【解答】解:∵2=,∴被开方数为:2=3×1﹣1,5=3×2﹣1,8=3×3﹣1,11=3×4﹣1,14=3×5﹣1,17=3×6﹣1,…,∴第n个数据中被开方数为:3n﹣1,故答案为:.【点评】本题考查了算术平方根以及规律型中数的变化类,根据被开方数的变化找出变化规律是解题的关键.24.(2016•天桥区模拟)下面是一个某种规律排列的数阵:根据数阵的规律,第n行倒数第二个数是.(用含n的代数式表示)【分析】探究每行最后一个数的被开方数,不难发现规律,由此即可解决问题.【解答】解:第1行的最后一个被开方数2=1×2第2行的最后一个被开方数6=2×3第3行的最后一个被开方数12=3×4第4行的最后一个被开方数20=4×5,…第n行的最后一个被开方数n(n+1),∴第n行的最后一数为,∴第n行倒数第二个数为.故答案为.【点评】本题考查算术平方根,解题的关键是从特殊到一般,归纳规律然后解决问题,需要耐心认真审题,属于中考常考题型.25.(2016•乐陵市一模)阅读下列材料:设=0.333…①,则10x=3.333…②,则由②﹣①得:9x=3,即.所以=0.333…=.根据上述提供的方法把下列两个数化成分数.=,=.【分析】根据阅读材料,可以知道,可以设=x,根据10x=7.777…,即可得到关于x的方程,求出x即可;根据=1+即可求解.【解答】解:设=x=0.777…①,则10x=7.777…②则由②﹣①得:9x=7,即x=;根据已知条件=0.333…=.可以得到=1+=1+=.故答案为:;.【点评】此题主要考查了无限循环小数和分数的转换,正确题意,读懂阅读材料是解决本题的关键,这类题目可以训练学生的自学能力,是近几年出现的一类新型的中考题.此题比较难,要多次慢慢读懂题目.三.解答题(共15小题)26.(2017春•萧山区月考)计算下列各式:(1)(﹣+﹣)x(﹣18)(2)﹣12+﹣(﹣2)×.【分析】(1)运用乘法对加法的分配律,比较简便;(2)先计算、,再进行加减乘运算.【解答】(1)原式=(﹣)×(﹣18)+×(﹣18)﹣×(﹣18)=14﹣15+1=0;(2)原式=﹣1+4﹣(﹣2)×3=﹣1+4+6=9.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.题目(1)即可通分先算括号里面的,再进行乘法运算,也可直接运用乘法对加法的分配律;掌握立方根、平方根的求法及有理数混合运算的顺序是解决题目(2)的关键.27.(2016•宁夏)化简求值:(),其中a=2+.【分析】原式第一项括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分后两项化简得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=[+]•+=•+==,当a=2+时,原式=+1.【点评】此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.28.(2016•合肥校级一模)计算:|﹣3|﹣×+(﹣2)2.【分析】原式第一项利用绝对值的代数意义化简,第二项利用算术平方根定义计算,第三项利用立方根定义计算,第四项利用乘方的意义化简,计算即可得到结果.【解答】解:原式=3﹣4+×(﹣2)+4=3﹣4﹣1+4=2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.29.(2016秋•南京期中)如图,在一张长方形纸条上画一条数轴.(1)若折叠纸条,数轴上表示﹣3的点与表示1的点重合,则折痕与数轴的交点表示的数为﹣1 ;(2)若经过某次折叠后,该数轴上的两个数a和b表示的点恰好重合,则折痕与数轴的交点表示的数为(用含a,b的代数式表示);(3)若将此纸条沿虚线处剪开,将中间的一段纸条对折,使其左右两端重合,这样连续对折n次后,再将其展开,请分别求出最左端的折痕和最右端的折痕与数轴的交点表示的数.(用含n的代数式表示)【分析】(1)找出5表示的点与﹣3表示的点组成线段的中点表示数,然后结合数轴即可求得答案;(2)先找出a表示的点与b表示的点所组成线段的中点,从而可求得答案;(3)先求出每两条相邻折痕的距离,进一步得到最左端的折痕和最右端的折痕与数轴的交点表示的数,即可求得答案.【解答】解:(1)(﹣3+1)÷2=﹣2÷2=﹣1.故折痕与数轴的交点表示的数为﹣1;(2)折痕与数轴的交点表示的数为(用含a,b的代数式表示);(3)∵对折n次后,每两条相邻折痕的距离为=,∴最左端的折痕与数轴的交点表示的数是﹣3+,最右端的折痕与数轴的交点表示的数是5﹣.故答案为:﹣1;.【点评】本题主要考查的是数轴的认识,找出对称中心是解题的关键.30.(2016•重庆)我们知道,任意一个正整数n都可以进行这样的分解:n=p×q(p,q是正整数,且p≤q),在n的所有这种分解中,如果p,q两因数之差的绝对值最小,我们就称p×q是n的最佳分解.并规定:F(n)=.例如12可以分解成1×12,2×6或3×4,因为12﹣1>6﹣2>4﹣3,所有3×4是12的最佳分解,所以F(12)=.(1)如果一个正整数a是另外一个正整数b的平方,我们称正整数a是完全平方数.求证:对任意一个完全平方数m,总有F(m)=1;(2)如果一个两位正整数t,t=10x+y(1≤x≤y≤9,x,y为自然数),交换其个位上的数与十位上的数得到的新数减去原来的两位正整数所得的差为18,那么我们称这个数t为“吉祥数”,求所有“吉祥数”中F(t)的最大值.【分析】(1)根据题意可设m=n2,由最佳分解定义可得F (m)==1;(2)根据“吉祥数”定义知(10y+x)﹣(10x+y)=18,即y=x+2,结合x的范围可得2位数的“吉祥数”,求出每个“吉祥数”的F(t),比较后可得最大值.【解答】解:(1)对任意一个完全平方数m,设m=n2(n为正整数),∵|n﹣n|=0,∴n×n是m的最佳分解,∴对任意一个完全平方数m,总有F(m)==1;(2)设交换t的个位上的数与十位上的数得到的新数为t′,则t′=10y+x,∵t为“吉祥数”,∴t′﹣t=(10y+x)﹣(10x+y)=9(y﹣x)=18,∴y=x+2,∵1≤x≤y≤9,x,y为自然数,∴“吉祥数”有:13,24,35,46,57,68,79,∴F(13)=,F(24)==,F(35)=,F(46)=,F (57)=,F(68)=,F(79)=,∵>>>>>,∴所有“吉祥数”中,F(t)的最大值是.【点评】本题主要考查实数的运算,理解最佳分解、“吉祥数”的定义,并将其转化为实数的运算是解题的关键.31.(2016•龙岩模拟)(1)定义新运算:对于任意实数a,b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算,比如,数字2和5在该新运算下结果为﹣5.计算如下:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5求(﹣2)⊕3的值;(2)请你定义一种新运算,使得数字﹣4和6在你定义的新运算下结果为20.写出你定义的新运算.【分析】(1)利用题中的新定义计算即可得到结果;(2)规定一种运算,计算结果为20即可.【解答】解:(1)(﹣2)⊕3=﹣2×(﹣5)+1=10+1=11;(2)规定:a@b=2(b﹣a),例如(﹣4)@6=2×[6﹣(﹣4)]=20.(开放题,答案不唯一)【点评】此题考查了有理数的乘方,熟练掌握乘方的意义是解本题的关键.32.(2016秋•上蔡县校级期末)已知2m+2的平方根是±4,3m+n+1的平方根是±5,求m+3n的平方根.【分析】先根据2m+2的平方根是±4,3m+n+1的平方根是±5求出m和n的值,再求出m+3n的值,由平方根的定义进行解答即可.【解答】解:∵2m+2的平方根是±4,∴2m+2=16,解得:m=7;∵3m+n+1的平方根是±5,∴3m+n+1=25,即21+n+1=25,解得:n=3,∴m+3n=7+3×3=16,∴m+3n的平方根为:±4.【点评】本题考查的是平方根的定义:如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.注意:一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.33.(2016春•宜春期末)已知一个正数x的两个平方根分别是2a﹣3和5﹣a,求a和x的值.【分析】正数x有两个平方根,分别是2a﹣3与5﹣a,所以2a+2与5﹣a互为相反数,可求出a;根据x=(2a﹣3)2,代入可求出x的值.【解答】解:依题意可得 2a﹣3+5﹣a=0解得:a=﹣2,∴x=(2a﹣3)2=49,∴a=﹣2,x=49.【点评】本题主要考查了平方根的定义和性质,以及根据平方根求被开方数,一个正数有两个平方根,它们互为相反数是解答此题的关键.34.(2016秋•龙海市期末)已知m+n与m﹣n分别是9的两个平方根,m+n﹣p的立方根是1,求n+p的值.【分析】根据平方根与立方根的性质即可求出m、n、p的值【解答】解:由题意可知:m+n+m﹣n=0,(m+n)2=9,m+n﹣p=1,∴m=0,∴n2=9,∴n=±3,∴0+3﹣p=1或0﹣3﹣p=1,∴p=2或p=﹣4,当n=3,p=2时,n+p=3+2=5当n=﹣3,p=﹣4时,n+p=﹣3﹣4=﹣7,【点评】本题考查平方根与立方根的性质,解题的关键是根据平方根与立方根的性质列出方程,然后求出m、n、p的值即可.35.(2016秋•无棣县期末)先填写下表,观察后回答下列问题:00.000111000…a…﹣0.0001…﹣0.101…(1)被开方数a的小数点位置移动和它的立方方根的小数点位置移动有无规律?若有规律,请写出它的移动规律.(2)已知:=﹣50,=0.5,你能求出a的值吗?【分析】(1)首先依据立方根的定义进行计算,然后依据计算结果找出其中的规律即可;(2)依据规律进行计算即可.【解答】解:填表结果为0.1,10;(1)有规律,当被开方数的小数点每向左(或向右)移动3位,立方根的小数点向左(或向右)移动1位;(2)能求出a的值;∵=0.5,∴=﹣0.5,由﹣0.5和﹣50,小数点向右移动了2位,则a的值的小数点向右移动6为,∴a=125 000【点评】此题考查了立方根,弄清题中的规律是解本题的关键.36.(2016春•平定县期末)阅读理解下面内容,并解决问题:据说,我国著名数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:一个数是59319,希望求出它的立方根,华罗庚脱口而出地报出答案,邻座的乘客十分惊奇,忙问计算的奥秘.(1)由103=1000,1003=1000000,你能确定是几位数吗?∵1000<59319<1000000,∴10<<100.∴是两位数;(2)由59319的个位上的数是9,你能确定的个位上的数是几吗?∵只有个位数是9的立方数是个位数依然是9,∴的个位数是9;(3)如果划去59319后面的三位319得到59,而33=27,43=64,由此你能确定的十位上的数是几吗?∵27<59<64,∴30<<40.∴的十位数是3.所以,的立方根是39.已知整数50653是整数的立方,求的值.【分析】分别根据题中所给的分析方法先求出这50653的立方根都是两位数,然后根据第(2)和第(3)步求出个位数和十位数即可.【解答】解:∵1000<50653<1000000,∴10<<100,∴是两位数,∵只有个数是7的立方数的个位数是3,∴的个位是7.∵27<50<64,∴30<<40,∴的十位数是3.∴的立方根是37.【点评】本题主要考查了数的立方,理解一个数的立方的个位数就是这个数的个位数的立方的个位数是解题的关键,有一定难度.37.(2016春•固始县期末)按要求填空:。
初一数学期末测试题必考题之令狐文艳创作
初一上学期期末典型题令狐文艳(典型题)1.若(2x +y -4)2+|x -2| =0,则xy=________.2、某商人一次卖出两件衣服,一件赚了10%,一件亏了10%,卖价都为198元,在这次生意中商人()A 、不赚不亏空B 、赚了6元C 、亏了4元D 、以上都不对3.下列各式中,总是正数的是( )。
A 、aB 、a 2C 、a 2+1D 、(a +1)24、计算72°35′÷2+18°33′×4=_______。
5、如果am=an,那么下列等式不一定成立的是( )A 、am-3=an-3B 、5+am=5+anC 、m=nD 、_0.5am=_0.5an6.若a b ,互为相反数,且都不为零,则()11a a b b ⎛⎫+-+ ⎪⎝⎭的值为 7.已知2237a b-+=-,则代数式2964b a -+的值是。
三、简答题8.计算:100211(10.5)3(3)3⎡⎤---⨯⨯--⎣⎦9.解方程413-x - 675-x = 1 10. 一项工程甲单独做要20小时,乙单独做要12小时。
现在先由甲单独做5小时,然后乙加入进来合做。
完成整个工程一共需要多少小时?11、如图,已知直线AB 和CD 相交于点O ,∠COE 是直角,OF 平分∠AOE ,(1)写出∠AOC 与∠BOD 的大小关系:,判断的依据是。
(2)若∠COF=35°,求∠BOD 的度数 12.某地上网有两种收费方式,用户可以任选其一:(A )记时制:3元/小时, (B )包月制:100元/月。
此外,每一种上网方式都加收通讯费1.2元/小时。
(1)某用户一个月上网多少小时,两种付费方式的上网费用一样?(2)某用户为选择合适的付费方式,记录了一个月中连续5天的上网时间如下表:如果一个月按30天计算,根据上述信息,该用户选择哪种付费方式合算?请说明理由。
13.如图,延长线段AB 到C,使BC=3AB,点D 是线段BC 的中点,如果CD=3㎝,那么线段AC 14多项式223368x kxy y xy --+-不含xy 15 实数a 、b 在数轴上的位置如图所示,则化简a b a +-的结果为( )A. -b a +2B. b -C. bD.b a --216、已知线段AB =10cm ,点D 是线段AB 的中点,直线ABA BD E F C O上有一点C ,并且BC =2 cm ,则线段DC =.17、某商品的进价是200元,标价为300元,商店要求以利润不低于5%的售价打折出售,售货员最低可以打___________折出售此商品18、()2431(2)453⎡⎤-+-÷⨯--⎣⎦ 19、513x +-216x -=1.20、已知一个角的余角是这个角的补角的41,求这个角的补角.21、七年级学生去春游,如果减少一辆客车,每辆车正好坐60人,如果增加一辆客车,每辆车正好坐45人。
七年级数学上有理数练习题之令狐文艳创作
七年级数学上有理数练习题令狐文艳第一章 有理数(1.1—1.2)测试题一、填空题:(每小题3分,共30分)1. 支出100元记作-100元,收入300元记作__________元。
2. 伸长10cm 记作+10cm ,缩短5cm 记作_________cm 。
3. 用正数和负数表示下列各量:(1)零上24℃表示为_________,零下3.5℃表示为__________。
(2)足球比赛,赢2球可记作_________球,输1球可记作_________球。
(3)如果自行车链条的长度比标准长度长2mm ,记作+2mm ,那么比标准长度短1.5mm ,记作_________mm 。
4.“温度上升-3℃”的实际意义是,5. 12的相反数是_______;________的相反数是324-;-23的绝对值是。
6. ()--82=()-+373.=; --⎛⎝ ⎫⎭⎪27= ; -+⎛⎝ ⎫⎭⎪1913=.7. 数轴的三要素为_______、_______、_______。
8. 若-<≤23312.x ,则x 的整数值有___________个。
9.相反数大于-3的自然数有10.在数轴上点A、B分别表示-12和12,则数轴上与A、B两点的距离相等的点表示的数是___________。
二、选择题:(每小题3分,共30分)11. 下列说法中,正确的是()A. 有最大的负数,没有最小的正数;B. 没有最大的有理数,也没有最小的有理数C. 有最大的非负数,没有最小的非负数;D. 有最小的负数,没有最大正数12.下列结论中一定正确的是()A. 若一个数是整数,则这个数一定是有理数B. 若一个数是有理数,则这个数一定是整数C. 若一个数是有理数,则这个数一定是负数D. 若一个数是有理数,则这个数一定是正数13. 下列各图中,是数轴的是()14. 下列说法中:①π的相反数为-π;②符号相反的数为相反数;③--(.)38的相反数为 3.8; ④一个数与它的相反数不可能相等;⑤两个互为相反数的绝对值相等正确的是()A. ①②B. ①⑤C. ②③D. ①④15.如图所示,点M表示的数是()A. 2.5B. -15.C. -25.D. 1.516. 数轴上原点及原点右边的点表示的数是() A. 正数 B. 负数C. 非负数D. 非正数17. 在数轴上表示-206315,,,.的点中,在原点右边的点有() A. 0个B. 1个C. 2个D. 3个18. 下列各组数中,大小关系正确的是()A. -<-<-752B. ->->752C. -<-<-725D. ->->-27519. 下列叙述正确的是()A. 符号不同的两个数是互为相反数; B. 一个有理数的相反数一定是负有理数; C. 234与2.75都是-114的相反数; D. 0没有相反数 20、下列说法中正确的有( )① 0是最小的自然数;②0是最小的正数;③0是最小的非负数;④0既不是奇数,也不是偶数;⑤0表示没有温度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数轴、相反数、绝对值
令狐文艳
一、基础知识
1、下列各对数中互为相反数的是()
A.-(+3)和+(-3) B.-(-3)和+(-3)C.-(+3)和-3 D.+(-3)和-3
2、比较-1
2,-
1
3,
1
4的大小,结果正确的是()
A.-1
2<-
1
3<
1
4B.-
1
2<
1
4<-
1
3
C.1
4<-
1
3<-
1
2 D.-
1
3<-
1
2<
1
4
3、绝对值等于本身的数有()A、0个;B、1个;C、2个;D无数个
4、在数轴上表示哪个数的点与表示-3和5的点的距离相等,这个数为()
A.-1 B.1 C.0
D.1.5
5、验4个工件,其中超过标准质量的克数记作正
数,不足标准质量的克数记作负数,从轻重的角度看,最接近标准的工件是()
A .-2
B .-3
C .3
D .5 5、与原点距离等于4的点有个,其表示的数是
6、 在数轴上到-2的距离小于3个单位长度的整数有
7、一个数的绝对值是2.6,那么这个数为
___________________
8、+3的相反数是___________;_____的相反数是—2.3;0的相反数是_____________
9、绝对值等于本身的数是.相反数等于本身的数是,绝对值最小的负整
数是, 绝对值最小的有理数是.
10、|—5.7|=_________;|0|=__________;
______312=-;______31.2=-;______=+π.—|+5|=_________;—|—6.8|=________,π-3=____________
11、写出绝对值大于3且不大于8的所有整数,
并指出其中的最大数和最小数。
12、某工厂生产一批精密的零件,要求是(
表示圆形工件的直径,单位是mm),抽查了5个零件,数据如下表,超过规定的记作正数,不足的记作负数. 1号
2号 3号 4号 5号 +0.031 -0.037 +0.018 -0.021 +0.042
(1)哪些产品是符合要求的?
(2)符合要求的产品中哪个质量最好?用绝对
值的知识加以说明.
13、已知 5,2==b a ,并且 a <b 求a 、b 的值,
二、巩固提高
1、若点A 先从原点开始,先向右移动3个单位长度,在向左移动5个单位长度,这时该点所对应
的数的相反数是( ) A.2 B.-2
C.8
D.-8
2、下列说法中正确的个数有( )
①互为相反数的两个数的绝对值相等;②绝对值等于本身的数只有正数;
③不相等的两个数的绝对值不相等;④绝对值相等的两个数一定相等
A.1个 B.2个 C.3个 D.4个
3、(唐山丰南区期末)若x+|x|=0,则x一定是()
A.正数B.负数C.非正数D.非负数
4、数轴上表示整数的点称为整点,某数轴的单位长度是1厘米,若在这个数轴上随意画一条长15厘米的线段AB,则AB盖住的整数点有()
A.13或14个B.14或15个C.15或16个D.16或17个
5、一个数在数轴上所对应的点向左移2 018个单位长度后,得到它的相反数对应的点,则这个数是()A.2 018 B.-2 018C.1 009 D.-1 009
6、(唐山路北区期末)如果a表示有理数,那么下列说法中正确的是()
A.+a和-(-a)互为相反数B.+a和-a
一定不相等
C .-a 一定是负数
D .-(+a)和+(-a)一
定相等
7、-|-76|=_______,-(-76)=_______,-|+31|=_______,-(+31
)=_______,
8、若|x|=51
,则x 的值是_______.若X 的相反数是—5,则X=____________;
9、若|m -1|=m -1,则m_______1若|x|=|-4|,则x=_______.
10、|m +7|+2011的最小值为,此时m =.
11、已知|a -4|+|b -8|=0,则a +b ab
的值为______.
12、3m —4的相反数是—11,则m 的值为______。
13、如果a 的相反数是-2,且2x + 3a = 8.x 的值为______.
14、小华、小明、小强三位同学的家分别位于东西方向的一条笔直的道路边,以道路边的一个雕
塑为原点,向东方向为正方向,则他们三家的位置如图:(单位:m)
星期六他们约好去某一家排练节目.
(1)去哪一家,他们的路程之和最小?此时路程和是多少?
(2)去哪一家,他们的路程之和最
大?此时路程和是多少?
15、有理数x .y 在数轴上对应点如图所示: (1)在数轴上表示x -.y -;
(2)试把x .y .0.x -.y -这五个数从大到小用“>”号连接起来.(8分)
三、综合拓展
1、绝对值等于其相反数的数一定是()
A .负数
B .正数
C .负数或零
D .正数或零
2、下列说法中正确的是( )
A .a -一定是负数
B .只有两个数相等时它们的绝对值才相等
C .若b a =则a 与b 互为相反数
D .若一个数小于它
y 0
x
的绝对值,则这个数是负数
3、下列语句:①一个数的绝对值一定是正数;②-a 一定是一个负数;③没有绝对值为-3的数;④若a =a ,则a 是一个正数;⑤离原点越远的数就越大.正确的有( )个.
A.0
B.3
C.2
D. 4
4、若4-=a ,则________=-a . 若3+x 与-1互为相反数,则______=x .
5、化简下列各数:()[]____3=-+-.—|-7.5|=_____,π-1=________
—(—2.9)=__________;—[+(—2.6)]
=_______;—{—[+(—2.6)]}=________
6、43x =-,则x=_________ 。
7、将一刻度尺按如图所示放在数轴上(数轴的单位长度是1 cm),数轴上的两点A ,B 恰好与刻度尺上的“0 cm ”和“7 cm ”分别对应.若点A 表示的数为-2.3,则点B 表示的数应为.
8、一辆货车从超市出发,向东走了3千米到达小彬家,继续走 2.5千米到达小颖家,然后向西走了10千米到达小明家,最后回到超市.
(1)以超市为原点,以向东的方向为正方向,用1个单位长度表示1千米,在数轴上表示出小明家,小彬家,小颖家的位置.(2)小明家距小彬家多远?
(3)货车一共行驶了多少千米?(4)货车每千
米耗油0.2升,这次共耗油多少升?
9、如图,A ,B ,C 三点在数轴上,点A 表示的数为-10,点B 表示的数为14,点C 到点A 和点B 之间的距离相等.(1)求A ,B 两点之间的距离;
(2)求C 点对应的数;
(3)甲、乙分别从A ,B 两点同时相向运动,
甲的速度是1个单位长度/s ,乙的速度是2个单位长度/s ,求相遇点D 对应的数.
10、设有理数a ,b ,c 在数轴上的对应点如图所示,化简b c c a a b -+++-。
四、竞赛培优
1、当a a -=时,
0______a ;当0>a 时,
______
=a 2、若a a 22-=,则 a 一定是( )
A 、正数
B 、负数
C 、正数或零
D 、负数或零
3、7=x ,则______=x ; 7=-x ,则______=x .
4、若y x -+3-x =0 ,求2x+y 的值是。
5、已知c b a <<<0,化简式子c b a c b a b a -+--++-2得_________(广西省竞赛题)
6、已知:
5=x ,1=y ,那么y x y x +--=__________(北京市迎春杯竞赛题)
7、已知:1=a ,2=b ,3=c ,且c b a >>,那么=-+c b a _______(北京市迎春杯竞赛题)
8、已知:3,5==b a ,且a b b a -=-,那么=+b a ________(祖冲之杯邀请赛试题)
9、若3=x ,2=y ,且x y y x -=-,求y x +的值。
10、已知,
-a a =,1-=b b ,c c = ,化简
c b c a b a -+-++ 11、已知2-ab 与1-b 互为相反数,求代数式
.)1999)(1999(1)2)(2(1)1)(1(11的值++++++++++b a b a b a ab (五羊杯竞赛试题)
12、如果a 、b 、c 都是有理数,那么abc abc c c b b a a +++的所有可能的值为___________(山东省竞赛题)。