量子理论发展史

合集下载

量子力学的基本原理

量子力学的基本原理

1.简介量子力学的历史和发展量子力学是现代物理学的重要分支,它描述了微观世界中粒子的行为和相互作用。

以下是量子力学历史和发展的简介:•早期量子理论的兴起:在20世纪初,科学家们通过研究辐射现象和黑体辐射问题,开始怀疑经典物理学的适用性。

麦克斯∙普朗克的量子假设和爱因斯坦的光电效应理论为量子理论的发展奠定了基础。

•波粒二象性的提出:在这个阶段,德国物理学家路易斯∙德布罗意提出了物质粒子(如电子)也具有波动性的假设,即波粒二象性。

这一假设通过实验证明,如电子衍射实验,为量子力学奠定了基础。

•薛定谔方程的建立:奥地利物理学家埃尔温∙薛定谔于1926年提出了著名的薛定谔方程,用于描述微观粒子的运动和行为。

这个方程成功地解释了氢原子的能级和谱线,奠定了量子力学的数学基础。

•不确定性原理的发现:德国物理学家瓦尔特∙海森堡于1927年提出了著名的不确定性原理,指出在测量过程中,无法同时准确确定粒子的位置和动量。

这一原理挑战了经典物理学的确定性观念,成为量子力学的核心概念之一。

•量子力学的完备性和广泛应用:随着时间的推移,量子力学逐渐发展成为一个完善的理论体系,并在许多领域得到广泛应用。

它解释了原子和分子的结构、核物理现象、固体物理、粒子物理学等多个领域的现象,并为现代科技的发展提供了基础。

量子力学的历史和发展是科学进步的重要里程碑,对我们理解微观世界的行为和深入探索宇宙的奥秘具有重要意义。

2.波粒二象性和不确定性原理的解释在量子力学中,波粒二象性和不确定性原理是两个核心概念,对我们理解微观世界的行为提出了挑战,下面是它们的解释:•波粒二象性:根据波粒二象性的理论,微观粒子(如电子、光子等)既可以表现出粒子的特性,也可以表现出波的特性。

这意味着微观粒子既可以像粒子一样具有局部位置和动量,也可以像波一样展现出干涉和衍射的现象。

这种波粒二象性的解释可以通过德布罗意的波动假设来理解。

根据德布罗意的假设,微观粒子具有与其动量相对应的波长,这与光波的性质相似。

量子力学的发展史

量子力学的发展史

量子力学的发展史量子力学是物理学中的一个分支,主要研究微观领域的物质和能量的行为规律。

20世纪初,物理学家们开始研究原子和分子的行为,但是经典物理学并不能解释这些微观领域的现象,于是量子力学就被提出来了。

量子力学的发展可以大致分为以下几个阶段:一、波动力学阶段1913年,丹麦物理学家玻尔提出了量子化假设,即能量是量子化的,也就是说能量只能存在于长为h的不连续的能量量子中。

这一假设打破了经典物理学中连续性的假设,为量子力学奠定了基础。

1924年,法国物理学家德布罗意提出了波粒二象性假说,即物质不仅具有粒子的性质,同时也具有波动的性质。

这个假说解释了一些微观领域的现象,如光电效应和康普顿效应,成为量子力学的重要理论基础。

波恩和海森堡等人在德布罗意理论的基础上创立了相应的波动力学,解释了氢原子光谱的结构。

二、矩阵力学阶段1925年,海森堡和约旦等人提出了矩阵力学,这是量子力学的另一种基本形式,它说明了物理量如何通过测量来测量,同时提出了著名的“不确定性原理”,即无法同时确定一个粒子的位置和动量。

三、波恩统计力学阶段1926年,波恩提出了统计力学的基本原理,解决了原子内部运动的问题。

他提出了概率波函数的概念,并对其作出了一些论证。

此外,他还对量子力学的哲学问题进行了探讨,认为量子力学不是描述自然的完整理论,而是对一些确定问题的理论描述。

四、量子力学的完善阶段1927年,波尔在量子力学的哲学问题上发表了著名的“科学是一个特殊的观察者”的文章,这为量子力学的进一步发展奠定了基础。

1932年,物理学家狄拉克提出了著名的“相对论性量子力学”,它将相对论和量子力学结合在一起,成为理论物理学的基石之一。

此外,量子力学的应用也越来越广泛,如半导体、材料科学和生物物理学等领域。

最后,需要指出的是,虽然量子力学已经发展了一个世纪之久,但它仍然存在许多未解之谜,例如解释量子纠缠、重正化等问题。

量子力学的发展是一个长期的过程,相信未来仍有很多值得探索的领域。

量子力学理论的历史与发展

量子力学理论的历史与发展

量子力学理论的历史与发展量子力学是20世纪物理学中最重要的一门学科,曾被喻为“现代物理学的基石”。

它的发展经历了一个漫长而又曲折的历史过程。

本文将从量子力学的起源、基本原理、实验验证、建立标准模型等方面来进行详细的讲述,以探究其历史和发展。

一、量子力学的起源与基本原理量子力学的起源始于1900年左右,当时德国物理学家普朗克在研究黑体辐射时,提出了一个假设:辐射在吸收和发射时的能量不是连续的,而是由一个一个被称为“量子”的能量单位构成的。

随着后来的研究,这个假设得到了证明,被称为“普朗克能量子”。

1905年爱因斯坦发表了光电效应理论,提出光子假说,即光是由一些分散的、能量离散的粒子组成的。

这一理论的确立,在量子力学发展中也起到了至关重要的作用。

随着科学家们在研究中发现更多的证据,量子力学逐渐奠定了与经典物理截然不同的基础。

基于量子力学,许多热门领域得以诠释和解释。

其最基本的原理是能量和物质的离散化,即能量存在于基本单元中,同时它也支持了一系列前所未有的量子效应,如量子隧道效应、量子纠缠、量子力学的不确定性原理等。

二、量子力学的实验验证理论的建立离不开实验的验证。

20世纪初,随着量子力学的发展,越来越多的实验被提出来,用来验证和探究这个新兴的物理学体系。

以双缝实验为例,它是探究光子与物质之间相互作用的重要手段之一。

在双缝实验中,以光子为例,它通过两个狭缝进行干涉,最终形成了干涉条纹,这种形象的结果直接说明了粒子波粒二象性的存在。

除此之外,狄拉克提出的“反粒子”假说也成功得到验证,情况是那么普遍,以至于最基本和常见的物理机制都可以在实验验证中得到印证。

三、标准模型的建立随着量子力学的逐步发展和实验验证,标准模型逐渐建立起来。

标准模型是一个涉及量子力学、相对论和各种粒子的理论框架,旨在对基本相互作用和基本粒子的特性进行描述。

它由强相互作用、弱相互作用和电磁相互作用三部分组成。

标准模型虽是一个与实验结果吻合度非常好的理论框架,但仍存在一些问题和挑战。

量子力学发展简史

量子力学发展简史

量子力学发展简史
量子力学的发展始于20世纪初,主要有以下几个关键阶段:
1.经典物理学的挑战:对经典物理学的一系列挑战启示了人们需要发展一种新的物理学理论。

其中一个重要的挑战是基于黑体辐射的热力学问题,以及光电效应现象。

2.普朗克的量子化假说:1900年,普朗克提出了量子化假说,对光的能量假定只能是离散的值,即量子,这为未来量子力学的形成奠定了基础。

3.波尔的原子模型:1913年,波尔提出了原子模型,通过假设电子在围绕原子核的轨道上只能发射和吸收固定的能量量子,解决了一系列矛盾问题。

4.德布罗意假说和波动力学:1923年,德布罗意提出了物质波假说,认为物质也具有波动性,波动力学为解释物质的波粒二象性提供了关键的理论基础。

5.海森堡的不确定性原理:根据量子力学原理,人们似乎无法准确度量粒子的位置和运动的状态,海森堡在1927年提出了不确定性原理,宣告量子力学的正式诞生。

6.薛定谔方程:薛定谔的波动方程(薛定谔方程)允许人们处理复杂的量子系统,它首次提出了波函数的概念,为量子力学的发展提供了新的工具。

7.量子力学的发展和应用:随着时间的推移,科学家们不断发展量子力学的数学框架和物理解释。

量子力学逐步应用于理解原子核和高能物理领域,并在化学、材料科学、生物学和信息学等领域产生了深远的影响。

量子力学的历史和发展

量子力学的历史和发展

量子力学的历史和发展
量子力学是描述微观世界的物理学理论,它的历史和发展经历了以下几个关键时期:
1.早期量子理论:在20世纪初,物理学家们对于原子和辐射现象的研究中遇
到了一些难题,如黑体辐射、光电效应和原子谱线等。

为解决这些问题,普朗克、爱因斯坦、玻尔等科学家提出了一些基本的量子概念,如能量量子化和波粒二象性。

2.矩阵力学与波动力学的建立:1925年至1926年间,海森堡、薛定谔和狄拉
克等科学家分别独立提出了矩阵力学和波动力学两种描述量子系统的数学形式。

矩阵力学强调通过矩阵运算来计算系统的特征值和特征向量,而波动力学则将波函数引入描述量子系统的状态。

3.不确定性原理的提出:1927年,海森堡提出了著名的不确定性原理,指出在
测量一个粒子的位置和动量时,无法同时确定它们的精确值。

这一原理揭示了微观世界的本质上的不确定性和测量的局限性。

4.量子力学的统一表述:1928年至1932年间,狄拉克等科学家通过引入量子
力学的波函数和算符形式,将矩阵力学和波动力学进行了统一。

这一统一表述被称为量子力学的第二次量子化。

5.发展和应用:随着量子力学理论的发展,科学家们逐渐解决了许多问题,并
在其基础上推导出了很多重要的结论和定理,如量子力学中的态叠加、纠缠、量子力学力学量的算符表示和观测值计算等。

量子力学的应用领域也逐渐扩展,包括原子物理、分子物理、凝聚态物理、量子信息科学等。

值得注意的是,尽管量子力学已经取得了巨大的成功,并在科学和技术领域产生了广泛的影响,但它仍然是一个活跃的研究领域,仍然存在一些未解决的问题和挑战,如量子引力和量子计算等。

因此,对于量子力学的研究和发展仍然具有重要的意义。

the historical development of quantum theory

the historical development of quantum theory

the historical development of quantum theory量子理论是二十世纪最重要的科学发现之一,它改变了我们对世界的认识。

量子理论的发展是一段漫长而充满曲折的历史。

以下是量子理论的历史发展:1900年,德国物理学家马克斯·普朗克提出了黑体辐射理论,这是量子理论的开端。

普朗克发现,无法用经典物理学解释黑体辐射的特性。

他假设能量是以离散的量子形式发射和吸收的,这个假设引发了量子化概念的诞生。

1905年,爱因斯坦在他的光电效应论文中提出了光是以粒子形式存在的理论,这个理论被称为光量子说,它也是量子理论的重要组成部分。

1913年,尼尔斯·玻尔提出了玻尔模型,该模型可以解释氢原子的光谱线。

这个模型的关键是电子只能在特定的能级中运动,并且电子在跃迁时会释放或吸收能量。

1925年,德国物理学家维尔纳·海森伯提出了著名的不确定性原理,它指出,我们不能同时精确地测量一个粒子的位置和动量。

这个原理改变了我们对粒子的认识。

1926年,奥地利物理学家埃尔温·薛定谔提出了薛定谔方程式,这个方程式描述了量子系统的演化。

它也是量子力学的基础。

1927年,英国物理学家保罗·狄拉克提出了狄拉克方程式,它描述了电子的行为,并预测了反物质的存在。

1935年,爱因斯坦、波多尔斯基和罗森提出了著名的EPR实验,这个实验证明了量子纠缠现象的存在。

这个实验也引发了量子信息学的发展。

以上是量子理论的历史发展的一些重要事件。

现在,量子理论已经成为现代物理学的重要分支,它在许多领域有着广泛的应用,包括计算机、通信和加密等。

量子力学的历史和发展

量子力学的历史和发展

量子力学的历史和发展量子论和相对论是现代物理学的两大基础理论。

它们是在二十世纪头30年发生的物理学革命的过程中产生和形成的,并且也是这场革命的主要标志和直接的成果,量子论的诞生成了物理学革命的第一声号角。

经过许多物理学家不分民族和国籍的国际合作,在1927年它形成了一个严密的理论体系。

它不仅是人类洞察自然所取得的富有革命精神和极有成效的科学成果,而且在人类思想史上也占有极其重要的地位。

如果说相对论作为时空的物理理论从根本上改变人们以往的时空观念,那么量子论则很大程度改变了人们的实践,使人类对自然界的认识又一次深化。

它对人与自然之间的关系的重要修正,影响到人类对掌握自己命运的能力的看法。

量子论的创立经历了从旧量子论到量子力学的近30年的历程。

量子力学产生以前的量子论通常称旧量子论。

它的主要内容是相继出现的普朗克量子假说、爱因斯坦的光量子论和玻尔的原子理论。

热辐射研究和普朗克能量子假说十九世纪中叶,冶金工业的向前发展所要求的高温测量技术推动了热辐射的研究。

已经成为欧洲工业强国的德国有许多物理学家致力于这一课题的研究。

德国成为热辐射研究的发源地。

所谓热辐射就是物体被加热时发出的电磁波。

所有的热物体都会发出热辐射。

凝聚态物质(固体和液体)发生的连续辐射很强地依赖它的温度。

一个物体被加热从暗到发光,从发红光到黄光、蓝光直至白光。

1859年,柏林大学教授基尔霍夫(1824—1887年)根据实验的启发,提出用黑体作为理想模型来研究热辐射。

所谓黑体是指一种能够完全吸收投射在它上面的辐射而全无反射和透射的,看上去全黑的理想物体。

1895年,维恩(1864—1928年)从理论分析得出,一个带有小孔的空腔的热辐射性能可以看作一个黑体。

实验表明这样的黑体所发射的辐射的能量密度只与它的温度和频率有关,而与它的形状及其组成的物质无关。

黑体在任何给定的温度发射出特征频率的光谱。

这光谱包括一切频率,但和频率相联系的强度却不同。

量子力学发展史

量子力学发展史

量子力学发展史量子力学是物理学中一门重要的理论,它对于解释微观世界的现象起到了至关重要的作用。

本文将探讨量子力学的发展历程,从早期的经典物理学到今天的现代量子力学。

1. 发现电子量子力学的发展始于19世纪末和20世纪初,当时物理学家们对于原子和分子的结构一无所知。

然而,经过不懈的努力和实验的探索,人们开始逐渐揭示微观世界的神秘面纱。

在其中一个重要的里程碑上,约瑟夫·约翰·汤姆逊在1897年发现了电子,这是一个革命性的发现,标志着新时代的开始。

2. 经典物理学的局限性在电子的发现之后,物理学家们开始探索原子结构。

然而,他们采用的是经典物理学的观点,即基于经典力学和电磁学的理论。

然而,他们很快发现这种观点在解释微观世界的现象时遇到了极大的困难。

例如,根据经典物理学,电子应该在原子中围绕核心旋转,但实际上电子的运动轨道并不符合经典的轨道理论。

3. 波粒二象性为了解决原子结构的难题,物理学家们转向了电磁辐射的研究。

马克斯·普朗克在1900年提出了能量量子化的概念,这对于解释黑体辐射现象起到了重要作用。

随后,爱因斯坦在1905年提出了光电效应的解释,他认为光具有粒子性。

这些突破性的发现打破了传统物理学中波动和粒子之间的界限,揭示了物质和辐射的波粒二象性。

4. 德布罗意假设接下来,路易斯·德布罗意提出了他的假设,即所有物质都具有波动性。

根据德布罗意的假设,粒子的动量和波长之间存在着关系。

这一假设在随后的实验证实了,加深了人们对量子力学的理解。

5. 渐进波函数量子力学的重要突破发生在1920年代,当时埃尔温·薛定谔和马克斯·波恩通过独立的研究,揭示了量子力学的基本原理。

他们引入了波函数的概念,即描述粒子行为的数学函数。

薛定谔方程的提出为解释原子和分子的行为提供了强大的工具,成为量子力学的核心。

6. 测不准关系和量子力学危机在量子力学的初期发展中,物理学家们也遇到了困惑和挑战。

量子力学发展史详细

量子力学发展史详细

量子力学发展史详细量子力学是一门研究微观世界中微观粒子行为的科学。

它的发展历程可以追溯到19世纪末和20世纪初。

1897年,英国物理学家汤姆孙发现电子,并确定其具有粒子性质。

几年后,他提出了原子的模型,即“面包糠模型”,将电子沿轨道分布在原子核周围。

1913年,丹麦物理学家玻尔提出了原子的第一个量子理论,即玻尔模型。

他指出,电子只能沿特定的轨道运动,并具有特定的能量级。

这些轨道和能量级被称为量子态。

1924年,法国物理学家德布罗意提出了粒子具有波动性的假设,即德布罗意波。

他认为,所有物质都具有波粒二象性,没有完全的粒子性和波动性之分。

这为后来量子力学的建立做出了贡献。

1926年,德国物理学家薛定谔发表了量子力学的基本方程,即薛定谔方程。

这个方程描述了微观粒子的运动方式,通过求解薛定谔方程,可以得出粒子的能量和波函数。

1927年,丹麦物理学家卡尔·逻辑提出了量子力学的基本原则,即哥本哈根解释。

这个解释指出,测量结果是随机的,而波函数则代表了系统的概率分布。

20世纪上半叶,许多科学家在量子力学的基础上进行了深入研究。

其中,保罗·狄拉克提出了狄拉克方程,描述了电子的相对论性运动。

此外,玻恩、海森堡、狄拉克等人还对量子力学的理论框架进行了修正和发展,建立了量子场论。

随着时间的推移,量子力学在理论和实验上取得了许多重要的突破。

例如,量子电动力学的建立、量子力学的统计解释、量子纠缠和量子计算等。

总之,量子力学的发展历史是一部充满探索和突破的故事。

通过科学家们的努力和不断的研究,量子力学为我们理解微观世界的规律提供了重要的理论基础。

量子力学发展简史

量子力学发展简史

量子力学发展简史量子力学是现代物理学研究的重要分支,有着广泛的应用。

以下是量子力学发展的简史。

1900年代:黑体辐射和光的粒子性在19世纪末20世纪初,物理学家进行了一系列实验以研究黑体辐射(由物体中的热能发射出的电磁辐射谱)和光的粒子性。

1900年,德国物理学家马克斯·普朗克提出了普朗克常数,用于描述物体发射或吸收的能量量子(即光子)的大小。

1905年,爱因斯坦发表了关于光的粒子性的论文,他提出光能被看作一系列粒子或光子。

1913年,丹麦物理学家尼尔斯·玻尔提出了玻尔原子模型,该模型解释了氢原子的谱线。

1920年代:波粒二象性和量子力学1924年,法国物理学家路易斯·德布罗意提出了物质波动理论,该理论认为粒子也具有波动性,因此波和粒子的性质不是互相排斥的。

1926年,德国物理学家马克斯·玻恩和维尔纳·海森堡建立了量子力学,这是一种描述原子和分子行为的理论。

1927年,德国物理学家埃尔温·薛定谔提出了薛定谔方程,这是一种描述量子系统演化的方程。

1932年,英国物理学家詹姆斯·查德威克证实了电子的波动性。

1935年,爱因斯坦、玻尔和薛定谔进行了关于量子力学奇怪性质的讨论,这导致了爱因斯坦的闻名于世的虚拟实验“爱因斯坦-波多尔斯基-罗森悖论”。

二战期间,量子力学被用于研究原子和分子,以及开发原子弹和核能。

在这个时期,测量也是一个关键的问题,需要使用合适的实验技术来研究物质的微观性质。

1950年代和1960年代:量子场论和量子力学基本概念的重新解释量子场论是20世纪50年代和60年代发展的一种数学框架,用于描述场的相互作用。

这种理论使得研究粒子与场如何交互更为简单。

1964年,约翰·贝尔提出了贝尔定理,它证明了量子力学预测的结果与经典物理学不同。

这个发现促进了量子信息和量子计算等领域的发展。

1970年代和1980年代:纠缠和量子计算的进步1972年,约翰·赫尔提出了“赫尔寄存器”,这是一种模拟信息变化的方案。

量子理论发展史

量子理论发展史

量子理论发展史20世纪初,Planck提出了能在全波段与观测结果符合的黑体辐射能量密度随频率分布的公式,即Planck公式。

要从理论上导出Planck公式,需假定物体吸收或发射电磁辐射,只能以“量子”(quantum)的方式进行,每个“量子”的ε.由于能量不连续的概念在经典力学中是完全不容许的,所以尽管这能量为hv=个假设能堆到出与实际观测极为符合的Planck公式,在相当长的时间内量子假设并未受到重视。

Einstein在用量子假设说明光电效应问题时提出了光量子概念,他认为辐射场就是由光量子组成,采用光量子概念后光电效应中的疑难迎刃而解。

Einstein 和P.J.W.Debye进一步把能量不连续的概念应用于固体中原子的振动,成功解释了温度趋于零时固体比热容趋于零的现象。

至此,物理学家们才开始重视能量不连续的概念,并用它来解决经典物理学中的其它疑难问题。

比较突出的是原子结构与原子光谱的问题。

1896年,汤姆生提出原子结构的葡萄干面包模型,即正电荷均匀分布于原子中,电子以某种规则排列镶嵌其中。

1911年,卢瑟福根据α粒子的散射实验提出了原子的有核模型:原子的正电荷及几乎全部质量集中于原子中心很小的区域,形成原子核,电子围绕原子核旋转。

有核模型可以很好解释α粒子的大角度散射实验,但引来了两大问题:(1)原子的大小问题。

在经典物理框架中思考卢瑟福的有核模型,找不到一个合理的特征长度。

(2)原子的稳定性问题。

电子围绕原子核的加速旋转运动。

按照经典电动力学,电子将不断辐射能量而减速,轨道半径不断缩小,最后掉到原子核上,原子随之塌缩。

但现实世界表明,原子稳定地存在于自然界。

矛盾就这样尖锐地摆在面前,亟待解决。

此时,丹麦年轻的物理学家玻尔来到卢瑟福的的实验室,他深深为此矛盾吸引,在分析了这些矛盾后,玻尔深刻认识到原子世界必须背离经典电动力学。

玻尔把作用量子h(quantum of action)引进卢瑟福模型,提出原子的量子论:一是原子的具有离散能量的定态概念,一是两个定态之间的量子跃迁概念和频率条件。

第七章量子理论发展史

第七章量子理论发展史

康普顿实验的重要意义
为光的辐射确立了粒子观。 过去,至多认为在能量的吸收和发射上,其能量的改变具 有“粒子性”。 但是,康普顿散射实验却将光辐射看成是既有能量又有动 量的粒子,而且通过牛顿力学中早已研究过的能量守恒定 律和动量守恒定律,就能预言出这一弹性碰撞将能导致光 量子波长或频率的改变。
第七章量子理论发展史
第七章量子理论发展史
1900年,英国物理学家瑞利根据统计力学和电磁理论,推 导出另一辐射定律。这一定律在1905年经英国物理学家金 斯加以修正,以后通称瑞利-金斯定律。 瑞利-金斯定律在长波部分与实验很符合,但在短波部分 却偏离很大。古典理论的这一失败被物理学家埃伦菲斯特 称为“紫外灾难”。 “紫外灾难”所引起的是物理学理论的一场革命。
第七章量子理论发展史
玻尔提出定态轨道原子模型始末
1911年,玻尔到英国剑桥大学卡文迪什实验室学习和工作, 正好这时曼彻斯特大学的卢瑟福发现了原子核。 卢瑟福也曾是卡文迪什实验室的研究生。一天,卢瑟福回 到卡文迪什实验室,向研究人员报告自己的新发现。
第七章量子理论发展史
玻尔很有兴趣地听了卢瑟福的报告,对卢瑟福根据实验结 果大胆地作出原子有核的决断深表钦佩,也很了解卢瑟福 困难的处境,于是向卢瑟福表示希望到卢瑟福所在的曼彻 斯特大学当访问学者。
第七章量子理论发展史
康普顿实验的确证
1923年,康普顿在测量X射线和某些物质的散射时,发现某 些散射后的X射线的波长变长了。康普顿为了解释这一现象,
就除了假定光子的能量:E=hv以外,还吸收了在1917年由 爱因斯坦对光子还具有动量p的假定,亦即p=hv/c
这样,光子就被看成为既具有确定能量,又有确定动量的 完整的粒子。
第七章量子理论发展史

物理量子力学发展史

物理量子力学发展史

物理量子力学发展史物理量子力学是现代物理学中的一门重要学科,它研究微观世界中的粒子和能量的行为。

其发展历史可以追溯到20世纪初,以下将从早期量子理论的建立、波粒二象性的提出、量子力学的形成和发展、量子力学的应用等方面进行阐述。

早期量子理论的建立是物理量子力学发展史的重要起点。

在19世纪末,物理学家们通过对黑体辐射和光电效应的研究,发现了一些无法用经典物理学解释的现象。

为了解释这些现象,普朗克提出了能量量子化的假设,即能量不是连续的,而是以离散的方式存在。

这一假设为后来量子力学的建立奠定了基础。

随后,爱因斯坦在1905年提出了光的波粒二象性,即光既可以被看作是粒子(光子),也可以被看作是波动。

这一理论为量子力学的发展提供了重要的思想基础,并引发了对微观粒子行为的深入研究。

20世纪20年代,量子力学逐渐形成并得到了广泛的应用。

薛定谔提出了著名的薛定谔方程,描述了微观粒子的波函数演化规律。

同时,海森堡提出了矩阵力学,通过矩阵运算描述了微观粒子的运动和相互作用。

这两种形式的量子力学为后来的研究提供了不同的数学工具和观点。

随着量子力学的发展,人们逐渐认识到其在解释微观世界中的现象方面的优越性。

例如,量子力学成功地解释了原子光谱、电子的能级结构以及化学键的形成等问题。

此外,量子力学还为核物理、凝聚态物理等领域的研究提供了重要的理论基础。

在量子力学的发展过程中,人们也遇到了一些困惑和挑战。

例如,量子力学中的测量问题引发了许多哲学上的争议,如薛定谔的猫思想实验。

此外,量子力学与相对论的统一仍然是一个未解决的难题,物理学家们一直在寻求一种统一的理论来描述微观和宏观世界。

物理量子力学的发展史是一部充满挑战和突破的历史。

从早期量子理论的建立到波粒二象性的提出,再到量子力学的形成和发展,这一学科在解释微观世界中的现象和推动科学技术的发展方面发挥了重要作用。

随着量子力学的应用不断拓展,我们对于微观世界的认识也将不断深化。

量子力学发展简史.ppt

量子力学发展简史.ppt

3. 固体比热的研究
1906年,爱因斯坦将普朗克的量子假说应用于 固体比热,解释了固体比热的温度特性并且得 到定量结果。然而,这一次跟光电效应一样, 也未引起物理界的注意。不过,比热问题很快 就得到了能斯特的低温实验所证实。量子理论 应用于比热问题获得成功,引起了人们的关注, 有些物理学家相继投入这方面的研究。在这样 的形式下,能斯特积极活动,得到比利时化学 工业巨头索尔威的资助,促使有历史意义的第 一届索尔威国际物理会议的召开,讨论的主题 就是《辐射理论和量子》,这次会议在宣传量 子理论上起了很好的作用。
3.矩阵力学的创立
矩阵力学的创立者海森伯1924年到哥本哈根跟玻尔和克拉末斯合 作研究光色散理论。在研究中,他认识到不仅描写电子运动的偶 极的振幅的傅里叶分量的绝对值平方决定相应辐射的强度,而且 振幅本身的位相也是有观察意义的。海森伯由这里出发,假设电 子运动的偶极和多极电矩辐射的经典公式在量子理论中仍然有效。 然后运用玻尔的对应原理,用定态能量差决定的跃迁频率来改写 经典理论中电矩的傅里叶展开式。这样,海森伯就不再需要电子 轨道等经典概念代之以频率和振幅的二维数集。他当时并不知道 这就是矩阵运算,于是就向玻恩请教有没有发表价值。玻恩经过 几天思索才发现海森伯用来表示观察量的二维数集正是线性代数 中的矩阵,此后,海森伯的新理论就叫《矩阵力学》。 玻恩着手 运用矩阵方法为新理论建立一套严密的数学基础。与数学家约丹 联名发表了《论量子力学》一文,首次给矩阵力学以严格的表述。 接着,玻恩、约丹、海森伯三人合作,系统地论述了本征值问题、 定态微扰和含时间的定态微扰,导出了动量和角动量守定律,以 及强度公式和选择定则,从而奠定了量子力学的基础。
三 .关于量子力学完备性的争论
玻恩、海森伯等人提出了量子力学的诠释之后,遭到了爱因斯坦 和薛定谔等人的批评,他们不同意对方提出的波函数的几率解释、 测不准原理和互补原理,双方展开了一场长达半个世纪的大论战, 许多理论物理学家、实验物理学家和哲学家卷入了这场论战,至 今还未告结束。 正是由于以爱因斯坦为代表的EPR一派和以玻尔 为代表的哥本哈根学派的长期争论,才使得量子力学越来越完备, 很多问题得到了系统性的研究。 1965年,贝尔在定域隐参量理论 的基础上提出了一个著名的关系,人称贝尔不等式,于是有可能 对隐参量理论进行实际的实验检验,从而判断哥本哈根学派对量 子力学的解释是否正确。从70年代开始,各国物理学家先后完成 了十几项检验贝尔不等式的实验。这些实验大多数都明显地违反 了贝尔不等式,而与量子力学理论预言的相符。但也不能就此对 爱因斯坦和玻尔的争论作出最后裁决。目前这场论战还在进行之 中,没有得出最后的结论。

第七章量子理论发展史

第七章量子理论发展史

第七章量子理论发展史量子理论是物理学的重要分支之一,它描述了微观世界中的粒子行为,如原子、分子和基本粒子等的行为。

量子理论的发展历经了几十年的探索和研究,下面将对量子理论的发展史进行探讨。

19世纪末,物理学家们发现了一些实验结果与当时的经典物理学理论相悖。

例如,黑体辐射实验和光电效应实验,无法用经典物理的理论来解释。

为了解决这些困扰,麦克斯韦和普朗克等物理学家提出了量子理论的雏形。

1900年,普朗克提出了量子化假设,即能量不连续,而是以不可分割的量子单位出现。

这个概念首次引入了能量量子化的概念,为量子理论的发展奠定了基础。

接着,爱因斯坦利用光电效应现象解释了光的粒子性,提出了光量子的概念,并称之为光子。

这一理论奠定了量子力学的基石。

1913年,玻尔提出了玻尔模型,解释了氢原子光谱现象。

他提出了一个简单的原子模型,即电子在轨道上绕着原子核运动,在其中一可能的轨道上存在能量量子化的状态。

玻尔模型的提出,为原子结构的理解提供了一个框架,也为量子力学的发展提供了一种启示。

1925年至1926年间,根据矩阵力学和波动力学的发展,海森堡和薛定谔分别提出了量子力学的两个等价形式。

海森堡提出了矩阵力学,通过代数和矩阵运算的方法描述了粒子的行为,而薛定谔提出了波动力学,将粒子的行为转化为波函数的描述。

这两种形式都能描述量子力学体系的物理现象,它们的提出标志着量子力学的建立。

1927年,海森堡提出了不确定性原理,即无法同时精确测量粒子的位置和动量。

这个原理挑战了牛顿力学中的确定性观念,并深刻影响了科学哲学的发展。

不确定性原理的提出,标志着量子力学的成熟。

随后的几十年里,量子力学经受了严谨的数学推导和实验验证。

许多著名的物理学家,如狄拉克、费米、玻姆和海森堡等,对量子理论进行了深入的研究和发展。

他们提出了量子场论、费米-狄拉克统计和玻姆对称等重要概念,并为量子力学的应用奠定了基础,如核物理、固体物理和量子信息等领域的应用。

量子力学的发展史

量子力学的发展史

量子力学的发展史量子力学是现代物理学中最为重要的分支之一,它的发展历史可以追溯到20世纪初。

在这个时期,人们开始对物质的微观结构进行了深入的研究,发现了许多神奇而又令人困惑的现象。

这些现象在当时的经典物理学中无法解释,因此人们开始寻找新的理论来描述它们。

1900年,德国物理学家普朗克提出了能量量子化假设,这种假设认为能量并不是连续的,而是以粒子的形式存在,这种粒子被称为光子。

这一假设为量子理论的发展打下了基础。

1913年,丹麦物理学家玻尔提出了原子的量子化假设,认为原子的电子只能存在于特定的能级上,而不能存在于任意的能级上。

这种假设解释了许多原子光谱现象,成为了现代量子力学的基础。

1924年,法国物理学家德布罗意提出了波粒二象性假设,认为所有的物质都具有波动性,而且波动的频率和能量之间存在着一种对应关系。

这种假设不仅解释了光的粒子性和物质的波动性,还为后来的量子力学打下了重要的基础。

1925年,德国物理学家海森堡提出了矩阵力学,这是量子力学的一个重要分支。

矩阵力学认为量子力学中的物理量不是像经典物理学中那样具有确定的数值,而是具有一些可能性,这些可能性可以通过矩阵来描述。

这种做法在当时引起了很大的反响,成为了量子力学的重要发展方向之一。

1926年,奥地利物理学家薛定谔提出了波函数的概念,这是量子力学的又一个重要分支。

波函数是描述量子力学中物体状态的数学函数,通过对波函数的求解,可以得出物体的各种物理量。

这种方法在当时得到了广泛的应用,成为了量子力学的基本方法之一。

1927年,德国物理学家海森堡提出了著名的不确定性原理,这是量子力学的又一个重要成果。

不确定性原理认为,对于某些物理量,比如位置和动量,我们无法同时知道它们的精确数值,只能知道它们的概率分布。

这种做法在当时引起了很多争议,但后来证明是正确的。

随着量子力学的发展,人们不断发现新的量子现象,比如量子纠缠、量子隧穿等。

这些现象不仅深化了我们对物质微观结构的认识,还为未来的量子技术发展奠定了基础。

量子力学科普量子力学发展史话

量子力学科普量子力学发展史话

量子力学科普量子力学发展史话量子力学是现代物理学的基石,虽然它具有相当复杂和抽象的数学形式,但它的发展史相对较短。

下面是量子力学发展史的主要里程碑。

19世纪末,物理学家们发现了光的一些行为无法通过经典物理学解释。

19世纪末至20世纪初,一系列实验结果被发现,其中包括黑体辐射、光电效应和康普顿散射。

这些实验发现与经典物理学的预期不符,激发了科学家们进行深入研究。

1900年,德国物理学家普朗克提出了黑体辐射的量子理论。

他建议能量以单位为光子的形式传播,这个概念违背了当时流行的波动理论。

1905年,爱因斯坦提出了光电效应理论。

他解释了光照射在物质表面上时产生电子的现象。

爱因斯坦指出,光的能量是以离散的粒子形式存在的,这些光子的能量由频率决定。

1924年,法国物理学家德布罗意提出了物质波的概念。

他认为,与光子类似,粒子也具有波动性质。

他的理论后来得到实验证实,并为后来的量子力学奠定了基础。

1925年至1926年,德国物理学家薛定谔和狄拉克独立提出了量子力学的数学表述,薛定谔方程。

这个方程描述了微观粒子的波函数演化,从而可以计算出粒子的位置和能量。

1927年,薛定谔提出了著名的薛定谔猫思想实验,以展示量子力学中的叠加态和测量问题。

这个思想实验引起了科学界的广泛关注,并成为量子力学的重要概念之一1927年,丹麦物理学家玻恩提出了著名的量子随机性原理。

他认为,量子力学中的测量结果是完全随机的,无法准确预测。

这一观点与经典物理学中的确定性原理形成了鲜明对比。

量子力学的发展在20世纪后半叶加速。

20世纪30年代,矩阵力学和波动力学被发展出来,它们提供了量子力学的两种数学表述方法。

20世纪50年代,量子力学的理论基础得到了巩固和拓展。

物理学家们提出了量子力学的新概念,如量子纠缠和单光子干涉等。

现在,量子力学已经成为各个领域的基础理论,应用于粒子物理学、原子物理学、固体物理学和量子信息等领域。

随着技术的发展和对量子现象的深入理解,量子力学在未来仍将继续发展和进步。

量子力学发展简史

量子力学发展简史
量子力学表明,微观物理实在既不是波也不是粒子,真正的实在是量子态。真实状态分解为隐态和显态,是由于测量所造成的,在这里只有显态才符合经典物理学实在的含义。微观体系的实在性还表现在它的不可分离性上。量子力学把研究对象及其所处的环境看作一个整体,它不允许把世界看成由彼此分离的、独立的部分组成的。关于远隔粒子关联实验的结论,也定量地支持了量子态不可分离。
量子力学与经典力学的差别首先表现在对粒子的状态和力学量的描述及其变化规律上。在量子力学中,粒子的状态用波函数描述,它是坐标和时间的复函数。为了描写微观粒子状态随时间变化的规律,就需要找出波函数所满足的运动方程。这个方程是薛定谔在1926年首先找到的,被称为薛定谔方程。当微观粒子处于某一状态时,它的力学量(如坐标、动量、角动量、能量等)一般不具有确定的数值,而具有一系列可能值,每个可能值以一定的几率出现。当粒子所处的状态确定时,力学量具有某一可能值的几率也就完全确定。这就是1927年,海森伯得出的测不准关系,同时玻尔提出了并协原理,对量子力学给出了进一步的阐释。
不确定性也指量子力学中量子运动的不确定性。由于观测对某些量的干扰,使得与它关联的量(共轭量)不准确。这是不确定性的起源。
不确定性,经济学中关于风险管理的概念,指经济主体对于未来的经济状况(尤其是收益和损失)的分布范围和状态不能确知。
在量子力学中,不确定性指测量物理量的不确定性,由于在一定条件下,一些力学量只能处在它的本征态上,所表现出来的值是分立的,因此在不同的时间测量,就有可能得到不同的值,就会出现不确定值,也就是说,当你测量它时,可能得到这个值,可能得到那个值,得到的值是不确定的。只有在这个力学量的本征态上测量它,才能得到确切的值。
在经典物理学中,可以用质点的位置和动量精确地描述它的运动。同时知道了加速度,甚至可以预言质点接下来任意时刻的位置和动量,从而描绘出轨迹。但在微观物理学中,不确定性告诉我们,如果要更准确地测量质点的位置,那么测得的动量就更不准确。也就是说,不可能同时准确地测得一个粒子的位置和动量,因而也就不能用轨迹来描述粒子的运动。这就是不确定性原理的具体解释。

量子力学发展简史

量子力学发展简史

量子力学发展大事记1690年,惠更斯出版《光论》,波动说被正式提出1704年,牛顿出版《光学》,微粒说成为主导1807年,杨整理了光方面的工作,提出了双缝干涉实验,波动说再一次登上舞台1819年,菲涅尔证明光是一种横波1856-1865,麦克斯韦建立电磁力学,光被解释为电磁波的一种1885年,巴尔末提出了氢原子光谱的经验公式1887年,赫兹证实了麦克斯韦电磁理论,但他同时也发现了光电效应现象1893年,黑体辐射的维恩公式被提出1896年,贝克勒耳发现了放射性1896年,发现了光谱的塞曼效应1897年,J.J.汤姆逊发现了电子1900年,普朗克提出了量子概念,以解决黑体问题1905年,爱因斯坦提出了光量子的概念,解释了光电效应1910年,α粒子散射实验1911年,超导现象被发现1913年,玻尔原子模型被提出1915年,索末菲修改了玻尔模型,引入相对论,解释了塞曼效应和斯塔克效应1918年,玻尔的对应原理成型1922年,斯特恩-格拉赫实验1923年,康普顿完成了X射线散射实验,光的粒子性被证实1923年,德布罗意提出物质波的概念1924年,玻色-爱因斯坦统计被提出1925年,泡利提出不相容原理1925年,戴维逊和革末证实了电子的波动性1925年,海森堡创立了矩阵力学,量子力学被建立1925年,狄拉克提出q数1925年,乌仑贝克和古德施密特发现了电子自旋1926年,薛定谔创立了波动力学1926年,波动力学和矩阵力学被证明等价1926年,费米-狄拉克统计1927年,G.P.汤姆逊证实了电子的波动性1927年,海森堡提出不确定性原理1927年,波恩作出了波函数的概率解释1927年,科莫会议和第五届索尔维会议召开,互补原理成型1928年,狄拉克提出了相对论化的电子波动方程,量子电动力学走出第一步1930年,第6届索尔维会议召开,爱因斯坦提出光箱实验1932年,反电子被发现1932年,查德威克发现中子1935年,爱因斯坦提出EPR思维实验1935年,薛定谔提出猫佯谬1935年,汤川秀树预言了介子1938年,超流现象被发现1942年,费米建成第一个可控核反应堆1942年,费因曼提出路径积分方法1945年,第一颗原子弹爆炸1947年,第一个晶体管1948年,重正化理论成熟,量子电动力学被彻底建立1952年,玻姆提出导波隐变量理论1954年,杨-米尔斯规范场,后来发展出量子色动力学1956年,李政道和杨振宁提出弱作用下宇称不守恒,不久被吴健雄用实验证实1957年,埃弗莱特提出多世界解释1960年,激光技术被发明1963年,盖尔曼等提出夸克模型1964年,贝尔提出贝尔不等式1964年,CP对称性破缺被发现1968年,维尼基亚诺模型建立,导致了弦论的出现1970年,退相干理论被建立1973年,弱电统一理论被建立1973年,核磁共振技术被发明1974年,大统一理论被提出1975年,τ子被发现1979年,惠勒提出延迟实验1982年,阿斯派克特实验,定域隐变量理论被排除1983年,Z0中间玻色子被发现,弱电统一理论被证实1984年,第一次超弦革命1984年,格里芬斯提出退相干历史解释,后被哈特尔等人发扬1986年,GRW模型被提出1993年,量子传输理论开始起步1995年,顶夸克被发现1995年,玻色-爱因斯坦凝聚在实验室被做出1995年,第二次超弦革命开始。

量子力学发展史

量子力学发展史

量子力学发展史量子力学是一门研究微观粒子的科学,是近代物理学的重要分支。

量子力学的发展可以分为几个阶段:1. 1900年,瑞士物理学家阿尔伯特·爱因斯坦发表了论文《光电效应的统计学意义》,提出了能量是分离的粒子形式存在的概念,为量子力学的发展奠定了基础。

2. 1925年,爱因斯坦又发表了论文《原子结构的几何学意义》,提出了波动原理,即微观粒子的运动不是连续的,而是呈现波动形式。

3. 1926年,德国物理学家爱因斯坦、荷兰物理学家伯恩和德国物理学家布鲁诺·布拉格发表了论文《量子力学的基本原理》,提出了量子力学的基本原理。

4.后来,量子力学得到了进一步发展,出现了许多新的理论和方法,如矩阵力学、相对论量子力学、量子场论等。

这些理论和方法为解决许多微观粒子问题提供了有力的工具。

量子力学的发展为我们了解许多微观现象,如原子核、原子、分子、固体等提供了重要的理论基础,并在在量子力学发展的后期,又有许多重要的理论和发现。

这些理论和发现对我们对宇宙的认识和对技术的发展都有着深远的影响。

1. 1957年,美国物理学家李·汉密尔顿发现了量子动力学的不完备性定理,表明在量子力学描述中,存在一些现象是无法解释的。

2. 1964年,美国物理学家约翰·斯蒂芬·哈勃和美国物理学家罗伯特·沃恩发现了哈勃效应,表明在微观世界中,光的行为具有粒子性和波动性。

3. 1971年,美国物理学家詹姆斯·霍尔发现了霍尔效应,表明在微观世界中,电流也具有粒子性和波动性。

4. 1980年,美国物理学家理查德·费曼提出了量子计算的概念,并建立了量子计算的理论框架。

这为量子计算的实现提供了理论依据。

5. 1997年,美国物理学家罗伯特·沃恩和美国物理学家史蒂芬·埃里克森实现了量子力学发展的最新进展包括:1. 2012年,美国物理学家弗兰克·纽瓦克和欧拉·格林尼提出了量子力学的“量子信息”理论,表明量子力学可以用来进行量子信息的存储和处理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

量子理论发展史
20世纪初,Planck提出了能在全波段与观测结果符合的黑体辐射能量密度随频率分布的公式,即Planck公式。

要从理论上导出Planck公式,需假定物体吸收或发射电磁辐射,只能以“量子”(quantum)的方式进行,每个“量子”的ε.由于能量不连续的概念在经典力学中是完全不容许的,所以尽管这能量为hv
=
个假设能堆到出与实际观测极为符合的Planck公式,在相当长的时间内量子假设并未受到重视。

Einstein在用量子假设说明光电效应问题时提出了光量子概念,他认为辐射场就是由光量子组成,采用光量子概念后光电效应中的疑难迎刃而解。

Einstein 和P.J.W.Debye进一步把能量不连续的概念应用于固体中原子的振动,成功解释了温度趋于零时固体比热容趋于零的现象。

至此,物理学家们才开始重视能量不连续的概念,并用它来解决经典物理学中的其它疑难问题。

比较突出的是原子结构与原子光谱的问题。

1896年,汤姆生提出原子结构的葡萄干面包模型,即正电荷均匀分布于原子中,电子以某种规则排列镶嵌其中。

1911年,卢瑟福根据α粒子的散射实验提出了原子的有核模型:原子的正电荷及几乎全部质量集中于原子中心很小的区域,形成原子核,电子围绕原子核旋转。

有核模型可以很好解释α粒子的大角度散射实验,但引来了两大问题:(1)原子的大小问题。

在经典物理框架中思考卢瑟福的有核模型,找不到一个合理的特征长度。

(2)原子的稳定性问题。

电子围绕原子核的加速旋转运动。

按照经典电动力学,电子将不断辐射能量而减速,轨道半径不断缩小,最后掉到原子核上,原子随之塌缩。

但现实世界表明,原子稳定地存在于自然界。

矛盾就这样尖锐地摆在面前,亟待解决。

此时,丹麦年轻的物理学家玻尔来到卢瑟福的的实验室,他深深为此矛盾吸引,在分析了这些矛盾后,玻尔深刻认识到原子世界必须背离经典电动力学。

玻尔把作用量子h(quantum of action)引进卢瑟福模型,提出原子的量子论:一是原子的具有离散能量的定态概念,一是两个定态之间的量子跃迁概念和频率条件。

[4]然而,玻尔理论应用到简单程度仅次于氢原子的氦原子时,结果与实验不符。

对微观粒子的运动规律的探索显得紧迫。

为了达到这个目的,1924年德布罗意在光有波粒二象性的启示下,提出了微观粒子也具有波粒二象性的假说。

[5]提出了德布罗意关系,按照德布罗意关系,与自由粒子联系的波是一个平面波。

1927年,戴维孙和革末的电子衍射实验证明了德布罗意假说的正确性。

量子力学理论在1923—1927年间建立起来。

微观粒子的量子态用波函数来描述,Schrodinger 方程表示微观粒子波函数随时间变化的规律。

海森堡的矩阵
力学能够成功解决谐振子、转子、氢原子等的分立能级以及光谱线的频率和强度等问题,引起物理学界的重视,但在当时,人们对矩阵代数很陌生,一时很难接受矩阵力学。

不久,薛定谔的波动力学也提出来了,波动力学中出现的是人们熟悉的二阶偏微分方程,求解分立能级的问题变成求解在一定边界条件下的本征值问题。

物理学家因此感到特别欣慰。

之后,薛定谔证明了矩阵力学与波动力学的等价性。

矩阵力学与波动力学彼此等价,人们统称之为量子力学。

Schrodinger 方程在量子力学中的地位如同Newton 方程在经典力学中的地位。

量子力学成功阐明原子结构问题,而且打通了理解尺度较大的分子和固体、液体和气体物理,以及更小尺度的原子核物理的道路。

量子力学提出后的短短几年中的一系列发现,标志着物理学史上一个空前成就的时期。

辉煌的成就令人欢欣鼓舞,但是,关于量子力学的诠释及其适用范围,却出现了激烈的争论。

玻恩通过对散射实验中粒子的角分布的分析,提出波函数的统计解释,指出描写粒子的波是概率波。

Einstein反对对波函数的统计解释,他认为“上帝是不会抛骰子的”,他倾向决定论性的描述。

薛定谔也反对对波函数的统计解释,他认为波函数本身代表一个实在的物理上的可观测量,一个粒子可想象为一个物质波包。

Heisenberg提出的不确定关系给出了在微观世界中应用经典粒子的坐标和动量概念是应受到的限制。

量子力学是反映微观粒子运动规律的理论,它是在20世纪20年代建立的。

量子力学的出现,使人类对于物质微观结构的认识日益深入,从而掌握物质的物理和化学性质,并将将其应用在高科技产业上。

量子理论孕育了一门新兴学科,即量子信息论。

量子信息论涉及量子计算、量子密码学、量子远程传态等等。

西方发达国家在量子计算机方面投入大量的人力和物力,使得量子计算机这一领域得到迅速发展。

例如,激光器、半导体芯片和计算机、电视、电子通讯、电子显微镜、核磁共振成像、核能发电等等。

由量子理论带来的一系列高科技产业为人类带来巨大的生产值。

可以说没有量子力学和相对论的建立,就没有人类的现代文明。

回顾量子力学的发展史,在它的创始阶段,我国处于帝国主义列强侵略和军阀混战的贫穷落后时期,生活水平低下,科学研究落后。

新中国成立后,经历了十年文革,又失去了很多发展科技的良机。

改革开放后,经济水平取得了持续稳定的发展,为科学研究提供了经济条件,加上国家开始实施科教兴国战略,使得我们国家的科学研究具有了前所未有的发展条件。

量子力学的建立和发展是一个艰难却迅速的过程,这期间有很大物理学家对量子力学的建立和发展做出贡献,例如:爱因斯坦、玻尔、海森堡、薛定谔、狄拉克、玻恩等等。

每一个理论与现实的矛盾都吸引着优秀的物理学家们对科学的
孜孜探索,在探索过程中不同的观点相互碰撞,摩擦出新的智慧的火花。

量子力学为人类文明带来新的特殊贡献,这些现有的成就不应该也不可能封闭人类对自然界认识的道路。

量子力学发展到今天已有一个世纪的时间,然而,量子力学仍然是一门还在发展中的学科。

除了量子信息论领域之外,量子力学正逐步渗透到生命科学领域,其前景实在难以预测。

尽管如此,物理学家们仍然认为,迄今为止所有的实验都肯定了量子力学的正确性,只能表明它在人类迄今实践所及的领域是正确的。

量子力学并不是绝对真理。

对于物质存在的形式和运动规律的认识,未来也许还有更根本性的变革。

相关文档
最新文档