资料的正态性检验汇总

合集下载

16种统计分析方法

16种统计分析方法

16种常用的数据分析方法汇总2015-11—10 分类:数据分析评论(0)经常会有朋友问到一个朋友,数据分析常用的分析方法有哪些,我需要学习哪个等等之类的问题,今天数据分析精选给大家整理了十六种常用的数据分析方法,供大家参考学习。

一、描述统计描述性统计是指运用制表和分类,图形以及计筠概括性数据来描述数据的集中趋势、离散趋势、偏度、峰度.1、缺失值填充:常用方法:剔除法、均值法、最小邻居法、比率回归法、决策树法。

2、正态性检验:很多统计方法都要求数值服从或近似服从正态分布,所以之前需要进行正态性检验。

常用方法:非参数检验的K-量检验、P-P图、Q—Q图、W检验、动差法。

二、假设检验1、参数检验参数检验是在已知总体分布的条件下(一股要求总体服从正态分布)对一些主要的参数(如均值、百分数、方差、相关系数等)进行的检验。

1)U验使用条件:当样本含量n较大时,样本值符合正态分布2)T检验使用条件:当样本含量n较小时,样本值符合正态分布A 单样本t检验:推断该样本来自的总体均数μ与已知的某一总体均数μ0 (常为理论值或标准值)有无差别;B 配对样本t检验:当总体均数未知时,且两个样本可以配对,同对中的两者在可能会影响处理效果的各种条件方面扱为相似;C 两独立样本t检验:无法找到在各方面极为相似的两样本作配对比较时使用。

2、非参数检验非参数检验则不考虑总体分布是否已知,常常也不是针对总体参数,而是针对总体的某些一股性假设(如总体分布的位罝是否相同,总体分布是否正态)进行检验。

适用情况:顺序类型的数据资料,这类数据的分布形态一般是未知的.A 虽然是连续数据,但总体分布形态未知或者非正态;B 体分布虽然正态,数据也是连续类型,但样本容量极小,如10以下;主要方法包括:卡方检验、秩和检验、二项检验、游程检验、K-量检验等。

三、信度分析检査测量的可信度,例如调查问卷的真实性.分类:1、外在信度:不同时间测量时量表的一致性程度,常用方法重测信度2、内在信度;每个量表是否测量到单一的概念,同时组成两表的内在体项一致性如何,常用方法分半信度.四、列联表分析用于分析离散变量或定型变量之间是否存在相关。

spss判断是否符合正态分布

spss判断是否符合正态分布

如何对数据资料进行正态性检验:一、正态性检验:偏度和峰度1、偏度(Skewness):描述数据分布不对称的方向及其程度(见图1)。

当偏度≈0时,可认为分布是对称的,服从正态分布;当偏度>0时,分布为右偏,即拖尾在右边,峰尖在左边,也称为正偏态;当偏度<0时,分布为左偏,即拖尾在左边,峰尖在右边,也称为负偏态;注意:数据分布的左偏或右偏,指的是数值拖尾的方向,而不是峰的位置,容易引起误解。

2、峰度(Kurtosis):描述数据分布形态的陡缓程度(图2)。

当峰度≈0时,可认为分布的峰态合适,服从正态分布(不胖不瘦);当峰度>0时,分布的峰态陡峭(高尖);当峰度<0时,分布的峰态平缓(矮胖);利用偏度和峰度进行正态性检验时,可以同时计算其相应的Z评分(Z-score),即:偏度Z-score=偏度值/标准误,峰度Z-score=峰度值/标准误。

在α=0.05的检验水平下,若Z-score在±1.96之间,则可认为资料服从正态分布。

了解偏度和峰度这两个统计量的含义很重要,在对数据进行正态转换时,需要将其作为参考,选择合适的转换方法。

3、SPSS操作方法以分析某人群BMI的分布特征为例。

(1) 方法一选择Analyze → Descriptive Statistics → Frequencies将BMI选入Variable(s)框中→点击Statistics →在Distribution框中勾选Skewness和Kurtosis(2) 方法二选择Analyze → Descriptive Statistics → Descriptives将BMI选入Variable(s)框中→点击Options →在Distribution框中勾选Skewness和Kurtosis4、结果解读在结果输出的Descriptives部分,对变量BMI进行了基本的统计描述,同时给出了其分布的偏度值0.194(标准误0.181),Z-score = 0.194/0.181 = 1.072,峰度值0.373(标准误0.360),Z-score = 0.373/0.360 = 1.036。

u检验、t检验、F检验、X2检验

u检验、t检验、F检验、X2检验

u检验、t检验、F检验、X2检验常用显著性检验1.t检验适用于计量资料、正态分布、方差具有齐性的两组间小样本比较。

包括配对资料间、样本与均数间、两样本均数间比较三种,三者的计算公式不能混淆。

2.t'检验应用条件与t检验大致相同,但t′检验用于两组间方差不齐时,t′检验的计算公式实际上是方差不齐时t检验的校正公式。

3.U检验应用条件与t检验基本一致,只是当大样本时用U检验,而小样本时则用t检验,t检验可以代替U检验。

4.方差分析用于正态分布、方差齐性的多组间计量比较。

常见的有单因素分组的多样本均数比较及双因素分组的多个样本均数的比较,方差分析首先是比较各组间总的差异,如总差异有显著性,再进行组间的两两比较,组间比较用q检验或LST检验等。

5.X2检验是计数资料主要的显著性检验方法。

用于两个或多个百分比(率)的比较。

常见以下几种情况:四格表资料、配对资料、多于2行*2列资料及组内分组X2检验。

6.零反应检验用于计数资料。

是当实验组或对照组中出现概率为0或100%时,X2检验的一种特殊形式。

属于直接概率计算法。

7.符号检验、秩和检验和Ridit检验三者均属非参数统计方法,共同特点是简便、快捷、实用。

可用于各种非正态分布的资料、未知分布资料及半定量资料的分析。

其主要缺点是容易丢失数据中包含的信息。

所以凡是正态分布或可通过数据转换成正态分布者尽量不用这些方法。

8.Hotelling检验用于计量资料、正态分布、两组间多项指标的综合差异显著性检验。

计量经济学检验方法讨论计量经济学中的检验方法多种多样,而且在不同的假设前提之下,使用的检验统计量不同,在这里我论述几种比较常见的方法。

在讨论不同的检验之前,我们必须知道为什么要检验,到底检验什么?如果这个问题都不知道,那么我觉得我们很荒谬或者说是很模式化。

检验的含义是要确实因果关系,计量经济学的核心是要说因果关系是怎么样的。

那么如果两个东西之间没有什么因果联系,那么我们寻找的原因就不对。

医学统计学-实习二定量资料的统计推断

医学统计学-实习二定量资料的统计推断

a. Lilliefors Significance Correction
Sig. .466 .482
2.方差齐性检验、
两样本比较的t 检验:
结果输出:
Independent Samples Test
Levene's Test for
Equality of Variances
t-test for Equality of Means
95%置信区间
结果输出:
二、定量资料的 差异性检验
有关样本资料的差异性比较
数据类型
定量资料
设计类型
不满足t 检验/方 差分析条件的
定性资料
设计
类型
设计类型
单 样 本
配 对 设 计
两 独 立 样
多 独 立 样
本本
随析重 机因复 区设测 组计量 资资资 料料料
单 样 本
配 对 设 计
两 多 独 立 样 本
a. Not corrected for ties.
b. Grouping Variable: group
【例6.4】为研究某种抗癌新药对小白鼠移植性肉瘤S180 的抑瘤效果,将20只小白鼠按性别、体重、窝别配成对子。 每对中随机抽取一只服用抗癌新药,另一只作为阴性对照, 服用生理盐水,观察其对小白鼠移植性肉瘤S180的抑瘤效 果,经过一定时间,测得小白鼠瘤重如表4所示。问小白 鼠服用抗癌新药和生理盐水后平均瘤重有无不同?
Std. Error M ea n 184.699
140.079
Pair 1 甲 组 - 乙 组
Paired Samples Test
M ea n 795.000
Paired Differences

SPSS学习笔记-正态性检验

SPSS学习笔记-正态性检验

如何在spss中进行正态分布检验一、图示法1、P-P图以样本的累计频率作为横坐标,以安装正态分布计算的相应累计概率作为纵坐标,把样本值表现为直角坐标系中的散点。

如果资料服从整体分布,则样本点应围绕第一象限的对角线分布。

2、Q-Q图以样本的分位数作为横坐标,以按照正态分布计算的相应分位点作为纵坐标,把样本表现为指教坐标系的散点。

如果资料服从正态分布,则样本点应该呈一条围绕第一象限对角线的直线。

以上两种方法以Q-Q图为佳,效率较高。

3、直方图判断方法:是否以钟形分布,同时可以选择输出正态性曲线。

4、箱式图判断方法:观测离群值和中位数。

5、茎叶图类似与直方图,但实质不同。

二、计算法1、偏度系数(Skewness)和峰度系数(Kurtosis)计算公式:g1表示偏度,g2表示峰度,通过计算g1和g2及其标准误σg1及σg2然后作U检验。

两种检验同时得出U<U0.05=1.96,即p>0.05的结论时,才可以认为该组资料服从正态分布。

由公式可见,部分文献中所说的“偏度和峰度都接近0……可以认为……近似服从正态分布”并不严谨。

2、非参数检验方法非参数检验方法包括Kolmogorov-Smirnov检验(D检验)和Shapiro- Wilk(W检验)。

SAS中规定:当样本含量n≤2000时,结果以Shapiro – Wilk(W检验)为准,当样本含量n >2000时,结果以Kolmogorov – Smirnov(D检验)为准。

SPSS中则这样规定:(1)如果指定的是非整数权重,则在加权样本大小位于3和50之间时,计算Shapiro-Wilk统计量。

对于无权重或整数权重,在加权样本大小位于3和5000之间时,计算该统计量。

由此可见,部分SPSS教材里面关于“Shapiro – Wilk适用于样本量3-50之间的数据”的说法是在是理解片面,误人子弟。

(2)单样本Kolmogorov-Smirnov检验可用于检验变量(例如income)是否为正态分布。

试验数据的正态性检验、数据的转换及卡方检验

试验数据的正态性检验、数据的转换及卡方检验

试验数据的正态检验、数据的转换和卡方检验目录一、符合正态分布的例子 (1)二、不符合正态分布的例子 (6)三、不符合正态分布数据的转换及转换后数据的方差分析 (11)四、次数分布资料的卡方检验 (14)在对试验数据进行方差分析前,应对数据的三性(即同质性、独立性和正态性)进行检验。

本文介绍对资料的正态性进行检验的方法,主要介绍3种检验方法:(1)频数检验——作频率分布图、看偏度系数和峰度系数,(2)作Q-Q图检验,(3)非参数检验——单个样本K-S检验。

下面以两个试验数据为例,例1为84头育肥猪的体重数据,通常符合正态分布。

例2为生长育肥猪7个试验处理组的腹泻率(百分数资料)统计结果,这类资料往往不符合正态,而大多数人以为是符合正态分布,进行方差分析的,因而不能得出正确的结论,却可能得出错误结论。

一、符合正态分布的例子【例1】 84头生长育肥猪的“体重”数据如表1-1,检验该数据是否呈正态分布。

表1-1 84头育肥猪的“体重”数据(排序后)检验方法一:频数检验——作频率分布图、看偏度系数和峰度系数步骤1:数据录入SPSS中,如图1-1。

图1-1 体重数据录入SPSS中步骤2:在SPSS里执行“分析—>描述统计—>频率”,然后弹出“频率”对话框(图1-2a),变量选择“体重”;再点右边的“统计量”按钮,弹出图“频率:统计量”对话框(图1-2b),选择“偏度”和“丰度”(图1-2b);再点右边的“图表”按钮,弹出图“频率:图表”对话框(图1-2c),选择“直方图”,并选中“在直方图显示正态曲线”图1-2a “频率”对话框图1-2b “频率:统计量”对话框图1-2c “频率:图表”对话框设置完后点“确定”后,就会出来一系列结果,包括2个表格和一个图,我们先来看看“统计量”表,如下:统计量体重N 有效84缺失0偏度.040偏度的标准误.263峰度-.202峰度的标准误.520偏度系数=0.040,峰度系数-0.202;两个系数都小于1,可认为近似于正态分布。

正态分布总体的区间估计与假设检验汇总表

正态分布总体的区间估计与假设检验汇总表

(单侧检验)
2
(n
1)S 2
2 0
~2n1
2
2 /2
n
1

2
2 1- / 2
n 1
2 2 n 1
2

2 0
2
<
2 0
(单侧检验)
2
2 1-
n
1
2. 两个正态总体均值及方差的假设检验表(显著性水平 α)
条件 原假设 H0 备择假设 H1
检验统计量
拒绝域
12

2 2
已知
1 =2 1 2 1 2
1 2
1 2
(单侧检验)
SW
(n1 1)S12 (n2 1)S22 n1 n2 2
T < - t (n1 n2 2)
1,2
未知
2 1
=
2 2
2 1

2 2
2 1

2 2
(双侧检验)
2 1
>
2 2
(单侧检验)
F
S12 S22

F ( n1 - 1, n2 - 1)
F ≥ F /2 n1 1, n2 1
已知
0 / n
X
0 n
u
/2,
X
0 n
u
/2
2 未知 T X 0 ~ t(n 1) S/ n
X
S n 1
t / 2
n
1 ,
X
S n
1
t
/
2
n
1
方差 2
未知
2
(n 1)S 2
2 0
~2n1
(n 2 /
1)S 2

正态性检验的两种D检验方法比较

正态性检验的两种D检验方法比较

方 面感 到 困惑 ,这不 利 于数 据 统 计 分 析工 作 的顺 利进 行 ,不利 于通 过使用 统 计 分析 方 法 揭 示 客观 事 物 规律 的科 研 工作顺 利开 展 ,因此 有 必要 加 以分 析探 讨 。本
文对 正态 性检 验 的这 两种 D检验 方法 进行 探讨 。
1 Agostino D检验
应的概率 ;反之 ,若 D值在某个概率 对应 的界值 范围 之外 ,则 P值小于相应的概率。此外 ,该 界值含有 四 位 小数 ,因此 在计算 检验 统计 量 D值 时不 要少 于 四位
重要 。在 统计 分析 中常用 正态性 检验 判断 总体分 布类 小 数 。
型是否为正态分布。正态性检验方法有 多种 ,如 P—P
式 为 ’:
∑[ 一(n+1)/2]置

√n [∑ 。一(∑ ) /n] 式中,/Z是样本含量 ,i是将测量值从小到大排列后所
[(n+1)/2一i儿 X 州)一置 ]
D : 。_—— 二二==二二==二==二二==二=_—一
√ 。[∑X2一(∑ ) / ]
(2)
检验方 法 步骤如下 :
DOI:10.3969/j.issn.1006-5253.2015.04.013 作者单位 :l 264003 滨州 医学 院 山东省烟台市
2 烟 台毓 璜 顶 医 院麻 醉 科 通信作者 :罗文海 ,Email:byluowh@163.tom
中 国 医 院统 计 2015年 8月 第 22卷 第 4期
【关键词】 正态性检验 Agostino D检验 Kolmogorov.Smirnov检验 注意问题
正态分 布是 许多 统计分 析方 法 的基 础 和前提 ,如 t 若 D值在 某个 概率 对应 的界 值 范 围内 ,则 P值大 于相

正态性检验

正态性检验

正态性检验安德森-达令检验、柯尔莫哥洛夫-斯米诺夫检验、雅克-贝拉检验、偏度检验、峰度检验、爱泼斯-普利检验、夏皮洛-威尔克检验。

有些统计方法只适用于正态分布或近似正态分布资料,如用均数和标准差描述资料的集中或离散情况,用正态分布法确定正常值范围及用t检验两均数间相差是否显著等,因此在用这些方法前,需考虑进行正态性检验。

正态分布的特征是对称和正态峰。

分布对称时众数和均数密合,若均数-众数>0,称正偏态。

因为有少数变量值很大,使曲线右侧尾部拖得很长,故又称右偏态;若均数-众数<0称负偏态。

因为有少数变量值很小,使曲线左侧尾部拖得很长,故又称左偏态,见图7.1(a)。

正态曲线的峰度叫正态峰,见图7.1(b)中的虚线,离均数近的或很远的变量值都较正态峰的多的称尖峭峰,离均数近或很远变量值都较正态峰的少的称平阔峰。

图7.1频数分布的偏度和峰度正态性检验的方法有两类。

一类对偏度、峰度只用一个指标综合检验,另一类是对两者各用一个指标检验,前者有W法、D法、正态概率纸法等,后者有动差法亦称矩法。

现仅将W法与动差法分述于下;1.W法此法宜用于小样本资料的正态性检验,尤其是n≤50时,检验步骤如下;(1)将n个变量值Xi从小至大排队编秩。

X1<X2<……<XN< p>见表7.5第(1)栏,表中第(2)、第(3)栏是变量值,第(2)栏由上而下从小至大排列,第(3)栏由下而上从小至大排列。

第(4)栏是第(3)栏与第(2)栏之差。

(2)由附表5按n查出ain系数列入表7.5第(5)栏,由于当n为奇数时,对应于中位数秩次的ain为0,所以中位数只列出,不参加计算。

第(6)栏是第(5)栏与第(4)栏的乘积。

(3)按式(7.8)计算W值(7.8)式中分子的∑,当n是偶数时,为的缩写,当n是奇数时为的缩写,表7.5 第(6)栏的合计平方后即为分子。

分母按原始资料计算。

(4)查附表6得P值,作出推断结论,按n查得W(n,α),α是检验前指定的检验水准,若W>W(n,α)则在α水准上按受H0,资料来自正态分布总体,或服从正态分布;若W≤W(n,α),则在α水准上拒绝H0,接受H1,资料非正态。

浅谈资料正态分布检验在气象统计分析中的重要性

浅谈资料正态分布检验在气象统计分析中的重要性

统计 分析” 课程教 学 中对资料正 态分布检验 问题 重视不够 , 导致学 生在 科研 工作 中屡屡 出 错 等 问题 , 提 出改进教 学 方法 , 使 学生能更好 地理解和利 用统计 学方法解决 气象中的一些科学 问题 。
关 键词 : 气象统计分析 ; 正态分布检验 ; 教 学方法 中图分类号 : P 4 4 1 文献标 志码 : A 文章编号 : 1 6 7 4- 6 3 4 1 ( 2 0 1 3 ) 0 6- 0 0 8 5-0 2
速、 简单地讲授 一下 , 不 超过一 个学 时就讲 完 了。这部 分 内 容 笔者一 般安排 2个 学时 的课 程讲 授。资料 正态分 布检验
的重要性 大概 占0 . 5 个学 时。
首先 , 对正态分 布进 行简 单介绍 , 展 示正 态分 布 曲线 图 形 。若 随机变量 服从一 个数 学期 望为 纵 方差 为 o r 的高 斯分 布 , 记为Ⅳ ( , 0 - 2 ) 。其概率 密度函数为正态分布的期望 值 决定 了其位置 , 其标准差 决 定了其分布的幅度。 因其 曲线 呈钟形 , 因此人们 又经常称之为钟 形 曲线 。我们 通常所
N o v . 2 O1 3
第2 6 卷 第 6期
Vo 1 . 2 6 N o . 6
浅谈资料正态分布检验在气象统计分析中的重要性
王 慧 吴 丹 夏俊荣
( 南京 信息工程大学 大气科 学学院/ 气象灾 害教育部重点实验 室 , 江苏 南京 2 1 0 0 4 4 ) 摘 要: 在 利用气 象统计方 法进行 气象科研 和预报 工作 中, 资料是 否符合 正 态分 布 问题非 常重要 。针 对“ 气象
接着 , 重点介绍 气象统计分析 中气候 资料正 态分布检验

正态性检验的一般方法汇总

正态性检验的一般方法汇总
Kolmogorov-Smirnov检验的修正,当总体均值和方
Lilliefor提出用样本均值和标准差代替总体的期望和标
Kolmogorov-Smirnov正态性检验法,它定义了一个
统计量;
Fn(x)- Fo(x)|参数未知,由计算得
查表得Lilliefor检验的临界值,确定拒绝域,得出结论。
若两者间的差距很小,则推
样本所来自的总体分布服从某特定分布
:样本所来自的总体分布不服从某特定分布
Fo(x)表示分布的分布函数,Fn(x)表示一组随机
D为Fo(x)与Fn(x)差距的最大值,定义如下式:
a,P{Dn>d}=a.
35位健康男性在未进食前的血糖浓度如表所示,试测验这组
μ=80,标准差σ=6的正态分布
2)检验原理
2=0,则=,意味着对于,观测频数与期望频数完全一致,
2值越小。
与不应有较大差异,即2值
2值过大,则怀疑原假设。
R={2d} ,判断统计量是否落入拒绝域,得出结论。
Kolmogorov-Smirnov正态性检验:
检验法是检验单一样本是否来自某一特定
比如检验一组数据是否为正态分布。它的检验方法是以样本数
)/2; 值可查表得出;
2]
1)()
[()]()niniiiniiaXXWXX
α(可通过查表求得),按表上行
α舍弃正态性假设;若W>Wα,接受正态性假
21()niiXX
六、大样本场合(50<n<100)的D检验
检验统计量:
)
2
)
1()2()()niiniiniXDnXX
时,拒绝域为。其中
1101200203

正态性检验的一般方法汇总

正态性检验的一般方法汇总

正态性检验的一般方法汇总1. 引言正态性检验是统计学中一项重要的方法,用于确定数据是否服从正态分布。

正态分布在许多统计分析和假设检验中起着关键的作用,因此正态性检验对于数据分析的准确性和可靠性至关重要。

本文将综合介绍正态性检验的一般方法,包括直方图和正态概率图的可视化检验方法以及统计量检验方法。

2. 直方图检验直方图是一种用柱状图表示数据分布情况的可视化工具。

在正态性检验中,直方图可以帮助我们初步判断数据是否服从正态分布。

具体操作时,我们将数据划分为若干个区间,并统计每个区间内数据的频数。

如果直方图呈现钟形曲线,则表明数据具有较好的正态性。

反之,如果直方图呈现偏态分布,则可能说明数据不符合正态分布。

3. 正态概率图检验正态概率图是一种常用的正态性检验方法,其基本原理是将数据的分位数与标准正态分布的分位数进行比较。

通过在图上绘制数据的累积分布函数与标准正态分布的理论分布函数之间的关系,我们可以直观地判断数据是否服从正态分布。

在正态概率图中,数据点应当分布在一条直线上,如果数据点在直线上,则说明数据分布接近正态分布。

4. 统计量检验除了可视化方法,我们还可以使用统计量进行正态性检验。

常见的统计量检验方法包括Kolmogorov-Smirnov检验、Shapiro-Wilk检验和D'Agostino-Pearson检验等。

这些检验方法都基于假设检验的原理,通过计算统计量并与理论分布进行比较,从而判断数据是否服从正态分布。

4.1 Kolmogorov-Smirnov检验Kolmogorov-Smirnov检验是一种常见的非参数检验方法,用于检验数据是否来自特定的分布。

在正态性检验中,Kolmogorov-Smirnov检验可以用来检验数据是否符合正态分布。

该检验基于经验分布函数和理论分布函数之间的最大差异,通过计算统计量并与临界值进行比较,可以判断数据的正态性。

4.2 Shapiro-Wilk检验Shapiro-Wilk检验是一种适用于小样本数据的正态性检验方法,其原理是通过计算统计量来衡量数据与正态分布之间的偏差程度。

假设检验之正态性检验,F 检验,T 检验

假设检验之正态性检验,F 检验,T 检验

案例解析
• • • 如下图是BOSA AOP和ER用三种方法做出来的正态性检验 一般我们认为P>α (通常取0.05 或0.1) 就可以认为其不能拒绝正态的,也就是 大致认为其是正态分布的,而且P值越大,数据正态的信心越大。 下述参数中BOSA AOP是为非正态分布的,而ER是正态分布的。
方差齐性检验
拒绝H0
a/2
1 - a
a/2
临界值
0
样本统计量 临界值
显著性水平和拒绝域
(双侧检验 )
抽样分布
拒绝H0
置信水平 拒绝H0
a/2
1 - a
a/2
0 临界值
临界值
样本统计量
显著性水平和拒绝域
(单侧检验 )
抽样分布
拒绝H0
置信水平
a
1 - a
0 临界值
样本统计量
显著性水平和拒绝域
(左侧检验 )
... 如果这是总体 的假设均值
20
= 50 H0
样本均值
假设检验的过程
提出假设 作出决策
拒绝原假设 别无选择!
我认为人口的平 均年龄是50岁
总体


抽取随机样本

均值 x = 20
原假设与备择假设
假设(hypothesis)
原假设 备择假设 (Null Hypothesis) (Alternative Hypothesis)
检验统计量与拒绝域
检验统计量(test
statistic)
1. 根据样本观测结果计算得到的,并据以对 原假设和备择假设作出决策的某个样本统 计量 2. 对样本估计量的标准化结果
– 原假设H0为真

(完整版)医学统计学知识点汇总

(完整版)医学统计学知识点汇总

医学统计学总结绪论1、随机现象:在同一条件下进行试验,一次试验结果不能确定,而在一定数量的重复试验之后呈现统计规律的现象。

2、同质:统计学中对研究指标影响较大的,可以控制的主要因素。

3、变异:同质基础上各观察单位某变量值的差异。

数值变量:变量值是定量的,由此而构成的资料称为数值变量资料或计量资料,其数值是连续性的,称之为连续型变量。

变量无序分类变量:所分类别或属性之间无顺序和程度上的差异分类变量:定性变量有序分类变量:有顺序和程度上的差异4、总体:根据研究目的确定的同质研究对象中所有观察单位某变量值的集合。

可以分为有限总体和无限总体。

5、样本:是按随机化原则从同质总体中随机抽取的部分观察单位某变量值的集合。

样本代表性的前提:同质总体,足够的观察单位数,随机抽样。

统计学中,描述样本特征的指标称为统计量,描述总体特征的指标称为参数。

6、概率:描述随机事件发生的可能性大小的一个度量。

若P(A)=1,则称A为必然事件;若P(A)=0,则称A为不可能事件;随机事件A的概率为0<P<1.小概率事件:若随机事件A的概率P≤α,则称随机事件A为小概率事件,其统计学意义为:小概率事件在一次随机试验中认为是不可能发生的。

统计描述1、频数分布有两个重要的特征:集中趋势和离散程度。

频数分布有对称分布和偏态分布之分。

后者是指频数分布不对称,集中趋势偏向一侧,如偏向数值小的一侧为正偏态分布,如偏向数值大的一侧为负偏态分布。

2、常用的集中趋势的描述指标有:均数,几何均数,中位数等。

均数:适用于正态或近似正态的分布的数值变量资料。

样本均数用x表示,总体均数用μ表示。

几何均数:适用于等比级数资料和对数呈正态分布的资料。

注意观察值中不能有零,一组观察值中不能同时有正值和负值。

中位数:适用于偏态分布资料以及频数分布的一端或两端无确切数据的资料。

3、常用的离散程度的描述指标有:全距,四分位数间距,方差,标准差,变异系数。

全距:任何资料,一组中最大值与最小值的差。

正态分布和非正态分布使用的检验方法

正态分布和非正态分布使用的检验方法

正态分布和非正态分布使用的检验方法下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!正态分布和非正态分布是统计学中经常涉及的概念,在进行数据分析时需要对数据的分布进行检验。

资料的正态性检验汇总

资料的正态性检验汇总

资料的正态性检验汇总S PSS和SAS常用正态检验方法一、图示法1、P-P图以样本的累计频率作为横坐标,以安装正态分布计算的相应累计概率作为纵坐标,把样本值表现为直角坐标系中的散点。

如果资料服从整体分布,则样本点应围绕第一象限的对角线分布。

2、Q-Q图以样本的分位数作为横坐标,以按照正态分布计算的相应分位点作为纵坐标,把样本表现为指教坐标系的散点。

如果资料服从正态分布,则样本点应该呈一条围绕第一象限对角线的直线。

以上两种方法以Q-Q图为佳,效率较高。

3、直方图判断方法:是否以钟形分布,同时可以选择输出正态性曲线。

4、箱式图判断方法:观测离群值和中位数。

5、茎叶图类似与直方图,但实质不同。

二、计算法1、偏度系数(Skewness)和峰度系数(Kurtosis)计算公式:g1表示偏度,g2表示峰度,通过计算g1和g2及其标准误σg1及σg2然后作U检验。

两种检验同时得出U<U0.05=1.96,即p>0.05的结论时,才可以认为该组资料服从正态分布。

由公式可见,部分文献中所说的“偏度和峰度都接近0……可以认为……近似服从正态分布”并不严谨。

2、非参数检验方法非参数检验方法包括Kolmogorov-Smirnov检验(D检验)和Shapiro- Wilk(W检验)。

SAS中规定:当样本含量n≤2000时,结果以Shapiro – Wilk(W检验)为准,当样本含量n >2000时,结果以Kolmogorov – Smirnov(D检验)为准。

SPSS中则这样规定:(1)如果指定的是非整数权重,则在加权样本大小位于3和50之间时,计算Shapiro-Wilk统计量。

对于无权重或整数权重,在加权样本大小位于3和5000之间时,计算该统计量。

由此可见,部分SPSS教材里面关于“Shapiro – Wilk适用于样本量3-50之间的数据”的说法实在是理解片面,误人子弟。

(2)单样本Kolmogorov-Smirnov检验可用于检验变量(例如income)是否为正态分布。

第二节 正态总体参数的检验

第二节 正态总体参数的检验
∵ χ > λ2 , ∴ 否定 H 0 , 即认为方差显著地改变了. 即认为方差显著地改变了.
2
9
二、两个正态总体参数的假设检验
2 设 有 两 个 相 互 独 立 的 正 态 总 体 X ~ N ( µ1,σ 1 ) ,
Y ~ N ( µ 2,σ ) , 分别抽取独立的样本 ( X1 , X2 ,⋯, Xn1 ) 和
2
µ 第六章证明, X = ( (− , ) 第六章证明,若 χ 2 ~ Nn−1σS 证明 (2) 检验统计量 2
2 2 H 下 O χ1−α / 2(n−1) 2 0 ), 2 则
x
( n − 1) S

~ χ (n −1) ,
(4) 由样本值算得
χ的值; 的值;
2
则拒绝H 否则 不能 若 χ 2 < λ1 或 χ 2 > λ2 ,则拒绝 0 ; 否则, 拒绝H 拒绝 0 .
− tα / 2 ( n − 1) O
tα / 2 (n − 1)
x
~
(4) 由样本值算得 t 的值; 的值; 则拒绝H 如果 | t |> tα 2 (n − 1) ,则拒绝 0 ; 否则, 不能拒绝H 否则 不能拒绝 0 .
5
两家生产同一类产品, 例2 两家生产同一类产品,其质量指标假定都服从正 态分布,标准规格为均值等于120.现从甲厂抽出5 120.现从甲厂抽出 态分布,标准规格为均值等于120.现从甲厂抽出5件 产品,测得其指标值为119,120,119.2,119.7,119.6; 产品,测得其指标值为119,120,119.2,119.7,119.6; 从乙厂也抽出5件产品,测得其指标值为110.5,106.3, 从乙厂也抽出5件产品,测得其指标值为110.5,106.3, 122.2,113.8,117.2。 122.2,113.8,117.2。试判断这两家厂的产品是否符 合标准. 合标准. (α = 0.05 )

2组计量资料正态分布统计学方法

2组计量资料正态分布统计学方法

2组计量资料正态分布统计学方法
如果两组计量资料服从正态分布,可以采用以下统计学方法:
1. 成组t检验:适用于大样本资料或服从正态分布的小样本资料。

如果方差齐性,则作成组t检验;如果方差不齐,则作t’检验或用成组的Wilcoxon 秩和检验。

2. 完全随机的方差分析:适用于多组大样本资料或服从正态分布的资料,且方差齐性。

如果统计检验有统计学意义,则进一步作统计分析,选择合适的方法进行两两比较。

3. 配对样本t检验:适用于两组数据配对且服从正态分布的情况。

可以检验某医院30个病人注射某药剂前后血压是否一致。

4. 配对样本Wilcoxon符号秩检验:适用于非正态分布的数据,可以检验两列差值非正态分布、样本数一样的数据之间是否存在差异。

请注意,以上方法仅供参考,在进行统计学分析时,请咨询专业统计学专家,以获取准确和专业的分析结果。

正态性检验的一般方法汇总资料

正态性检验的一般方法汇总资料

正态性检验的一般方法汇总资料
正态性检验是统计学中常用的一种方法,用于检验数据是否符合正态分布。

正态分布在统计学中非常重要,因为很多统计模型都基于该假设。

如果数据不符合正态分布,可能需要使用其他分布或采用非参数方法来处理数据。

常见的正态性检验方法有以下几种:
1. Shapiro-Wilk检验
Shapiro-Wilk检验是最常用的正态性检验方法。

该方法利用样本数据计算统计量W和p值来判断数据是否符合正态分布。

W值越接近1,p值越大,说明数据越符合正态分布。

2. Kolmogorov-Smirnov检验
3. Anderson-Darling检验
4. Lilliefors检验
Lilliefors检验是基于Kolmogorov-Smirnov检验的一种改进方法。

该方法可以在小样本和大样本情况下都得到准确的结果。

正态性检验的一般流程如下:
1. 整理数据并画出直方图来观察数据特征。

2. 利用正态性检验方法来判断数据是否符合正态分布,比如Shapiro-Wilk检验、Kolmogorov-Smirnov检验、Anderson-Darling检验、Lilliefors检验等。

3. 如果数据不符合正态分布,则需要采用其他方法来处理数据,比如变换数据、采用非参数方法等。

4. 如果数据符合正态分布,可以采用基于正态分布假设的统计方法来分析数据。

总之,正态性检验是统计学中必不可少的一个环节。

在进行统计分析前对数据进行正态性检验,有助于选择合适的统计方法,保证分析结果的准确性和可信度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

资料的正态性检验汇总作者:huaxie 来源:【整理】发布时间:2009-4-22 浏览: 567 访问者: 58.23.96.242摘要提示:本文汇总了通常在对资料进行正态性检验时遇到的问题,比如Kolmogorov-Smirnov检验(简称K-S检验),还是Shapiro-Wilk检验,SPSS里面用哪个过程,SAS程序等。

SPSS和SAS常用正态检验方法如何在spss中进行正态分布检验一、图示法1、P-P图以样本的累计频率作为横坐标,以安装正态分布计算的相应累计概率作为纵坐标,把样本值表现为直角坐标系中的散点。

如果资料服从整体分布,则样本点应围绕第一象限的对角线分布。

2、Q-Q图以样本的分位数作为横坐标,以按照正态分布计算的相应分位点作为纵坐标,把样本表现为指教坐标系的散点。

如果资料服从正态分布,则样本点应该呈一条围绕第一象限对角线的直线。

以上两种方法以Q-Q图为佳,效率较高。

3、直方图判断方法:是否以钟形分布,同时可以选择输出正态性曲线。

4、箱式图判断方法:观测离群值和中位数。

5、茎叶图类似与直方图,但实质不同。

二、计算法1、偏度系数(Skewness)和峰度系数(Kurtosis)计算公式:g1表示偏度,g2表示峰度,通过计算g1和g2及其标准误σg1及σg2然后作U检验。

两种检验同时得出U<U0.05=1.96,即p>0.05的结论时,才可以认为该组资料服从正态分布。

由公式可见,部分文献中所说的“偏度和峰度都接近0……可以认为……近似服从正态分布”并不严谨。

2、非参数检验方法非参数检验方法包括Kolmogorov-Smirnov检验(D检验)和Shapiro- Wilk(W检验)。

SAS中规定:当样本含量n≤2000时,结果以Shapiro – Wilk(W检验)为准,当样本含量n >2000时,结果以Kolmogorov – Smirnov(D检验)为准。

SPSS中则这样规定:(1)如果指定的是非整数权重,则在加权样本大小位于3和50之间时,计算Shapiro-Wilk统计量。

对于无权重或整数权重,在加权样本大小位于3和5000之间时,计算该统计量。

由此可见,部分SPSS教材里面关于“Shapiro –Wilk适用于样本量3-50之间的数据”的说法实在是理解片面,误人子弟。

(2)单样本Kolmogorov-Smirnov检验可用于检验变量(例如income)是否为正态分布。

对于此两种检验,如果P值大于0.05,表明资料服从正态分布。

三、SPSS操作示例SPSS中有很多操作可以进行正态检验,在此只介绍最主要和最全面最方便的操作:1、工具栏--分析—描述性统计—探索性2、选择要分析的变量,选入因变量框内,然后点选图表,设置输出茎叶图和直方图,选择输出正态性检验图表,注意显示(Display)要选择双项(Both)。

3、Output结果(1)Descriptives:描述中有峰度系数和偏度系数,根据上述判断标准,数据不符合正态分布。

S k=0,K u=0时,分布呈正态,Sk>0时,分布呈正偏态,Sk<0时,分布呈负偏态,时,Ku>0曲线比较陡峭,Ku<0时曲线比较平坦。

由此可判断本数据分布为正偏态(朝左偏),较陡峭。

(2)Tests of Normality:D检验和W检验均显示数据不服从正态分布,当然在此,数据样本量为1000,应以W检验为准。

(3)直方图直方图验证了上述检验结果。

(4)此外还有茎叶图、P-P图、Q-Q图、箱式图等输出结果,不再赘述。

结果同样验证数据不符合正态分布。

许多计量资料的分析方法要求数据分布是正态或近似正态,因此对原始独立测定数据进行正态性检验是十分必要的。

通过绘制数据的频数分布直方图来定性地判断数据分布正态性。

这样的图形判断决不是严格的正态性检验,它所提供的信息只是对正态性检验的重要补充。

正态性检验主要有三类方法:一、计算综合统计量如动差法、夏皮罗-威尔克Shapiro-Wilk 法(W 检验) 、达戈斯提诺D′Agostino 法(D 检验)、Shapiro-Francia法(W′检验) .二、正态分布的拟合优度检验如皮尔逊χ2检验、对数似然比检验、柯尔莫哥洛夫Kolmogorov-Smirov 法检验 . 三、图示法(正态概率图Normal Probability plot)如分位数图(Quantile Quantileplot ,简称QQ 图) 、百分位数(Percent Percent plot ,简称PP 图) 和稳定化概率图(Stablized Probability plot ,简称SP 图) 等.下面介绍几种较统计软件中常用的正态性检验方法1、用偏态系数和峰态系数检验数据正态性偏态系数Sk,它用于检验不对称性;峰态系数Ku,它用于检验峰态。

S k= 0, K u= 0 时, 分布呈正态, S k> 0 时, 分布呈正偏态,S k < 0 时, 分布呈负偏态。

适用条件:样本含量应大于2002、用夏皮罗-威尔克(Shapiro-Wilk)法检验数据正态性即W检验,1965 年提出,适用于样本含量n ≤50 时的正态性检验;。

3、用达戈斯提诺(D′Agostino)法检验数据正态性即D检验,1971提出,正态性D检验该方法效率高,是比较精确的正态检验法。

4、Shapiro-Francia 法即W′检验,于1972 年提出,适用于50 < n < 100 时的正态性检验。

5、QQ图或PP图散点聚集在固定直线的周围,可以认为数据资料近似服从正态分布SPSS&SAS规则:SPSS 规定:当样本含量3 ≤n ≤5000 时,结果以Shapiro - Wilk (W 检验) 为难,当样本含量n > 5000 结果以Kolmogorov - Smirnov 为准。

而SAS 规定:当样本含量n ≤2000 时,结果以Shapiro - Wilk (W 检验) 为准,当样本含量n >2000 时,结果以Kolmogorov - Smirnov (D 检验) 为准问:对照组和病例组都是20例,拟对某指标进行正态性检验,是用Kolmogorov-Smirnov检验(简称K-S检验),还是Shapiro-Wilk检验?已用K-S检验不能认为该指标不是正态分布,但是Shapiro-Wilk检验表明其为非正态分布,我该相信哪个检验结果?答:Kolmogorov-Smirnov 检验:检验频数分布的正态性检验,适合大样本。

Shapiro-Wilk检验:小样本数据的正态性检验。

矩法正态性检验: 不限样本。

问:用SPSS中analysze/discriptive statistics/explore法和用analyze/nonparametric tests/1-sample K-S法评价正态性,结果不完全相同,为什么?答:以第二个为准,第一种方法是参数检验,而第二种是非参数检验,第一种是在知道总体分布的情况下做的,第二种是在不知道总体分布的情况进行的检验,而且大多数的检验,我们都是不知道总体分布到底是什么才做的K-S检验。

因此在做分析的时候一般用第二种,标准的检验单样本分布的方法。

不过一般推荐用上面的,并且和SAS的结果比较吻合。

同时样本量小的时候选S-W 的结果,至于结果的不同,应该是不同的方法算出的值不同,这很正常,因为这几个方法的数学表达式就不一样,中间对数据的处理也不一样,会有信息损失等原因的,在正态检验中,尤其是接近α水准时,往往容易出现问题,所以要根据资料的性质判断用什么方法进行检验更合适。

不是把所有的方法都做一遍。

对于到底P取多少才有意义,说法有好多种,常用的是0.1 吧,SPSS自带的是0.2的界值。

其实还是得结合QQ,PP图之类的来观察会好些。

小样本最好不要看Kolmogorov-Smirnov的结果,常常会有问题,Shapiro-Wilk 的结果会好些。

补充:如果根据国标,其偏态和峰态算法,其值为多少时符合正态别有规定呢?K-S检验记得在资料上见过8<=n<=50时可以利用,小样本就不推荐,W检验在国标中不推荐,具体原因未知,不过,推荐了EPPS-PULLEY法(在SPSS,SAS软件中未见有这种检验,但有针对的软件对该法有独立开发)。

问:那为什么用analysze/discriptive statistics/explore法的结果中,nonparametric tests 图下有一句话:test distribution is normal。

这句话和P值不就矛盾了吗?答:这个是对前面给出均数标准差时候的一个假定,因为如果不服从正态,给出这两个参数是没有实用价值的,或者说是错误的,所以它给了一个假定。

你看a,b标注在什么地方?问:大样本的非正态资料可看作近似正态分布的资料,那么其描述能不能用均数加减标准差来表示呢?一定要用中位数和四分位数间距来表示吗?答:“大样本的非正态资料可看作近似正态分布的资料”这是基于中心极限定理,大样本均数服从正态分布,可用U检验进行两组均数的比较。

并非大样本的非正态资料可看作近似正态分布的资料。

大样本资料的描述可以用均数加减标准差。

数据的描述正态X±S 非正态M(QR) (M代表中位数,QR=Q3-Q1,代表四分位数间距)非正态资料也有用M(P25,P75)来进行描述的,能够更直观的看到数据的分布形状疑问:这儿有个值得考虑的问题,多大属于大样本?如果样本是我们常说的“大样本”那么只能说明样本参数是符合正态分布。

就样本资料来说,如果这个样本的资料偏态严重,那么就不适合采用均数加减标准差来对这个样本资料进行描述。

问:SPSS中只有关于t检验的程序,请问U检验的程序在哪里呢?答:U检验SAS程序(只有样本量、均数、标准差的情况)data utest;n1=116; x1=0.2189; s1=0.2351;n2=125; x2=0.2280;s2=0.2561;u=(x1-x2)/sqrt(s1**2/n1+s2**2/n2);p=(1-probnorm(abs (u))*2;proc print;var u p;run;SAS的正态性检验PROC UNIVARIATE DATA=data1 NORMALVAR x;RUN;注:以上问题即回答来自各大论坛,本工作室对其进行整理,和修正,以方便读者。

如有不妥支出,请及时帮我们斧正,谢谢!如有与“GBT4882-2001数据的统计处理和解释-正态性检验”冲突的,请参照国标。

下载地址/netdisk/GetFile.asp提取码:09042123310309MMH两种正态性检验方法差异比较SPSS 2010-06-26 13:20:34 阅读56 评论0 字号:大中小SPSS里面有两处可以检验数据正态性,一个是: Analysis - Descriptive Statistics --Explore,这可能是常用的方法另一处是:Analysis -Nonparametric tests -- One sample K-S test,两个地方虽然都用到了名称相同的Kolmogorov-Smirnov Test,但是经常会出现检验的结果不一致的情况。

相关文档
最新文档