旋风分离器结构改进的研究现状和发展趋势_王清华

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第38卷第2期2007年3月 

锅 炉 技 术

BOIL ER TECHNOLO GY

Vol.38,No.2Mar.,2007

收稿日期:20061010

作者简介:王清华(1971),男,内蒙古呼和浩特人,讲师,硕士,主要从事热能工程专业方面的教学和研究。

文章编号: CN311508(2007)02000505

旋风分离器结构改进的研究现状和发展趋势

王清华

(内蒙古工业大学电力学院,内蒙古呼和浩特010080)

关键词: 旋风分离器;结构改进;研究现状;发展趋势

摘 要: 对工业上普遍应用的颗粒分离设备———旋风分离器结构改进(包括进口、出口、锥体及排尘结构)的研究现状进行了回顾。在此基础上,提出了旋风分离器结构改进的发展趋势,即:由于进口区域和排尘结构对于颗粒的分离至关重要,因此有必要对这部分结构进行深入研究;为了进一步改善旋风分离器的分离性能,除了利用离心力外还需结合其它的除尘机理;为了降低研究成本可以采用计算流体动力学技术来优化旋风分离器结构。

中图分类号: T K 223.4 文献标识码: A

1 前 言

旋风分离器应用于工业生产以来,已有百余年的历史,对于捕集、分离5~10μm 以上的颗粒效率较高。由于能耗相对比较小,结构简单可靠,广泛地应用于冶金、化工、石油、建筑、机械、电力、轻纺、食品等工业部门。旋风分离器中颗粒分离的机理是:颗粒由于离心力的作用克服气流的阻力向壁面运动,到达壁面附近后,由于边界层内较小的湍流,颗粒会沿着壁面进入灰斗中,从而得到分离。对于微细颗粒(粒径小于5μm ),由于其所受到的离心力小于气流对其的阻力,因此,一般来说,这一类颗粒很难得到分离。随着工业装置生产规模的提高以及操作条件变得更为苛刻,对旋风分离器性能的要求也不断提高。一方面要求旋风分离器有更强的捕集细粉的能力;另一方面要求旋风分离器的压降进一步减少,以降低能耗。所以,迫切需要研究出高效能且低能耗的新型旋风分离器。而通常是采用有针对性地开发新结构或优化各部分尺寸的匹配关系的方法来减少不利因素的影响,以达到高效的目的。国内外已有许多学者在这方面做出了大量试验研究,也提出了很多可行的措施和设计方案并已应用于实际工程中。本文在回顾前人研究现状的基础上,提出今后旋风分离器的发展趋势。

2 旋风分离器结构优化的研究现状与发展

方向

2.1旋风分离器进口结构的研究现状

普通旋风分离器单体大多采用了单切向进口或蜗向的进口结构形式,气固两相流进入旋风分离器后,随着远离旋风分离器排气芯管入口截面,平衡尘粒逐渐减小,即空间点上颗粒分离能力逐渐增强。因此,优化改进位于旋风分离器上部的进口结构形式是旋风分离器技术改进的可行措施。但是采用切向或蜗向单进口结构形式易造成旋风分离器内部气流场的轴不对称(涡核偏向270°一侧),不但增大了旋风分离器的阻力,而且增加了排气芯管短路流。所以赵兵涛等[1]提出优化改进旋风分离器进口结构,首先增设了进口回转通道(图1),通过试验得出所有增设回转通道的旋风分离器分离效率均大于无回转通道的效率。因为阻力系数的变化可影响进口速度的变化,进口速度的大小反映出旋风分离器分离能力的强弱。当阻力系数较小时,进口速度较大,表明旋风分离器分离能力强,由于回转通道的增设,使颗粒在进入旋风分离器腔体前进行预分离,从而使分离效率增大,但随着回转角度的继续增大,二次返混影响增大,这就使得分离效率在90°甚至270°以后有所减小,但总体仍高于0°的分离效率。所以改变其回转角度,就改变了

锅 炉 技 术 第38卷

两相流含尘浓度分布,使含尘浓度外浓内淡,从

而减少短路流的携尘量

图1 单双进口回转通道 同时若采用双进口回转通道形式,则有利于

降阻增效,由于进气口面积增大为原来的2倍,使进口气流速度减半,从而降低了阻力;由于采用渐缩的回转结构,减小了颗粒到达捕集壁面的距离,从而提高了分离效率;进一步的流场测定结果表明,双进口结构由于采用在旋风分离器内多点对称进气,增强了旋风分离器内部流场的轴对称性,使短路流携尘量减少,同时实现了降阻增效,又增强了气流场轴对称性,以降低旋风分离器阻力。具体试验结果表明,将旋风分离器常规进口结构优化改进为采用单进口等宽通道进口结构时,旋风分离器

回转角度为90°时性能较优,比0°

(无回转通道)时的阻力降低14.73%,效率提高2.48%。采用双进口渐缩通道进口结构时,旋风分离器性能优

于所有单进口,比0°

(无回转通道)时的阻力降低33.06%,效率提高3.95%。

2.2旋风分离器出口结构的研究现状

在旋风分离器内部的旋转气流中,颗粒物受离心力作用作径向向外(朝向筒锥壁)运动,运动速度可由颗粒物所受的离心力及气流阻力的运动方程求得。显然旋风分离器分离的目的就是使颗粒物尽快到达筒锥体边壁。因此,延长颗粒物在旋风分离器中的运动时间,在气流作用下提高颗粒物与筒锥体壁相撞的概率,可以提高旋风分离器除尘效率。Y.Zhu [2]提出的旋风分离器结构如图2所示,在普通旋风分离器中增加一个筒壁,这一筒壁将旋风分离器内部空间划分为2个环形区域,同时,排气芯管被移到了下方,排气芯管中的上升气流也变成了下降气流,颗粒物在内外2个环形区域内都得到了分离,事实上,这种旋风分离器相当于将2个旋风子结合到了一起。从理论上讲,这种结构改进提高了颗粒物被收集的概率。Zhu 型旋风分离器试验结果(气流流量范围为10~40L/min ,粒径范围为0.6~8.8μm

颗粒

图2 加内筒壁的旋风分离器

物)与Stairmand 高效旋风分离器进行了比较,改

进后的旋风分离器,除尘效率得到提高,并且随气流流量的增大而增大;同时,对于相同无因次尺寸的旋风分离器来说,前者的阻力也小于后者。Y.Zhu 考虑各方面因素给出相应优化综合指标,得出改进后的旋风分离器性能优于传统的旋风分离器。但这种改动后的旋风分离器较原有传统旋风分离器结构稍为复杂。由于旋风分离器对微细颗粒物效率较低,尤其对粉尘粒径小于10μm 的颗粒的除尘效率随着颗粒直径减小逐渐降低。也就是说,在旋风分离器的运行过程中,绝大部分微细粉尘穿透了分离区域,导致对微细粉尘效率下降。Plomp 等[3]提出在顶部增加二次分离附件POC 的方法(图3)。POC 二次分离利用排气芯管强旋流作用,使微细粉尘受离心力作用向边壁运动,并与挡板相撞后通过缝隙掉入挡板下部的壳体中,另一部分即使在一开始没有与边壁相撞,但由于始终受到离心力的作用,在到达POC 顶部时,其中也会有很大一部分通过缝隙处而进入挡板与壳体之间的空间,随后由于POC 中主气流的约10%通过缝隙形成渗透流。在渗透流的推动下,颗粒物被吹出壳体。研究结果得知,在特定结构尺寸和运行条件下总效率比改进前提高了2%~20%,POC 的阻力约为旋风分离器本体10%,

该阻力与渗透气流量无关

图3 POC 结构(Post Cyclone )

6

相关文档
最新文档