数字电子技术课件第二章优秀课件
合集下载
数字电子技术ppt课件
第 2 章 门电路
第 2 章 门电路
2.1 概述 2.2 最简单的与、或、非门电路 2.3 TTL门电路 2.4 CMOS门电路
数字电子技术
返回主目录
1
第 2 章 门电路
数字电子技术
2.1 概 述
门电路:实现基本运算、复合运算的单元电路。
常用的门电路:与门、或门、非门、与非门、或非门、
与或非门、异或门等。
区
VTH — 阈值电压
(转折区中点对应的输入电压)
vO 迅速↓→VOL
TTL反相器的电压传输特性
28
第 2 章 门电路
数字电子技术
二、电压传输特性
输出电压 v0 随输入电压 vI 变化曲线。
截止区
(1) AB段 截止区 vI <0.6V vO = VOH = VCC﹣VR2﹣VBE4﹣VD2=
(2)3.B4VC段 线性区 0.6V<vI<1.3V vI↑→ vo↓
0 3
3 0
D1截止 D2导通 2.3 D1导通 D2截止 2.3
0V 以下为逻辑0
3 3 D1导通 D2导通 2.3
真值表
AB Y 00 0 01 1 10 1 1 1 1 14
第 2 章 门电路
二极管构成的门电路的缺点
电平有偏移 带负载能力差
只用于IC内部电路
数字电子技术
15
第 2 章 门电路
2.2 最简单的与、或、非门电路
2.2.1 二极管与门
=+5V
数字电子技术
1、电路和图形符号
电源电压 VCC = 5V
A、B 输入端的电压
0V
VIH=3V 、VIL=0V
3V
二极管工作状态 导通、截止
第 2 章 门电路
2.1 概述 2.2 最简单的与、或、非门电路 2.3 TTL门电路 2.4 CMOS门电路
数字电子技术
返回主目录
1
第 2 章 门电路
数字电子技术
2.1 概 述
门电路:实现基本运算、复合运算的单元电路。
常用的门电路:与门、或门、非门、与非门、或非门、
与或非门、异或门等。
区
VTH — 阈值电压
(转折区中点对应的输入电压)
vO 迅速↓→VOL
TTL反相器的电压传输特性
28
第 2 章 门电路
数字电子技术
二、电压传输特性
输出电压 v0 随输入电压 vI 变化曲线。
截止区
(1) AB段 截止区 vI <0.6V vO = VOH = VCC﹣VR2﹣VBE4﹣VD2=
(2)3.B4VC段 线性区 0.6V<vI<1.3V vI↑→ vo↓
0 3
3 0
D1截止 D2导通 2.3 D1导通 D2截止 2.3
0V 以下为逻辑0
3 3 D1导通 D2导通 2.3
真值表
AB Y 00 0 01 1 10 1 1 1 1 14
第 2 章 门电路
二极管构成的门电路的缺点
电平有偏移 带负载能力差
只用于IC内部电路
数字电子技术
15
第 2 章 门电路
2.2 最简单的与、或、非门电路
2.2.1 二极管与门
=+5V
数字电子技术
1、电路和图形符号
电源电压 VCC = 5V
A、B 输入端的电压
0V
VIH=3V 、VIL=0V
3V
二极管工作状态 导通、截止
精品课件-数字电子技术(第三版)(刘守义)-第2章
第2章 逻辑门电路
2.1.2 与门 图2.4所示为双输入单输出DTL与门电路及与门逻辑符号。
在图2.4(a)中, 当输入端A与B同时为高电平1(+5 V)时, 二 极管VD1、 VD2均截止, R中没有电流,其上的电压降为0 V, 输出端L为高电平1(+5 V); 当A、 B中的任何一端为低电 平0(0 V)或A、 B端同时为低电平0时, 二极管VD1、 VD2的 导通使输出端L为低电平0(0.7 V)。
第2章 逻辑门电路 图 2.1 简易抢答器
第2章 逻辑门电路
4. 1) 检测IC 用数字集成电路测试仪测试IC的好坏。 如果IC上的字迹 模糊, 型号显示不清楚, 通过自动扫描检测的方式可以检 测其型号。
第2章 逻辑门电路
2) (1) 熟悉电路板。 电路可以连接在自制的PCB(印刷电 路板)上, 也可以焊接在万能板上, 或通过“面包板”插 接。 无论采用哪种电路板, 在连接电路之前, 都必须首先 对电路板的结构、 特点有足够的认识。 尤其是第一次使用 “面包板”的读者, 必须事先掌握它的使用方法。
第2章 逻辑门电路
2.1 逻 辑 门 电 路 2.1.1 非门
非门只有一个输入端和一个输出端, 输入的逻辑状态经 非门后被取反, 图2.2所示为非门电路及其逻辑符号。 在图 2.2(a)中, 当输入端A为高电平1(+5 V)时, 晶体管导通, L 端输出0.2~0.3 V的电压, 属于低电平范围; 当输入端为 低电平0(0 V)时, 晶体管截止, 晶体管集电极-发射极间 呈高阻状态, 输出端L的电压近似等于电源电压。
第2章 逻辑门电路 图2.9为描述双输入与非门输入与输出信号之间逻辑关系
图2.9 双输入端与非门波形图
数字电子技术第2章逻辑代数基础简明教程PPT课件
2.2.2 逻辑函数的最小项表达式
最小项通常用m表示,其下标为最小项的编号。编号的方 法如下:在每一个最小项中,原变量取值为1,反变量取 值为0,则每一个最小项对应一组二进制数,该二进制数 所对应的十进制数就是这个最小项的编号。
三变量的最小项编号表
2.2.3 逻辑函数的代数化简法
代数法化简是指直接利用逻辑代数的基本定律和规则,对 逻辑函数式进行变换,消去多余项和多余变量,以获得最 简函数式的方法。判断与或表达式是否最简的条件是: (1) (2) 每个乘积项中变量最少。 代数法化简没有固定的步骤,常用的化简方法有:并项法、 吸收法、消因子法、消项法和配项法5种。
2.最小项的性质 (1) 任何一个最小项,只有一组与之对应的变量组合使其 取值为1,其他各种变量组合均使其取值为0。 (2) n变量的所有最小项之和恒为1。因为无论输入变量如 何取值,总有某个最小项的值为1,因此其和必定为1。 (3) 任意两个最小项之积为0。 (4) 具有逻辑相邻性的两个最小项相加,可合并为一项, 并消去一个不同因子。
数字电子技术
第2章 逻辑代数基础
本章知识结构图
基本定律
逻 辑 代 数 基 础
基本规则
逻辑函数表示方法
逻辑函数化简
代数法
实例电路分析
卡诺图法
第2章 逻辑代数基础
2.1 逻辑代数
2.2 逻辑函数的化简法 2.3 实例电路分析
2.1 逻辑代数
2.1.1 逻辑代数的基本定律和恒等式
1.基本定律
A B C A B A C
(5) 重叠律 (6) 互补律
电子课件《数字电子技术》2第2章 逻辑门电路
如图2-9所示为OC门的电路结构与逻辑符号。
(a)电路结构
(b)逻辑符号
图2-9 OC门电路
OC门电路又称集电极开路与非门电路(Open Collector), 是一种可以实现线与功能的门电路,它的输出端是三极管集电 极悬空电路。
(1)当输入端不全为1时,uB1 1 V,T2,T5截止,Y 1 。 (2)当输入端全为1时,uB1 2.1 V,T2,T5饱和导通,Y 0 。
图2-3 二极管与门的电路结构图
设输入信号电压为5 V(高电平1)或0 V(低电平0),二极 管为理想元件,则电路的工作原理如下。
(1)当输入端A, B都为高电平1时,二极管D1 ,D2 均处于反 向截止状态,输出端 为高电平1(5 V)。 (2)当输入端 A, B都为低电平0时,二极管 D1 ,D2 均处于正 向导通状态,输出端 为低电平0(0 V)。 (3)当输入端一端为高电平、另一端为低电平时,如A 端为5 V, B端为0 V时,则 D2会优先导通,输出端 Y被钳制在0 V, 输出为低电平0。在 D2的钳位作用下, D1此时处于截止状态。
此时 iB iBS,三极管工作在饱和状态,输出电压 uY uCE 0.3 V。
通过电路实验论证,可得三极管非门电路的工作状态表, 如表2-5所示。
uA
uY
0V
5V
5V
0.3 V
T 截止 导通
表2-5 三极管非门电路工作状态表
由上述可知,在非门电路中,当输入信号为低电平,输出 Y是高电平;当输入信号为高电平,输出Y是低电平,可得非门 电路的逻辑表达式为
(1)在 tF t0 内,正向电流减小。 (2)在 t0 t2 内,反向电流先增大后减小,这段时间 即为反 向恢复时间。 (3)当反向电流由峰值 减小到其10%时,二极管截止。
精品课件-数字电子技术-第2章
第2章 集成逻辑门电路
图2-7 双极型三极管输入特性曲线
第2章 集成逻辑门电路
图2-8 双极型三极管输出特性曲线
第2章 集成逻辑门电路
3. 双极型晶体管的静态特性 在数字逻辑电路中,三极管作为开关元件,工作于饱和区 和截止区。图2-9是一个由双极性晶体管构成的典型的单管共 射放大电路,三极管V的门限电压为Uon,当输入电压ui小于门 限电压Uon时,发射结处于反向偏置,三极管工作于截止状态, iB≈0,iC≈0, uo=UCC。当输入电压ui大于某一数值时,发射 结和集电结均达到正向偏置,三极管工作于饱和状态,饱和导 通的条件为
第2章 集成逻辑门电路
图2-4 (a) 或门电路;(b) 逻辑符号
第2章 集成逻辑门电路
表2-2(a) 二极管或门电平
第2章 集成逻辑门电路
表2-2(b) 二极管或门真值表
第2章 集成逻辑门电路
从真值表分析可知:只要A、B当中有一个是高电平,Y即
为高电平,只有A、B同时为低电平,Y才为低电平, “或”
第2章 集成逻辑门电路
第2章 集成逻辑门电路
2.1 概述 2.2 分立元件逻辑门电路 2.3 TTL集成逻辑门 2.4 CMOS集成逻辑门
第2章 集成逻辑门电路
2.1 概 述
门电路(gate circuit)是构成数字电路的基本单元。所 谓“门”就是一种条件开关,在一定的条件下,它允许信号通 过,条件不满足时,信号无法通过,从而形成高电平和低电平 两种状态。在二值逻辑中,逻辑变量的取值不是1就是0,在 电子电路中用高、低电平分别表示1 和 0
图2-2 二极管伏安特性的近似方法与等效电路
第2章 集成逻辑门电路
2. 实现与逻辑关系的电路称为与门。最简单的与门可以由二 极管和电阻组成。图2-3(a)所示是有两个输入端的与门电路, 图2-3(b)所示为它的逻辑符号。图中A、B为两个信号输入端, Y为输出端。设UCC=5 V,A、B输入端的高低电平分别为UIH=3 V 和UIL=0 V,二极管VD1、VD2的正向导通压降为UD=0.7 V。输入 端A、B
02数字电子技术第2章课件
ABC = A+BC
= A+B+C
Байду номын сангаас
由此反演律能推广到n个变量: 由此反演律能推广到 个变量: 个变量
A1 • A2 • … • A n = A1 + A2 + … + A n A1 + A2 + … + A n = A1 • A2 • … • A n
二、 逻辑代数的规则
• 反演规则:
对于任意一个逻辑函数式F,做如下处理: 对于任意一个逻辑函数式 ,做如下处理: 若把式中的运算符“ 换成“ 换成“ • 若把式中的运算符“•”换成“+”, “+” 换成“•”; • 常量“0”换成“1”,“1”换成“0”; 常量“ 换成“ 换成“ 变量换成反变量, 变量换成原变量, • 原变量换成反变量,反变量换成原变量, 保持原函数的运算次序---先与后 保持原函数的运算次序--先与后 那么得到的新函数式称为原函数式F的反函数式。 。 那么得到的新函数式称为原函数式 的反函数式 新函数式称为原函数式 必要时适当地加入括号。 或,必要时适当地加入括号
三、 逻辑函数的标准形式
函数表达式的常用形式 逻辑函数的标准形式
三、 逻辑函数的标准形式
•1.与-或表达式转换为或 或非表达式 五种常用表达式 3.或-与表达式转换为或非 与表达式 4.或-与表达式转换为与 或-非表达式 2.与-或表达式转换为与非 非表达式 或 与表达式转换为或非—或非表达式 与 与表达式转换为或非 与非表达式 与或表达式转换为与非—与非表达式 与表达式转换为与-或 或表达式转换为或-与表达式 与表达式转换为与 或表达式转换为与非 或表达式转换为或 “与―或”式 F(A,B,C) = AB+ AC , , 基本形式 F = (A +C)=(A++B) A + B) “或―与”式 F = AB+ AC C)( 还原率 吸收率 (A = AA+ AB+AC+BC = (A +C)= ABB) C (A+ = AB+ AC • A 与非―与非” “与非―与非”式 反演率 = A(A+ B)+C(A+B) 或非―或非” “互补率 或非―或非”式 =A +C+= A + C + A + B AB• AC B = A+ = (A +C) (A+ B) = A • C + A • B “与―或―非”式 = A C+ A B • 表达式形式转换
数字电子技术基础课件第二章:门电路
AB Y 00 0 01 1 10 1 11 1
三、三极管非门
第 二 章 门 电 路
Vi Vo 0V VCC VCC 0.2V
AY 01 10
二极管与门和或门电路的缺点:
(1)在多个门串接使用时,会出现低电平偏离标准数 值的情况。
第 二
(2)负载能力差
章
门 电 路
D1
0V
D2 5V
+VCC ( +5V)
• MOS型工艺可分为NMOS、PMOS、CMOS
一、TTL逻辑门
第
1、TTL反相器的结
二
构和原理
章
门
1)结构
电
路
TTL反相器由三部
分构成:输入级、中
间级和输出级。
2)原理
A为低电平时(0.2V) ,
T1 饱 和 , VB1≈0.9V ,
第
VB2≈0.2V , T2 和 T5 截
二
止 , T4 和 D2 导 通 , Y
R 3kΩ
0.7V D1
D2 5V
+VC.4V L
解决办法: 将二极管与门(或门)电路和三极管非门电路组合起来。
第 二
+VCC ( +5V)
+V
CC
(
+5V)
章
R
RC
门
3kΩ
电
D1
路
A
LA
Rb 1
3
T
L
2
D2 B
2.4 TTL集成门电路
• 集成电路:把二极管、三极管、电阻和连线都
章
为高电平;
门
电 路
A 为 高 电 平 时 (3.4V) , VB1≈2.1V , T1 倒 置 ,
三、三极管非门
第 二 章 门 电 路
Vi Vo 0V VCC VCC 0.2V
AY 01 10
二极管与门和或门电路的缺点:
(1)在多个门串接使用时,会出现低电平偏离标准数 值的情况。
第 二
(2)负载能力差
章
门 电 路
D1
0V
D2 5V
+VCC ( +5V)
• MOS型工艺可分为NMOS、PMOS、CMOS
一、TTL逻辑门
第
1、TTL反相器的结
二
构和原理
章
门
1)结构
电
路
TTL反相器由三部
分构成:输入级、中
间级和输出级。
2)原理
A为低电平时(0.2V) ,
T1 饱 和 , VB1≈0.9V ,
第
VB2≈0.2V , T2 和 T5 截
二
止 , T4 和 D2 导 通 , Y
R 3kΩ
0.7V D1
D2 5V
+VC.4V L
解决办法: 将二极管与门(或门)电路和三极管非门电路组合起来。
第 二
+VCC ( +5V)
+V
CC
(
+5V)
章
R
RC
门
3kΩ
电
D1
路
A
LA
Rb 1
3
T
L
2
D2 B
2.4 TTL集成门电路
• 集成电路:把二极管、三极管、电阻和连线都
章
为高电平;
门
电 路
A 为 高 电 平 时 (3.4V) , VB1≈2.1V , T1 倒 置 ,
精品课件-数字电子技术及应用-第2章
第2章 门电路 图 2-1-4
第2章 门电路
当电路中的电源电压UCC和电阻RL较小时,二极管的正向导 通压降UON和正向电阻rVD均不能忽略,这时可用电阻rVD、电源UON 和开关的串联等效二极管,如图2-1-4(a)所示。这种等效与理 想的开关特性相差较远,其原因是流过二极管的电流i变化时, 管压降u也发生变化。
第2章 门电路
若以UCE(sat)表示三极管深度饱和时C、E极间的压降,则 由式(2-1-3)可求出深度饱和时所需的基极电流为
IBS
UCC UCE(sat)
RC
(2-1-4)
IBS称为饱和基极电流。为使三极管工作在饱和工作状态,以
保证开关电路输出低电平,则必须满足iB≥IBS。
综上所述,只要合理选择电路参数,即可保证 uI=UIL 时 uBE<UON,三极管工作在截止状态;uI=UIH 时 iB>IBS,三极 管工作在深度饱和状态,三极管的 C、E 极间相当于一个受控 制的开关。三极管截止时相当于开关断开;三极管饱和时相当
第2章 门电路 图 2-1-5
第2章 门电路
2.1.2 三极管的开关特性 对于如图2-1-6(a)所示的三极管电路,其输入、输出特性
曲线如图2-1-6 (b)、(c)所示。 在输入特性曲线中,UON称为三极管的开启电压,硅三极管
的UON约为0.5~0.7V,锗三极管的UON约为0.1~0.3V。当uBE>UON 时,三极管导通;uBE<UON时,三极管截止。
第2章 门电路 第2章
门电路
2.1 晶体管的开关特性 2.2 分立元件门电路 2.3 TTL门电路 2.4 其它类型的TTL门电路 2.5 CMOS门电路 2练习二
第2章 门电路
2.1 晶体管的开关特性
数字电子技术基础第二章门电路PPT课件
或门
实现逻辑或运算,当至少 一个输入为高电平时,输 出为高电平;否则输出为 低电平。
非门
实现逻辑非运算,当输入 为高电平时,输出为低电 平;当输入为低电平时, 输出为高电平。
门电路的分类
按功能分类
可分为与门、或门、非门、 与非门、或非门等。
按结构分类
可分为晶体管-晶体管逻辑 门(TTL)、金属氧化物 半导体逻辑门(MOS)等。
实践能力。
02 门电路的基本概念
逻辑门电路
逻辑门电路是数字电路的基本 单元,用于实现逻辑运算。
常见的逻辑门电路有与门、或 门、非门、与非门、或非门等。
逻辑门电路通常由晶体管、电 阻、电容等元件组成,具有高 电平、低电平和高阻态三种输 出状态。
常用逻辑门电路
01
02
03
与门
实现逻辑与运算,当所有 输入都为高电平时,输出 为高电平;否则输出为低 电平。
门电路在其他领域的应用
自动化控制
门电路可以用于实现自动化控制中的逻辑控制、 顺序控制等功能。
电子游戏
门电路可以用于实现电子游戏中的逻辑运算、状 态检测等功能。
智能家居
门电路可以用于实现智能家居中的控制逻辑、传 感器检测等功能。
05 门电路的实例分析
实例一:基本逻辑门电路的应用
基本逻辑门电路
包括与门、或门、非门等,是数字电路中最基本的逻辑单 元。
06 总结与展望
门电路的重要性和作用
门电路是数字电子技术的核心组件,它在数字电路中起到逻辑运算和信号控制的作 用。
门电路能够实现逻辑函数的运算,从而实现各种复杂的逻辑功能,是构成各种数字 系统和电子设备的基础。
门电路在计算机、通信、自动化等领域中有着广泛的应用,对现代科技的发展起着 至关重要的作用。
精品课件-数字电子技术-第2章
第2章 逻辑门电路
(2) 当输入A、B全为高电位时,即当VIH=3.6 V时,V1的 集电极、V2和V5发射极均导通,则V2和V5管处于饱和状态,故 VO=VOL=VCES5=0.3 V。另外,由于VC2=VB3= VCES2+VBE5=0.3+0.7=1 V,此电压不足以使V4导通,故V4处于截
(1) 高电平输出特性。当TTL与非门输出为高电平时,若 在门电路输出端接入负载,这时将有负载电流流出驱动门,好像 是负载从与非门拉走电流,此电流称为拉电流(或高电平输出电 流),如图2-25所示,记为IOH。一般IOH≤0.4 mA
(2) 低电平输出特性。当TTL与非门输出为低电平时,若 在门电路输出端接入负载,这时将有负载电流流入驱动门,好像 是负载向与非门灌入电流,此电流称为灌电流(或低电平输出电 流),如图2-26所示,记为IOL。一般IOL≤8 mA
(2) 低电平输入电流IIL。 IIL为与非门输入低电平时流 出输入端的电流,如图2-24所示,一般IIL≤0.4 mA
第2章 逻辑门电路
图2-23 TTL与非门高电平输入特性
第2章 逻辑门电路
图2-24 TTL与非门低电平输入特性
第2章 逻辑门电路
2) 输出特性是TTL与非门接入负载后,其输出电流与负载的关
(1) 输出逻辑高电平VOH和输出逻辑低电平VOL。 VOH和VOL的典型取值分别为3.6 V和0.3 V,但是,由于器件制 造中存在不可避免的差异,因此通常规定VOH≥3.0 V VOL≤0.3 V。器件手册规定,在额定负载情况下,VOHmin >2.4 V,VOLmax<0.8 V
第2章 逻辑门电路
或更多的输入,但只有一个输出。 通常,输入画在与门的一边,输出画在与门的另一边。两
【精品PPT】数字电子技术基础全套课件-2(2024版)
一、逻辑函数
如果以逻辑变量作为输入,以运算结果作为 输出,当输入变量的取值确定之后,输出的取值 便随之而定。输出与输入之间的函数关系称为逻 辑函数。Y=F(A,B,C,…)
二、逻辑函数表示方法 常用逻辑函数的表示方法有:逻辑真值表(真
值表)、逻辑函数式(逻辑式或函数式)、逻辑 图、波形图、卡诺图及硬件描述语言。它们之间 可以相互转换。
( A B)
B A
( A B)
Y (( A B) ( A B)) ( A B)( A B) AB AB
5、波形图→真值表
A
1111
0000
B
11
11
00
00
C 1111
00
Y 11
00 11
0
00 0
ABC Y 00 0 0 t 00 1 1 01 0 1 t 01 1 0 10 0 0 t 10 1 1 11 0 0 t 11 1 1
A断开、B接通,灯不亮。
将开关接通记作1,断开记作0;灯亮记作1,灯 灭记作0。可以作出如下表格来描述与逻辑关系:
功能表
开关 A 开关 B 灯 Y
A
断开 断开
灭
0
断开 闭合
灭
0
1
闭合 断开
灭
1
闭合 闭合 亮
BY
00 真 10 值
00 表
11
两个开关均接通时,灯才会 Y=A•B
亮。逻辑表达式为:
实现与逻辑的电路称为与门。
与门的逻辑符号:
A
&
Y Y=A•B
B
二、或逻辑(或运算)
或逻辑:当决定事件(Y)发生的各种条件A,B,
C,…)中,只要有一个或多个条件具备,事件(Y)
如果以逻辑变量作为输入,以运算结果作为 输出,当输入变量的取值确定之后,输出的取值 便随之而定。输出与输入之间的函数关系称为逻 辑函数。Y=F(A,B,C,…)
二、逻辑函数表示方法 常用逻辑函数的表示方法有:逻辑真值表(真
值表)、逻辑函数式(逻辑式或函数式)、逻辑 图、波形图、卡诺图及硬件描述语言。它们之间 可以相互转换。
( A B)
B A
( A B)
Y (( A B) ( A B)) ( A B)( A B) AB AB
5、波形图→真值表
A
1111
0000
B
11
11
00
00
C 1111
00
Y 11
00 11
0
00 0
ABC Y 00 0 0 t 00 1 1 01 0 1 t 01 1 0 10 0 0 t 10 1 1 11 0 0 t 11 1 1
A断开、B接通,灯不亮。
将开关接通记作1,断开记作0;灯亮记作1,灯 灭记作0。可以作出如下表格来描述与逻辑关系:
功能表
开关 A 开关 B 灯 Y
A
断开 断开
灭
0
断开 闭合
灭
0
1
闭合 断开
灭
1
闭合 闭合 亮
BY
00 真 10 值
00 表
11
两个开关均接通时,灯才会 Y=A•B
亮。逻辑表达式为:
实现与逻辑的电路称为与门。
与门的逻辑符号:
A
&
Y Y=A•B
B
二、或逻辑(或运算)
或逻辑:当决定事件(Y)发生的各种条件A,B,
C,…)中,只要有一个或多个条件具备,事件(Y)
数字电子技术基础ppt课件
R
vo K合------vo=0, 输出低电平
vi
K
只要能判
可用三极管 代替
断高低电 平即可
在数字电路中,一般用高电平代表1、低 电平代表0,即所谓的正逻辑系统。
2.2.2 二极管与门
VCC
A
D1
FY
B
D2
二极管与门
A
B
【 】 内容 回顾
AB Y 00 0 01 0 100 11 1
&
Y
2.2.2 二极管或门
一般TTL门的扇出系数为10。
三、输入端负载特性
输入端 “1”,“0”?
A
ui
RP
R1 b1
c1
T1
D1
•
R2
•
T2
•
R3
VCC
•
R4
T4 D2
•
Y
T5
•
简化电路
R1
VCC
ui
A ui
T1
be
RP
2
be 0
RP
5
RP较小时
ui
RP RP R1
(Vcc Von )
当RP<<R1时, ui ∝ RP
•
R4
T4 D2
•
Y
T5
•
TTL非门的内部结构
•
R1
R2
A
b1 c1
T1
•
T2
D1
•
R3
VCC
•
R4
T4 D2
•
Y
T5
•
前级输出为 高电平时
•
R2
R4
VCC
T4 D2
精品课件-数字电子技术-第2章
第2章 逻辑门电路
图2.2.1 (a) 电路图; (b) 伏安特性曲线
第2章 逻辑门电路
二极管导通时的电阻叫正向电阻, 其值很小, 一般在几 欧至几百欧之间。 因此, 二极管导通时,如同一个具有0.7 V压降而电阻很小的闭合开关, 如图2.2.2为二极管正向导通 时的等效电路。 在数字电路分析中经常采用简化分析的方法, 往往忽略0.7 V压降和正向电阻。
第2章 逻辑门电路
模拟信号一般通过PCM(Pulse Code Modulation)脉码调 制方法量化为数字信号, 即让模拟信号的不同幅度分别对应 不同的二进制值, 例如采用8位编码可将模拟信号量化为 28=256个量级, 实用中常采取24位或30位编码。 数字信号一 般通过对载波进行移相(Phase Shift)的方法转换为模拟信号。 计算机、 计算机局域网与城域网中均使用二进制数字信号, 目前在计算机广域网中实际传送的则既有二进制数字信号,也 有由数字信号转换而得的模拟信号。
脉冲宽度tw占整个周期T的百分数,
第2章 逻辑门电路 图2.1.2 实际的矩形脉冲
第2章 逻辑门电路
一、 1. 什么是数字信号? 什么是模拟信号? 在我们所学 过的各种信号中哪些是数字信号, 2. 脉冲信号除了有矩形脉冲和尖脉冲外, 还有哪些
3. 脉冲信号的占空比是否都是1∶2的, 有没有其他比 例的脉冲信号?
第2章 逻辑门电路 图2.2.3 二极管截止时的等效电路
第2章 逻辑门电路
2. 工作在开关状态的二极管除了有导通和截止两种稳定状态 外, 还要在导通和截止之间转换, 这个转换的过程称为二极 管动态过程(或过渡过程)。 当输入电压波形如图2.2.4(a) 时, 理想开关的输出电流波形如图2.2.4(b)所示, 实际 的输出波形如图2.2.4(c)所示。
精品课件-数字电子技术-第2章
2.2.3 “与或非”逻辑 “与或非”逻辑是先“与”再“或”最后“非”。其逻辑
表达式为:
(2.2.3)
F AB CD
实现“与或非”逻辑运算的电路叫“与或非门”。 其逻辑符号如图2.2.3所示。
第2章 逻辑代数基础
图 2.2.3 (a) 常用符号;(b) 国外流行符号;(c) 国标符
号
第2章 逻辑代数基础
第2章 逻辑代数基础
图 2.2.4 (a) 常用符号;(b) 国外流行符号;(c) 国标符
号
第2章 逻辑代数基础
2. “同或”逻辑 若两个输入变量A、B取值相同,则输出变量F为1;若A、B 取值不同,则F为0。这种逻辑关系称为“同或”逻辑。其逻辑 表达式为:
F A B AB AB
第2章 逻辑代数基础
由表2.1.3的真值表可知,上述的因果关系属于非逻辑。
其逻辑函数为:
FA
(2.1.3)
这里“- ”代表求反的运算符号,读作“非”或“反”。
完成“非运算”的电路叫非门或者叫反相器,其逻辑符号
如图2.1.6所示。其中图(a)是我国常用的传统符号,图(b)为
国外流行符号,图(c)为国家标准符号。
果的条件不满足时,结果却发生了。这种因果关系称为逻辑非 (或逻辑反)。
例如,图2.1.5所示的电路中,开关A闭合时,灯泡F不 亮;开关A断开时,灯泡F点亮。表2.1.3(a)、2.1.3(b)表示非 逻辑的真值表。
第2章 逻辑代数基础
图 2.1.5 非逻辑电路图
第2章 逻辑代数基础
表2.1.3 非逻辑真值表
如果以逻辑变量作为输入,以运算结果作为输出,那么当 输入变量的取值确定之后,输出的取值便随之而定。因此,输 出与输入是一种函数关系。这种函数关系称为逻辑函数,写作
表达式为:
(2.2.3)
F AB CD
实现“与或非”逻辑运算的电路叫“与或非门”。 其逻辑符号如图2.2.3所示。
第2章 逻辑代数基础
图 2.2.3 (a) 常用符号;(b) 国外流行符号;(c) 国标符
号
第2章 逻辑代数基础
第2章 逻辑代数基础
图 2.2.4 (a) 常用符号;(b) 国外流行符号;(c) 国标符
号
第2章 逻辑代数基础
2. “同或”逻辑 若两个输入变量A、B取值相同,则输出变量F为1;若A、B 取值不同,则F为0。这种逻辑关系称为“同或”逻辑。其逻辑 表达式为:
F A B AB AB
第2章 逻辑代数基础
由表2.1.3的真值表可知,上述的因果关系属于非逻辑。
其逻辑函数为:
FA
(2.1.3)
这里“- ”代表求反的运算符号,读作“非”或“反”。
完成“非运算”的电路叫非门或者叫反相器,其逻辑符号
如图2.1.6所示。其中图(a)是我国常用的传统符号,图(b)为
国外流行符号,图(c)为国家标准符号。
果的条件不满足时,结果却发生了。这种因果关系称为逻辑非 (或逻辑反)。
例如,图2.1.5所示的电路中,开关A闭合时,灯泡F不 亮;开关A断开时,灯泡F点亮。表2.1.3(a)、2.1.3(b)表示非 逻辑的真值表。
第2章 逻辑代数基础
图 2.1.5 非逻辑电路图
第2章 逻辑代数基础
表2.1.3 非逻辑真值表
如果以逻辑变量作为输入,以运算结果作为输出,那么当 输入变量的取值确定之后,输出的取值便随之而定。因此,输 出与输入是一种函数关系。这种函数关系称为逻辑函数,写作
《数字电子技术 》课件第2章
图 2.3 (a) 多发射极晶体管; (b) 等效形式
(2) 中间级。 中间级由V2、 R2和R3组成。 V2的集电极和 发射极输出两个相位相反的信号, 作为V3和V5的驱动信号。
(3) 输出级。输出级由V3、 V4、 V5和R4、 R5组成, 这种 电路形式称为推拉式电路。 其中, R4为分流电阻, 可以减小 复合管的穿透电流; R5为限流电阻, 防止负载电流过大烧毁 器件。
输入短路电流的典型值约为-1.5 mA。
图 2.5 IIS的计算
(6) 输入漏电流IIH。当UI>Uth时, 流经输入端的电流称为 输入漏电流IIH, 即V1倒置工作时的反向漏电流。 其值很小, 约为10 μA。
(7) 扇出系数N。扇出系数是以同一型号的与非门作为负 载时, 一个与非门能够驱动同类与非门的最大数目, 通常 N≥8。
2.2.5 TTL门电路的其他类型
1. 集电极开路门(OC 在实际使用中, 可直接将几个逻辑门的输出端相连, 这 种输出直接相连, 实现输出与功能的方式称为线与。 图2.9所 示为实现线与功能的电路。 电路中, 当Y1或Y2只要有一个是 低电平时, Y为低电平; 只有当Y1、 Y2均为高电平时, Y才 为高电平。 即
2. (1) 输入全部为高电平。当输入A、 B、 C均为高电平, 即UIH = 3.6 V时, V1基极电位升高, 从图2.3(b)中可知, V1的基极电位足以使V1的集电结和V2、 V5的发射结导通。 而 V2的集电极压降可以使V3导通,但它不能使V4导通。 V5由V2 提供足够的基极电流而处于饱和状态。 因此输出为低电平:
一般, TTL与非门tpd为3~40 ns。
2.2.3 TTL与非门产品介绍
部分常用中小规模TTL门电路的型号及功能如表2.2所示。 实际应用中, 可根据电路需要选用不同的型号。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
uI 增大使 uBE > Uth 时,三极管开始导通,
B
uBE < Uth
C 三极管 截止状态 等效电路
E
iB > 0,三极管工作于放 大导通状态。
一、三极管的开关作用及其条件
iC 临界饱和线 放大区
M IC(sat)
T
S
IB(sat)
uI=UIH
+ uBE
-
饱
Q
和
截止区
区
A
O UCE(sat)
N uCE
IBS0.09m 4 A
因为0<iB<IBS,三极管工作在放大 状态。iC=βiB=50×0.03=1.5mA,
因为iB>IBS,三极管工作在 饱和状态。输出电压:
输出电压:
uo=uCE=UCC-iCRc=5-1.5×1=3.5V
uo=UCES=0.3V
2.2.2半导体三极管的开关特性
一、三极管的开关作用及其条件
ui/V uo/V
逻辑电平
0 0.7 0.3 1 1 1.7 3 3.7 55
真值表 ui uo
00 11
二极管开关电路
三极管的开关特性
NPN 型三极管截止、放大、饱和 3 种工作状态的特点
工作状态 条件
偏置情况
工
作 集电极电流
特
点
ce 间 电 压
ce 间 等 效 电 阻
截止 iB= 0 发射结反偏 集电结反偏 uBE< 0, uBC< 0 iC= 0
+
ui=UIL<0.5V
uo=+VCC
-
e
-
饱和状态
+VCC
+
Rb b c Rc ++
+
ui=UIH
iB≥IBS
0.7V
-
- e
uo=0.3V -0.3V -
ui
Rb
Rc
1kΩ b
+V CC=+5V iC
c
uo
β =40
10kΩ iB
e
②ui=0.3V时,因为uBE<0.5V, iB=0,三极管工作在截止状 态,ic=0。因为ic=0,所以输 出电压:
iC 临界饱和线 放大区
பைடு நூலகம்
uI=UIL
+ uBE
三怎极样管控为制什它么饱和I的能C(sMa开用t) T和作关开S ?关?Q
-
区
O UCE(sat)
三极管关断的条件和等效电路
当输入 uI 为低电平,使 uBE < Uth时,三极管截止。
B
uBE < Uth
IB(sat)
负载线
截止区
A
N uCE
C 三极管 截止状态 等效电路
uu-oo
ui=0V 时的等效电路
ui=0V时,二极管截止, 如同开关断开,uo=0V。
ui=5V 时的等效电路 ui = 5V 时 , 二 极 管 导 通 , 如 同 0.7V 的 电 压 源 , uo = 4.3V 。
二极管的反向恢复时间限制了二极管的开关速度。
2.2.1 半导体二极管的开关特性
uo=VCC=5V
③ui=3V时,三极管导通, ①ui=1V时,三极管导通,基极电流:基极电流:
iBui R b uBE 1 10.0 7m A 0.0m 3 AiB3 100.7mA 0.23 mA
三极管临界饱和时的基极电流: 而
IBS ui R ucCE S5 5 0 0.1 3m A 0.09 m 4A
主要要求:
理解二极管、三极管的开关特性。 掌握二极管、三极管开关工作的条件。
U极i<管0.截5V止时,,iD二=0。IF iD (mA)
U BR
uD (V)
0
0.5 0.7
Ui>0.5V时, 二极管导通。
伏安特性
D
+
+
ui
RL uo
-
-
开关电路
D
D
+
ui=0V -
+ RL uuoo
-
+ +-
+
ui=5V 0.7V RL -
+VCC Rc iC
Rb b c uo
ui
iB
e
iB(μA)
iC (mA) 直流负载线
80μA
VCC Q2 Rc
饱 和 区
放
Q
大
60μA 40μA 20μA
区
Q1 iB=0
0 0.5 uBE(V)
0 UCES
VCC uCE(V)
工作原理电路
输入特性曲线
输出特性曲线截止区
截止状态
+VCC
+
Rb b c Rc
TTL 集成门电路
输入端和输出端都用 三极管的逻辑门电路。
CMOS 集成门电路
用互补对称 MOS 管构成的逻辑门电路。
CTMT按LO功即S 能即T特rCa点nomsi不sptlo同erm-分TernatnasriystMoreLtaolg-Oicxide-Semiconductor
普通门
输出 三态门 CMOS
三极管开通的条件和等效电路
B
C
当输入 uI 为高电平,使 iB ≥ IB(sat)时,三极管饱和。 uBE UCE(sat) 0.3 V 0, C、E 间相当于开关合上。
uBE < Uth
B UBE(sat)
E C
UCE(sat)
三极管 截止状态 等效电路
三极管 饱和状态 等效电路
uCE= VCC
很大, 相当开关断开
放大 0< iB< IBS 发射结正偏 集电结反偏 uBE> 0, uBC< 0 iC= β iB uCE= VCC-
iC R c
可变
饱和
iB> IBS 发射结正偏 集电结正偏 uBE> 0, uBC> 0
iC= ICS uCE = U CE S=
0.3V 很小, 相当开关闭合
E
iB 0,iC 0,C、E 间相当
于开关断开。
Uth为门限电压
一、三极管的开关作用及其条件
i相UU界UBBB称C应饱EEE((ss(临S地和aasatt))t为界),点为为放0饱三I饱饱.C7大(和极和Vs和at,和基)管基为集饱极仍极U临电C和电然电E界极(的流s具压a饱电t)交,有;和压界用0放集。.3点大IV电对B,。(作s极硅at这在)用饱和区电管I表C时临。(s流,iM示aOCt的) ;;T临UCS界E(sa饱t)从大和Q而 ,线u工uIC增作ENIA减放B大点(sa小大t截)使上u。区止移CiEB区,增大iC ,增
数字电子技术课件 第二章
2.1 概 述
主要要求:
了解逻辑门电路的作用和常用类型。 理解高电平信号和低电平信号的含义。
一、门电路的作用和常用类型
门与按电门逻路辑或功(G门能at不e C非同ir门分cuit)异常或用门复指合用与逻以非辑实门关现系基或的本非电逻门子辑电关与路系或。和非门
按电路结构不同分 是构成数字电路的基本单元之一
(推拉式输出) 开路门
传输门
二、获得高低电平的方法及高电平和 低电平的含义
获得高、低电平的基本原理
高电平和低电平为某规定范围的电位值,而非一固定值。
1 高电平
0 高电平
高电平信号是多大的信号?低 电由平门信电号路又种是类多等大决的定信号?
低电平 0
低电平 1
正逻辑体制
负逻辑体制
2.2二极管和三极管的开关特性