2019-2020年九年级9月第三周周考数学试题
初三(下)周考(三)数学试题(Word版)

初三(下)周考(三)数学试题(考生注意:本试题共26小题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试卷上直接作答;2.作答前认真阅读答题卡上的注意事项.参考公式:抛物线)0(2≠++=acbxaxy的顶点坐标为⎪⎪⎭⎫⎝⎛--abacab44,22,对称轴为abx2-=.一.选择题:(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案的代号填在答题卡内.1.-2的倒数是( ) A.12B.12- C.-2 D.22.计算22122a a⎛⎫--⎪⎝⎭g的结果是( ) A.4a B.5a C.512a D.512a-3.若二次根式1x-有意义,则x的取值范围是( )A.x<l B.1≤1 C.x>l D.x≥1 4.一个多边形的内角和是1080°,这个多边形的边数是( ) A.6 B.7 C.8 D.95.点P在第二象限内,到x轴的距离是4,到y轴的距离是3,那么点P的坐标为( )A. (-4,3)B. (-3,-4) C-. (-3,4) D. (3,-4)6.如图,直线a//b,直线c与直线a,b分别相交于点A,B,AM⊥b,垂足为M,∠1=58°,则∠2的度数是( )A. 22° B. 32° C. 42° D. 58°7.如图,AB是◎O的直径,点C在AB的延长线上,CD切◎O于点C,连接AD,OD.若∠C=44°,则∠A的度数为( ) A.23° B.28° C.35° D. 44°8.课外阅读是提高学生素养的重要途径.某班团支部统计了该班甲、乙、丙、丁四名同学在1 2月份“书香校园”活动中的课外阅读时间,他们平均每天课外阅读时间x与方差2s如上表所示,你认为表现最好的是( )A.甲 B.乙 C.丙 D.丁9.如图,在OABCD中,E是CD的延长线上一点,BE与AD交于F,CD=2DE.若△DEF的面积为2,则Y ABCD 的面积为 ( )A.18 B.16 C.20 D.2410.下列图形都是由同样大小的若干个小正方形按一定的规律组成,其中图形①中一共有10个矩形,图形②中一共有14个矩形,图形③中一共有19个矩形,…,则第⑦个图形中矩形的个数为( )A.40B. 49C. 59D. 7011.从-3,-2,-23,0,1这五个数中任选一个数作为a的值,则抛物线y=(a+2)x2-2ax+a+1与x轴有交点的概率是( ) A.15B.25C.35D.4512.如图,某高楼OB上有一旗杆CB,我校数学兴趣小组的同学准备利用所学的三角函数知识估测该高楼的高度,由于有其他建筑物遮挡视线不便测量,所以测量员沼坡度i=1:3的山坡从坡脚的A处前行50米到达P处,测得旗杆顶部C的仰角为45°,旗杆底部B的仰角为37°(测量员的身高忽略不计),己知旗杆高BC=15米,则该高楼OB的高度约为( )米.(参考数据:sin37°≈0.60, cos37°≈0.80.tan37°≈0.75) A.45 B.60 C.70 D.85二.填空题:(本大题6个小题,每小题4分,共24分)请将正确答案填在答题卡内.13.计算:231sin6082-⎛⎫-+-=⎪⎝⎭o___________14.如图,直线y=kx+b与直线y=4x+2相交于点A(-1,-2),则不等式kx+b<4x+2的解集为_______ 15.如图,A是半径为2的◎O外的一点,OA=4,AB切◎O于点B,弦BC//OA,连接AC,则图中阴影部分的面积为______________16.若关于x的不等式组22314x mx m≥-⎧⎨-+≥-⎩有解,且分式方程1422x mx x--=--有非负整数解,则满足条件的所有整数m之和为________________17.一景观水池由一个出水管和两个进水管控制蓄水量,两个进水管进水速度相等从某时开始工人打开出水管放水,2个小时之后打开一个进水管进水.再经过3个小时,工人打开第二个进水管进水,在第6小时的时候,出水管关闭,但两个进水管一直开到第8小时.水池的蓄水量y(立方米)与时间x(小时)之间的关系如图所示.则在第6小时的时候,蓄水量y 为_______立方米.18.如图,在菱形ABCD中,AB=BD.点E,F分别在BC,CD边上,且CE=DF,BF与DE交于点G.若BG=2,DG=3,则四边形ABDE的面积为________三.解答题:(本大题2个小题,第19题6分,20题8分,共14分)解答时每小题必须给出必要的演算过程或推理步骤.19、已知:如图,点F 、A 、E 、B 在一条直线上,,//,AB DE AB DF AC DF ==。
2019-2020年初三下学期第一周数学周测测试卷(解析版)

立达中学初三数学周测测试卷(一)2019-2020年初三下学期第一周数学周测测试卷(解析版)一.填空题(4题,每题5分,共20分)1、如图,△AOB 为等腰三角形,顶点A 的坐标为(2,底边OB 在x 轴上.将△AOB 绕点B 按顺时针方向旋转一定角度后得△A 'O 'B ,点A 的对应点A '在x 轴上,则点O '的坐标为【 】A .(203,103)B .(163)C .(203) D .(163,2、已知过点()23- ,的直线()y ax b a 0=+≠不经过第一象限.设s a 2b =+,则s 的取值范围是【 】A.35s 2-≤≤- B. 36<s 2-≤- C. 36s 2-≤≤- D. 37<s 2-≤-3、如图,一个半径为r 的圆形纸片在边长为a (a ≥)的等边三角形内任意运动,则在该等边三角形内,这个圆形纸片“不能接触到的部分”的面积是【 】A. 2r 3π B. ()2r 3π C. ()2r π D. 2r π4、已知△ABC 的三条边长分别为3,4,6,在△ABC 所在平面内画一条直线,将△ABC 分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画【 】A. 6条B. 7条C. 8条D. 9条第Ⅱ卷二.填空题(4题,每题5分,共20分)1、设12201a ,a ,...,a 是从1,0,1- 这三个数中取值的一列数,若122014a a ...a 69+++=,222122014(a 1)(a 1)...(a 1)4001++++++=,则122014a ,a ,...,a 中为0的个数 .2、如图,在平面直角坐标系中,边长不等的正方形依次排列,每个正方形都有一个顶点落在函数y =x 的图象上,从左向右第3个正方形中的一个顶点A 的坐标为(8,4),阴影三角形部分的面积从左向右依次记为S 1、S 2、S 3、…、S n ,则S n 的值为 .(用含n 的代数式表示,n 为正整数)3、如图,一次函数y =kx ﹣1的图象与x 轴交于点A ,与反比例函数3y x=(x >0)的图象交于点B ,BC 垂直x 轴于点C .若△ABC 的面积为1,则k 的值是 .4、如图,菱形ABCD 中,∠A =60°,AB =3,⊙A 、⊙B 的半径分别为2和1,P 、E 、F 分别是边CD 、⊙A 和⊙B 上的动点,则PE +PF 的最小值是 .第Ⅲ卷三.解答题(4题,每题15分,共60分)1、某店因为经营不善欠下38400元的无息贷款的债务,想转行经营服装,专卖店又缺少资金. “中国梦想秀”栏目组决定借给该店30000元资金,并约定利用经营的利润偿还债务(所有债务均不计利息).已知该店代理的品牌服装的进价为每件40元,该品牌服装日销售量y(件)与销售价x(元/件)之间的关系可用图中的一条折线(实线)来表示. 该店支付员工的工资为每人每天82元,每天还应该支付其它费用为106元(不包含债务).(1)求日销售量y(件)与销售价x(元/件)之间的函数关系式;(2)若该店暂不考虑偿还债务,当某天的销售价为48元/件时,当天正好收支平衡(收入=支出),求该店员工的人数;(3)若该店只有2名员工,则该店最早需要多少天能还清所有债务,此时每件服装的价格应定为多少元2、如图,在Rt△ABC中,∠ACB=90°,AC=4 cm,BC=3 cm,⊙O为△ABC的内切圆.(1)求⊙O的半径;(2)点P从点B沿边BA向点A以点1cm/s的速度匀速运动,以点P为圆心,PB长为半径作圆. 设点P运动的时间为t s. 若⊙P与⊙O相切,求t的值.3、如图,抛物线2y x 2x 3=-++与x 轴相交于A 、B 两点,与y 轴交于C ,顶点为D ,抛物线的对称轴DF 与BC 相交于点E ,与x 轴相交于点F .(1)求线段DE 的长;(2)设过E 的直线与抛物线相交于M (x 1,y 1),N (x 2,y 2),试判断当|x 1﹣x 2|的值最小时,直线MN 与x 轴的位置关系,并说明理由; (3)设P 为x 轴上的一点,∠DAO +∠DPO =∠α,当tan ∠α=4时,求点P 的坐标.4、某数学兴趣小组对线段上的动点问题进行探究,已知AB =8. 问题思考:如图1,点P 为线段AB 上的一个动点,分别以AP 、BP 为边在同侧作正方形APDC 与正方形PBFE . (1)在点P 运动时,这两个正方形面积之和是定值吗?如果时求出;若不是,求出这两个正方形面积之和的最小值.(2)分别连接AD 、DF 、AF ,AF 交DP 于点K ,当点P 运动时,在△APK 、△ADK 、△DFK 中,是否存在两个面积始终相等的三角形?请说明理由. 问题拓展:(3)如图2,以AB 为边作正方形ABCD ,动点P 、Q 在正方形ABCD 的边上运动,且PQ =8.若点P 从点A 出发,沿A →B →C →D 的线路,向D 点运动,求点P 从A 到D 的运动过程中,PQ 的中点O 所经过的路径的长.(4)如图(3),在“问题思考”中,若点M 、N 是线段AB 上的两点,且AM =BN =1,点G 、H 分别是边CD 、EF 的中点.请直接写出点P 从M 到N 的运动过程中,GH 的中点O 所经过的路径的长及OM +OB 的最小值.选择题 1、C 2、B 3、C 4、B 填空题 1、165 2、542 n3、24、31、【答案】C.【考点】1.坐标与图形的旋转变化;2.勾股定理;3. 等腰三角形的性质;4.三角形面积公式.【分析】利用等面积法求O'的纵坐标,再利用勾股定理或三角函数求其横坐标:如答图,过O’作O’F⊥x轴于点F,过A作AE⊥x轴于点E,∵A的坐标为(2,∴AE,OE=2.由等腰三角形底边上的三线合一得OB=2OE=4,在Rt△ABE中,由勾股定理可求AB=3,则A’B=3,【答案】B.【考点】1.作图(应用与设计作图);2.等腰三角形的判定和性质;3.分类思想的应用.【分析】根据等腰三角形的性质分别利用AB,AC为底以及为腰得出符合题意的图形即可:如答图所示:当BC1=AC1,AC=CC2,AB=BC3,AC4=CC4,AB=AC5,AB=AC6,BC7=CC7时,都能得到符合题意的等腰三角形.故选B.【答案】2.【考点】1.反比例函数与一次函数的交点问题;2.曲线上点的坐标与方程的关系.【分析】∵点B在反比例函数3yx(x>0)的图象上,元.【考点】:1.一次、二次函数和方程、不等式的应用;2.分类思想的应用.【分析】(1)根据待定系数法,可得函数解析式.(2)根据收入等于指出,可得一元一次方程,根据解一元一次方程,可得答案.(3)分类讨论40≤x≤58,或58≤x≤71,根据收入减去支出大于或等于债务,可得不等式,根据解不等式,可得答案.-+-=,解得r=1.∴4r3r5∴⊙O的半径为1 cm.∵∠PGB=∠C=90°,∴PG∥A C.(2)为⊙P 与⊙O 外切和⊙P 与⊙O 内切两种情况讨论即可.【答案】解:(1)由抛物线2y x 2x 3=-++可知,C (0,3),令y =0,则﹣x 2+2x +3=0,解得:x =﹣1,x =3,∴A (﹣1,0),B (3,0).∴顶点x =1,y =4,即D (1,4).∴DF =4.设直线BC 的解析式为y =kx +b ,代入B (3,0),C (0,3)得; 3k b 0b 3+=⎧⎨=⎩,解得k 1b 3=-⎧⎨=⎩. ∴直线BC 的解析式为;y =﹣x +3,当x =1时,y =﹣1+3=2,∴E (1,2).∴EF =2. ∴DE =DF ﹣EF =4﹣2=2.【考点】1.二次函数综合题;2.待定系数法的应用;3.曲线上点的坐标与方程的关系;4.一元二次方程根与系数的关系;5.配方法的应用;6.偶次幂的非负数性质;7.平行的判定;8.锐角三角函数定义;9.相似三角形的判定和性质.【分析】(1)根据抛物线的解析式即可求得与坐标轴的坐标及顶点坐标,进而求得直线BC 的解析式,把对称轴代入直线BC 的解析式即可求得.(2)设直线MN 的解析式为y =k 1x +b 1,依据E (1,2)的坐标即可表示出直线MN 的解析式y =(2﹣b 1)x +b 1,根据直线MN 的解析式和抛物线的解析式即可求得x 2﹣b 1x +b 1﹣3=0,所以x 1+x 2=b 1,x 1 x 2=b 1﹣3;根据完全平方公式即可求得12x x -b 1=2时,|x 1﹣x 2|最小值,因为b 1=2时,y =(2﹣b 1)x +b 1=2,所以直线MN ∥x 轴.(3)由D (1,4),则tan ∠DOF =4,得出∠DOF =∠α,然后根据三角形外角的性质即可求得∠DPO =∠ADO ,进而求得△ADP ∽△AOD ,得出AD 2=AO •AP ,从而求得OP 的长,进而求得P 点坐标.∴()2a 8a a DK PD PK a 88-=-=-=. ∴()()()()222APK DFK a 8a a 8a a 8a 1111a S PK PA a ,S DK EF 8a 2281622816∆∆---=⋅=⋅⋅==⋅=⋅⋅-= . ∴APK DFK S S ∆∆=.(3)当点P 从点A 出发,沿A →B →C →D 的线路,向点D 运动时,不妨设点Q 在DA 边上, 若点P 在点A ,点Q 在点D ,此时PQ 的中点O 即为DA 边的中点;若点Q 在DA 边上,且不在点D ,则点P 在AB 上,且不在点A .此时在Rt △APQ 中,O 为PQ 的中点,所以AO =12PQ =4.所以点O 在以A 为圆心,半径为4,圆心角为90°的圆弧上.(4)本问涉及点的运动轨迹.GH 中点O 的运动路径是与AB 平行且距离为3的线段XY 上,如答图3所示;然后利用轴对称的性质,求出OM +OB 的最小值,如答图4所示.如答图3,分别过点G 、O 、H 作AB 的垂线,垂足分别为点R 、S 、T ,则四边形GRTH 为梯形.∵点O 为中点,∴OS =12(GR +HT )=12(AP +PB )=4,即OS 为定值.。
2019-2020年九年级中考第三次模拟数学试题

2019-2020年九年级中考第三次模拟数学试题注意事项:1.本试卷全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填在答题卡相应位置上)1.下列计算正确的是A.-(-3)2=9 B.=3 C.-(-2)0=1 D.=-32.我国成功发射了嫦娥三号卫星,是世界上第三个实现月面软着陆和月面巡视探测的国家.嫦娥三号探测器的发射总质量约3 700千克,3 700用科学记数法表示为A.3.7×102B.3.7×103C.37×102 D.0.37×104 3.对参加某次野外训练的中学生的年龄(单位:岁)进行统计,结果如下:年龄14 15 16 17 18人数 5 6 6 7 2则这些学生年龄的众数和中位数分别是A.17 15.5 B.17 16 C.15 15.5 D.16 164.如图,将一块含有30°角的直角三角板的两个顶点叠放在矩形的两条对边上,如果∠1=27°,那么∠2的度数为A.53°B.55°C.57°D.60°5.反比例函数y =k x 和正比例函数y =mx 的部分图象如图所示.由此可以得到方程k x=mx 的实数根为A .x =1B .x =2C .x 1=1,x 2=-1D .x 1=1,x 2=-26.如图,QQ 软件里的“礼盒”图标是一个表面印有黑色实线,顶端有图示箭头的正方体.下列图形中,是该几何体的表面展开图的是二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.-3的绝对值等于 . 8.(12+8 )× 2 = . 9.使1x +2有意义的x 的取值范围是 . 10.(2×103)2×(3×10-3) = .(结果用科学计数法表示) 11.已知⊙O 1,⊙O 2没有公共点.若⊙O 1的半径为4,两圆圆心距为5,则⊙O 2的半径可以是 .(写出一个符合条件的值即可)12.如图,在梯形ABCD 中,AB ∥CD ,∠B =90°,连接AC ,∠ DAC =∠BAC .若BC =4cm ,AD=5cm,则梯形ABCD的周长为 cm.13.如图,在□ABCD中,∠A=70°,将□ABCD绕顶点B顺时针旋转到□A1BC1D1,当C1D1首次经过顶点C时,旋转角∠ABA1=°.14.某科研机构对我区400户有两个孩子的家庭进行了调查,得到了表格中的数据,其中(男,女)代表第一个孩子是男孩,第二个孩子是女孩,其余类推.由数据,请估计我区两个孩子家庭中男孩与女孩的人数比为:.类别数量(户)(男,男)101(男,女)99(女,男)116(女,女)84合计40015.如图,⊙O的半径是5,△ABC是⊙O的内接三角形,过圆心O分别作AB、BC、AC的垂线,垂足为E、F、G,连接EF.若OG=2,则EF为.16.将一张长方形纸片按照图示的方式进行折叠:①翻折纸片,使A与DC边的中点M重合,折痕为EF;②翻折纸片,使C 落在ME 上,点C 的对应点为H ,折痕为MG ;③翻折纸片,使B 落在ME 上,点B 的对应点恰与H 重合,折痕为GE .根据上述过程,长方形纸片的长宽之比AB BC= .三、解答题(本大题共11小题,共88分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(6分)计算:2x 2-4-12x -4. 18.(6分)解不等式组⎩⎪⎨⎪⎧5+3x >18,x 3≤4-x -22. 并写出不等式组的整数解.19.(8分)已知:如图,在正方形ABCD 中,点E 、F 在对角线BD 上,且BF =DE . (1)求证:四边形AECF 是菱形.(2)若AB =2,BF =1,求四边形AECF 的面积.20.(8分)甲、乙、丙三位歌手进入“我是歌手”的冠、亚、季军的决赛,他们通过抽签来决定演唱顺序. (1)求甲第一位出场的概率;(2)求甲比乙先出场的概率.21.(8分)为了解南京市xx 年市城镇非私营单位员工每月的收入状况,统计局对市城镇非私营单位随机抽取了1000人进行抽样调查.整理样本数据,得到下列图表:市城镇非私营单位1000人月收入频数分布表月工资x (元) 频数(人)x<xx60 xx ≤x<40006104000≤x<6001806000≤x<80050x≥8000 100合计1000(1)如果1000人全部在金融行业抽取,这样的抽样是否合理?请说明理由;(2)根据这样的调查结果,绘制条形统计图;(3)xx年南京市城镇非私营单位月平均工资为5034元,请你结合上述统计的数据,谈一谈用平均数反映月收入情况是否合理?22.(8分)(1)如图①,若BC=6,AC=4,∠C=60°,求△ABC的面积S△ABC ;(2)如图②,若BC=a,AC=b,∠C=α,求△ABC的面积S△ABC ;(3)如图③,四边形ABCD,若AC=m,BD=n,对角线AC、BD交于O点,它们所成的锐角为β.求四边形ABCD的面积S四边形ABCD .23.(8分)如图,把长为40cm,宽为30cm的长方形硬纸板,剪掉2个小正方形和2个小长方形(阴影部分即剪掉的部分),将剩余部分折成一个有盖的长方体盒子,设剪掉的小正方形边长为x cm.(纸板的厚度忽略不计)(1)长方体盒子的长、宽、高分别为(单位:cm);(2)若折成的一个长方体盒子的表面积为950cm2,求此时长方体盒子的体积.24.(8分)xx年2月,纯电动出租车在南京正式上路运行,下表是普通燃油出租车和纯电动出租车的运价.车型起步公里数起步价格超出起步公里数后的单价普通燃油型 3 9元+2元(燃油附加费) 2.4元/公里纯电动型 2.5 9元 2.9元/公里设乘客打车的路程为x公里,乘坐普通燃油出租车及纯电动出租车所需费用分别为y1、y2元.(1)直接写出y1、y2关于x的函数关系式,并注明对应的x的取值范围;(2)在如下的同一个平面直角坐标系中,画出y1、y2关于x的函数图象;(3)结合图象,求出当乘客打车的路程在什么范围内时,乘坐纯电动出租车更合算.25.(8分)如图,在□ABCD中,过A、B、D三点的⊙O交BC于点E,连接DE,∠CDE=∠DAE.(1)判断四边形ABED的形状,并说明理由;(2)判断直线DC与⊙O的位置关系,并说明理由;(3)若AB=3,AE=6,求CE的长.26.(11分)问题提出平面内不在同一条直线上的三点确定一个圆.那么平面内的四点(任意三点均不在同一直线上),能否在同一个圆呢?初步思考设不在同一条直线上的三点A、B、C确定的圆为⊙O.(1)当C、D在线段AB的同侧时,如图①,若点D在⊙O上,此时有∠ACB=∠ADB,理由是;如图②,若点D在⊙O内,此时有∠ACB∠ADB;如图③,若点D在⊙O外,此时有∠ACB∠ADB.(填“=”、“>”或“<”);由上面的探究,请直接写出A、B、C、D四点在同一个圆上的条件:.类比学习(2)仿照上面的探究思路,请探究:当C、D在线段AB的异侧时的情形.此时有,此时有,此时有.由上面的探究,请用文字语言直接写出A 、B 、C 、D 四点在同一个圆上的条件: . 拓展延伸(3)如何过圆上一点,仅用没有刻度的直尺,作出已知直径的垂线? 已知:如图,AB 是⊙O 的直径,点C 在⊙O 上. 求作:CN ⊥AB . 作法:①连接CA ,CB ;②在 ⌒CB上任取异于B 、C 的一点D ,连接DA ,DB ; ③DA 与CB 相交于E 点,延长AC 、BD ,交于F 点; ④连接F 、E 并延长,交直径AB 于M ; ⑤连接D 、M 并延长,交⊙O 于N .连接CN . 则CN ⊥AB .请按上述作法在图④中作图,并说明CN ⊥AB 的理由.(提示:可以利用(2)中的结论)27.(9分)【课本节选】反比例函数y =k x(k 为常数,k ≠0)的图象是双曲线.当k >0时,双曲线两个分支分别在三象限,在每一个象限内,y 随x 的增大而减小(简称增减性);反比例函数的图象关于原点对称(简称对称性).这些我们熟悉的性质,可以通过说理得到吗? 【尝试说理】我们首先对反比例函数y =k x(k >0)的增减性来进行说理.如图,当x >0时.在函数图象上任意取两点A 、B ,设A (x 1,k x 1),B (x 2,k x 2), 且0<x 1< x 2.下面只需要比较k x 1和k x 2的大小.k x 2—k x 1=k (x 1-x 2) x 1 x 2. ∵0<x 1< x 2,∴x 1-x 2<0,x 1 x 2>0,且 k >0. ∴k (x 1-x 2) x 1 x 2<0.即k x 2<k x 1.这说明:x 1< x 2时,k x 1>kx 2.也就是:自变量值增大了,对应的函数值反而变小了. 即:当x >0时,y 随x 的增大而减小. 同理,当x <0时,y 随x 的增大而减小.(1)试说明:反比例函数y = k x(k >0)的图象关于原点对称. 【运用推广】(2)分别写出二次函数y =ax 2(a >0,a 为常数)的对称性和增减性,并进行说理. 对称性: ; 增减性: . 说理:(3)对于二次函数y=ax2+bx+c (a>0,a,b,c为常数),请你从增减性的角度,简要解释为何当x=—b2a 时函数取得最小值.xx 年山东省滕州市卓楼中学九年级中考第三次模拟数学试卷参考答案说明:本评分标准每题给出了一种解法供参考,如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共6小题,每小题2分,共12分.)二、填空题(本大题共10小题,每小题2分,共20分.) 7.3 8.5 9.x ≠-2 10.1.2×10411.答案不唯一,如0.5(满足0<r <1或r >9即可)12.22 13.40 14.417︰383 15.21 16. 2 三、解答题(本大题共11小题,共88分.) 17.(6分)解:原式=2(x +2)(x -2)-12(x -2)2分=2-x2(x +2)(x -2)4分 =-12x +4. 6分18.(6分)解:解不等式①,得x >133; 2分解不等式②,得x ≤6.4分所以原不等式组的解集为133<x ≤6.5分它的整数解为5,6. 6分19.(8分)(1)连接AC ,AC 交BD 于点O . 在正方形ABCD 中,OB =OD ,OA =OC ,AC ⊥BD .∵BF =DE ,∴OB -BF =OD -DE ,即OF =OE . ∴四边形AECF 是平行四边形.又∵AC ⊥EF , ∴□AECF 是菱形.4分(2)∵AB =2,∴AC =BD =AB 2+AD 2=22. ∴OA =OB = BD2=2.∵BF =1,∴OF =OB -BF =2-1.∴S 四边形AECF =12AC ·EF =12×22×2(2-1)=4-22.8分20.(8分)解:所有可能出现的结果如下:5分以上共有6种等可能的结果.其中甲第一位出场的结果有2种,甲比乙先出场的结果有3种. 所以P (甲第一位出场)=26=13.7分 P (甲比乙先出场)=36=12.8分(注:用树状图列举所有结果参照以上相应步骤给分.) 21.(8分)解:(1)不合理.因为如果1000人全部在金融行业抽取,那么全市城镇非私营单位员工被抽到的机会不相等,样本不具有代表性和广泛性. 2分 (2)6分(3)本题答案不惟一,下列解法供参考.用平均数反映月收入情况不合理.由数据可以看出1000名被调查者中有670人的月收入不超过4000元,月收入的平均数受高收入者和低收入者收入变化的影响较大,月收入的中位数几乎不受高低两端收入变化的影响,因此,用月收入的中位数反映月收入水平更合理.8分(注:对于(1)(3)两问,学生回答只要合理,应酌情给分.) 22.(8分)(1)如图①,过点A 作AH ⊥BC ,垂足为H . 在Rt△AHC 中,AH AC=sin 60°, ∴AH =AC ·sin 60°=4×32=23. ∴S △ABC =12×BC ×AH =12×6×23=63.…………………………………………3分(2)如图②,过点A 作AH ⊥BC ,垂足为H . 在Rt△AHC 中,AH AC=sin α, ∴AH =AC ·sin α=b sin α.∴S △ABC =12×BC ×AH =12ab sin α.……………………………………………………5分(3)如图③,分别过点A ,C 作AH ⊥BD ,CG ⊥BD ,垂足为H ,G . 在Rt△AHO 与Rt△CGO 中,AH =OA sin β,CG =OC sin β; 于是,S △ABD =12×BD ×AH =12n ×OA sin β;S △BCD =12×BD ×CG =12n ×OC sin β;∴S 四边形ABCD = S △ABD +S △BCD =12n ×OA sin β+12n ×OC sin β=12n ×(OA +OC )sin β=12mn sin β.……………………………………………………………………8分23.(8分)解:(1)30-2x 、20-x 、x ;3分(2)根据图示,可得2(x 2+20x )=30×40-950 解得x 1=5,x 2=-25(不合题意,舍去)长方体盒子的体积V =(30-2×5)×5×(20-5)=20×5×15=1500(cm 3). 答:此时长方体盒子的体积为1500 cm 3. 8分 24.(8分)(1)y 1=⎩⎪⎨⎪⎧11,(x ≤3)2.4x +3.8,(x >3)y 2=⎩⎪⎨⎪⎧9,(x ≤2.5)2.9x +1.75,(x >2.5)4分(2)画图正确. 6分(3)由2.4x +3.8=2.9x +1.75,解得,x =4.1.∴ 结合图象可知,当乘客打车的路程不超过 4.1公里时,乘坐纯电动出租车合算.8分25.(8分)(1)四边形ABED 是等腰梯形.理由如下:在□ABCD 中,AD ∥BC , ∴∠DAE =∠AEB . ∴ ⌒DE= ⌒AB ,DE =AB . ∵AB ∥CD ,∴AB 与DE 不平行. ∴四边形ABDE 是等腰梯形. 2分(2)直线DC 与⊙O 相切.如图,作直径DF ,连接AF . 于是,∠EAF =∠EDF . ∵∠DAE =∠CDE ,∴∠EAF +∠DAE =∠EDF +∠CDE ,即∠DAF =∠CDF . ∵DF 是⊙O 的直径,点A 在⊙O 上,∴∠DAF =90°,∴∠CDF =90°.∴OD ⊥CD . 直线DC 经过⊙O 半径OD 外端D ,且与半径垂直, 直线DC 与⊙O 相切. 5分(3)由(1),∠EDA =∠DAB . 在□ABCD 中,∠DAB =∠DCB ,∴∠EDA =∠DCB .又∵∠DAE =∠CDE ,∴△ADE ∽△DCE .∴AE DE =DECE,∵AB =3,由(1)得,AB =DE =DC =3.即 63=3DE.解得,CE =32.…………………………………………………………………………8分26.(11分)(1)同弧所对的圆周角相等. ∠ACB <∠ADB ,∠ACB >∠ADB . 答案不惟一,如:∠ACB =∠ADB . 4分(2)如图:此时∠ACB +∠ADB =180°, 此时∠ACB +∠ADB >180°, 此时∠ACB +∠ADB <180若四点组成的四边形对角互补,则这四点在同一个圆上.8分(3)作图正确.9分∵AB 是⊙O 的直径,C 、D 在⊙O 上, ∴∠ACB =90°,∠ADB =90°. ∴点E 是△ABF 三条高的交点. ∴FM ⊥AB . ∴∠EMB =90°.∠EMB +∠EDB =180°, ∴点E ,M ,B ,D 在同一个圆上. ∴∠EMD =∠DBE .又∵点N ,C ,B ,D 在⊙O 上, ∴∠DBE =∠CND ,∠EMD =∠CND . ∴FM ∥CN .∴∠CPB =∠EMB =90°. ∴CN ⊥AB .11分(注:其他正确的说理方法参照给分.) 27.(9分)(1)在反比例函数y =kx(k >0)的图象上任取一点P (m ,n ),于是:mn =k . 那么点P 关于原点的对称点为P 1(-m ,-n ).而(-m )(-n )=mn =k , 这说明点P 1也必在这个反比例函数y =k x的图象上.所以反比例函数y = k x(k >0)的图象关于原点对称.…………………………2分 (2)对称性:二次函数y =ax 2(a >0,a 为常数)的图象关于y 轴成轴对称. 增减性:当x >0时,y 随x 增大而增大;当x <0时,y 随x 增大而减小. 理由如下:①在二次函数y =ax 2(a >0,a 为常数)的图象上任取一点Q (m ,n ),于是n =am 2. 那么点Q 关于y 轴的对称点Q 1(-m ,n ).而n =a (-m )2,即n =am 2. 这说明点Q 1也必在在二次函数y =ax 2(a >0,a 为常数) 的图象上. ∴二次函数y =ax 2(a >0,a 为常数)的图象关于y 轴成轴对称,②在二次函数y =ax 2(a >0,a 为常数)的图象上任取两点A 、B,设A (m ,am 2),B (n ,an 2) ,且0<m <n .则an 2-am 2=a (n +m )(n -m ) ∵n >m >0,∴n +m >0,n -m >0; ∵a >0,∴an 2-am 2=a (n +m )(n -m )>0.即an 2>am 2. 而当m <n <0时,n +m <0,n -m >0;∵a >0,∴an 2-am 2=a (n +m )(n -m )<0.即an 2<am 2.这说明,当x >0时,y 随x 增大而增大;当x <0时,y 随x 增大而减小.7分(3)二次函数y =ax 2+bx +c (a >0,a ,b ,c 为常数) 的图象可以由y =ax 2的图象通过平移得到,关于直线x =—b 2a 对称,当x =—b 2a 时,y =4ac -b24a.由(2),当x ≥—b 2a 时,y 随x 增大而增大;也就是说,只要自变量x ≥—b2a ,其对应的函数值y ≥4ac -b 24a ;而当x ≤—b2a时,y 随x 增大而减小,也就是说,只要自变量x≤—b 2a ,其对应的函数值y ≥4ac -b24a.综上,对于二次函数y =ax 2+bx +c (a >0,a ,b ,c 为常数),当x =—b 2a时取得最小值4ac -b24a. 9分。
江西省赣州市2019-2020学年中考数学三模考试卷含解析

江西省赣州市2019-2020学年中考数学三模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知一次函数3y kx =-且y 随x 的增大而增大,那么它的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限2.如图,四边形ABCD 是平行四边形,点E 在BA 的延长线上,点F 在BC 的延长线上,连接EF ,分别交AD ,CD 于点G ,H ,则下列结论错误的是( )A .EA EG BE EF =B .EG AG GH GD =C .AB BC AE CF =D .FH CF EH AD= 3.小丽只带2元和5元的两种面额的钞票(数量足够多),她要买27元的商品,而商店不找零钱,要她刚好付27元,她的付款方式有( )种.A .1B .2C .3D .44.已知a m =2,a n =3,则a 3m+2n 的值是( )A .24B .36C .72D .65.下列运算正确的是( )A .32()x =x 5B .55()x x -=-C .3x ·2x =6xD .32x +2 35x 5x =6.如图,函数y=﹣2x+2的图象分别与x 轴,y 轴交于A ,B 两点,点C 在第一象限,AC ⊥AB ,且AC=AB ,则点C 的坐标为( )A .(2,1)B .(1,2)C .(1,3)D .(3,1)7.如图,在△ABC 中,∠C=90°,AC=BC=3cm.动点P 从点A 2cm/s 的速度沿AB 方向运动到点B .动点Q 同时从点A 出发,以1cm/s 的速度沿折线AC →CB 方向运动到点B .设△APQ 的面积为y (cm 2).运动时间为x (s ),则下列图象能反映y 与x 之间关系的是 ( )A.B.C.D.8.如图,在平行四边形ABCD中,∠ABC的平分线BF交AD于点F,FE∥AB.若AB=5,AD=7,BF=6,则四边形ABEF的面积为()A.48 B.35 C.30 D.249.如图,在△ABC中,∠C=90°,∠B=10°,以A为圆心,任意长为半径画弧交AB于M、AC于N,再分别以M、N为圆心,大于MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于D,下列四个结论:①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△ACD:S△ACB=1:1.其中正确的有()A.只有①②③B.只有①②④C.只有①③④D.①②③④10.下列交通标志是中心对称图形的为()A .B .C .D .11.下列各数中是有理数的是( )A .πB .0C .2D .3512.用教材中的计算器依次按键如下,显示的结果在数轴上对应点的位置介于( )之间.A .B 与C B .C 与D C .E 与F D .A 与B二、填空题:(本大题共6个小题,每小题4分,共24分.)13.20-114+-3-2014-4+6⨯()()=________14.如图,在平面直角坐标系中,一动点从原点O 出发,沿着箭头所示方向,每次移动一个单位,依次得到点P 1(0,1);P 2(1,1);P 3(1,0);P 4(1,﹣1);P 5(2,﹣1);P 6(2,0)……,则点P 2019的坐标是_____.15.函数 2y x =-的定义域是__________.16.已知线段a=4,b=1,如果线段c 是线段a 、b 的比例中项,那么c=_____.17.如图,在平面直角坐标系中,以坐标原点O 为位似中心在y 轴的左侧将△OAB 缩小得到△OA′B′,若△OAB 与△OA′B′的相似比为2:1,则点B (3,﹣2)的对应点B′的坐标为_____.18.如图,直线l 1∥l 2∥l 3,等边△ABC 的顶点B 、C 分别在直线l 2、l 3上,若边BC 与直线l 3的夹角∠1=25°,则边AB 与直线l 1的夹角∠2=________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,正方形ABCD 的边长为4,点E ,F 分别在边AB ,AD 上,且∠ECF =45°,CF 的延长线交BA 的延长线于点G ,CE 的延长线交DA 的延长线于点H ,连接AC ,EF .,GH .填空:∠AHC ∠ACG ;(填“>”或“<”或“=”)线段AC ,AG ,AH 什么关系?请说明理由;设AE =m ,①△AGH 的面积S 有变化吗?如果变化.请求出S 与m 的函数关系式;如果不变化,请求出定值. ②请直接写出使△CGH 是等腰三角形的m 值.20.(6分)有一个n 位自然数...abcd gh 能被x 0整除,依次轮换个位数字得到的新数bcd...gha 能被x 0+1整除,再依次轮换个位数字得到的新数cd...ghab 能被x 0+2整除,按此规律轮换后,d...ghabc 能被x 0+3整除,…,...habc g 能被x 0+n ﹣1整除,则称这个n 位数a ...bcd gh 是x 0的一个“轮换数”.例如:60能被5整除,06能被6整除,则称两位数60是5的一个“轮换数”;再如:324能被2整除,243能被3整除,432能被4整除,则称三位数324是2个一个“轮换数”. (1)若一个两位自然数的个位数字是十位数字的2倍,求证这个两位自然数一定是“轮换数”. (2)若三位自然数abc 是3的一个“轮换数”,其中a=2,求这个三位自然数abc .21.(6分)某工厂计划生产A ,B 两种产品共10件,其生产成本和利润如下表.A 种产品B 种产品 成本(万元/件)2 5 利润(万元/件) 1 3(1)若工厂计划获利14万元,问A ,B 两种产品应分别生产多少件?(2)若工厂计划投入资金不多于44万元,且获利多于22万元,问工厂有哪几种生产方案?22.(8分)如图,△ABC 中AB=AC ,请你利用尺规在BC 边上求一点P ,使△ABC ~△PAC 不写画法,(保留作图痕迹).23.(8分)在平面直角坐标系中,一次函数y ax b =+(a≠0)的图象与反比例函数(0)k y k x=≠的图象交于第二、第四象限内的A 、B 两点,与y 轴交于点C ,过点A 作AH ⊥y 轴,垂足为点H ,OH=3,tan ∠AOH=43,点B 的坐标为(m ,-2).求该反比例函数和一次函数的解析式;求△AHO 的周长.24.(10分)如图,大楼底右侧有一障碍物,在障碍物的旁边有一幢小楼DE ,在小楼的顶端D 处测得障碍物边缘点C 的俯角为30°,测得大楼顶端A 的仰角为45°(点B ,C ,E 在同一水平直线上).已知AB =80m ,DE =10m ,求障碍物B ,C 两点间的距离.(结果保留根号)25.(10分)图中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC 的顶点均在格点上(1)画出将△ABC 绕点B 按逆时针方向旋转90°后所得到的△A 1BC 1;(2)画出将△ABC 向右平移6个单位后得到的△A 2B 2C 2;(3)在(1)中,求在旋转过程中△ABC 扫过的面积.26.(12分)小王是“新星厂”的一名工人,请你阅读下列信息:信息一:工人工作时间:每天上午8:00﹣12:00,下午14:00﹣18:00,每月工作25天;信息二:小王生产甲、乙两种产品的件数与所用时间的关系见下表:生产甲产品数(件) 生产乙产品数(件) 所用时间(分钟)10 10 35030 20 850信息三:按件计酬,每生产一件甲种产品得1.50元,每生产一件乙种产品得2.80元.信息四:该厂工人每月收入由底薪和计酬工资两部分构成,小王每月的底薪为1900元,请根据以上信息,解答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分钟;(2)2018年1月工厂要求小王生产甲种产品的件数不少于60件,则小王该月收入最多是多少元?此时小王生产的甲、乙两种产品分别是多少件?27.(12分)已知:四边形ABCD是平行四边形,点O是对角线AC、BD的交点,EF过点O且与AB、CD分别相交于点E、F,连接EC、AF.(1)求证:DF=EB;(2)AF与图中哪条线段平行?请指出,并说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据一次函数的性质:k>0,y随x的增大而增大;k<0,y随x的增大而减小,进行解答即可.【详解】解:∵一次函数y=kx-3且y随x的增大而增大,∴它的图象经过一、三、四象限,∴不经过第二象限,故选:B.【点睛】本题考查了一次函数的性质,掌握一次函数所经过的象限与k、b的值有关是解题的关键.2.C试题解析:∵四边形ABCD 是平行四边形,,AD BF BE DC AD BC ∴=P P ,,,,.EA EG EG AG HF FC CF BE EF GH DG EH BC AD∴==== 故选C.3.C【解析】分析:先根据题意列出二元一次方程,再根据x ,y 都是非负整数可求得x ,y 的值.详解:解:设2元的共有x 张,5元的共有y 张,由题意,2x+5y=27∴x=12(27-5y ) ∵x ,y 是非负整数,∴15x y ⎧⎨⎩==或111x y ⎧⎨⎩==或63x y ⎧⎨⎩==, ∴付款的方式共有3种.故选C.点睛:本题考查二元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再根据实际意义求解.4.C【解析】试题解析:∵a m =2,a n =3,∴a 3m+2n=a 3m •a 2n=(a m )3•(a n )2=23×32=8×9=1.故选C.5.B【解析】【分析】根据幂的运算法则及整式的加减运算即可判断.A. ()23x =x 6,故错误;B. ()55x x -=-,正确;C. 3x ·2x =5x ,故错误;D. 32x +2 3x 不能合并,故错误,故选B.【点睛】此题主要考查整式的加减及幂的运算,解题的关键是熟知其运算法则.6.D【解析】【分析】过点C 作CD ⊥x 轴与D ,如图,先利用一次函数图像上点的坐标特征确定B (0,2),A (1,0),再证明△ABO ≌△CAD ,得到AD =OB =2,CD =AO =1,则C 点坐标可求.【详解】如图,过点C 作CD ⊥x 轴与D.∵函数y=﹣2x+2的图象分别与x 轴,y 轴交于A ,B 两点,∴当x =0时,y =2,则B (0,2);当y =0时,x =1,则A (1,0).∵AC ⊥AB ,AC =AB ,∴∠BAO +∠CAD =90°,∴∠ABO =∠CAD.在△ABO 和△CAD 中,,∴△ABO ≌△CAD ,∴AD =OB =2,CD =OA =1,∴OD =OA +AD =1+2=3,∴C 点坐标为(3,1).故选D.【点睛】本题主要考查一次函数的基本概念。
2019-2020年九年级(下)周考数学试卷(1)

2019-2020年九年级(下)周考数学试卷(1)一、选择题(共10小题,每小题3分,共30分)1.2的算术平方根是()A.B.C.﹣D.±22.下列计算中,正确的是()A.a3+a3=a6B.(a2)3=a5 C.a2•a4=a8D.a4÷a3=a3.若二次根式有意义,则x的取值范围是()A.x≠0 B.x>3 C.x≠3 D.x≥34.把x3﹣9x分解因式,结果正确的是()A.x(x2﹣9)B.x(x﹣3)2C.x(x+3)2D.x(x+3)(x﹣3)5.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随即地选择一条路径,则它获得食物的概率是()A.B.C.D.6.若x1、x2是方程2x2﹣3x﹣4=0的两根,则x1x2=()A.0 B.2 C.﹣2 D.﹣47.如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()A.B.C.D.8.图中两个四边形是位似图形,它们的位似中心是()A.点M B.点N C.点O D.点P9.如图,在△ABC 中,∠C=90°,BC=3,D,E分别在AB、AC上,将△ADE沿DE翻折后,点A落在点A′处,若A′为CE的中点,则折痕DE的长为()A.B.3 C.2 D.110.如图,Rt△ABC中,∠C=90°,AC=3,BC=4,P是斜边AB上一动点(不与点A、B 重合),PQ⊥AB交△ABC的直角边于点Q,设AP为x,△APQ的面积为y,则下列图象中,能表示y关于x的函数关系的图象大致是()A. B. C.D.二、填空题(本大题共6个小题,每小题3分,共18分)11.一名射击运动员在某次训练中连续打靶8次,命中的环数分别是7,8,9,10,10,8,8,8,这组数据的众数与中位数分别为.12.已知地球的表面积约为510000000km2,数510000000用科学记数法可表示为.13.在一个不透明的布袋中装有2个白球和n个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是黄球的概率是,则n=.14.设面积为20cm2的平行四边形的一边长为a(cm),这条边上的高为h(cm).当边长a=25cm时,这条边上的高为cm.15.小明骑自行车从家出发,沿一条直路到相距2400m的邮局办事,小明出发的同时,他的爸爸以96米/分钟的速度从邮局沿一条道路步行回家,小明在邮局停留2分钟后沿原理以原速返回,设他们出发后经过t分钟时,小明与家之间的距离为S1米,小明爸爸与家之间的距离为S2米,图中折线OABD、线段EF分别是表示S1、S2与t之间函数关系的图象,则小明从家出发,追上爸爸所用的时间是分钟.16.半圆⊙O中,AB为直径,C、D为半圆上任意两点,将沿直线CD翻折使AB与相切,已知AB=8,求CD的最大值.三、解答题(共8题,共72分)17.如图,已知反比例函数y=(x>0)的图象与一次函数y=kx+b的图象交于点A(1,m),B(n,2)两点.(1)求一次函数的解析式;(2)结合图象回答:反比例函数的值大于一次函数的值时x的取值范围.18.如图,点F,G分别在△ADE的AD,DE边上,C,B依次为GF延长线上两点,AB=AD,∠BAF=∠CAE,∠B=∠D.(1)求证:BC=DE;(2)若∠B=35°,∠AFB=78°,直接写出∠DGB的度数.19.课前预习是学习数学的重要环节,为了了解所教班级学生完成数学课前预习的具体情况,王老师对本班部分学生进行了为期半个月的跟踪调查,他将调查结果分为四类,A:很好;B:较好;C:一般;D:较差.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)王老师一共调查了多少名同学?(2)C类女生有名,D类男生有名,将上面条形统计图补充完整;(3)为了共同进步,王老师想从被调查的A类和D类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.20.如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点A(﹣2,2),B(0,5),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,得到△A1B1C,请画出△A1B1C的图形;(2)平移△ABC,使点A的对应点A2坐标为(﹣2,﹣6),请画出平移后对应的△A2B2C2的图形;(3)若将△A1B1C绕某一点旋转180°可得到△A2B2C2,请直接写出旋转中心的坐标.21.已知:如图,P是⊙O外一点,PA切⊙O于点A,AB是⊙O的直径,BC∥OP交⊙O 于点C.(1)判断直线PC与⊙O的位置关系,并证明你的结论;(2)若OA:PC=1:3,AD⊥PC于点D,求AD:PA的值.22.九年级数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤70且x为整数)天已知该商品的进价为每件元,设销售该商品的每天利润为元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于3250元?请直接写出结果.23.已知菱形ABCD的边长为1,∠ADC=60°,等边△AEF两边分别交DC、CB于点E、F.(1)特殊发现:如图1,若点E、F分别是边DC、CB的中点,求证:菱形ABCD对角线AC、BD的交点O即为等边△AEF的外心;(2)若点E、F始终分别在边DC、CB上移动,记等边△AEF的外心为P.①猜想验证:如图2,猜想△AEF的外心P落在哪一直线上,并加以证明;②拓展运用:如图3,当E、F分别是边DC、CB的中点时,过点P任作一直线,分别交DA边于点M,BC边于点G,DC边的延长线于点N,请你直接写出的值.24.已知抛物线y=(m﹣1)x2+(m﹣2)x﹣1与x轴交于A、B两点.(1)求m的取值范围;(2)若m>1,且点A在点B的左侧,OA:OB=1:3,试确定抛物线的解析式;(3)设(2)中抛物线与y轴的交点为C,过点C作直线l∥x轴,将抛物线在y轴左侧的部分沿直线l翻折,抛物线的其余部分保持不变,得到一个新图象.请你结合新图象回答:当直线与新图象只有一个公共点P(x0,y0)且y0≤7时,求b的取值范围.2015-2016学年湖北省武汉市武钢实验学校九年级(下)周考数学试卷(1)参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.2的算术平方根是()A.B.C.﹣D.±2【考点】算术平方根.【分析】利用算术平方根定义计算即可得到结果.【解答】解:2的算术平方根是,故选B2.下列计算中,正确的是()A.a3+a3=a6B.(a2)3=a5 C.a2•a4=a8D.a4÷a3=a【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据合并同类项法则;幂的乘方,底数不变指数相乘;同底数幂相乘,底数不变指数相加;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、应为a3+a3=2a3,故本选项错误;B、应为(a2)3=a2×3=a6,故本选项错误;C、应为a2•a4=a2+4=a6,故本选项错误;D、a4÷a3=a4﹣3=a,正确.故选D.3.若二次根式有意义,则x的取值范围是()A.x≠0 B.x>3 C.x≠3 D.x≥3【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件,被开方数大于或等于0,可以求出x的范围.【解答】解:根据题意得:x﹣3≥0,解得:x≥3.故选D.4.把x3﹣9x分解因式,结果正确的是()A.x(x2﹣9)B.x(x﹣3)2C.x(x+3)2D.x(x+3)(x﹣3)【考点】提公因式法与公式法的综合运用.【分析】先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:x3﹣9x,=x(x2﹣9),=x(x+3)(x﹣3).故选:D.5.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都会随即地选择一条路径,则它获得食物的概率是()A.B.C.D.【考点】概率公式.【分析】看有食物的情况占总情况的多少即可.【解答】解:共有6条路径,有食物的有2条,所以概率是,故选B.6.若x1、x2是方程2x2﹣3x﹣4=0的两根,则x1x2=()A.0 B.2 C.﹣2 D.﹣4【考点】根与系数的关系.【分析】根据韦达定理即可得.【解答】解:∵x1、x2是方程2x2﹣3x﹣4=0的两根,∴x1x2==﹣2,故选:C.7.如图是由6个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据俯视图是从上面看到的图形判定则可.【解答】解:从上面可看到第一横行左下角有一个正方形,第二横行有3个正方形,第三横行中间有一个正方形.故选C.8.图中两个四边形是位似图形,它们的位似中心是()A.点M B.点N C.点O D.点P【考点】位似变换.【分析】根据位似变换的定义:对应点的连线交于一点,交点就是位似中心.即位似中心一定在对应点的连线上.【解答】解:点P在对应点M和点N所在直线上,再利用连接另两个对应点,得出相交于P点,即可得出P为两图形位似中心,故选:D.9.如图,在△ABC 中,∠C=90°,BC=3,D,E分别在AB、AC上,将△ADE沿DE翻折后,点A落在点A′处,若A′为CE的中点,则折痕DE的长为()A.B.3 C.2 D.1【考点】翻折变换(折叠问题).【分析】先由图形翻折变换的性质得出AE=A′E,再根据A′为CE的中点可知AE=A′E=CE,故AE=AC,=,再由∠C=90°,DE⊥AC可知DE∥BC,故可得出△ADE∽△ABC,由相似三角形的性质可知==,故可得出结论.【解答】解:∵△A′DE△ADE翻折而成,∴AE=A′E,∵A′为CE的中点,∴AE=A′E=CE,∴AE=AC,=,∵∠C=90°,DE⊥AC,∴DE∥BC,∴△ADE∽△ABC,∴==,=,解得DE=1.故选D.10.如图,Rt△ABC中,∠C=90°,AC=3,BC=4,P是斜边AB上一动点(不与点A、B 重合),PQ⊥AB交△ABC的直角边于点Q,设AP为x,△APQ的面积为y,则下列图象中,能表示y关于x的函数关系的图象大致是()A. B. C.D.【考点】动点问题的函数图象;相似三角形的应用.【分析】分点Q在AC上和BC上两种情况进行讨论即可.【解答】解:当点Q在AC上时,y=×AP×PQ=×x×=x2;当点Q在BC上时,如下图所示,∵AP=x,AB=5,∴BP=5﹣x,又cosB=,∵△ABC∽QBP,∴PQ=BP=∴S△APQ=AP•PQ=x•=﹣x2+x,∴该函数图象前半部分是抛物线开口向上,后半部分也为抛物线开口向下.故选C.二、填空题(本大题共6个小题,每小题3分,共18分)11.一名射击运动员在某次训练中连续打靶8次,命中的环数分别是7,8,9,10,10,8,8,8,这组数据的众数与中位数分别为8,8.【考点】众数;中位数.【分析】根据中位数和众数的定义求解.【解答】解:在这一组数据中8是出现次数最多的,故众数是8;而将这组数据从小到大的顺序排列7,8,8,8,8,9,10,10,处于中间位置的2个数是8,8,那么由中位数的定义可知,这组数据的中位数是(8+8)÷2=8,所以这组数据的众数与中位数分别为8与8.故答案为8,8.12.已知地球的表面积约为510000000km2,数510000000用科学记数法可表示为 5.1×108.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于510000000有9位,所以可以确定n=9﹣1=8.【解答】解:510 000 000=5.1×108.故答案为:5.1×108.13.在一个不透明的布袋中装有2个白球和n个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是黄球的概率是,则n=8.【考点】概率公式.【分析】根据黄球的概率公式列出方程求解即可.【解答】解:不透明的布袋中的球除颜色不同外,其余均相同,共有n+2个球,其中黄球n 个,根据古典型概率公式知:P(黄球)==.解得n=8.故答案为:8.14.设面积为20cm2的平行四边形的一边长为a(cm),这条边上的高为h(cm).当边长a=25cm时,这条边上的高为cm.【考点】平行四边形的性质.【分析】由平行四边形的面积=底×高即可得出结果.【解答】解:∵四边形ABCD是平行四边形,∴ah=20,当a=25cm时,h==cm;故答案为:15.小明骑自行车从家出发,沿一条直路到相距2400m的邮局办事,小明出发的同时,他的爸爸以96米/分钟的速度从邮局沿一条道路步行回家,小明在邮局停留2分钟后沿原理以原速返回,设他们出发后经过t分钟时,小明与家之间的距离为S1米,小明爸爸与家之间的距离为S2米,图中折线OABD、线段EF分别是表示S1、S2与t之间函数关系的图象,则小明从家出发,追上爸爸所用的时间是20分钟.【考点】一次函数的应用.【分析】用路程除以时间就是小亮骑自行车的速度;设小亮从家出发,经过x分钟,在返回途中追上爸爸,再由题意得出等量关系除了小亮在邮局停留2分钟,即x﹣2分钟所走的路程减去小亮从家到邮局相距的2400米,就是小亮在返回途中追上爸爸时,爸爸所走的路程,列出方程即可解答出来【解答】解:小亮骑自行车的速度是2400÷10=240m/min;先设小亮从家出发,经过x分钟,在返回途中追上爸爸,由题意可得:(x﹣2)×240﹣2400=96x240x﹣240×2﹣2400=96x240x﹣2880﹣96x=96x﹣96x144x﹣2880+2880=2880144x÷144=2880÷144x=20.答:小亮从家出发,经过20分钟,在返回途中追上爸爸.16.半圆⊙O中,AB为直径,C、D为半圆上任意两点,将沿直线CD翻折使AB与相切,已知AB=8,求CD的最大值4.【考点】切线的性质;翻折变换(折叠问题).【分析】当CD∥AB时,有最大值,过O作CD的垂线交CD于点E,连接CO,利用折叠的性质,易得OE=AO=×4=2,利用勾股定理得CE,易得AD.【解答】解:当CD∥AB时,有最大值,过O作CD的垂线交CD于点E,连接CO,∴OE=AO=×4=2,CE=DE=CD,∵AB=8,∴CE===2,∴CD=4,故答案为:4.三、解答题(共8题,共72分)17.如图,已知反比例函数y=(x>0)的图象与一次函数y=kx+b的图象交于点A(1,m),B(n,2)两点.(1)求一次函数的解析式;(2)结合图象回答:反比例函数的值大于一次函数的值时x的取值范围.【考点】反比例函数与一次函数的交点问题.【分析】(1)先把点A(1,m),B(n,2)分别代入y=可求出m、n的值,确定A点坐标为(1,6),B点坐标为(3,2),然后利用待定系数法求一次函数的解析式;(2)观察函数图象得到当0<x<1或x>3,反比例函数的图象在一次函数图象上方.【解答】解:(1)把点A(1,m),B(n,2)分别代入y=得m=6,2n=6,解得n=3,∴A点坐标为(1,6),B点坐标为(3,2),把A(1,6),B(3,2)分别代入y=kx+b得,解得,∴一次函数解析式为y=﹣2x+8;(2)反比例函数的值大于一次函数的值的x的取值范围是0<x<1或x>3.18.如图,点F,G分别在△ADE的AD,DE边上,C,B依次为GF延长线上两点,AB=AD,∠BAF=∠CAE,∠B=∠D.(1)求证:BC=DE;(2)若∠B=35°,∠AFB=78°,直接写出∠DGB的度数.【考点】全等三角形的判定与性质.【分析】(1)由∠BAF=∠CAE,等式两边同时减去∠CAF,可得出∠BAC=∠DAE,再由AB=AD,∠B=∠D,理由ASA得出△ABC≌△ADE,利用全等三角形的对应边相等可得证;(2)由∠B=∠D,以及一对对顶角相等,利用两对对应角相等的两三角形相似得到三角形ABF与三角形DGF相似,由相似三角形的对应角相等得到∠DGB=∠BAD,在三角形AFB 中,由∠B及∠AFB的度数,利用三角形的内角和定理求出∠BAD的度数,进而得到∠DGB 的度数.【解答】(1)证明:∵∠BAF=∠CAE,∴∠BAF﹣∠CAF=∠CAE﹣∠CAF,∴∠BAC=∠DAE,在△ABC和△ADE中,,∴△ABC≌△ADE(ASA),∴BC=DE;(2)解:∠DGB的度数为67°,理由为:∵∠B=∠D,∠AFB=∠GFD,∴△ABF∽△GDF,∴∠DGB=∠BAD,在△AFB中,∠B=35°,∠AFB=78°,∴∠DGB=∠BAD=180°﹣35°﹣78°=67°.19.课前预习是学习数学的重要环节,为了了解所教班级学生完成数学课前预习的具体情况,王老师对本班部分学生进行了为期半个月的跟踪调查,他将调查结果分为四类,A:很好;B:较好;C:一般;D:较差.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)王老师一共调查了多少名同学?(2)C类女生有3名,D类男生有1名,将上面条形统计图补充完整;(3)为了共同进步,王老师想从被调查的A类和D类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.【考点】条形统计图;扇形统计图;列表法与树状图法.【分析】(1)根据B类有6+4=10人,所占的比例是50%,据此即可求得总人数;(2)利用(1)中求得的总人数乘以对应的比例即可求得C类的人数,然后求得C类中女生人数,同理求得D类男生的人数;(3)利用列举法即可表示出各种情况,然后利用概率公式即可求解.【解答】解:(1)(6+4)÷50%=20.所以王老师一共调查了20名学生.(2)C类学生人数:20×25%=5(名)C类女生人数:5﹣2=3(名),D类学生占的百分比:1﹣15%﹣50%﹣25%=10%,D类学生人数:20×10%=2(名),D类男生人数:2﹣1=1(名),故C类女生有3名,D类男生有1名;补充条形统计图.(3)由题意画树形图如下:从树形图看出,所有可能出现的结果共有6种,且每种结果出现的可能性相等,所选两位同学恰好是一位男同学和一位女同学的结果共有3种.所以P(所选两位同学恰好是一位男同学和一位女同学)==.20.如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的三个顶点A(﹣2,2),B(0,5),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,得到△A1B1C,请画出△A1B1C的图形;(2)平移△ABC,使点A的对应点A2坐标为(﹣2,﹣6),请画出平移后对应的△A2B2C2的图形;(3)若将△A1B1C绕某一点旋转180°可得到△A2B2C2,请直接写出旋转中心的坐标.【考点】作图-旋转变换;作图-平移变换;旋转的性质.【分析】(1)利用旋转的性质得出对应点坐标进而得出答案;(2)利用平移规律得出对应点位置,进而得出答案;(3)利用旋转图形的性质,连接对应点,即可得出旋转中心的坐标.【解答】解:(1)如图所示,△A1B1C即为所求;(2)如图所示,△A2B2C2即为所求;(3)旋转中心坐标(0,﹣2).21.已知:如图,P是⊙O外一点,PA切⊙O于点A,AB是⊙O的直径,BC∥OP交⊙O 于点C.(1)判断直线PC与⊙O的位置关系,并证明你的结论;(2)若OA:PC=1:3,AD⊥PC于点D,求AD:PA的值.【考点】切线的性质.【分析】(1)连接OC,由BC∥OP,∠1=∠2,∠3=∠4,而∠1=∠3,得到∠2=∠4,易证得△POC≌△POA,则∠PCO=∠PAO,由PA切⊙O于点A,根据切线的性质得到∠PAO=90°,则有∠PCO=90°,根据切线的判定得到PC与⊙O相切;(2)连接AC,交OP于M,由切线长定理得出PA=PC,设OC=OA=x,则PA=PC=3x,由勾股定理得出OP==x,AC⊥OP,由射影定理求出PM=x,得出OM=OP﹣PM=x,由射影定理求出CM=x,得出AC=2CM=x,由△APC的面积求出AD,即可得出AD:PA的值.【解答】解:(1)PC与⊙O相切;理由如下:连接OC,如图1所示:∵BC∥OP,∴∠1=∠2,∠3=∠4.∵OB=OC,∴∠1=∠3.∴∠2=∠4.在△POC和△POA中,,∴△POC≌△POA(SAS),∴∠PCO=∠PAO.∵PA切⊙O于点A,∴∠PAO=90°,∴∠PCO=90°,∴PC与⊙O相切;(2)连接AC,交OP于M,如图2所示:∵PA、PC是⊙O的切线,∴PA=PC,∵OA:PC=1:3,设OC=OA=x,则PA=PC=3x,∴OP==x,AC⊥OP,由射影定理得:PC2=PM•OP,∴PM==x,∴OM=OP﹣PM=x,∵CM2=OM•PM=x•x,∴CM=x,∴AC=2CM=x,∵△APC的面积=PC•AD=AC•PM,∴AD==x,∴==.22.九年级数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x≤70且x为整数)天(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?(3)该商品在销售过程中,共有多少天每天销售利润不低于3250元?请直接写出结果.【考点】二次函数的应用.【分析】(1)根据单价乘以数量,可得利润,可得答案;(2)根据分段函数的性质,可分别得出最大值,根据有理数的比较,可得答案;(3)根据二次函数值大于或等于3250,一次函数值大于或等于3250,可得不等式,根据解不等式组,可得答案.【解答】解:(1)当1≤x<40时,y=(x+45﹣30)=﹣2x2+120x+2250,当40≤x≤70时,y=(85﹣30)=﹣110x+8250,综上所述:y=;(2)当1≤x<40时,二次函数开口向下,二次函数对称轴为x=30,=﹣2×302+120×30+2250=4050,当x=30时,y最大当40≤x≤70时,y随x的增大而减小,=3850,当x=40时,y最大综上所述,该商品第30天时,当天销售利润最大,最大利润是4050元;(3)当1≤x<40时,y=﹣2x2+120x+2250≥3250,解得10≤x≤50,因此利润不低于3250元的天数是10≤x<40,共30天;当40≤x≤70时,y=﹣110x+8250≥3250,解得x≤45,因此利润不低于3250元的天数是40≤x≤45,共6天,所以该商品在销售过程中,共36天每天销售利润不低于3250元.23.已知菱形ABCD的边长为1,∠ADC=60°,等边△AEF两边分别交DC、CB于点E、F.(1)特殊发现:如图1,若点E、F分别是边DC、CB的中点,求证:菱形ABCD对角线AC、BD的交点O即为等边△AEF的外心;(2)若点E、F始终分别在边DC、CB上移动,记等边△AEF的外心为P.①猜想验证:如图2,猜想△AEF的外心P落在哪一直线上,并加以证明;②拓展运用:如图3,当E、F分别是边DC、CB的中点时,过点P任作一直线,分别交DA边于点M,BC边于点G,DC边的延长线于点N,请你直接写出的值.【考点】四边形综合题.【分析】(1)连接OE、0F,由四边形ABCD是菱形,得出AC⊥BD,BD平分∠ADC,AD=DC=BC,又由E、F分别为DC、CB中点,证得0E=OF=OA,则可得点O即为△AEF 的外心;(2)①连接PE、PA,过点P分别作PI⊥CD于I,PJ⊥AD于J,求出∠IPJ的度数,又由点P是等边△AEF的外心,易证得△PIE≌△PJA,可得PI=PJ,即点P在∠ADC的平分线上,即点P落在直线DB上;②连接BD、AC交于点P,由(1)可得点P即为△AEF的外心.设DM=x,DN=y(x≠0,y≠O),则CN=y﹣1,先利用AAS证明△GBP≌△MDP,得出BG=DM=x,CG=1﹣x,再由BC∥DA,得出△NCG∽△NDM,根据相似三角形对应边成比例得出=,进而求出为定值2.【解答】(1)证明:如图1,连接OE、0F,∵四边形ABCD是菱形,∴AC⊥BD,BD平分∠ADC,AD=DC=BC,∴∠COD=∠COB=∠AOD=90°.∠ADO=∠ADC=×60°=30°,又∵E、F分别为DC、CB中点,∴OE=CD,OF=BC,AO=AD,∴0E=OF=OA,∴点O即为△AEF的外心;(2)解:①猜想:外心P一定落在直线DB上.理由如下:如图2,分别连接PE、PA,过点P分别作PI⊥CD于I,PJ⊥AD于J,∴∠PIE=∠PJD=90°,∵∠ADC=60°,∴∠IPJ=360°﹣∠PIE﹣∠PJD﹣∠JDI=120°,∵点P是等边△AEF的外心,∴∠EPA=120°,PE=PA,∴∠IPJ=∠EPA,∴∠IPE=∠JPA,∴△PIE≌△PJA,∴PI=PJ,∴点P在∠ADC的平分线上,即点P落在直线DB上;②为定值2.连接BD、AC交于点P,由(1)可得点P即为△AEF的外心.如图3,设MN交BC于点G,设DM=x,DN=y(x≠0,y≠O),则CN=y﹣1,∵BC∥DA,∴∠GBP=∠MDP,∠BGP=∠DMP,又由(1)知BP=DP,∴△GBP≌△MDP(AAS),∴BG=DM=x,∴CG=1﹣x.∵BC∥DA,∴△NCG∽△NDM,∴=,∴=,∴x+y=2xy,∴+=2,即=2.24.已知抛物线y=(m﹣1)x2+(m﹣2)x﹣1与x轴交于A、B两点.(1)求m的取值范围;(2)若m>1,且点A在点B的左侧,OA:OB=1:3,试确定抛物线的解析式;(3)设(2)中抛物线与y轴的交点为C,过点C作直线l∥x轴,将抛物线在y轴左侧的部分沿直线l翻折,抛物线的其余部分保持不变,得到一个新图象.请你结合新图象回答:当直线与新图象只有一个公共点P(x0,y0)且y0≤7时,求b的取值范围.【考点】二次函数综合题.【分析】(1)抛物线y=(m﹣1)x2+(m﹣2)x﹣1与x轴交于A、B两点,即在解析式中令y=0,得到一个一元二次方程,这个方程有两个不同的解,根据一元二次方程的根的判别式即可求解;(2)首先求抛物线与x轴的交点坐标,根据OA:OB=1:3,即可得到关于m的方程,从而求解;(3)首先求得抛物线与x轴的交点坐标,以及函数当y=7时,函数的横坐标,则根据图象可以得到:直线在过C的直线与过D的直线之间,或在与抛物线只有一个交点的直线的下边,以及根的判别式即可求得m的范围.【解答】解:(1)∵抛物线y=(m﹣1)x2+(m﹣2)x﹣1与x轴交于A、B两点,∴由①得m≠1,由②得m≠0,∴m的取值范围是m≠0且m≠1.(2)∵点A、B是抛物线y=(m﹣1)x2+(m﹣2)x﹣1与x轴的交点,∴令y=0,即(m﹣1)x2+(m﹣2)x﹣1=0.解得x1=﹣1,.∵m>1,∴.∵点A在点B左侧,∴点A的坐标为(﹣1,0),点B的坐标为.∴OA=1,OB=.∵OA:OB=1:3,∴.∴.∴抛物线的解析式为.(3)∵点C是抛物线与y轴的交点,∴点C的坐标为(0,﹣1).依题意翻折后的图象如图所示.令y=7,即.解得x1=6,x2=﹣4.∴新图象经过点D(6,7).当直线经过D点时,可得b=5.当直线经过C点时,可得b=﹣1.当直线与函数的图象仅有一个公共点P(x0,y0)时,得.整理得.由△=(﹣3)2﹣4(﹣3b﹣3)=12b+21=0,得.结合图象可知,符合题意的b的取值范围为﹣1<b≤5或.2016年10月21日。
2019-2020年初三下学期第三周数学周测测试卷(解析版)

1A A A A 立达中学初三数学周测测试卷(三)2019-2020年初三下学期第三周数学周测测试卷(解析版)一.填空题(4题,每题5分,共20分)1、如图,将边长为a 的正六边形A 1 A 2 A 3 A 4 A 5 A6在直线上由图1的位置按顺时针方向向右 作无滑动滚动,当A 1第一次滚动到图2位置时,顶点A 1所经过的路径的长为( )aa a a2、如图,在平面直角坐标系中,正方形ABCO 的顶点A 、C 分别在Y 轴,X 轴上,以AB 为弦的⊙M 与X 轴相切,若点A 的坐标为(0,8),则圆心M 的坐标为( )A.4,-5)B.(5,-4)C.(-5,4)D.(-4,5)3、如图,Rt △ABC 中,∠ACB=Rt ∠,AC=2BC=2,作内接正方形A 1B 1D 1C ;在Rt △AA 1B 1中,作内接正方形A 2B 2D 2A 1;在Rt △A A 2B 2中,作内接正方形A 3B 3D 3A 2;……;依次作下去,则第n 个正方形A n B n D n A n-1的边长是( ) A 、 131-n B 、 n 31C 、1132--n nD 、n n 324、已知:抛物线y 1=-2x 2+2,直线y 2=2x +2, 当x 任取一值时, x 对应的函数值分别为y 1、y 2.表示. 当y 1≠y 2,时,取y 1、y 2中的较小值记为M ;若y 1=y 2,记M = y 1=y 2.下列判断:①当x >0时,y 1>y 2; ②当x <0时,x 值越大,M 值越小;③使得M 大于2的x 值不存在; ④使得M =1的x 值是 或.其中正确的是 ( ) A . ①② B .①④ C .②③ D .③④21-22第Ⅱ卷二.填空题(4题,每题5分,共20分)5、如图,点E 、F 、G 、H 分别为菱形A 1B 1C 1D 1各边的中点,连接A 1F 、B 1G 、C 1H 、D 1E 得四边形A 2B 2C 2D 2,以此类推得四边形A 3B 3C 3D 3…,若菱形A 1B 1C 1D 1的面积为S ,则四边形A n B n C n D n 的面积为6、如图,AB 是⊙O 的直径,点C 在⊙O 上,且tan ∠ABC =12,D 是⊙O 上的一个动点(C ,D 两点位于直径AB 的两侧),连接CD ,过点C 作CE ⊥CD 交DB 的延长线于点E。
河南省濮阳市2019-2020学年中考三诊数学试题含解析

河南省濮阳市2019-2020学年中考三诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在数轴上有点O ,A ,B ,C 对应的数分别是0,a ,b ,c ,AO =2,OB =1,BC =2,则下列结论正确的是( )A .a c =B .0ab >C .1a c +=D .1b a -=2.下列运算正确的是( )A .a 2+a 2=a 4B .(a+b )2=a 2+b 2C .a 6÷a 2=a 3D .(﹣2a 3)2=4a 63.方程(2)0x x +=的根是( )A .x=2B .x=0C .x 1=0,x 2=-2D . x 1=0,x 2=2 4.计算2311x x x -+++的结果为( ) A .2 B .1 C .0 D .﹣15.﹣6的倒数是( )A .﹣B .C .﹣6D .66.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )A .垂线段最短B .经过一点有无数条直线C .两点之间,线段最短D .经过两点,有且仅有一条直线7.某校九年级(1)班学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了1980张相片,如果全班有x 名学生,根据题意,列出方程为A .(1)19802x x -=B .x (x+1)=1980C .2x (x+1)=1980D .x (x-1)=1980 8.如图,以两条直线l 1,l 2的交点坐标为解的方程组是( )A.121x yx y-=⎧⎨-=⎩B.121x yx y-=-⎧⎨-=-⎩C.121x yx y-=-⎧⎨-=⎩D.121x yx y-=⎧⎨-=-⎩9.八边形的内角和为()A.180°B.360°C.1 080°D.1 440°10.如图是由五个相同的小立方块搭成的几何体,则它的俯视图是()A.B.C.D.11.已知x=1是方程x2+mx+n=0的一个根,则代数式m2+2mn+n2的值为()A.–1 B.2 C.1 D.–212.二次函数y=ax2+bx﹣2(a≠0)的图象的顶点在第三象限,且过点(1,0),设t=a﹣b﹣2,则t值的变化范围是()A.﹣2<t<0 B.﹣3<t<0 C.﹣4<t<﹣2 D.﹣4<t<0二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若两个相似三角形的面积比为1∶4,则这两个相似三角形的周长比是__________.14.函数12xyx+=-中,自变量x的取值范围是.15.矩形纸片ABCD中,AB=3cm,BC=4cm,现将纸片折叠压平,使A与C重合,设折痕为EF,则重叠部分△AEF的面积等于_____.16.今年我市初中毕业暨升学统一考试的考生约有35300人,该数据用科学记数法表示为________人. 17.不等式1﹣2x<6的负整数解是___________.18.不等式5﹣2x<1的解集为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某同学报名参加学校秋季运动会,有以下5 个项目可供选择:径赛项目:100m、200m、1000m (分别用A1、A2、A3 表示);田赛项目:跳远,跳高(分别用T1、T2 表示).该同学从 5 个项目中任选一个,恰好是田赛项目的概率P 为;该同学从 5 个项目中任选两个,求恰好是一个径赛项目和一个田赛项目的概率P1,利用列表法或树状图加以说明;该同学从5 个项目中任选两个,则两个项目都是径赛项目的概率P2 为.20.(6分)2015年1月,市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价.评价小组在选取的某中学七年级全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图.根据上述信息,解答下列问题:(1)本次抽取的学生人数是______ ;扇形统计图中的圆心角α等于______ ;补全统计直方图;(2)被抽取的学生还要进行一次50米跑测试,每5人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率.21.(6分)已知:如图,A、C、F、D在同一直线上,AF=DC,AB=DE,BC=EF,求证:△ABC≌△DEF.22.(8分)学习了正多边形之后,小马同学发现利用对称、旋转等方法可以计算等分正多边形面积的方案.(1)请聪明的你将下面图①、图②、图③的等边三角形分别割成2个、3个、4个全等三角形;(2)如图④,等边△ABC边长AB=4,点O为它的外心,点M、N分别为边AB、BC上的动点(不与端点重合),且∠MON=120°,若四边形BMON的面积为s,它的周长记为l,求1s最小值;(3)如图⑤,等边△ABC的边长AB=4,点P为边CA延长线上一点,点Q为边AB延长线上一点,点D为BC边中点,且∠PDQ=120°,若PA=x,请用含x的代数式表示△BDQ的面积S△BDQ.23.(8分)如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆恰好与BC相切于点D,分别交AC,AB于点E,F.(1)若∠B=30°,求证:以A,O,D,E为顶点的四边形是菱形;(2)填空:若AC=6,AB=10,连接AD,则⊙O的半径为,AD的长为.24.(10分)小强想知道湖中两个小亭A、B之间的距离,他在与小亭A、B位于同一水平面且东西走向的湖边小道I上某一观测点M处,测得亭A在点M的北偏东30°,亭B在点M的北偏东60°,当小明由点M沿小道I向东走60米时,到达点N处,此时测得亭A恰好位于点N的正北方向,继续向东走30米时到达点Q处,此时亭B恰好位于点Q的正北方向,根据以上测量数据,请你帮助小强计算湖中两个小亭A、B之间的距离.25.(10分)某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.求每件甲种、乙种玩具的进价分别是多少元?商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?26.(12分)2018年春节,西安市政府实施“点亮工程”,开展“西安年·最中国”活动,元宵节晚上,小明一家人到“大唐不夜城”游玩,看美景、品美食。
河南省驻马店市部分中学2024-2025学年九年级上学期9月月考数学试题

河南省驻马店市部分中学2024-2025学年九年级上学期9月月考数学试题一、单选题1.下列选项中,是关于x 的一元二次方程的是( )A .2211x x +=B .223250x xy y --=C .()()123x x --=D .20ax bx c ++= 2.下列说法正确的是( )A .对角线相等的四边形是矩形B .有一个角为直角的四边形是矩形C .对角线互相垂直平分的四边形是菱形D .对角线互相垂直且相等的四边形是正方形 3.根据表格对应值:判断关于x 的方程23ax bx c ++=的一个解x 的范围是( )A .1.1 1.2x <<B .1.2 1.3x <<C .1.3 1.4x <<D .无法判定4.已知m 是一元二次方程2320x x -+=的一个根,则代数式2262022m m -+的值为( ) A .2018 B .2020 C .2022 D .20245.若顺次连接四边形ABCD 各边的中点所得四边形是菱形.则四边形ABCD 一定是 ( ) A .菱形B .对角线互相垂直的四边形C .矩形D .对角线相等的四边形6.已知关于x 的一元二次方程()21210k x x --+=有两个不相等的实数根,则k 的取值范围是( )A .2k <B .2k <且1k ≠C .2k >-且1k ≠D .2k ≤且1k ≠ 7.如图,四边形ABCD 是菱形,12AC =,16BD =,AH BC ⊥于H ,则AH 等于( )A .245B .485C .4D .58.如图所示,在ABC V 中,90B ??,6cm AB =,3cm BC =,点P 以1cm/s 的速度从点A 开始沿边AB 向点B 移动,点Q 以2cm/s 的速度从点B 开始沿边BC 向点C 移动,且点P ,Q 分别从点A ,B 同时出发.若有一点到达目的地,则另一点同时停止运动.要使P ,Q 两点之间的距离等于,则需要经过( )A .2s 5B .2sC .6s 5D .2s 5或2s 9.如图,矩形ABCD 中,DE AC ⊥于E ,且ADE ∠:3EDC ∠=:2,则BDE ∠的度数为( )A .36︒B .27︒C .18︒D .9︒10.如图,在ABC V 中,90BAC ∠=︒,86AB AC ==,,M 为BC 上的一动点,ME AB ⊥于E ,MF AC ⊥于F ,N 为EF 的中点,则MN 的最小值为( )A .4.8B .2.4C .2.5D .2.6二、填空题11.方程2x x=的解是.12.如图,菱形ABCD中,对角线AC交BD于O,AB=8,E是CD的中点,则OE的长等于.13.如图,学校综合实践小组的种植园是长35米、宽20米的矩形,为便于管理,现要在中间开辟一横两纵三条等宽的小道(如图),要使种植面积为627平方米,设小道的宽为x米,则可列方程为.14.如图,菱形ABCD的周长为24cm,∠A=120°,E是BC边的中点,P是BD上的动点,则PE﹢PC的最小值是.15.如图,在正方形ABCD中,4AB=,点E是BC边上一个动点(不与点B,C重合),V.当点E'恰好落在正方形将ABEV沿AB'翻折得到AB E''V沿AE翻折到AB E'V,再将AB E'ABCD的边所在的直线上时,线段BE的长度为.三、解答题16.解方程(1)2410x x -+=;(2)2340x x +-=;(3)()32142x x x +=+;(4)()()22213x x +=-17.已知关于x 的一元二次方程()222130x m x m +-+-=有实数根. (1)求实数m 的取值范围;(2)当m 取满足条件的最大整数时,求方程的解.18.如图,线段AC 是矩形ABCD 的对角线.(1)实践与操作,利用尺规作线段AC 的垂直平分线,垂足为O ,交AB 于点E ,交DC 于点F ,连接AF CE ,(要求:尺规作图并保留作图痕迹,不写作法,需标明字母)(2)猜想与证明 试猜想四边形AECF 的形状,并加以证明.19.如图,点O 是菱形ABCD 对角线的交点,过点C 作CE ∥OD ,过点D 作DE ∥AC ,CE 与DE 相交于点E .(1)求证:四边形OCED 是矩形.(2)若AB =4,∠ABC =60°,求矩形OCED 的面积.20.据统计某生鲜电商平台1月份的销售额是100万元,3月份的销售额是144万元.(1)若该平台1月份到3月份的月平均增长率都相同,求月平均增长率是多少?(2)经市场调查发现,某水果在该平台上的售价为24元/千克时,每天能销售300千克,售价每降低2元,每天可多售出100千克,为了推广宣传,商家决定降价促销,同时尽量减少库存,已知该水果的成本价为12元千克,若使销售该水果每天获利4000元,则售价应降低多少元?21.如图,在正方形ABCD 中,点E F ,分别在AD CD ,上,且AE DF =,BE 与AF 相交于点O ,P 是BF 的中点,连接OP .(1)BE 与AF 之间有怎样的关系?请说明理由.(2)若1AE DF ==,4AB =,求OP 的长.22.定义:若两个一元二次方程有且只有一个相同的实数根,我们就称这两个方程为“同伴方程”.例如24x =和()()230x x -+=有且只有一个相同的实数根2x =,所以这两个方程为“同伴方程”.(1)根据所学定义,下列方程属于“同伴方程”的有________:(只填写序号即可) ①()219x -=②2440x x ++=③2280x x +-=(2)关于x 的一元二次方程220x x -=与210x x m ++-=为“同伴方程”,求m 的值;(3)若关于x 的一元二次方程()200ax bx c a ++=≠同时满足0a b c -+=和930a b c ++=,且与()()30x n x -+=互为“同伴方程”,求n 的值.23.教材再现:(1)如图1,在矩形ABCD 中,34AB AD ==,,P 是AD 上不与A 和D 重合的一个动点,过点P 分别作AC 和BD 的垂线,垂足分别为E ,F ,则PE PF +的值为________. 知识应用:(2)如图2,在矩形ABCD 中,点M ,分别在边AD ,BC 上,将矩形ABCD 沿直线MN 折叠,使点D 恰好与点B 重合,点C 落在点1C 处,点P 为线段MN 上一动点(不与点M ,N 重合),过点P 分别作直线BM BC ,的垂线,垂足分别为E 和F ,以PE PF ,为邻边作平行四边形PEQF ,若135DM CN ==,,Y PEQF 的周长是否为定值?若是,请求出Y PEQF 的周长;若不是,请说明理由.(3)如图3,当点P 是等边ABC V 外一点时,过点P 分别作直线AB AC BC 、、的垂线、垂足分别为点E 、D 、F .若3PE PF PD +-=,请直接写出ABC V 的面积.。
2019-2020年九年级(上)第3周周清数学试卷

2019-2020年九年级(上)第3周周清数学试卷一、选择题1.下列方程中是一元二次方程的是()A.2x﹣1=0 B.y2﹣x=1 C.x2﹣1=0 D.﹣x2=12.一元二次方程x2﹣5x+6=0的两根分别是x1,x2,则x1+x2等于()A.5 B.6 C.﹣5 D.﹣63.矩形、菱形都具有的性质是()A.对角线相等B.每一条对角线平分一组对角C.对角线互相平分D.对角线互相垂直4.检查一个门框是矩形的方法是()A.测量两条对角线是否相等B.测量有三个角是直角C.测量两条对角线是否互相平分D.测量两条对角线是否互相垂直5.菱形的周长等于高的8倍,则此菱形的较大内角是()A.60°B.90°C.120°D.150°6.如图,在菱形ABCD中,AB=5,∠BCD=120°,则对角线AC等于()A.20 B.15 C.10 D.57.如图是一张矩形纸片ABCD,AD=10cm,若将纸片沿DE折叠,使DC落在DA上,点C的对应点为点F,若BE=6cm,则CD=()A.4cm B.6cm C.8cm D.10cm8.某市xx年底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,到xx年底增加到363公顷.设绿化面积平均每年的增长率为x,由题意,所列方程正确的是()A.300(1+x)=363 B.300(1+x)2=363 C.300(1+2x)=363 D.363(1﹣x)2=300二、填空题9.菱形的对角线长分别为6和8,则菱形的边长是,面积是.10.矩形的对角线长为8,两对角线的夹角为60°,则矩形的两邻边分别长和.11.方程x2﹣3=0的解是.12.已知菱形的边长为6,一个内角为60°,则菱形较短的对角线长是.13.已知菱形的周长为40,一条对角线长为12,则这个菱形的面积是.14.如图,在矩形ABCD中,对角线AC与BD相交于O点,且AB=OA=2cm,则BD的长为cm,BC的长为cm.三、解答题15.x2+3x﹣4=0(2)3x2﹣x﹣2=0.16.如图,△ABC中,AB=AC,AD是△ABC外角的平分线,已知∠BAC=∠ACD.(1)求证:△ABC≌△CDA;(2)若∠B=60°,求证:四边形ABCD是菱形.17.已知:在梯形ABCD中,AD∥BC,CA平分∠DCE,AB⊥AC,E为BC的中点.求证:DE、AC互相垂直平分.xx学年广东省河源市中英文实验学校九年级(上)第3周周清数学试卷参考答案与试题解析一、选择题1.下列方程中是一元二次方程的是()A.2x﹣1=0 B.y2﹣x=1 C.x2﹣1=0 D.﹣x2=1【考点】一元二次方程的定义.【专题】计算题.【分析】利用一元二次方程的定义判断即可.【解答】解:是一元二次方程的为x2﹣1=0,故选C.【点评】此题考查了一元二次方程的定义,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.2.一元二次方程x2﹣5x+6=0的两根分别是x1,x2,则x1+x2等于()A.5 B.6 C.﹣5 D.﹣6【考点】根与系数的关系.【分析】根据根与系数的关系即可求得两根的和.【解答】解:∵一元二次方程x2﹣5x+6=0的两根分别是x1,x2,∴x1+x2=﹣=5;故选A.【点评】此题主要考查的是一元二次方程根与系数的关系:若一元二次方程y=ax2+bx+c(a≠0)的两个实数根分别是x1、x2,则:x1+x2=﹣,x1x2=.3.矩形、菱形都具有的性质是()A.对角线相等B.每一条对角线平分一组对角C.对角线互相平分D.对角线互相垂直【考点】矩形的性质;菱形的性质.【分析】根据矩形的对角线的性质(对角线互相平分且相等),菱形的对角线性质(对角线互相垂直平分)可解.【解答】解:A、菱形的对角线不一定相等,故本选项错误;B、矩形的对角线不一定平分一组对角,故本选项错误;C、因为矩形的对角线互相平分且相等、菱形的对角线互相垂直平分,可知矩形、菱形都具有的特征是对角线互相平分.故本选项正确;D、矩形的对角线不一定互相垂直,故本选项错误;故选:C.【点评】此题主要考查矩形、菱形的对角线的性质.正方形既是菱形,也是矩形,它具有菱形和矩形的所有性质.4.检查一个门框是矩形的方法是()A.测量两条对角线是否相等B.测量有三个角是直角C.测量两条对角线是否互相平分D.测量两条对角线是否互相垂直【考点】矩形的判定.【分析】由对角线相等的平行四边形是矩形与有三个角是直角的四边形是矩形,可求得答案.【解答】解:∵有三个角是直角的四边形是矩形,∴检查一个门框是矩形的方法是:测量有三个角是直角.∵对角线相等的平行四边形是矩形,∴检查一个门框是矩形的另一个方法是:先测得门框的两组对边是否分别相等,再测其对角线的是否相等.故选B.【点评】此题考查了矩形的判定.注意熟记定理是解此题的关键,注意排除法在解选择题中的应用.5.菱形的周长等于高的8倍,则此菱形的较大内角是()A.60°B.90°C.120°D.150°【考点】菱形的性质.【专题】计算题.【分析】根据菱形四条边相等的性质,列出等式方程,求解,即可.【解答】解:设菱形的边长为a,高为h,则依题意,4a=8h,即a=2h,延长最大角的一边,让其邻边和高构造直角三角形,∵有一直角边是斜边的一半,∴菱形的较大内角的外角为30°,∴菱形的较大内角是150°.故选D.【点评】熟悉菱形的性质,及一些特殊的直角是解题的关键,画出图形再解题有助于理清思路6.如图,在菱形ABCD中,AB=5,∠BCD=120°,则对角线AC等于()A.20 B.15 C.10 D.5【考点】菱形的性质;等边三角形的判定与性质.【分析】根据菱形的性质及已知可得△ABC为等边三角形,从而得到AC=AB.【解答】解:∵AB=BC,∠B+∠BCD=180°,∠BCD=120°∴∠B=60°∴△ABC为等边三角形∴AC=AB=5故选D.【点评】本题考查了菱形的性质和等边三角形的判定.7.如图是一张矩形纸片ABCD,AD=10cm,若将纸片沿DE折叠,使DC落在DA上,点C的对应点为点F,若BE=6cm,则CD=()A.4cm B.6cm C.8cm D.10cm【考点】翻折变换(折叠问题);正方形的性质.【专题】压轴题.【分析】由题意知,四边形CEFD是正方形,利用正方形的性质可求得CE=EF=CD=10﹣6=4cm.【解答】解:∵四边形CEFD是正方形,AD=BC=10,BE=6∴CE=EF=CD=10﹣6=4cm.故选A.【点评】本题利用了矩形的对边相等和正方形四边相等的性质求解.8.某市xx年底已有绿化面积300公顷,经过两年绿化,绿化面积逐年增加,到xx年底增加到363公顷.设绿化面积平均每年的增长率为x,由题意,所列方程正确的是()A.300(1+x)=363 B.300(1+x)2=363 C.300(1+2x)=363 D.363(1﹣x)2=300 【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】知道xx年的绿化面积经过两年变化到xx,绿化面积成为363,设绿化面积平均每年的增长率为x,由题意可列出方程.【解答】解:设绿化面积平均每年的增长率为x,300(1+x)2=363.故选B.【点评】本题考查的是个增长率问题,关键是知道增长前的面积经过两年变化增长后的面积可列出方程.二、填空题9.菱形的对角线长分别为6和8,则菱形的边长是5,面积是24.【考点】菱形的性质.【专题】计算题.【分析】根据菱形的对角线平分且垂直的性质,先计算边长,由对角线乘积的一半求得面积.【解答】解:∵菱形的两条对角线长分别为6和8,∴由勾股定理得,菱形的边长==5,∵菱形的面积=对角线乘积的一半,∴菱形的面积=6×8÷2=24,故答案为:5,24.【点评】本题主要考查了菱形的性质,菱形的面积公式,勾股定理等知识点,灵活运用性质进行计算是解此题的关键.10.矩形的对角线长为8,两对角线的夹角为60°,则矩形的两邻边分别长4和4.【考点】矩形的性质.【分析】如图1,,设两对角线的交点是E,作EF⊥CD于点F,判断出△CDE是等边三角形,即可求出CD的长度是多少;然后求出EF的长度,即可求出AD的长度是多少.【解答】解:如图1,作EF⊥CD于点F,,∵四边形ABCD是矩形,∴DE=CE=8÷2=4,∵两对角线的夹角为60°,∴∠CED=60°,∴△CDE是等边三角形,∴CD=DE=4;又∵EF⊥CD于点F,∴EF=4×=2,∴AD=2EF=2×2=4,综上,可得矩形的两邻边分别长4和4.故答案为:4;.【点评】此题主要考查了矩形的性质和应用,要熟练掌握,解答此题的关键是要明确矩形的性质:①平行四边形的性质矩形都具有;②角:矩形的四个角都是直角;③边:邻边垂直;④对角线:矩形的对角线相等;⑤矩形是轴对称图形,又是中心对称图形.它有2条对称轴,分别是每组对边中点连线所在的直线;对称中心是两条对角线的交点.11.方程x2﹣3=0的解是±.【考点】解一元二次方程-直接开平方法.【专题】计算题.【分析】方程移项后,开方即可求出解.【解答】解:方程x2﹣3=0,移项得:x2=3,解得:x=±.故答案为:±.【点评】此题考查了解一元二次方程﹣直接开平方法,熟练掌握平方根的定义是解本题的关键.12.已知菱形的边长为6,一个内角为60°,则菱形较短的对角线长是6.【考点】菱形的性质;勾股定理.【专题】计算题.【分析】因为菱形的四条边都相等,所以AB=AD,又因为∠A=60°,所以△ABD为等边三角形,所以BD=6.【解答】解:∵四边形ABCD是菱形,∴AB=AD,∵∠A=60°,∴△ABD是等边三角形,∴BD=AB=6.∴菱形较短的对角线长是6.故答案为6.【点评】此题考查了菱形的性质:菱形的四条边都相等.13.已知菱形的周长为40,一条对角线长为12,则这个菱形的面积是96.【考点】菱形的性质;勾股定理.【专题】计算题.【分析】画出草图分析.因为周长是40,所以边长是10.根据对角线互相垂直平分得直角三角形,运用勾股定理求另一条对角线的长,最后根据菱形的面积等于对角线乘积的一半计算求解.【解答】解:因为周长是40,所以边长是10.如图所示:AB=10,AC=12.根据菱形的性质,AC⊥BD,AO=6,∴BO=8,BD=16.∴面积S=AC×BD=12×16×=96.故答案为96.【点评】本题考查了菱形的性质及其面积计算,主要利用菱形的对角线互相垂直平分及勾股定理来解决,要掌握菱形的面积有两种求法:(1)利用底乘以相应底上的高;(2)利用菱形的特殊性,菱形面积=12×两条对角线的乘积,具体用哪种方法要看已知条件来填空.14.如图,在矩形ABCD中,对角线AC与BD相交于O点,且AB=OA=2cm,则BD的长为4cm,BC的长为2cm.【考点】矩形的性质;三角形内角和定理;等边三角形的判定与性质;勾股定理.【专题】计算题.【分析】根据矩形的性质得到OA=OC,OB=OD,AC=BD,∠ABC=90°,推出BD=AC=2OA=4,OA=OB=AB=2,得出等边△OAB,求出∠ACB=30°,根据勾股定理即可求出BC.【解答】解:∵矩形ABCD,∴OA=OC,OB=OD,AC=BD,∠ABC=90°,∴OA=OB,∵AB=OA=2,∴BD=AC=2OA=4,OA=OB=AB=2,∴△OAB是等边三角形,∴∠BAC=60°,∴∠ACB=90°﹣60°=30°,由勾股定理得:BC===2.故答案为:4,2.【点评】本题主要考查对矩形的性质,三角形的内角和定理,等边三角形的性质和判定,勾股定理等知识点的理解和掌握,能灵活运用性质进行证明是解此题的关键,题目比较典型,难度适中.三、解答题15.x2+3x﹣4=0(2)3x2﹣x﹣2=0.【考点】解一元二次方程-因式分解法.【专题】计算题.【分析】(1)方程利用因式分解法求出解即可;(2)方程利用因式分解法求出解即可.【解答】解:(1)分解因式得:(x﹣1)(x+4)=0,解得:x1=﹣4,x2=1;(2)分解因式得:(3x+2)(x﹣1)=0,解得:x1=﹣,x2=1.【点评】此题考查了解一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.16.如图,△ABC中,AB=AC,AD是△ABC外角的平分线,已知∠BAC=∠ACD.(1)求证:△ABC≌△CDA;(2)若∠B=60°,求证:四边形ABCD是菱形.【考点】菱形的判定;平行线的性质;全等三角形的判定与性质;等腰三角形的性质;等边三角形的判定与性质;平行四边形的判定.【专题】证明题;压轴题.【分析】(1)求出∠B=∠ACB,根据三角形外角性质求出∠FAC=2∠ACB=2∠DAC,推出∠DAC=∠ACB,根据ASA证明△ABC和△CDA全等;(2)推出AD∥BC,AB∥CD,得出平行四边形ABCD,根据∠B=60°,AB=AC,得出等边△ABC,推出AB=BC即可.【解答】证明:(1)∵AB=AC,∴∠B=∠ACB,∵∠FAC=∠B+∠ACB=2∠ACB,∵AD平分∠FAC,∴∠FAC=2∠CAD,∴∠CAD=∠ACB,∵在△ABC和△CDA中,∴△ABC≌△CDA(ASA);(2)∵∠FAC=2∠ACB,∠FAC=2∠DAC,∴∠DAC=∠ACB,∴AD∥BC,∵∠BAC=∠ACD,∴AB∥CD,∴四边形ABCD是平行四边形,∵∠B=60°,AB=AC,∴△ABC是等边三角形,∴AB=BC,∴平行四边形ABCD是菱形.【点评】本题考查了平行线的性质,全等三角形的性质和判定,菱形的判定,等边三角形的性质和判定,等腰三角形的性质的应用,主要考查学生运用性质进行推理的能力,题目比较好,综合性也比较强.17.已知:在梯形ABCD中,AD∥BC,CA平分∠DCE,AB⊥AC,E为BC的中点.求证:DE、AC互相垂直平分.【考点】线段垂直平分线的性质;梯形.【专题】证明题.【分析】此题要证明DE、AC互相垂直平分.则连接AE,只需证明四边形ADCE是菱形.根据已知条件首先运用两组对边分别平行的四边形是平行四边形,再根据一组邻边相等的平行四边形是菱形证明.【解答】证明:连接AE.∵在直角三角形ABC中,E是BC的中点,∴AE是Rt△ABC的中线,∴AE=CE=BE,∴∠EAC=∠ACE.∵AD∥BC∴∠ACE=∠ACD∴∠EAC=∠ACD∴AE∥CD∴四边形AECD是平行四边形.又AE=CE所以平行四边形AECD是菱形,所以DE、AC互相垂直平分.【点评】熟练掌握特殊四边形的性质和判定.-----如有帮助请下载使用,万分感谢。
某单位于三八妇女节期间

某单位于三八妇女节期间篇一:20XX级初三年级第3次周考数学试题20XX级初三年级第三次周考数学试题一、选择题(每题3分,共30分)1.矩形具有平行四边形不一定具有的性质是()a.对角线相等B.对边相等c.对角相等d.对角线互相平分2.若关于x的一元二次方程ax2?bx?5?0(a≠0)的解是x=1,则20XX-a-b 的值是()a.2020B.20XXc.20XXd.20XX3.不透明的黑袋子里放有3个黑球和若干个白球(黑白球仅颜色不同),老师将全班学生分成10组,进行摸球实验,在经过大量重复摸球试验中,统计显示,从中摸出1球是白球的频率稳定在0.8附近,则袋子里放的白球数为()a.9B.10c.11d.12a?b2b?,则()b3a3511a.B.c.d.?5333cF5.如图,在△aBc中,点d、E、F分别在边aB、ac、Bc上,且dE∥Bc,EF∥aB.若ad=2Bd,则的值为()BF1112a.B.c.d.23434.若6.下列说法:①有一个锐角相等的两个直角三角形相似;②斜边和一直角边对应成比例的两个直角三角形相似③两个等边三角形一定相似④任意两个矩形一定相似;其中正确的个数是()a.1个B.2个c.3个d.4个7.如图,∠acB=∠adc=90°,Bc=a,ac=b,aB=c,要使△aBc∽△cad,只要cd等于()b2b2a2aba.B.c.d.ccac8.如图,△aBc中,aB,ac边上的高cE和BF相交于点d,则图中的相似三角形的个数有()第8题第5题第7题第9题第10题9.如图,将一个长为10cm,宽为8cm的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为()a.10cmB.20cmc.40cmd.80cm 10.如图,在Rt△aBc内有边长分别为a,b,c的三个正方形,则a,b,c 满足的关系式是()222a.b?a?cB.b?acc.b?a?cd.b?2a?2c2222二、填空题(每题3分,共18分)11.若关于x的一元二次方程?a?1?x-2x?3?0有实数根,则整数a的最大值是______212.已知ace1???,且3b+d-7f=16,则3a+c-7e的值是_______________bdf413.如图,在矩形aBcd中,对角线ac,Bd相交于点o,点E,F分别是ao,ad的中点,若aB=6cm,Bc=8cm,则△aEF的周长=_____________ 第13题FE第15题dc14.电视节目主持人主持节目时,站在舞台的黄金分割点处最得体自然,舞台aB长为20m,试计算主持人应走到离a点至少___________m 处较恰当.若他向B点再走___________m也在比较得体的位置。
2018-2019学年九年级(上)第三周周考数学试卷

2018-2019学年九年级(上)第三周周考数学一、选择题(本大题共10小题,共30.0分)1.x有()A. 5个B. 4个C. 3个D. 2个2.如果a=2,b=9,c=6,d=3,那么()A. a、b、c、d成比例B. a、c、b、d成比例C. a、d、b、c成比例D. a、c、d、b成比例3.已知2是关于x的方程x2-2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC的两条边长,则三角形ABC的周长为()A. 10B. 14C. 10或14D. 8或104.x的取值范围是()A. x>2B. 2<x<3C. x<2或x>3D. 2≤x≤35.若x1,x2是方程x2-2mx+m2-m-1=0的两个根,且x1+x2=1-x1x2,则m的值为()A. -1或2B. 1或-2C. -2D. 16.有一人患了流感,经过两轮传染后共有49人患了流感,设每轮传染中平均一个人传染了x人,则x的值为()A. 5B. 6C. 7D. 87.如图,直角梯形ABCD中,∠BCD=90°,AD∥BC,BC=CD,E为梯形内一点,且∠BEC=90°,将△BEC绕C点旋转90°使BC与DC重合,得到△DCF,连EF交CD 于M.已知BC=5,CF=3,则DM:MC的值为()A. 5:3B. 3:5C. 4:3D. 3:48.如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函数y若点B在反比例函数y的图象上,则k的值为()A. -4B. 4C. -2D. 29.Rt△ABC中,∠C=90°,AC=BC=6cm,点P从点A出发,沿AB方向以每的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒1cm的速度向终点C运动,将△PQC沿BC翻折,点P的对应点为点P′.设点Q运动的时间为t秒,若四边形QPCP′为菱形,则t的值为()2 D. 310.如图,点P ABCD的对角线BD上的动点,过点P分别作PE⊥BC于点E,PF⊥DC于点F,连接AP并延长,交射线BC于点H,交射线DC于点M,连接EF交AH于点G,当点P在BD上运动时(不包括B、D两点),以下结论中:①MF=MC;②AH⊥EF;③AP2=PM•PH;④EF中正确结论是()A. ①③B. ②③C. ②③④D. ②④二、填空题(本大题共6小题,共18.0分)11..12.已知xy>0,则化简二次根式.13.设a,b是方程x2+x-2019=0的两个实数根,则a2+2a+b的值为______;14.在△ABC中,AB=9,AC=6.点M在边AB上,且AM=3,点N在AC边上.当AN=______时,△AMN与原三角形相似.15.如图,AB∥GH∥CD,点H在BC上,AC与BD交于点G,AB=2,CD=3,则GH的长为______.16.如图,若将图①正方形剪成四块,恰能拼成图②的矩形,设a=1,则b=______.三、计算题(本大题共2小题,共19.0分)17.((-218.2x+y-z=6,求3x+2y-z的值.四、解答题(本大题共8小题,共83.0分)19.解方程(3x-4)2=9x-12.20.利用换元法解方程x4-x2-6=0.21.某玩具店购进一种儿童玩具,计划每个售价36元,能盈利80%,在销售中出现了滞销,于是先后两次降价,售价降为25元.(1)求这种玩具的进价;(2)求平均每次降价的百分率(精确到0.1%).22.关于x的方程kx2+(k+2)x有两个不相等的实数根;(1)求k的取值范围;(2)是否存在实数k,使方程的两个实数根的倒数和等于0?若存在,求出k的值;若不存在,请说明理由.23.如图,在△ABC中,AB=AC,点P,D分别是BC,AC边上的点,且∠APD=∠B.(1)求证:△ABP∽△PCD;(2)若AB=10,BC=12,当PD∥AB时,求BP的长.24.如图,在正方形ABCD中,E、F分别是边AD、CD上的点,AE=ED,DF,连接EF并延长交BC的延长线于点G.(1)求证:△ABE∽△DEF;(2)若正方形的边长为4,求BG的长.25.如图,AC是▱ABCD的对角线,在AD边上取一点F,连接BF交AC于点E,并延长BF交CD的延长线于点G.(1)若∠ABF=∠ACF,求证:CE2=EF•EG;(2)若DG=DC,BE=6,求EF的长.26.如图,已知矩形OABC,以点O为坐标原点建立平面直角坐标系,其中A(2,0),C(0,3),点P以每秒1个单位的速度从点C出发在射线CO上运动,连接BP,作BE⊥PB交x轴于点E,连接PE交AB于点F,设运动时间为t秒.(1)当t=2时,求点E的坐标;(2)若AB平分∠EBP时,求t的值;(3)在运动的过程中,是否存在以P、O、E为顶点的三角形与△ABE相似.若存在,请求出点P的坐标;若不存在,请说明理由.2018-2019学年九年级(上)第三周周考数学试卷答案和解析【答案】1. B2. D3. B4. D5. D6. B7. C8. A9. B10. B12. -13. 201814. 2或4.517. 解:原式18. k,则x=2k,y=3k,z=4k,∵2x+y-z=6,∴4k+3k-4k=6,解得:k=2,∴x=4,y=6,z=8,则3x+2y-z=12+12-8=16.19. 解:(3x-4)2=9x-12,(3x-4)2-3(x-4)=0,(3x-4)(3x-4-3)=0,3x-4=0,3x-4-3=0,x1x220. 解:设y=x2,则原方程变为:y2-y-6=0.分解因式,得(y-3)(y+2)=0,解得,y1=-2,y2=3,当y=-2时,x2=-2,x2+2=0=0-4×20,此方程无实数解;当y=3时,x2=3,解得x1x2所以原方程的解为x1,x2.21. 解:(1)36÷(1+80%)=20元.故这种玩具的进价为每个20元;(2)设平均每次降价的百分率为x.36(1-x)2=25,解得,x≈16.7%,或x≈183%(不合题意,舍去)故平均每次降价的百分率16.7%.22. 解:(1)由△=[(k+2)]2-4×k0,∴k>-1又∵k≠0,∴k的取值范围是k>-1,且k≠0;(2)不存在符合条件的实数k理由:设方程kx2+(k+2)x的两根分别为x1、x2,由根与系数关系有:x1+x2x1•x2又,=0,解得k=-2,由(1)知,k=-2时,△<0,原方程无实解,∴不存在符合条件的k的值.23. 解:(1)∵AB=AC∴∠ABC=∠ACB∵∠APC=∠ABC+∠BAP∴∠APD+∠DPC=∠ABC+∠BAP且∠APD=∠B∴∠DPC=∠BAP且∠ABC=∠ACB∴△BAP∽△CPD(2)∵△ABP∽△PCD∵PD∥AB∴BP=24. (1)证明:∵ABCD为正方形,∴AD=AB=DC=BC,∠A=∠D=90°,∵AE=ED,∵DF=DC,∴△ABE∽△DEF;(2)解:∵ABCD为正方形,∴ED∥BG,又∵DF=,正方形的边长为4,∴ED=2,CG=6,∴BG=BC+CG=10.25. 解:(1)∵AB∥CG,∴∠ABF=∠G,又∵∠ABF=∠ACF,∴∠ECF=∠G,又∵∠CEF=∠CEG,∴△ECF∽△EGC,CE2=EF•EG;(2)∵平行四边形ABCD中,AB=CD,又∵DG=DC,∴AB=CD=DG,∴AB:CG=1:2,∵AB∥CG,∴EG=12,BG=18,∵AB∥DG,∴BF=BG=9,∴EF=BF-BE=9-6=3.26. 解:(1)当t=2时,PC=2,∵BC=2,∴PC=BC,∴∠PBC=45°,∴∠BAE=90°,∴∠AEB=45°,∴AB=AE=3,∴点E的坐标是(5,0);(2)当AB平分∠EBP时,∠PBF=45°,则∠CBP=∠CPB=45°,∴t=2;(3)存在,∵∠ABE+∠ABP=90°,∠PBC+∠ABP=90°,∴∠ABE=∠PBC,∵∠BAE=∠BCP=90°,∴△BCP∽△BAE,,∵若△POE∽△EAB,=∴t1=t2(舍去),∴P的坐标为(0当点P在y轴的负半轴上时,若△POE∽△EAB若△POE∽△BAE解得t(舍弃)∴P的坐标为(00,【解析】1. 解:由题意,得x+3>0且4-3x≥0,解得-3<x整数有-2,-1,0,1,故选:B.根据被开方数是非负数,分母不能为零,可得答案.本题考查了二次根式有意义的条件,利用被开方数是非负数,分母不能为零得出不等式是解题关键.2. 解:A,则a、b、c、d成比例错误;B==3,则a、c、b、d成比例错误;C a、d、b、c成比例错误;D a、c、d、b成比例正确.故选:D.四条线段成比例及第一条与第二条的比值等于第三条与第四条的比值,据此代入数值即可判断.本题考查了比例线段的定义,四条线段成比例线段时,要一定注意线段的顺序.3. 【分析】此题主要考查了一元二次方程的解,解一元二次方程-因式分解法,三角形三边关系定理以及等腰三角形的性质,注意求出三角形的三边后,要用三边关系定理检验.先将x=2代入x2-2mx+3m=0,求出m=4,则方程即为x2-8x+12=0,利用因式分解法求出方程的根x1=2,x2=6,分两种情况:①当6是腰时,2是底边;②当6是底边时,2是腰进行讨论.注意两种情况都要用三角形三边关系定理进行检验.【解答】解:∵2是关于x的方程x2-2mx+3m=0的一个根,∴22-4m+3m=0,m=4,∴x2-8x+12=0,解得x1=2,x2=6.①当6是腰时,2是底边,此时周长=6+6+2=14;②当6是底边时,2是腰,2+2<6,不能构成三角形.所以它的周长是14.故选B.4. 解:∵,x-2+3-x,x-2≥0,x≥0,∴2≤x≤3,故选:D.x被消去了,即2-x+x+3或x-2-x+3,从而求解.此题主要考查二次根式的性质和化简,计算时要仔细,是一道好题.5. 【分析】本题考查了根与系数的关系以及根的判别式,根据根与系数的关系以及x1+x2=1-x1x2,找出关于m的一元二次方程是解题的关键.根据根与系数的关系结合x1+x2=1-x1x2,即可得出关于m的一元二次方程,解之即可得出m的值,再根据方程有实数根结合根的判别式,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,从而可确定m的值.【解答】解:∵x1,x2是方程x2-2mx+m2-m-1=0的两个根,∴x1+x2=2m,x1•x2=m2-m-1,∵x1+x2=1-x1x2,∴2m=1-(m2-m-1),即m2+m-2=0,解得:m1=-2,m2=1.∵方程x2-2mx+m2-m-1=0有实数根,∴△=(-2m)2-4(m2-m-1)=4m+4≥0,解得:m≥-1,∴m=1.故选D.6. 解:根据题意得:1+x+x(1+x)=49,解得:x=6或x=-8(舍去),则x的值为6.故选:B.根据题意列出方程,求出方程的解即可得到结果.此题考查了一元二次方程的应用,找出题中的等量关系是解决本题的关键.7. 解:由题意知△BCE绕点C顺时转动了90度,∴△BCE≌△DCF,∠ECF=∠DFC=90°,∴CD=BC=5,DF∥CE,∴∠ECD=∠CDF,∵∠EMC=∠DMF,∴△ECM∽△FDM,∴DM:MC=DF:CE,∵DF,∴DM:MC=DF:CE=4:3.故选:C.由题意可得△BCE≌△DCF,从而得到CD=BC,根据相似三角形的判定方法得到△ECM∽△FDM,则勾股定理可求得DF的长,从而可得到DM:MC的值.本题利用了旋转后的图形与原图形全等,及全等三角形的性质,勾股定理,相似三角形的判定和性质求解.8. 解:过点A,B作AC⊥x轴,BD⊥x轴,分别于C,D.设点A的坐标是(m,n),则AC=n,OC=m,∵∠AOB=90°,∴∠AOC+∠BOD=90°,∵∠DBO+∠BOD=90°,∴∠DBO=∠AOC,∵∠BDO=∠ACO=90°,∴△BDO∽△OCA,∵OB=2OA,∴BD=2m,OD=2n,因为点A在反比例函数y mn=1,∵点B在反比例函数y的图象上,B点的坐标是(-2n,2m),∴k=-2n•2m=-4mn=-4.故选:A.要求函数的解析式只要求出B点的坐标就可以,过点A,B作AC⊥x轴,BD⊥x轴,分别于C,D.根据条件得到△ACO∽△ODB,然后用待定系数法即可.本题考查了反比例函数图象上点的坐标特征,相似三角形的判定和性质,求函数的解析式的问题,一般要转化为求点的坐标的问题,求出图象上点的横纵坐标的积就可以求出反比例函数的解析式.9. 解:连接PP′交BC于O,∵若四边形QPCP′为菱形,∴PP′⊥QC,∴∠POQ=90°,∵∠ACB=90°,∴PO∥AC,∵设点Q t秒,∴AP,QB=t,∴QC=6-t,∴CO∵AC=CB=6,∠ACB=90°,∴AB解得:t=2,故选:B.首先连接PP′交BC于O,根据菱形的性质可得PP′⊥CQ,可证出PO∥AC,根据平行再表示出AP、AB、CO的长,代入比例式可以算出t的值.此题主要考查了菱形的性质,勾股定理,平行线分线段成比例,关键是熟记平行线分线段成比例定理的推论:平行于三角形一边的直线截其他两边(或两边的延长线),所得10. 解:①错误.因为当点P与BD中点重合时,CM=0,显然FM≠CM;②正确.连接PC交EF于O.根据对称性可知∠DAP=∠DCP,∵四边形PECF是矩形,∴OF=OC,∴∠OCF=∠OFC,∴∠OFC=∠DAP,∵∠DAP+∠AMD=90°,∴∠GFM+∠AMD=90°,∴∠FGM=90°,∴AH⊥EF.③正确.∵AD∥BH,∴∠DAP=∠H,∵∠DAP=∠PCM,∴∠PCM=∠H,∵∠CPM=∠HPC,∴△CPM∽△HPC,∴PC2=PM•PH,根据对称性可知:PA=PC,∴PA2=PM•PH.④错误.∵四边形PECF是矩形,∴EF=PC,∴当CP⊥BD时,PC的值最小,此时A、P、C共线,∵AC=2,∴PC的最小值为1,∴EF的最小值为1;故选:B.①错误,②正确.想办法证明∠GFM+∠AMD=90°即可;③正确.只要证明△CPM∽△HPC PC2=PM•PH,根据对称性可知:PA=PC,可得PA2=PM•PH;④错误.利用矩形的性质可知EF=PC,当PC⊥BD时,EF的值最小,最小值为1;本题考查正方形的性质、矩形的判定和性质、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.11. 解:∴4(a-b)=3b,∴4a=7b,故答案为:根据两内项之积等于两外项之积列式整理即可得解.本题考查了比例的性质,熟记两内项之积等于两外项之积是解题的关键.12. 解:∵∴y<0,∵xy>0,∴x<0,x故答案为.根据题意可知,y<0,然后对二次根式进行化简,根据xy>0,去绝对值号.本题主要考查二次根式的性质与化简、不等式的性质,关键在于推出x、y的取值范围.13. 解:∵设a,b是方程x2+x-2019=0的两个实数根,∴a+b=-1,a2+a-2019=0,∴a2+a=2019,∴a2+2a+b=(a2+a)+(a+b)=2019+(-1)=2018,故答案为:2018.根据根与系数的关系和一元二次方程的解得出a+b=-1,a2+a-2019=0,变形后代入,即可求出答案.本题考查了根与系数的关系和一元二次方程的解,能求出a+b=-1和a2+a=2019是解此题的关键.14. 解:由题意可知,AB=9,AC=6,AM=3,①若△AMN∽△ABC,=,解得:AN=2;②若△AMN∽△ACB,=,解得:AN=4.5;故AN=2或4.5.故答案为:2或4.5.分别从△AMN∽△ABC或△AMN∽△ACB去分析,根据相似三角形的对应边成比例,即可求得答案.此题考查了相似三角形的性质.此题难度适中,注意掌握分类讨论思想的应用是解此题的关键.15. 解:∵AB∥GH,∵GH∥CD,①+②,得+=,,解得GH根据平行线分线段成比例定理,由AB∥GH GH∥CD两个式子相加,即可求出GH的长.本题考查了平行线分线段成比例定理,熟练运用等式的性质进行计算.本题难度适中.16. 解:依题意得(a+b)2=b(b+a+b),而a=1,∴b2-b-1=0,∴b而b不能为负,∴b故答案为:根据图1可以知道图形是一个正方形,边长为(a+b),图2是一个长方形,长宽分别为(b+a+b)、b,并且它们的面积相等,由此即可列出等式(a+b)2=b(b+a+b),而a=1,代入即可得到关于b的方程,解方程即可求出b.此题主要考查了图形的剪拼,是一个信息题目,首先正确理解题目的意思,然后会根据题目隐含条件找到数量关系,然后利用数量关系列出方程解决问题.17. 先计算二次根式的乘法、去绝对值符合、计算零指数幂,再合并同类二次根式即可得.本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的运算法则、绝对值性质及负整数指数幂.18. k,则x=2k,y=3k,z=4k,代入2x+y-z=6求出k的值,据此可得x,y,z的值,代入计算可得.本题主要考查比例的性质,解答此类题关键是灵活运用设“k”法求解代数式的值.19. 移项后分解移式,即可得出两个一元一次方程,求出方程的解即可.本题考查了解一元二次方程的应用,能把一元二次方程转化成一元一次方程是解此题的关键.20. 先设y=x2,则原方程变形为y2-y-6=0,运用因式分解法解得y1=-2,y2=3,再把y=-2和3分别代入y=x2得到关于x的一元二次方程,然后解两个一元二次方程,最后确定原方程的解.本题考查了换元法解一元二次方程:当所给方程的指数较大,又有倍数关系时,可考虑用换元法降次求解.21. 本题考查理解题意的能力,根据售价和盈利情况求出进价,根据原来的售价和经过两次降价后现在的售价,可求出降价的百分率.(1)根据计划每个售价36元,能盈利80%,可求出进价.(2)设平均每次降价的百分率为x,根据先后两次降价,售价降为25元可列方程求解.22. (1)由于x的方程kx2+(k+2)x有两个不相等的实数根,由此可以得到判别式是正数,这样就可以得到关于k的不等式,解不等式即可求解;(2)不存在符合条件的实数k.设方程kx2+(k+2)x的两根分别为x1、x2,由根与系数关系有:x1+x2x1•x2,然后把前面的等式代入其中即可求k,然后利用(1)即可判定结果此题主要考查了一元二次方程的判别式和根与系数的关系,解题时将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.23. (1)由题意可得∠ABC=∠ACB,∠DPC=∠BAP,可证△ABP∽△PCD;(2))由△ABP∽△PCD PD∥AB BP的长.本题考查了相似三角形的判定与性质,等腰三角形的性质,熟练掌握相似三角形的性质是本题的关键.24. (1)由正方形的性质可得AD=AB=DC=BC,∠A=∠D=90°,然后根据对应边成比例且夹角相等可判定△ABE∽△DEF;(2)由ED∥BG DF可得ED=2,CG=6,进而可得答案.此题主要考查了相似三角形的判定和性质,关键是掌握两个三角形相似也有对应角相等,对应边的比相等.25. (1)依据等量代换得到∠ECF=∠G,依据∠CEF=∠CEG,可得△ECF∽△EGC,进而CE2=EF•EG;(2)依据AB=CD=DG,可得AB:CG=1:2,依据AB∥CG,即可得出EG=12,BG=18,再根据AB∥DG,可得BF=9,进而得到EF=BF-BE=9-6=3.本题主要考查了平行四边形的性质、相似三角形的判定与性质,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,问题(2)的解法不唯一,也可以根据点F是AD的中点,△AEF与△CEB相似,得到EF的长.26. (1)本题需先求出AB=AE,再求出DE=5,即可求出点E的坐标.(2)本题需先求出CP=CB=2,即可求出t的值.(3)本题需先证出△BCP∽△BAE,求出AE,再分两种情形分别求解即可解决问题;本题主要考查了相似三角形的性质与判定,在解题时要根据已知条件再结合图形是解题的关键,这是一道好题.。
2019-2020学年最新重庆市九年级中考模拟(三)数学试题及答案解析

第4题图中考数学模拟试题(本卷共五个大题 满分:150分 考试时间:120分钟)参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标为24()24b ac b a a --,,对称轴公式为2b x a =-.一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号在答题卷中对应的方框涂黑.1.在3,0,2,--个数中,最小的数是( ) A .3- B. 0 C. -2D. 2.下列“QQ 表情”中属于轴对称图形的是( )A B C D3.下列运算正确的是( )A .(1)1a a --=-- B. 326(2)4a a -= C .222()a b a b -=- D. 3252a a a +=4.如图,某同学在课桌上随意将一块三角板的直角叠放在直尺上,则12∠+∠的度数是( )A .45° B. 60° C. 90° D. 180° 5.下列事件中最适合使用普查方式收集数据的是( )A .了解全国每天丢弃的废旧电池数 B. 了解某班同学的身高情况第8题图C .了解一批炮弹的杀伤半径 D. 了解我国农民的人均年收入情况6.如图,已知直线AB 、CD 被EF 所截,GH 交CD 于D ,50EGB BGH ECD ∠=∠∠=︒,,则CDH ∠为( )A .130︒B .150︒C .80︒D .100︒7.二元一次方程组2123x y y x-=-⎧⎨=⎩的解为( )A .1234x y ⎧=⎪⎪⎨⎪=⎪⎩ B. 3213x y ⎧=⎪⎪⎨⎪=⎪⎩ C. 1423x y ⎧=⎪⎪⎨⎪=⎪⎩ D. 1312x y ⎧=⎪⎪⎨⎪=⎪⎩ 8.如图,AB 是O 的直径,O 半径32,弦BC = 1,那么tan CDB ∠的值是( ) A .13B. 4C.D. 39.如图,在梯形ABCD 中,AD ∥BC ,AD = 2,AB = 3,BC = 6,沿AE翻折梯形ABCD ,使点B 落在AD 的延长线上,记为B ',连结B E '交CD于F ,则DF FC的值为( ) A .13 B. 14 C. 15 D. 1610.如图所示,把一个正三角形分成四个全等的三角形,第一次挖去中间一个小三角形,对剩下的三个小三角形再重复以上做法……一直到第六次挖去后剩下的三角形有( )个A .53 B. 531+ C. 63 D. 631+ 第6题图第9题图11.一艘轮船在同一航线上往返于甲、乙两地. 已知轮船在静水中的速度为15km/h ,水流速度为5km/h. 轮船先从甲地顺水航行到乙地,在乙地停留一段时间后,又从乙地逆水航行返回到甲地. 设轮船从甲地出发后所用时间为t (h ),航行的路程为s (km ),则s 与t 的函数图象大致是( )A B C D12.如图,等腰Rt ABC ∆,90ACB ∠=︒,B 、C 均在y 轴的正半轴上,且B 点坐标为(0,,D 为AB 中点,反比例函数k y x =的图象刚好过A 、D 两点,则k 的值为( )A .3B .4 C.D.二、填空题:(本题共6小题,每小题4分,共24分)请把下列各题的正确答案填写在答题卡对应的横线上.13.三峡工程是具有防洪、发电、航运、养殖,供水等巨大综合利用效益的特大水利水电工程,其防洪库容量约为22150000000m 3,这个数用科学记数法表示为 m 3.14.分解因式:39a a -= .15.某天我国7个城市的平均气温分别是5℃,3℃,5℃,22℃,12℃,16℃,28℃. 则这7个城市气温的中位数是 ℃.16.如图,矩形ABCD 中,AD = 4,CD = 1,以AD 为直径作半圆O ,则阴影部分面积为 .第12题图第16题图17.从-1,0,2,3这四个数中,任取两个数作为a ,b ,分别代入一元二次方程220ax bx ++=中,那么所有可能的一元二次方程中有实数解的一元二次方程的概率为 .18.如图,正方形ABCD 中绕B 点逆时针旋转得正方形BPQR ,连接DQ ,延长CP 交DQ 于E ,若,4C E ED ==,则AB= .三、解答题:(本大题共2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤. 19.计算:()201352π-⎛⎫-+--- ⎪⎝⎭20.已知,如图,在Rt ABC ∆中,90C AC ∠=︒=,点D 为BC 边上一点,且BD=2AD ,60ADC ∠=︒. (1)求AB 的长;(2)求tan B ∠.四、解答题:(本大题共个4小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤.21.先化简,再求值:226939393x x x x x x -+-⎛⎫÷-- ⎪-+⎝⎭,其中x 是方程2430x x -+=的解.第18题图22.某中学在不久前结束的体育中考中取得较好成绩,现随机抽取了部分学生的成绩作为一个样本,按A(满分)、B(优秀)、C(良好)、D(及格)四个等级进行统计,并将统计结果制成如下2幅不完整的统计图,请你结合图表所给信息解答下列问题:(1)此次调查共随机抽取了名学生,其中学生成绩的中位数落在等级;(2)将折线统计图在图中补充完整;(3)为了今后中考体育取得更好的成绩,学校决定分别从成绩为满分的男生和女生中各选一名参加“经验座谈会”,若成绩为满分的学生有中4名女生,且满分的男、女生中各有2名体育特长生,请用列表或画树状图的方法求出所选的两名学生刚好都不是体育特长生的概率.23.某蔬菜店第一次用800元购进某种蔬菜,由于销售状况良好,该店又用了1400元第二次购进该品种蔬菜,所购数量是第一次购进数量的2倍,但进货价每千克少了0.5元.(1)第一次所购该蔬菜的进货价是每千克多少元?(2)蔬菜店在销售中,如果两次售价均相同,第一次购进的蔬菜有3%的损耗,第二次购进的蔬菜有5%的损耗,若该蔬菜店售完这些蔬菜获利不低于1244元,则该蔬菜每千克售价至少为多少元?24.如图,ABC ∆中,,90CA CB ACB =∠=︒,D 为ABC ∆外一点,且AD BD ⊥,BD 交AC 于E ,G 为BC 上一点,且BCG DCA ∠=∠,过G 点作GH CG ⊥交CB 于H.(1)求证:CD = CG ;(2)若AD = CG ,求证AB AC BH =+.25.如图,在平面直角坐标系中,直线12y x b =+与抛物线211322y x x =--+交于A 、B 两点,且点A 在x 轴上,点B 的横坐标为4-,点P 为直线AB 上方的抛物线上一动点(不与点A 、B 重合),过点P 作x 轴的垂线交直线AB 于点Q ,作PH AB ⊥于H.(1)求b 的值及sin PQH ∠的值;(2)设点P 的横坐标为t ,用含t 的代数式表示点P 到直线AB 的距离PH 的长,并求出PH 之长的最大值以及此时t 的值;(3)连接PB ,若线段PQ 把PBH ∆分成的PQB ∆与PQH ∆的面积相等,求此时点P 的坐标.26.如图,已知平行四边形ABCD ,,2,AD BD AD BD AD ⊥==过D 点作DE AB⊥于E ,以DE 为直角边作等腰直角三角形DEF ,点F 落在DC 上,将DEF ∆在同一平面内沿直线DC 翻折,所得的等腰直角三角形记为PQR ∆,点R 与D 重合,点Q 与F 重合,如图①所示,平行四边形ABCD 保持不动,将PQR ∆沿折线D B C --匀速平移,点R 的移动的速度为位,设运动时间为t ,当R 与C 重合时停止运动.(1)当点Q 落在BC 边上时,求t 的值;(2)记PQR ∆与DBC ∆的重叠部分的面积为S ,直接写出S 与t 之间的函数关系式,并写出相应的t 的取值范围;(3)当PQR ∆平移动到R 与B 重合时,如图②所示,再将PQR ∆绕R 点沿顺时针方向旋转α(0360α︒≤≤︒),得到11PQ R ∆,若直线11PQ 与直线BC 、直线DC 分别相交于M 、N , 问在旋转的过程中是否存在CMN ∆为直角三角形,若存在,求出CN 的长;若不存在,请说明理由.。
湖南省长沙市麓共体联考2024-2025学年九年级上学期9月月考数学试题

湖南省长沙市麓共体联考2024-2025学年九年级上学期9月月考数学试题一、单选题1.如图各交通标志中,不是中心对称图形的是( )A .B .C .D . 2.地球上的陆地面积约为2149000000km ,将149000000用科学记数法表示为( ) A .14.9×710 B .1.49×810 C .1.49×910 D .0.149×910 3.下列计算正确的是( )A .235x x x ?B .()336x x =C .()211x x x +=+D .()222141a a -=- 4.下面是2024年丽江市某周发布的最高温度:16℃,19℃,22℃,24℃,26℃,24℃,23℃.关于这组数据,下列说法正确的是( )A .中位数是24B .众数是24C .平均数是20D .方差是95.不等式组10215x x -≥⎧⎨->-⎩的解集,在数轴上表示正确的是( ) A . B .C .D .6.如图,已知AB 是☉O 的直径,D,C 是劣弧EB 的三等分点,∠BOC=40°,那么∠AOE= ( )A .40°B .60°C .80°D .120°7.关于函数21y x =-+,下列结论正确的是 ( )A .图象必经过点(﹣2,1)B .图象经过第一、二、三象限C .图象与直线y =-2x +3平行D .y 随x 的增大而增大8.如图,直线//AB CD ,直线EF 分别与AB ,CD 交于点E ,F ,EG 平分BEF ∠,交CD 于点G ,若170=︒∠,则2∠的度数是( )A .60°B .55°C .50°D .45°9.函数21y ax =+和y ax a =+(a 为常数,且0a ≠),在同一平面直角坐标系中的大致图象可能是( )A .B .C .D .10.如图,已知直线PA 交O e 于A ,B 两点,AE 是O e 的直径,点C 为O e 上一点,且AC 平分PAE ∠,过C 作CD PA ⊥,垂足为D ,且6DC DA +=,O e 的直径为10,则AB 的长等于( )A .4B .5C .6D .8二、填空题11.因式分解:2a ab -=.12.将直线2y x =向下平移3个单位得到的直线为.13.已知二次函数()20y ax bx c a =++≠的图象如图所示,则不等式20ax bx c ++>的解集是.14.石拱桥的主桥拱是圆弧形.如图,一石拱桥的跨度16m AB =,拱高4m CD =,那么桥拱所在圆的半径OA =m .15.已知关于x 的方程x 2﹣kx ﹣6=0的一个根为x=3,则实数k 的值为.16.如图,四边形ABCD 内接于⊙O ,四边形ABCD 的外角∠CDM =70°,则∠AOC 的度数为.三、解答题17.计算:101120242-⎛⎫+ ⎪⎝⎭. 18.先化简,再求值:()()()()22121153y y y y y +---+-,其中2y =-. 19.如图所示,每个小正方形的边长为1个单位长度,OAB △的顶点均在格点上,点A 、B 的坐标分别是(3,2)A 、()1,3B .(1)点A 关于点O 中心对称的点的坐标为 ;(2)OAB △绕点O 顺时针旋转90︒后得到△11AOB ,在图中画出△11AOB ,并写出点1B 的坐标: .20.如图,D 是等边三角形ABC 内一点,将线段AD 绕点A 顺时针旋转60︒,得到线段AE ,连接CD ,BE .(1)求证:EB DC =;(2)连接DE ,若125ADC ∠=︒,求BED ∠的度数.21.如图,在O e 中,直径AB 与弦CD 相交于点P ,45CAB ∠=︒,75APD ∠=︒.(1)求B ∠的大小;(2)若2AC =,求AD 的长.22.如图,已知抛物线的顶点坐标为91,4⎛⎫-- ⎪⎝⎭,与y 轴交于点()0,2E -,与x 轴交于B ,C 两点.(1)求抛物线的解析式,并求出B ,C 两点的坐标;(2)在抛物线的对称轴上找一点H ,使CH EH +的值最小,求出点H 的坐标.23.为了迎接中秋节的到来,河西某商场计划购进一批甲、乙两种月饼,已知一盒甲种月饼的进价与一盒乙种月饼的进价的和为180元,用4000元购进甲种月饼的盒数与用5000元购进乙种月饼的盒数相同.(1)求每盒甲种、乙种月饼的进价分别是多少元;(2)商场用不超过4600元的资金购进甲、乙两种月饼共50盒,其中甲种月饼的盒数不超过乙种月饼的盒数,甲种月饼售价190元,乙种月饼售价200元,为了回馈顾客,每卖一盒甲种月饼就返利顾客m 元()1012m <<,当月饼售完后,要使利润最大,对甲种、乙种月饼应该怎样进货?24.定义:如果两个正方形满足,一个正方形的边长与另一个正方形的对角线长相等,那么称这两个正方形互为“完美嵌套”.(1)若两个互为“完美嵌套”正方形的边长分别为a ,b ,则a ,b 满足的关系式为:______;(2)如图1,正方形ABCD 和正方形AEFG 互为“完美嵌套”,边AE 在边AB 上,且12AB =,将正方形AEFG 绕点A 逆时针旋转()045a α︒≤≤︒.①在旋转的过程中,当120BEA ∠=︒时,试求BE 的长;②BE 的延长线交直线DG 于点Q ,当正方形AEFG 由图1绕点A 逆时针旋转45°,请求出在旋转过程中四边形BDQA 面积的最大值.25.二次函数()20y ax bx c a =++≠的图象与x 轴分别交于点()1,0A -,()3,0B ,与y 轴交于点C 0,−3 .(1)求二次函数的解析式;(2)如图1,点E 位于第四象限内的抛物线上一点,过点E 作EF y ∥轴,交x 轴于点F ,点H 在线段EF 上(不与E ,F 重合),连接BH .①若BH HE =,:3:4BF HF =,求点E 的坐标;②如图2,若点E 横坐标为2,延长BH 交抛物线于点N ,连接AH 并延长交抛物线于点M ,连接AN ,BM ,BHM △的面积为1S ,ANH △的面积为2S ,求12:S S 的值.。
2019-2020年九年级上学期第三次阶段考试数学试题

2019-2020年九年级上学期第三次阶段考试数学试题九年级数学试题一.选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题纸相应位置上 )1.—2的倒数是 ( ▲ )A .B .-C .2D .-2 2.的算术平方根是( ▲ )A .6B .C .D . 3.二次函数顶点坐标是( ▲ )A .(-1,8)B .(1,8)C .(-1,2)D .(1,-4) 4.在平面直角坐标系中,抛物线的图象与轴的交点的个数是( ▲ ) A .3 B .2 C .1 D .05.甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好是9.4环,方差分别是=0.90,=1.22,=0.43,=1.68,在本次射击测试中,成绩最稳定的是( ▲ ) A .甲 B .乙 C .丙 D .丁6.如图,AB 是⊙O 的弦,OD ⊥AB 于D ,交⊙O 于E ,则下列说法错误的是( ▲ ) A .AD=BD B .∠ACB=∠AOE C .弧AE=弧BE D .OD=DE7.在同一时刻,身高1.6m 的小强在阳光下的影长为0.8m ,一棵大树的影长为4.8m ,则树的高度为 ( ▲ ) A .4.8m B .6.4m C .9.6m D .10m8.如图,在△ABC 中,点D 、E 分别在边AB,AC 上,DE ∥BC 若AD:AB=3:4,AE=6则AC 为 ( ▲ )A .3B .8C .6D .4二、填空题(本大题共10小题,每题3分,共30分) 9.一元二次方程的解为______▲_______10.已知分式的值为0,那么的值为_____▲________11.若反比例函数的经过点(-2,-1),则此函数的位于第_______▲______象限。
12.如图,AB ∥CD ,AE 交CD 于点C ,DE ⊥AE ,垂足为E ,∠A =37°,∠D= ▲ . 13.如果将抛物线向右平移2个单位,再向上平移3个单位,那么平移后的抛物线的表达式是______▲_______ 14.从标有1到9序号的9张卡片中任意抽取一张,抽到的序号是3的倍数的概率是_______▲______15.分解因式:_____▲________;E A第6题 A C B 第12题第8题16.△ABC 中,∠A 、∠B 都是锐角,若sinA =,cosB =,则∠C = ▲ . 17.若点P(m,n)在一次函数的上,则 = ▲ .18.如图,AB,AC 与⊙O 相切于点B,C ,∠A=500, 点P 是圆上异于B,C 的一动点, 则∠BPC 的度数是______▲_______ 三、解答题(共96分)19.(6111()4cos 45222--︒-÷20.(8分)先化简再求值:x 取你喜欢的值。
2019-2020年九年级(下)周考数学试卷(3)(解析版)

2019-2020年九年级(下)周考数学试卷(3)(解析版)一、填空题:(每题4分,共44分)1.二次函数y=2x2﹣2x+6的最小值是.2.满足(x2+x﹣1)x+3=1的所有x的个数有个.3.若二次函数y=(x﹣m)2﹣1,当x<1时,y随x的增大而减小,则m的取值范围是.4.若抛物线y=x2+bx+c与x轴只有一个交点,且过点A(m,n),B(m+6,n),则n=.5.若关于x的一元二次方程x2﹣2x﹣m=0的两根为a,b,且满足(a2﹣a+1)(2b2﹣4b﹣1)=,则m=.6.已知关于x的方程x2﹣mx+2m﹣1=0的两个实数根的平方和为7,那么m的值是.7.如图,在梯形ABCD中,AD∥BC,AD=1,BC=2,若△AOD、△AOB、△BOC的面积分别为S1、S2、S3,则S1:S2:S3=.8.在Rt△ABC中,∠C=90°,,把这个直角三角形绕顶点C旋转后得到Rt△A′B′C,其中点B′正好落在AB上,A′B′与AC相交于点D,那么=.9.二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的对称轴是直线x=1,其图象的一部分如图所示.对于下列说法:①abc<0;②a﹣b+c<0;③3a+c<0;④当﹣1<x<3时,y>0.其中正确的是(把正确的序号都填上).10.如图,在△ABC中,AB=2,AC=4,将△ABC绕点C按逆时针方向旋转得到△A′B′C,使CB′∥AB,分别延长AB、CA′相交于点D,则线段BD的长为.11.如图,在Rt△ABC中,∠ACB=90°,AC=BC=6,E、F是BC的三等分点,过点C、E、F分别作AB的垂线,垂足分别为D、G、H,连接AE、AF,分别交CD、EG于M、N,记△CME的面积为S1,△ENF的面积为S2,△FHB的面积为S3,则的值是.二.计算题(每题4分,共8分)12.计算:①(﹣)﹣2﹣tan30°+|1﹣|﹣(π﹣3.14)0②(2+3)2011(2﹣3)xx﹣4﹣.三、解答题:(每题12分,共48分)13.已知二次函数y=mx2+nx+p图象的顶点横坐标是2,与x轴交于A(x1,0)、B(x2,0),x1<0<x2,与y轴交于点C,O为坐标原点,tan∠CAO﹣tan∠CBO=1.(1)求证:n+4m=0;(2)求m、n的值;(3)当p>0且二次函数图象与直线y=x+3仅有一个交点时,求二次函数的最大值.14.某校学生小丽、小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作,已知该水果进价为8元/千克,下面是他们在活动结束后的对话.小丽:如果以10元/千克的价格销售,那么每天可售出300千克.小强:如果以13元/千克的价格销售,那么每天可获取利润750元.小红:通过调查验证,我发现每天销售量y(千克)与销售单价x(元)之间存在一次函数关系.(1)求y(千克)与x(元)(x>0)的函数关系式.(2)当销售价格为何值时,该超市销售这种水果每天获得利润达到800元?(3)一段时间后,发现这种水果每天的销售量均不低于225千克,则此时该超市销售这种水果每天获得利润最多是多少元?15.在△ABC中,AC=25,AB=35,,点D为边AC上一点,且AD=5,点E、F分别为边AB上的动点(点F在点E的左边),且∠EDF=∠A.设AE=x,AF=y.(1)如图1,当DF⊥AB时,求AE的长;(2)如图2,当点E、F在边AB上时,求y关于x的函数关系式,并写出函数的定义域;(3)联结CE,当△DEC和△ADF相似时,求x的值.16.如图,已知抛物线y=x2+bx+c经过A(﹣1,0)、B(4,5)两点,过点B作BC⊥x轴,垂足为C.(1)求抛物线的解析式;(2)求tan∠ABO的值;(3)点M是抛物线上的一个点,直线MN平行于y轴交直线AB于N,如果以M、N、B、C为顶点的四边形是平行四边形,求出点M的横坐标.xx学年四川省乐山市峨眉山市博睿特外国语学校九年级(下)周考数学试卷(3)参考答案与试题解析一、填空题:(每题4分,共44分)1.二次函数y=2x2﹣2x+6的最小值是.【考点】二次函数的最值.【分析】利用配方法将原函数关系式化为顶点式,即可求出二次函数的最小值.【解答】解:y=2x2﹣2x+6=2(x2﹣x)+6=2(x﹣)2+,可见,二次函数的最小值为.故答案为.2.满足(x2+x﹣1)x+3=1的所有x的个数有4个.【考点】零指数幂;解一元二次方程-因式分解法.【分析】由于任何非0数的0次幂等于1和1的任何次幂为1,﹣1的偶次幂为1,所以分三种情况讨论.【解答】解:当x2+x﹣1=﹣1,x+3为偶数时,x=﹣1或0(不能使结果为1,舍去);当x+3=0,x2+x﹣1≠0时,x=﹣3;当x2+x﹣1=1时,x=﹣2或1.∴所有x的个数有4个.3.若二次函数y=(x﹣m)2﹣1,当x<1时,y随x的增大而减小,则m的取值范围是m ≥1.【考点】二次函数的性质.【分析】先利用二次函数的性质求出抛物线的对称轴为直线x=m,则当x<m时,y的值随x值的增大而减小,由于x<1时,y的值随x值的增大而减小,于是得到m≥1.【解答】解:抛物线的对称轴为直线x=m,∵a=1>0,∴抛物线开口向上,∴当x<m时,y的值随x值的增大而减小,而x<1时,y的值随x值的增大而减小,∴m≥1,故答案为:m≥1.4.若抛物线y=x2+bx+c与x轴只有一个交点,且过点A(m,n),B(m+6,n),则n=9.【考点】抛物线与x轴的交点.【分析】首先,由“抛物线y=x2+bx+c与x轴只有一个交点”推知x=﹣时,y=0.且b2﹣4c=0,即b2=4c;其次,根据抛物线对称轴的定义知点A、B关于对称轴对称,则A(﹣﹣3,n),B(﹣+3,n);最后,根据二次函数图象上点的坐标特征知n=(﹣﹣3)2+b(﹣﹣3)+c=﹣b2+c+9,所以把b2=4c代入即可求得n的值.【解答】解:∵抛物线y=x2+bx+c与x轴只有一个交点,∴当x=﹣时,y=0.且b2﹣4c=0,即b2=4c.又∵点A(m,n),B(m+6,n),∴点A、B关于直线x=﹣对称,∴A(﹣﹣3,n),B(﹣+3,n)将A点坐标代入抛物线解析式,得:n=(﹣﹣3)2+b(﹣﹣3)+c=﹣b2+c+9∵b2=4c,∴n=﹣×4c+c+9=9.故答案是:9.5.若关于x的一元二次方程x2﹣2x﹣m=0的两根为a,b,且满足(a2﹣a+1)(2b2﹣4b﹣1)=,则m=1.【考点】根与系数的关系;一元二次方程的解.【分析】关于x的一元二次方程x2﹣2x﹣m=0的两根为a,b得到a2﹣2a=m,b2﹣2b=m,从而得到a2﹣a=,2b2﹣4b=2m,代入已知等式求解m的值即可.【解答】解:∵关于x的一元二次方程x2﹣2x﹣m=0的两根为a,b,∴a2﹣2a=m,b2﹣2b=m,∴a2﹣a=,2b2﹣4b=2m,∵(a2﹣a+1)(2b2﹣4b﹣1)=,∴(+1)(2m﹣1)=,解得:m=1或﹣(舍).故答案为:1.6.已知关于x的方程x2﹣mx+2m﹣1=0的两个实数根的平方和为7,那么m的值是﹣1.【考点】根与系数的关系.【分析】因为方程x2﹣mx+2m﹣1=0有两实根,所以△≥0;然后把两实根的平方和变形为两根之积或两根之和的形式.根据这两种情况确定m的取值范围.【解答】解:∵方程x2﹣mx+2m﹣1=0有两实根,∴△≥0;即(﹣m)2﹣4(2m﹣1)=m2﹣8m+4≥0,解得m≥4+2或m≤4﹣2.设原方程的两根为α、β,则α+β=m,αβ=2m﹣1.α2+β2=α2+β2+2αβ﹣2αβ=(α+β)2﹣2αβ=m2﹣2(2m﹣1)=m2﹣4m+2=7.即m2﹣4m﹣5=0.解得m=﹣1或m=5∵m=5≤4+2,∴m=5(舍去)∴m=﹣1.故答案为:﹣1.7.如图,在梯形ABCD中,AD∥BC,AD=1,BC=2,若△AOD、△AOB、△BOC的面积分别为S1、S2、S3,则S1:S2:S3=1:2:4.【考点】相似三角形的判定与性质.【分析】根据AD∥BC得到:△AOD∽△COB,可得相似三角形相似比,再利用同高的三角形面积比等于底边比,可求面积比.【解答】解:∵AD∥BC∴△AOD∽△COB∴OA:OC=AD:BC=OD:OB=1:2∴S1:S2=OD:OB=1:2同理,S2:S3=OA:OC=1:2,∴S1:S2:S3=1:2:4,故答案为:1:2:4.8.在Rt△ABC中,∠C=90°,,把这个直角三角形绕顶点C旋转后得到Rt△A′B′C,其中点B′正好落在AB上,A′B′与AC相交于点D,那么=.【考点】旋转的性质.【分析】作CH⊥AB于H,先在Rt△ABC中,根据余弦的定义得到cosB==,设BC=3x,则AB=5x,再根据勾股定理计算出AC=4x,在Rt△HBC中,根据余弦的定义可计算出BH=x,接着根据旋转的性质得CA′=CA=4x,CB′=CB,∠A′=∠A,所以根据等腰三角形的性质有B′H=BH=x,则AB′=x,然后证明△ADB′∽△A′DC,再利用相似比可计算出B′D与DC的比值.【解答】解:作CH⊥AB于H,如图,在Rt△ABC中,∠C=90°,cosB==,设BC=3x,则AB=5x,AC==4x,在Rt△HBC中,cosB==,而BC=3x,∴BH=x,∵Rt△ABC绕顶点C旋转后得到Rt△A′B′C,其中点B′正好落在AB上,∴CA′=CA=4x,CB′=CB,∠A′=∠A,∵CH⊥BB′,∴B′H=BH=x,∴AB′=AB﹣B′H﹣BH=x,∵∠ADB′=∠A′DC,∠A′=∠A,∴△ADB′∽△A′DC,∴=,即=,∴=.故答案为.9.二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的对称轴是直线x=1,其图象的一部分如图所示.对于下列说法:①abc<0;②a﹣b+c<0;③3a+c<0;④当﹣1<x<3时,y>0.其中正确的是①②③(把正确的序号都填上).【考点】二次函数图象与系数的关系.【分析】首先根据二次函数图象开口方向可得a<0,根据图象与y轴交点可得c>0,再根据二次函数的对称轴x=﹣=1,结合a的取值可判定出b>0,根据a、b、c的正负即可判断出①的正误;把x=﹣1代入函数关系式y=ax2+bx+c中得y=a﹣b+c,再结合图象判断出②的正误;把b=﹣2a代入a﹣b+c中即可判断出③的正误;利用图象可以直接看出④的正误.【解答】解:根据图象可得:a<0,c>0,对称轴:x=﹣=1,=﹣1,b=﹣2a,∵a<0,∴b>0,∴abc<0,故①正确;把x=﹣1代入函数关系式y=ax2+bx+c中得:y=a﹣b+c,由图象可以看出当x=﹣1时,y<0,∴a﹣b+c<0,故②正确;∵b=﹣2a,∴a﹣(﹣2a)+c<0,即:3a+c<0,故③正确;由图形可以直接看出④错误.故答案为:①②③.10.如图,在△ABC中,AB=2,AC=4,将△ABC绕点C按逆时针方向旋转得到△A′B′C,使CB′∥AB,分别延长AB、CA′相交于点D,则线段BD的长为6.【考点】旋转的性质;相似三角形的判定与性质.【分析】利用平行线的性质以及旋转的性质得出△CAD∽△B′A′C,再利用相似三角形的性质得出AD的长,进而得出BD的长.【解答】解:∵将△ABC绕点C按逆时针方向旋转得到△A′B′C,∴AC=CA′=4,AB=B′A′=2,∠A=∠CA′B′,∵CB′∥AB,∴∠B′CA′=∠D,∴△CAD∽△B′A′C,∴=,∴=,解得AD=8,∴BD=AD﹣AB=8﹣2=6.故答案为:6.11.如图,在Rt△ABC中,∠ACB=90°,AC=BC=6,E、F是BC的三等分点,过点C、E、F分别作AB的垂线,垂足分别为D、G、H,连接AE、AF,分别交CD、EG于M、N,记△CME的面积为S1,△ENF的面积为S2,△FHB的面积为S3,则的值是.【考点】相似三角形的判定与性质.【分析】根据题意可以求出CD、EG、FH的长,△FHB是等腰直角三角形,面积容易得到,△CME与△ENF中EN,CM边上的高都等于BH的长.根据相似三角形的性质就可以求出EN、CM的长.就可以求出两个三角形的面积.【解答】解:BF=EF=CE=2,△BFH是等腰直角三角形,因而BH=2×=,S3=1,根据CD∥EG∥FH,BF=EF=CE,则△CME与△ENF中,EN、CM边上的高都等于BH=,△BCD是等腰直角三角形,因而CD=6×=3,根据==,因而EG=CD=2,=,则MD=EG=,则CM=,△CME的面积S1=×CM×=,同理S2=,因而的值是.二.计算题(每题4分,共8分)12.计算:①(﹣)﹣2﹣tan30°+|1﹣|﹣(π﹣3.14)0②(2+3)2011(2﹣3)xx﹣4﹣.【考点】二次根式的混合运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】①根据负整数指数幂、特殊角的三角函数值、绝对值和零指数幂分别进行计算即可得出答案;②根据平方差公式和二次根式的性质对要求的式子进行化简,然后合并即可得出答案.【解答】解:①原式=4﹣+﹣1﹣1=2+;②原式=3﹣2﹣﹣(﹣1)=3﹣2﹣﹣+1=4﹣4.三、解答题:(每题12分,共48分)13.已知二次函数y=mx2+nx+p图象的顶点横坐标是2,与x轴交于A(x1,0)、B(x2,0),x1<0<x2,与y轴交于点C,O为坐标原点,tan∠CAO﹣tan∠CBO=1.(1)求证:n+4m=0;(2)求m、n的值;(3)当p>0且二次函数图象与直线y=x+3仅有一个交点时,求二次函数的最大值.【考点】二次函数综合题.【分析】(1)由题意可知抛物线的对称轴为x=2,利用对称轴公式x=,易证n+4m=0;(2)本问利用三角函数定义和抛物线与x轴交点坐标性质求解.特别需要注意的是抛物线的开口方向未定,所以所求m、n的值将有两组,不能遗漏;(3)本问利用一元二次方程的判别式等于0求解.当p>0时,m、n的值随之确定;将抛物线的解析式与直线的解析式联立,得到一个一元二次方程;由交点唯一可知,此一元二次方程的判别式等于0,据此求出p的值,从而确定了抛物线的解析式;最后由抛物线的解析式确定其最大值.【解答】(1)证明:∵二次函数y=mx2+nx+p图象的顶点横坐标是2,∴抛物线的对称轴为x=2,即=2,化简得:n+4m=0.(2)解:∵二次函数y=mx2+nx+p与x轴交于A(x1,0)、B(x2,0),x1<0<x2,∴OA=﹣x1,OB=x2;x1+x2=,x1•x2=;令x=0,得y=p,∴C(0,p),∴OC=|p|.由三角函数定义得:tan∠CAO===,tan∠CBO==.∵tan∠CAO﹣tan∠CBO=1,即﹣=1,化简得:=﹣,将x1+x2=,x1•x2=代入得:=﹣,化简得:n==±1.由(1)知n+4m=0,∴当n=1时,m=;当n=﹣1时,m=.∴m、n的值为:m=,n=﹣1(此时抛物线开口向上)或m=,n=1(此时抛物线开口向下).(3)解:由(2)知,当p>0时,n=1,m=,∴抛物线解析式为:y=x2+x+p.联立抛物线y=x2+x+p与直线y=x+3解析式得到:x2+x+p=x+3,化简得:x2﹣4(p﹣3)=0 ①.∵二次函数图象与直线y=x+3仅有一个交点,∴一元二次方程①的判别式等于0,即△=02+16(p﹣3)=0,解得p=3.∴抛物线解析式为:y=x2+x+p=y=x2+x+3=(x﹣2)2+4,当x=2时,二次函数有最大值,最大值为4.∴当p>0且二次函数图象与直线y=x+3仅有一个交点时,二次函数的最大值为4.14.某校学生小丽、小强和小红到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作,已知该水果进价为8元/千克,下面是他们在活动结束后的对话.小丽:如果以10元/千克的价格销售,那么每天可售出300千克.小强:如果以13元/千克的价格销售,那么每天可获取利润750元.小红:通过调查验证,我发现每天销售量y(千克)与销售单价x(元)之间存在一次函数关系.(1)求y(千克)与x(元)(x>0)的函数关系式.(2)当销售价格为何值时,该超市销售这种水果每天获得利润达到800元?(3)一段时间后,发现这种水果每天的销售量均不低于225千克,则此时该超市销售这种水果每天获得利润最多是多少元?【考点】二次函数的应用.【分析】(1)以10元/千克的价格销售,那么每天可售出300千克;以13元/千克的价格销售,那么每天可获取利润750元.就相当于直线过点(10,300),(13,150),然后列方程组解答即可.(2)根据利润=销售量×(销售单价﹣进价)写出解析式,W=(﹣50x+800)(x﹣8)=800求出即可;(3)由二次函数的性质以及利用配方法求最大值,自变量的取值范围解答这一问题.【解答】解:(1)当销售单价为13元/千克时,销售量为:=150千克设y与x的函数关系式为:y=kx+b(k≠0)把(10,300),(13,150)分别代入得:,解得,故y与x的函数关系式为:y=﹣50x+800(x>0)(2)设每天水果的利润w元,∵利润=销售量×(销售单价﹣进价)∴W=(﹣50x+800)(x﹣8)=8000=﹣50(x﹣12)2解得:x1=x2=12.∴当销售单价为12元时,每天可获得的利润是800元.(3)W=(﹣50x+800)(x﹣8)=﹣50x2+1200x﹣6400=﹣50(x﹣12)2+800又∵水果每天的销售量均低于225kg,水果的进价为8元/千克,∴﹣50x+800≤225,∴x≥11.5,=800(元).∴当x=12时,W最大答:此时该超市销售这种水果每天获取的利润最大是800元.15.在△ABC中,AC=25,AB=35,,点D为边AC上一点,且AD=5,点E、F分别为边AB上的动点(点F在点E的左边),且∠EDF=∠A.设AE=x,AF=y.(1)如图1,当DF⊥AB时,求AE的长;(2)如图2,当点E、F在边AB上时,求y关于x的函数关系式,并写出函数的定义域;(3)联结CE,当△DEC和△ADF相似时,求x的值.【考点】相似形综合题.【分析】(1)先根据DF⊥AB,∠EDF=∠A,得出∠ADE=90°,再根据AD=5,tanA=,即可求出AE;(2)过点D作DG⊥AB,交AB于G,先证出△EDF∽△EAD,得出ED2=AE•EF,再求出DG、AG,最后根据EG=x﹣3,DE2=42+(x﹣3)2得出42+(x﹣3)2=x•(x﹣y),再进行整理即可;(3)先证出∠AFD=∠EDC,再分两种情况讨论:①当∠A=∠CED时,得出=,=,再把y=6﹣代入得出5(6﹣)=x,再解方程即可;②当∠A=∠DCE时,根据△ECD∽△DAF得出=,=,再把y=6﹣代入得出5(6﹣)=x,求出方程的解即可.【解答】解:(1)∵DF⊥AB,∴∠AFD=90°,∴∠A+∠ADF=90°∵∠EDF=∠A,∴∠EDF+∠ADF=90°,即∠ADE=90°,在Rt△ADE中,∠ADE=90°,AD=5,tanA=,∴DE=,∴AE=,(2)过点D作DG⊥AB,交AB于G,∵∠EDF=∠EAD,∠DEF=∠AED,∴△EDF∽△EAD,∴,∴ED2=AE•EF,∴RT△AGD中,∠AGD=90°,AD=5,tanA=,∴DG=4,AG=3,∴EG=x﹣3,∴DE2=42+(x﹣3)2,∴42+(x﹣3)2=x•(x﹣y),∴y=6﹣(≤x≤35);(3)∵∠A+∠AFD=∠EDF+∠EDC,且∠EDF=∠A,∴∠AFD=∠EDC,①当∠A=∠CED时,∵∠EDF=∠A,又∵∠CED=∠FDE,∴DF∥CE∴=,∴=,∵y=6﹣,∴5(6﹣)=x,x1=25,x2=5;②当∠A=∠DCE时,∵∠EDF=∠A,∴△ECD∽△DAF∴=,∴=,∵y=6﹣,∴5(6﹣)=x,∴x=,∴当△DEC和△ADF相似时,x=25或x=5或x=.16.如图,已知抛物线y=x2+bx+c经过A(﹣1,0)、B(4,5)两点,过点B作BC⊥x轴,垂足为C.(1)求抛物线的解析式;(2)求tan∠ABO的值;(3)点M是抛物线上的一个点,直线MN平行于y轴交直线AB于N,如果以M、N、B、C为顶点的四边形是平行四边形,求出点M的横坐标.【考点】二次函数综合题.【分析】(1)将A(﹣1,0)、B(4,5)分别代入y=x2+bx+c求出b和c的值即可;(2)过点O作OH⊥AB,垂足为H,根据勾股定理可求出AB的长,进而得到:在Rt△BOH 中,tan∠ABO==×=.(3)设点M的坐标为(x,x2﹣2x﹣3),点N的坐标为(x,x+1),在分两种情况:当点M 在点N的上方时和当点M在点N的下方时,则四边形NMCB是平行四边形讨论求出符合题意的点M的横坐标即可.【解答】解:(1)将A(﹣1,0)、B(4,5)分别代入y=x2+bx+c,得,解得b=﹣2,c=﹣3.∴抛物线的解析式:y=x2﹣2x﹣3.(2)在Rt△BOC中,OC=4,BC=5.在Rt△ACB中,AC=AO+OC=1+4=5,∴AC=BC.∴∠BAC=45°,AB==5.如图1,过点O作OH⊥AB,垂足为H.在Rt△AOH中,OA=1,∴AH=OH=OA×sin45°=1×=,∴BH=AB﹣AH=5﹣=,在Rt△BOH中,tan∠ABO==×=.(3)直线AB的解析式为:y=x+1.设点M的坐标为(x,x2﹣2x﹣3),点N的坐标为(x,x+1),①如图2,当点M在点N的上方时,则四边形MNCB是平行四边形,MN=BC=5.由MN=(x2﹣2x﹣3)﹣(x+1)=x2﹣2x﹣3﹣x﹣1=x2﹣3x﹣4,解方程x2﹣3x﹣4=5,得x=或x=.②如图3,当点M在点N的下方时,则四边形NMCB是平行四边形,NM=BC=5.由MN=(x+1)﹣(x2﹣2x﹣3)=x+1﹣x2+2x+3=﹣x2+3x+4,解方程﹣x2+3x+4=5,得x=或x=.所以符合题意的点M有4个,其横坐标分别为:,,,.xx年8月6日。
2019-2020年九年级第三次联考数学试题

2019-2020年九年级第三次联考数学试题说明:1、本试卷共4页,25小题,满分120分,考试时间100分钟.2、 答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的姓名、考生号等,用2B 铅笔把对应号码的标号涂黑.3、选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂 黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上.4、非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.5、考生务必保持答题卡整洁.考试结束时,将答题卡交回,试卷自己保留.一、选择题(本大题10小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.23-的值是( )A .6B .6-C .9D .9- 2)A. B... 3.一元二次方程0422=-+x x 的根的情况为( ).A. 没有实数根B. 有两个相等的实数根C. 有两个不相等的实数根D. 无法确定 4.二次函数2(0)yax bxc a =++≠的图象如图所示,则下列说法不正确的是( )A .240b ac ->B .0a >C .0c >D .02ba-< 5.数轴上有A ,B ,C ,D 四个点,其中绝对值相等的点是( ) A.点A 与点D B. 点A 与点CC. 点B 与点CD. 点B 与点D 6.下列计算正确的是( ) A .()623a a -=- B .222)(b a b a -=- C .235325a a a += D .336a a a =÷ 7.不等式组⎩⎨⎧≥-<1202x x 的解集在数轴上表示为( )A. B . C . D .8.我校举行了“建设宜居中山,关注环境保护”的知识竞赛,某班学生的成绩统计如下:成绩(分) 60 70 80 90 100 人数4812115则该班学生成绩的众数和中位数分别是( )DA . 70分,80分B . 80分,80分C . 90分,80分 D . 80分,90分9.如图,OA OB =,OC OD =,50O ∠=,35D ∠=, 则AEC ∠等于( ) A .60B .50C .45D .3010.如图,已知直线2+-=x y 分别与x 轴,y 轴交于A ,B 两点, 与双曲线xky =交于E ,F 两点,若AB 2EF ,则k 的值是A .1 B .1 C .12 D .34二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.a ﹣4ab 2分解因式结果是12.地球上陆地的面积约为149 000 000平方千米,把数据149 000 000用科学记数法表示为 . 13.化简:)1(1-÷⎪⎭⎫⎝⎛-a a a =______________________ 14.如图,DE 是△ABC 的中位线,若△ADE 的周长是18,则△ABC 的周长是__________. 15.如图,AB 是O 的直径,CD 是O 的弦,连接AC AD ,,若35CAB ∠=,则A D C∠的度数为 .16.如图,在△ABC 中,AB =2,BC =3.5,∠B =60°,将△ABC 绕点A 按顺时针旋转一定角度 得到△ADE ,当点B 的对应点D 恰好落在BC 边上时,则CD 的长为 .第14题第15题 第16题三、解答题(一)(本大题3小题,每小题6分,共18分)17.计算101sin 45()1)2-+-18.如图,在ABC △中,10AB AC ==,BC=310.(1)用尺规作图作BC 边上的高AD (保留作图痕迹,不写作法和证明);(2)求∠BAC 的度数.19.某乡镇决定对一段公路进行改造,已知这项工程中甲工程队单独做需要40天完成;如果由乙工程队先单独做10天,那么剩下的工程还需要两队合做20天才能完成。
湖北省松滋市实验中学2019-2020年九年级上学期数学周考三考试试题 无答案

实验中学2019年九上数学周考(三)班级 姓名 分数一、仔细选(每小题3分,共30分)1.抛物线3)2(2+-=x y 的对称轴是直线( ) A .2-=xB .2=xC .3=xD .3-=x2.对于抛物线21(5)33y x =--+,下列说法正确的是( )A .开口向下,顶点坐标(53),B .开口向上,顶点坐标(53),C .开口向下,顶点坐标(53)-,D .开口向上,顶点坐标(53)-,3.抛物线y=(3+m )x m 102-的开口向下,则m 的值为 ( )A. -3B. 32-C. 3D. 324.下列说法错误的是 ( )A. 二次函数y=3x 2中,当x >0时,y 随x 的增大而增大B. 二次函数y=-6x 2中,当x=0时,y 有最大值0C. a 的值越大抛物线的开口越小,a 越小抛物线的开口越大D. 不论a 是正数还是负数,抛物线y=ax 2(a ≠0)的顶点一定是坐标原点5.如图是二次函数2y a x b x c =++的部分图象,由图象可知不等式20ax bx c ++<的解集是A .15x -<<B .5x >C .15x x <->且D .15x x <->或6.抛物线y=ax 2+bx+c (a ≠0)的对称轴是直线x=2,且经过点p (3,0),则a+b+c 的值为 ( )A -1 B. 0 C. 1 D. 27.二次函数y=-x 2-n 的图象交坐标轴于三点A 、B 、C 且△ABC 为等腰直角三角形,那么n 的值为( ) A. -2 B. -1 C. 1 D. 2 8.将抛物线y =2x 2-12x +16绕它的顶点旋转180°,所得的解析式是( )A. y =-2x 2-12x +16B. y =-2x 2+12x -16C. y =-2x 2+12x -19D. y =-2x 2+12x -20 9. 若二次函数2()1y x m =--.当x ≤l 时,y 随x 的增大而减小,则m 的取值范围是( ) A .m =l B .m >l C .m ≥l D .m ≤l10. 抛物线y =ax 2+bx +c 的图象如图,则下列结论:①abc >0;②a +b +c =2;③a >21;④b <1.其中正确的结论是( )A .①②B .②④C .②③D .③④二、细心填(每小题3分,共18分)11. 二次函数62-+=x x y 的图象与x 轴交点的坐标是____________.12. 将抛物线21(5)33y x =--+向左平移5个单位,再向上平移3个单位后得到的抛物线的解析式为 .13.若点A (2,m )在抛物线2(1)2y x =++上,则抛物线上点A 的对称点的坐标是_________.14. 若x 的方程02=--n x x 没有实数根,则抛物线n x x y --=2的顶点在第_____象限;15. 二次函数y =x 2-6x +c 的图象的顶点与原点的距离为5,则c =__________.16.飞机着陆后滑行的距离y (单位:m )关于滑行时间t (单位:s )的函数解析式是22360t t y -=,在飞机着陆滑行中,最后3s 滑行的距离是 m . 三、用心答(72分)17. 用适当的方法解下列方程:(每小题3分,共6分) (1)223990y y --=;(2)2(32)5(32)40x x ---+=18.(7分)如图,抛物线y=x2+bx+c 与x轴交于A (-1,0)和B (3,0)两点,交y 轴于点E .(1)求此抛物线的解析式.(2)若直线y=x+1与抛物线交于A 、D 两点,与y 轴交于点F ,连接DE ,求△DEF 的面积.yx19.(9分)已知关于x的函数y=ax2+x+1.(1)若函数的图象与x轴恰有一个交点,求a的值.(2)若函数的图象是抛物线,且顶点始终在x轴上方,求a的取值范围.20.(9分)在直角坐标平面内,点O为坐标原点,二次函数y=x2-kx+k-1 的图象交x轴于点A(x1,0)、B(x2,0),x2< x1,且(x1+1)(x2+1)=-4. (1)求二次函数解析式;(2) 若点D是抛物线上一点,且点D的横坐标是2,那么在抛物线的对称轴上,是否存在一点P,使得△ADP的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由.21.(9分)某商店经营儿童益智玩具,已知成批购进时的单价是20元.调查发现:销售单价是30元时,月销售量是230件,而销售单价每上涨1元,月销售量就减少10件,但每件玩具售价不能高于40元. 设每件玩具的销售单价上涨..了x元时(x.为正整数....),月销售利润为y元.(1)求y与x的函数关系式,并直接写出自变量x的取值范围.(2)每件玩具的售价..定为多少元时可使月销售利润最大?最大的月利润是多少?22.(10分)跳绳是大家喜闻乐见的一项体育运动,集体跳绳时,需要两人同频甩动绳子,当绳子甩到最高处时,其形状可近似看作抛物线.如图是小明和小亮甩绳子到最高处时的示意图,两人拿绳子的手之间的距离为4m,离地面的高度为1m,以小明的手所在位置为原点,建立平面直角坐标系.(1)当身高为1.5m的小红站在绳子的正下方,且距小明拿绳子手的右侧1m处时,绳子刚好通过小红的头顶,求绳子所对应的抛物线的表达式;(2)若身高为1.65m的小丽也站在绳子的正下方.①当小丽在距小亮拿绳子手的左侧1.5m处时,绳子能碰到小丽的头吗?请说明理由;②设小丽与小亮拿绳子手之间的水平距离为dm,为保证绳子不碰到小丽的头顶,求d的取值范围.(参考数据:取3.16)23.(10分)如图,点E、F、G、H分别在菱形ABCD的四条边上,BE=BF=DG=DH,连接EF,FG,GH,HE,得到四边形EFGH.(1)求证:四边形EFGH是矩形.(2)若∠A=60°,当E在AB边上的何处时,矩形EFGH的面积最大?24.(12分)如图,抛物线y=x﹣2与x轴交于A,B两点,与y轴交于点C,点D与点C关于x轴对称.(1)求点A、B、C的坐标.(2)在直线BD下方的抛物线上是否存在一点P,使△PBD的面积最大?若存在,求出点P的坐标;若不存在,请说明理由.(3)若抛物线平移后得到新的抛物线y=x﹣2+n,当﹣2<x<2时,抛物线与x轴有且只有一个公共点,求n的取值范围.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年九年级9月第三周周考数学试题
命题人:强春霞 审题:聂晓岐
一、选择题(每题6分,共30分)
1、如右图,一飞镖游戏板,其中每个小正方形的大小相等,则随意投掷一个飞
镖,击中黑色区域的概率是 ( )
A 、 21
B 、 83
C 、 41
D 、 31 2、在一个不透明的口袋中装有除颜色外其余都相同的3个小球,其中一个红色球、两个黄色球.如果第一次先从袋中摸出一个球后,记下颜色,再把它放回去。
摇匀后,第二次再从袋中摸出一个,那么两次都摸到黄色球的概率是( )
A 、 91
B 、31
C 、 92
D 、9
4 3、两个正四面体骰子的各面上分别标明数字1,2,3,4,如同时投掷这两个正四面体骰子,则着地的面所得的点数之和等于5的概率为( )
A 、41
B 、163
C 、 43
D 、 8
3 4、从—2,-1,2这三个数中任取两个不同的数作为点的坐标,该点在第四象限的概率是( )
A 、61
B 、31
C 、 3
2 D 、94 5、已知21x x 、是方程122+=x x 的两个根,则
2111x x +的值为( ) A 、2
1- B 、 2 C 、 -2 D 、 21 二、填空题(每题6分,共30分)
6、已知关于x 的方程032112=-+-+x x m m )(是一元二次方程,则m 的值为:________。
7、在实数范围内定义一种运算“﹡”,其规则为a ﹡b=a 2-b 2,根据这个规则,方程(x+2) ﹡
5=0的解为 。
8、小丽要在一幅长为80cm ,宽为50cm 的矩形风景画的四周外围镶上一条宽度相同的金色纸边制成一幅矩形挂图,使整幅挂图面积是5400cm 2
,设金色纸边的宽度为x cm ,则x= 。
9、从1,2,—3,—4四个数中,随机抽取两个数相乘,积是正数的概率是
10、一口袋中放有黑白两种颜色的球,其中黑色球6个和白色球若干,从口袋中随机摸出
一球记下其颜色,再把它放回口袋中摇匀,重复上述过程,共实验50次,其中有45次摸到白球,由此可估算其中白球有个。
西安远东一中初三年级数学第3周周考答题卡
班级:姓名:总分:
一、选择题(每小题6分,共30分)
二、填空题(每题6分,共30分).
6、;
7、;
8、;
9、 10、。
三、解答题 (每小题20分,共40分)
11.某公司今年4月的营业额为2500万元,按计划第二季度的总营业额要达到9100万元,求该公司5, 6两个月营业额的月均增长率。
12、将分别标有数字1,2,3 的三张卡片洗匀后,背面朝上放在桌上。
(1)随机抽取一张,求抽到奇数的概率;
(2)随机抽取一张作为十位上的数字(不放回),再抽取一张作为个位上的数字,能组成哪些两位数?恰好是32的概率是多少?(试用树状图或列表的方法)。