二次函数中的存在性问题(相似三角形的存在性问题)
相似三角形的存在性问题
相似三角形的存在性问题【考题研究】相似三角形的存在性问题是近几年中考数学的热点问题.解相似三角形的存在性问题,一般分三步走,第一步寻找分类标准,第二步列方程,第三步解方程并验根。
难点在于寻找分类标准,分类标准寻找的恰当,可以使得解的个数不重复不遗漏,也可以使得列方程和解方程又好又快.【解题攻略】相似三角形的判定定理有3个,其中判定定理1和判定定理2都有对应角相等的条件,因此探求两个三角形相似的动态问题,一般情况下首先寻找一组对应角相等.判定定理2是最常用的解题依据,一般分三步:寻找一组等角,分两种情况列比例方程,解方程并检验。
应用判定定理1解题,先寻找一组等角,再分两种情况讨论另外两组对应角相等.应用判定定理3解题不多见,根据三边对应成比例列连比式解方程(组).【解题类型及其思路】相似三角形存在性问题需要注意的问题:1、若题目中问题为△ABC∽△DEF ,则对应线段已经确定。
2、若题目中为△ABC与△DEF相似,则没有确定对应线段,此时有三种情况:①△ABC∽△DEF ,②△ABC∽△FDE、③△ABC∽△EFD、3、若题目中为△ABC与△DEF并且有∠A、∠D(或为90°),则确定了一条对应的线段,此时有二种情况:①、△ABC∽△DEF ,②、△ABC∽△DFE 需要分类讨论上述的各种情况。
【典例指引】类型一 【确定符合相似三角形的点的坐标】典例指引1.(2017年湖北鄂州中考)已知,抛物线23y ax bx =++(a <0)与x 轴交于A (3,0)、B 两点,与y 轴交于点C ,抛物线的对称轴是直线x =1,D 为抛物线的顶点,点E 在y 轴C 点的上方,且CE =12. (1)求抛物线的解析式及顶点D 的坐标;(2)求证:直线DE 是△ACD 外接圆的切线;(3)在直线AC 上方的抛物线上找一点P ,使12PAC ACD S S ∆∆=,求点P 的坐标; (4)在坐标轴上找一点M ,使以点B 、C 、M 为顶点的三角形与△ACD 相似,直接写出点M 的坐标.【举一反三】(2017年山东省济宁附中二模)如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B两点,(点A 在点B的左侧),与直线AC交于点C(2,3),直线AC与抛物线的对称轴l相交于点D,连接BD.(1)求抛物线的函数表达式,并求出点D的坐标;(2)如图2,若点M、N同时从点D出发,均以每秒1个单位长度的速度分别沿DA、DB运动,连接MN,将△DMN沿MN翻折,得到△D′MN,判断四边形DMD′N的形状,并说明理由,当运动时间t为何值时,点D′恰好落在x轴上?(3)在平面内,是否存在点P(异于A点),使得以P、B、D为顶点的三角形与△ABD相似(全等除外)?若存在,请直接写出点P的坐标,若不存在,请说明理由.类型二【确定符合相似三角形的动点的运动时间或路程等】典例指引2.(2017年广东省深圳市模拟)如图,在矩形OABC中,AO=10,AB=8,沿直线CD折叠矩形OABC的一边BC,使点B落在OA边上的点E处,分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系,抛物线2=++经过O,D,C三点.y ax bx c(1)求AD的长及抛物线的解析式;(2)一动点P从点E出发,沿EC以每秒2个单位长的速度向点C运动,同时动点Q从点C出发,沿CO以每秒1个单位长的速度向点O运动,当点P运动到点C时,两点同时停止运动,设运动时间为t秒,当t为何值时,以P,Q,C为顶点的三角形与△ADE相似?(3)点N在抛物线对称轴上,点M在抛物线上,是否存在这样的点M与点N,使以M,N,C,E为顶点的四边形是平行四边形?若存在,请直接写出点M与点N的坐标(不写求解过程);若不存在,请说明理由.本题考查了二次函数综合题,题目涉及了图形的折叠变换、相似三角形的判定和性质、平行四边形的判定和性质等重点知识.后两问的情况较多,需要进行分类讨论,以免漏解.【举一反三】(2017年云南昆明市官渡区一中模拟)如图,已知一次函数y=0.5x+1的图象与x轴交于点A,与y轴交于点B,二次函数y=0.5x2+bx+c的图象与一次函数y=0.5x+1的图象交于点B、C两点,与x轴交于D、E两点,且D 点坐标为(1,0).(1)求二次函数的解析式;(2)在在x轴上有一动点P,从O点出发以每秒1个单位的速度沿x轴向右运动,是否存在动点P,使得△PBC是以P为直角顶点的直角三角形?若存在,求出点P运动时间t的值;若不存在,请说明理由;(3)若动点P在x轴上,动点Q在射线AC上,同时从A点出发,点P沿x轴正方向以每秒2个单位的速度运动,点Q以每秒a个单位的速度沿射线AC运动,是否存在以A、P、Q为顶点的三角形与△ABD相似?若存在,求a的值;若不存在,说明理由.类型三【确定符合相似三角形的函数解析式或字母参数的值】典例指引3.(2017年江苏省徐州市中考数学模拟)如图,已知:在平面直角坐标系中,直线l与y轴相交于点A(0,m)其中m<0,与x轴相交于点B(4,0).抛物线y=ax2+bx(a>0)的顶点为F,它与直线l相交于点C,其对称轴分别与直线l和x轴相交于点D和点E.(1)设a=12,m=﹣2时,①求出点C、点D的坐标;②抛物线y=ax2+bx上是否存在点G,使得以G、C、D、F四点为顶点的四边形为平行四边形?如果存在,求出点G的坐标;如果不存在,请说明理由.(2)当以F、C、D为顶点的三角形与△BED相似且满足三角形FAC的面积与三角形FBC面积之比为1:3时,求抛物线的函数表达式.【名师点睛】本题考查了二次函数综合题,利用解方程组是求C点坐标的关键;利用菱形的对角线垂直且互相平分是求G 点的关键;利用相似三角形的性质的出关于a的方程是解题关键,又利用了平行线分线段成比例.【举一反三】如图,在平面直角坐标系中,抛物线与x轴交于A、D两点,与y轴交于点B,四边形OBCD是矩形,点A的坐标为(1,0),点D的坐标为(﹣3,0),点B的坐标为(0,4),已知点E(m,0)是线段DO上的动点,过点E作PE⊥x轴交抛物线于点P,交BC于点G,交BD于点H.(1)求该抛物线的解析式;(2)当点P在直线BC上方时,请用含m的代数式表示PG的长度;(3)在(2)的条件下,是否存在这样的点P,使得以P、B、G为顶点的三角形与△DEH相似?若存在,求出此时m的值;若不存在,请说明理由.【新题训练】1.如图,抛物线()20y ax bx c a =++≠的顶点坐标为()2,1-,并且与y 轴交于点()0,3C ,与x 轴交于A 、B 两点.(1)求抛物线的表达式.(2)如图1,设抛物线的对称轴与直线BC 交于点D ,点E 为直线BC 上一动点,过点E 作y 轴的平行线EF ,与抛物线交于点F ,问是否存在点E ,使得以D 、E 、F 为顶点的三角形与BCO 相似.若存在,求出点E 的坐标;若不存在,请说明理由.2.平面直角坐标系xOy 中,对称轴平行与y 轴的抛物线过点()1,0A 、()3,0B 和()4,6C .(1)求抛物线的表达式.(2)现将此抛物线先沿x 轴方向向右平移6个单位,再沿y 轴方向平移k 个单位,若所得抛物线与x 轴交于点D 、E (点D 在点E 的左边),且使ACD AEC ∽(顶点A 、C 、D 依次对应顶点A 、E 、C ),试求k 的值,并说明方向.3.已知:关于x 的二次函数y=x 2+bx+c 经过点(﹣1,0)和(2,6).(1)求b 和c 的值.(2)若点A (n ,y 1),B (n+1,y 2),C (n+2,y 3)都在这个二次函数的图象上,问是否存在整数n ,使123111310y y y ++=?若存在,请求出n ;若不存在,请说明理由. (3)若点P 是二次函数图象在y 轴左侧部分上的一个动点,将直线y=﹣2x 沿y 轴向下平移,分别交x 轴、y 轴于C 、D 两点,若以CD 为直角边的△PCD 与△OCD 相似,请求出所有符合条件点P 的坐标.4.如图,二次函数22y ax bx =++的图像与x 轴交于点A ()1,0-、B ()4,0,与y 轴交于点C . (1)a = ; b = ;(2)点P 为该函数在第一象限内的图像上的一点,过点P 作PQ BC ⊥于点Q ,连接PC ,①求线段PQ 的最大值;②若以P 、C 、Q 为顶点的三角形与ABC ∆相似,求点P 的坐标.5.如图,抛物线28y ax bx =+-交x 轴于A , B 两点,交y 轴于点C ,直线l 经过坐标原点O ,与抛物线的一个交点为D ,与抛物线的对称交于点E ,连接CE ,点A , D 的坐标分别为()2,0-, ()6,8-. (1)求抛物线的解析式,并分别求出点B 和点E 的坐标.(2)在抛物线上是否存在点F ,使FOE ≌FCE ,若存在,求出点F 的坐标;若不存在,请说明理由.6.已知直线y=2x﹣5与x轴和y轴分别交于点A和点B,抛物线y=﹣x2+bx+c的顶点M在直线AB上,且抛物线与直线AB的另一个交点为N.(1)如图,当点M与点A重合时,求抛物线的解析式;(2)在(1)的条件下,求点N的坐标和线段MN的长;(3)抛物线y=﹣x2+bx+c在直线AB上平移,是否存在点M,使得△OMN与△AOB相似?若存在,直接写出点M的坐标;若不存在,请说明理由.7.如图,已知抛物线y=﹣x2+2x的顶点为A,直线y=x﹣2与抛物线交于B,C两点.(1)求A,B,C三点的坐标;(2)作CD⊥x轴于点D,求证:△ODC∽△ABC;(3)若点P为抛物线上的一个动点,过点P作PM⊥x轴于点M,则是否还存在除C点外的其他位置的点,使以O,P,M为顶点的三角形与△ABC相似?若存在,请求出这样的P点坐标;若不存在,请说明理由.8.如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P以1cm/秒的速度沿折线BE﹣ED﹣DC运动到点C时停止,点Q以2cm/秒的速度沿BC运动到点C时停止.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(其中曲线OG为抛物线的一部分,其余各部分均为线段).(1)试根据图(2)求0<t≤5时,△BPQ的面积y关于t的函数解析式;(2)求出线段BC、BE、ED的长度;(3)当t为多少秒时,以B、P、Q为顶点的三角形和△ABE相似;(4)如图(3)过E作EF⊥BC于F,△BEF绕点B按顺时针方向旋转一定角度,如果△BEF中E、F的对应点H、I恰好和射线BE、CD的交点G在一条直线,求此时C、I两点之间的距离.9.如图,已知抛物线y=ax2﹣x+c的对称轴为直线x=1,与x轴的一个交点为A(﹣1,0),顶点为B.点C (5,m)在抛物线上,直线BC交x轴于点E.(1)求抛物线的表达式及点E的坐标;(2)联结AB,求∠B的正切值;(3)点G为线段AC上一点,过点G作CB的垂线交x轴于点M(位于点E右侧),当△CGM与△ABE相似时,求点M的坐标.10.如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x﹣2交于B,C两点.(1)求抛物线的解析式及点B、C的坐标;(2)求△ABC的内切圆半径;学=科网(3)若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.。
(完整版)二次函数与三角形的存在性问题的解法
二次函数与三角形的存在性问题一、预备知识1、坐标系中或抛物线上有两个点为P (x1,y ),Q (x2,y )(1)线段对称轴是直线2x 21x x +=(2)AB 两点之间距离公式:221221)()(y y x x PQ -+-=中点公式:已知两点()()2211y ,x Q ,y ,x P ,则线段PQ 的中点M 为⎪⎭⎫ ⎝⎛++222121y y ,x x 。
2、两直线的解析式为11b x k y +=与 22b x k y +=如果这两天两直线互相垂直,则有121-=⋅k k3、平面内两直线之间的位置关系:两直线分别为:L1:y=k1x+b1 L2:y=k2x+b2(1)当k1=k2,b1≠b2 ,L1∥L2(2)当k1≠k2, ,L1与L2相交(3)K1×k2= -1时, L1与L2垂直二、三角形的存在性问题探究:三角形的存在性问题主要涉及到的是等腰三角形,等边三角形,直角三角形(一)三角形的性质和判定:1、等腰三角形性质:两腰相等,两底角相等,三线合一(中线、高线、角平分线)。
判定:两腰相等,两底角相等,三线合一(中线、高线、角平分线)的三角形是等腰三角形。
2、直角三角形性质:满足勾股定理的三边关系,斜边上的中线等于斜边的一半。
判定:有一个角是直角的三角形是直角三角形。
3、等腰直角三角形性质:具有等腰三角形和等边三角形的所以性质,两底角相等且等于45°。
判定:具有等腰三角形和等边三角形的所以性质的三角形是等腰直角三角形4、等边三角形性质:三边相等,三个角相等且等于60°,三线合一,具有等腰三角形的一切性质。
判定:三边相等,抛物线或坐标轴或对称轴上三个角相等,有一个角是60°的等腰三角形是等边三角形。
总结:(1)已知A 、B 两点,通过“两圆一线”可以找到所有满足条件的等腰三角形,要求的点(不与A 、B 点重合)即在两圆上以及两圆的公共弦上(2)已知A 、B 两点,通过“两线一圆”可以找到所有满足条件的直角三角形,要求的点(不与A 、B 点重合)即在圆上以及在两条与直径AB 垂直的直线上。
二次函数中相似三角形存在性
相似三角形的存在性(作业)例:在平面直角坐标系中,二次函数图象的顶点坐标为C(4,),且与x轴的两个交点间的距离为6.(1)求二次函数的解析式;(2)在x轴上方的抛物线上,是否存在点Q,使得以Q,A,B为顶点的三角形与△ABC相似?如果存在,请求出点Q的坐标;如果不存在,请说明理由.第一问:研究背景图形【思路分析】①由顶点坐标C(4,可知对称轴为直线_______,利用两个交点间的距离为6,再结合抛物线的对称性可知A(___,___),B(___,___).②设交点式__________________,再代入坐标__________可求解出解析式__________________.【过程示范】∵顶点坐标为C(4,又∵抛物线与x设抛物线的解析式为将C (4,代入可得,9a =,∴所求解析式为2y x x =. 第二问:整合信息、分析特征、设计方案 【思路分析】相似三角形存在性问题也是在存在性问题的框架下进行的:①分析特征:先研究定点、动点,其中_________为定点,点__为____________________的动点;则________为目标三角形.进一步研究此三角形,发现其中________________;构造辅助线:____________________________,能够计算出∠BAC =_____°,∠ACB =________°;再考虑研究△QAB ,固定线段为______,并且由于点Q 在x 轴上方的抛物线上,所以△QAB 为______(填“钝角”或“直角”)三角形.②画图求解:先考虑点Q 在抛物线对称轴右侧的情况,此时 ∠ABQ 为钝角,要想使△ABC 与△ABQ 相似,则需要∠ABQ =_____°,且_________.求解时,可根据∠ABQ =_____°,AB =BQ =_____来求出Q 点坐标.同理,考虑点Q 在抛物线对称轴左侧时的情况.③结果验证:考虑点Q 还要在抛物线上,将点Q 代入抛物线解析式验证.【过程示范】存在点Q 使得△QAB 与△ABC 相似.由抛物线对称性可知,AC =BC ,过点C 作CD ⊥x 轴于则AD =3,CD在Rt △ACD 中,tan ∠DAC, ∴∠BAC =∠ABC =30°,∠ACB =120°. ①当△ACB ∽△ABQ 时, ∠ABQ =120°且BQ =AB =6. 过点Q 作QE ⊥x 轴,垂足为E , 则在Rt △BQE 中,BQ =6,∠QBE =60°, ∴QE =BQ ·sin60°=6=BE =3, ∴E (10,0),Q 1(10,. 当x =10时,y= ∴点Q 1在抛物线上.②由抛物线的对称性可知,还存在AQ2=AB,此时△Q2AB∽△ACB,点Q2的坐标为(-2,.综上:Q1(10,,Q2(-2,.1.如图,已知抛物线y=x2-1与x轴交于A,B两点,与y轴交于点C,过点A作AP∥CB交抛物线于点P.(1)求A,B,C三点的坐标.(2)在x轴上方的抛物线上是否存在一点M,过点M作MG⊥x轴于点G,使以A,M,G为顶点的三角形与△PCA相似?若存在,请求出点M的坐标;若不存在,请说明理由.2.如图,抛物线y=ax2+b与x轴交于点A,B,且点A的坐标为(1,0),与y轴交于点C(0,1).(1)求抛物线的解析式,并求出点B的坐标.(2)过点B作BD∥CA交抛物线于点D,在x轴上点A的左侧是否存在点P,使以P,A,C为顶点的三角形与△ABD相似?若存在,求出点P的坐标;若不存在,请说明理由.3.如图,抛物线经过A(4,0),B(1,0),C(0,-2)三点.(1)求抛物线的解析式.(2)P是抛物线上一动点,过点P作PM⊥x轴,垂足为M,是否存在点P,使得以A,P,M为顶点的三角形与△OAC相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.【参考答案】例题示范: 第一问:① x =4,(1,0),(7,0)② y =a (x -1)(x -7),C (4,,2y x x =+ 第二问:①点A ,B ,C ,点Q ,在x 轴上方的抛物线上,△ABC ,CA =CB ,过点C 作CD ⊥AB 于点D ,30,120,AB ,钝角。
二次函数背景下的相似三角形存在性问题
二次函数背景下的相似三角形存在性问题
二次函数背景下的相似三角形存在性问题是中考数学常考的题型,在考试中一般出现在压轴题的位置,综合性强,难度略大。
这篇文章主要来讨论下二次函数背景下的相似三角形存在性问题的解题思路方法及应用举例。
【模型解读】
在坐标系中确定点,使得由该点及其他点构成的三角形与其他三角形相似,即为“相似三角形存在性问题”.
【相似判定】
判定1:三边对应成比例的两个三角形是相似三角形;
判定2:两边对应成比例且夹角相等的两个三角形是相似三角形;
判定3:有两组角对应相等的三角形是相似三角形.
以上也是坐标系中相似三角形存在性问题的方法来源,根据题目给的已知条件选择恰当的判定方法,解决问题.
【题型分析】
通常相似的两三角形有一个是已知的,而另一三角形中有1或2个动点,即可分为“单动点”类、“双动点”两类问题.
【思路总结】
根据相似三角形的做题经验,可以发现,判定1基本是不会用的,这里也一样不怎么用,对比判定2、3可以发现,都有角相等!
所以,要证相似的两个三角形必然有相等角,关键点也是先找到一组相等角.
然后再找:
思路1:两相等角的两边对应成比例;
思路2:还存在另一组角相等.
事实上,坐标系中在已知点的情况下,线段长度比角的大小更容易表示,因此选择方法可优先考虑思路1.
一、如何得到相等角?
二、如何构造两边成比例或者得到第二组角?
搞定这两个问题就可以了.
【例题】
【分析】
综上所述,点P的坐标为(3,2)或(3,9).
【总结】
【练习】
声明:文章图文来源网络,意在分享,仅限交流学习使用,如有分享不当或侵权,请联系删除。
二次函数中的存在性问题
⼆次函数中的存在性问题⼆次函数中的存在性问题存在性问题是指判断满⾜某种条件的事物是否存在的问题,这类问题的知识覆盖⾯较⼴,综合性较强,题意构思⾮常精巧,解题⽅法灵活,对学⽣分析问题和解决问题的能⼒要求较⾼,是近⼏年来各地中考的“热点”。
这类题⽬解法的⼀般思路是:假设存在→推理论证→得出结论。
若能导出合理的结果,就做出“存在”的判断,导出⽭盾,就做出“不存在”的判断。
以下⼏篇内容为⼏种典型的⼆次函数中出现的存在性问题,希望⼤家在以后的学习中如果遇到此类型时能够轻松解决。
⼀、特殊三⾓形的存在性问题(⼀)⼆次函数中的等腰三⾓形存在性问题如果△ABC是等腰三⾓形,那么存在①AB=AC,②BA=BC,③CA=CB三种情况.因此,解等腰三⾓形的存在性问题时,通常要进⾏分类讨论。
这类问题有⼏何法和代数法两种⽅法,我们要根据具体情况灵活选择简便的⽅法。
⼏何法⼀般分三步:分类、画图、计算.代数法⼀般也分三步:罗列三边长,分类列⽅程,解⽅程并检验.(⼆)⼆次函数中的直⾓三⾓形存在性问题如果△ABC是直⾓三⾓形,那么存在①∠A为直⾓,②∠B为直⾓,③∠C为直⾓三种情况.因此,解直⾓三⾓形的存在性问题时,通常要进⾏分类讨论。
这类问题有⼏何法和代数法两种⽅法,我们要根据具体情况灵活选择简便的⽅法。
⼏何法⼀般分三步:分类、画图、计算.代数法⼀般也分三步:罗列三边长,分类列⽅程,解⽅程并检验.(三)⼆次函数中的等腰直⾓三⾓形存在性问题在解决等腰直⾓三⾓形存在性问题时,往往要⽤到⼏何和代数相结合的⽅法,设出点的坐标后,利⽤等腰直⾓三⾓形的⼏何性质及函数关系式列⽅程求解,最常⽤到的有:①两直⾓边相等,直⾓边与斜边的⽐为1:√2;②斜边中线垂直于斜边,且等于斜边的⼀半。
③直⾓顶点处构造三垂直,得到全等三⾓形,利⽤对应边的等量关系求解。
二次函数的存在性问题(Word版解析+答案)
中考压轴题解析二次函数的存在性问题【典例分析】【考点 1】二次函数与相似三角形问题例1】已知抛物线y ax2 bx 3与 x轴分别交于A( 3,0),B(1,0)两点,与 y轴交于点 C.2)点 F 是线段 AD 上一个动点.1AD .2ABC 相似?若相似,求出点 F 的坐标;若不相似,请说明理由.变式1-1】如图,抛物线y ax2 2x c经过A( 1,0),B两点,且与y轴交于点C(0,3) ,抛物线与直线y x 1交于A,E 两点.(1)求抛物线的解析式;(2)坐标轴上是否存在一点Q,使得AQE是以AE为底边的等腰三角形?若存在,请直接写出点Q 的坐标;若不存在,说明理由.(3)P点在x轴上且位于点B 的左侧,若以P,B,C为顶点的三角形与ABE相似,求点P的坐AF①如图 1,设k ,当 k 为何值时,CFAD1)求抛物线的表达式及顶点 D 的坐标;标.1【变式1-2】如图,已知抛物线y m(x 2)(x m)(m > 0)与 x 轴相交于点 A,B,与 y轴相交于点 C,且点 A 在点 B 的左侧 .( 1)若抛物线过点( 2, 2),求抛物线的解析式;(2)在( 1)的条件下,抛物线的对称轴上是否存在一点H ,使 AH+CH 的值最小,若存在,求出点 H 的坐标;若不存在,请说明理由;(3)在第四象限内,抛物线上是否存在点M ,使得以点 A,B,M 为顶点的三角形与△ACB 相似?若存在,求出 m 的值;若不存在,请说明理由 .考点 2】二次函数与直角三角形问题BC交于点D,连接AC 、AD ,求VACD的面积;3 点E为直线BC上的任意一点,过点E作x轴的垂线与抛物线交于点F ,问是否存在点E使VDEF 为直角三角形?若存在,求出点E 坐标,若不存在,请说明理由.例2】如图,抛物线y ax2bx c a 0的顶点坐标为2, 1 ,图象与y 轴交于点C 0,3 ,与x轴2 设抛物线对称轴与直线【变式2-1】如图,经过x 轴上A( 1,0), B(3,0)两点的抛物线y m(x 1)2 4m (m 0)交y 轴于点C ,设抛物线的顶点为D ,若以DB 为直径的⊙ G 经过点C ,求解下列问题:1)用含m的代数式表示出C,D 的坐标;2)求抛物线的解析式;3)能否在抛物线上找到一点Q,使△BDQ 为直角三角形?如能,求出Q点的坐标,若不能,请说明理由。
专题06 二次函数中三角形存在性问题(解析版)--2023 年中考数学压轴真题汇编
挑战2023年中考数学解答题压轴真题汇编专题06二次函数中三角形存在性问题一.相似三角形的存在性1.(2022•陕西)已知抛物线y=ax2+bx﹣4经过点A(﹣2,0),B(4,0),与y 轴的交点为C.(1)求该抛物线的函数表达式;(2)若点P是该抛物线上一点,且位于其对称轴l的右侧,过点P分别作l,x轴的垂线,垂足分别为M,N,连接MN.若△PMN和△OBC相似,求点P 的坐标.【解答】解:(1)把A(﹣2,0),B(4,0)代入y=ax2+bx﹣4得:,解得,∴抛物线的函数表达式为y=x2﹣x﹣4;(2)如图:∵y=x2﹣x﹣4=(x﹣1)2﹣,∴抛物线y=x2﹣x﹣4的对称轴是直线x=1,在y=x2﹣x﹣4中,令x=0得y=﹣4,∴C(0,﹣4),∴OB=OC=4,∴△BOC是等腰直角三角形,∵△PMN和△OBC相似,∴△PMN是等腰直角三角形,∵PM⊥直线x=1,PN⊥x轴,∴∠MPN=90°,PM=PN,设P(m,m2﹣m﹣4),∴|m﹣1|=|m2﹣m﹣4|,∴m﹣1=m2﹣m﹣4或m﹣1=﹣m2+m+4,解得m=+2或m=﹣+2或m=或m=﹣,∵点P是该抛物线上一点,且位于其对称轴直线x=1的右侧,∴P的坐标为(+2,+1)或(,1﹣).2.(2022•绵阳)如图,抛物线y=ax2+bx+c交x轴于A(﹣1,0),B两点,交y轴于点C(0,3),顶点D的横坐标为1.(1)求抛物线的解析式;(2)在y轴的负半轴上是否存在点P使∠APB+∠ACB=180°,若存在,求出点P的坐标,若不存在,请说明理由;(3)过点C作直线l与y轴垂直,与抛物线的另一个交点为E,连接AD,AE,DE,在直线l下方的抛物线上是否存在一点M,过点M作MF⊥l,垂足为F,使以M,F,E三点为顶点的三角形与△ADE相似?若存在,请求出M点的坐标,若不存在,请说明理由.【解答】解:(1)∵顶点D的横坐标为1,∴抛物线的对称轴为直线x=1,∵A(﹣1,0),∴B(3,0),∴设抛物线的解析式为:y=a(x+1)(x﹣3),将C(0,3)代入抛物线的解析式,则﹣3a=3,解得a=﹣1,∴抛物线的解析式为:y=﹣(x+1)(x﹣3)=﹣x2+2x+3.(2)存在,P(0,﹣1),理由如下:∵∠APB+∠ACB=180°,∴∠CAP+∠CBP=180°,∴点A,C,B,P四点共圆,如图所示,由(1)知,OB=OC=3,∴∠OCB=∠OBC=45°,∴∠APC=∠ABC=45°,∴△AOP是等腰直角三角形,∴OP=OA=1,∴P(0,﹣1).(3)存在,理由如下:由(1)知抛物线的解析式为:y=﹣x2+2x+3,∴D(1,4),由抛物线的对称性可知,E(2,3),∵A(﹣1,0),∴AD=2,DE=,AE=3.∴AD2=DE2+AE2,∴△ADE是直角三角形,且∠AED=90°,DE:AE=1:3.∵点M在直线l下方的抛物线上,∴设M(t,﹣t2+2t+3),则t>2或t<0.∴EF=|t﹣2|,MF=3﹣(﹣t2+2t+3)=t2﹣2t,若△MEF与△ADE相似,则EF:MF=1:3或MF:EF=1:3,∴|t﹣2|:(t2﹣2t)=1:3或(t2﹣2t):|t﹣2|=1:3,解得t=2(舍)或t=3或﹣3或(舍)或﹣,∴M的坐标为(3,0)或(﹣3,﹣12)或(﹣,).综上,存在点M,使以M,F,E三点为顶点的三角形与△ADE相似,此时点M的坐标为(3,0)或(﹣3,﹣12)或(﹣,).3.(2022•恩施州)在平面直角坐标系中,O为坐标原点,抛物线y=﹣x2+c与y 轴交于点P(0,4).(1)直接写出抛物线的解析式.(2)如图,将抛物线y=﹣x2+c向左平移1个单位长度,记平移后的抛物线顶点为Q,平移后的抛物线与x轴交于A、B两点(点A在点B的右侧),与y轴交于点C.判断以B、C、Q三点为顶点的三角形是否为直角三角形,并说明理由.(3)直线BC与抛物线y=﹣x2+c交于M、N两点(点N在点M的右侧),请探究在x轴上是否存在点T,使得以B、N、T三点为顶点的三角形与△ABC 相似,若存在,请求出点T的坐标;若不存在,请说明理由.(4)若将抛物线y=﹣x2+c进行适当的平移,当平移后的抛物线与直线BC 最多只有一个公共点时,请直接写出抛物线y=﹣x2+c平移的最短距离并求出此时抛物线的顶点坐标.【解答】解:(1)∵抛物线y=﹣x2+c与y轴交于点P(0,4),∴c=4,∴抛物线的解析式为y=﹣x2+4;(2)△BCQ是直角三角形.理由如下:将抛物线y=﹣x2+4向左平移1个单位长度,得新抛物线y=﹣(x+1)2+4,∴平移后的抛物线顶点为Q(﹣1,4),令x=0,得y=﹣1+4=3,∴C(0,3),令y=0,得﹣(x+1)2+4=0,解得:x1=1,x2=﹣3,∴B(﹣3,0),A(1,0),如图1,连接BQ,CQ,PQ,∵P(0,4),Q(﹣1,4),∴PQ⊥y轴,PQ=1,∵CP=4﹣3=1,∴PQ=CP,∠CPQ=90°,∴△CPQ是等腰直角三角形,∴∠PCQ=45°,∵OB=OC=3,∠BOC=90°,∴△BOC是等腰直角三角形,∴∠BCO=45°,∴∠BCQ=180°﹣45°﹣45°=90°,∴△BCQ是直角三角形.(3)在x轴上存在点T,使得以B、N、T三点为顶点的三角形与△ABC相似.∵△ABC是锐角三角形,∠ABC=45°,∴以B、N、T三点为顶点的三角形与△ABC相似,必须∠NBT=∠ABC=45°,即点T在y轴的右侧,设T(x,0),且x>0,则BT=x+3,∵B(﹣3,0),A(1,0),C(0,3),∴∠ABC=45°,AB=4,BC=3,设直线BC的解析式为y=kx+b,则,解得:,∴直线BC的解析式为y=x+3,由,解得:,,∴M(﹣,),N(,),∴BN=×=,①当△NBT∽△CBA时,则=,∴=,解得:x=,∴T(,0);②当△NBT∽△ABC时,则=,∴=,解得:x=,∴T(,0);综上所述,点T的坐标T(,0)或(,0).(4)抛物线y=﹣x2+4的顶点为P(0,4),∵直线BC的解析式为y=x+3,∴直线BC与y轴的夹角为45°,当抛物线沿着垂直直线BC的方向平移到只有1个公共点时,平移距离最小,此时向右和向下平移距离相等,设平移后的抛物线的顶点为P′(t,4﹣t),则平移后的抛物线为y=﹣(x﹣t)2+4﹣t,由﹣(x﹣t)2+4﹣t=x+3,整理得:x2+(1﹣2t)x+t2+t﹣1=0,∵平移后的抛物线与直线BC最多只有一个公共点,∴Δ=(1﹣2t)2﹣4(t2+t﹣1)=0,解得:t=,∴平移后的抛物线的顶点为P′(,),平移的最短距离为.二.直角三角形的存在性4.(2022•广安)如图,在平面直角坐标系中,抛物线y=ax2+x+m(a≠0)的图象与x轴交于A、C两点,与y轴交于点B,其中点B坐标为(0,﹣4),点C坐标为(2,0).(1)求此抛物线的函数解析式.(2)点D是直线AB下方抛物线上一个动点,连接AD、BD,探究是否存在点D,使得△ABD的面积最大?若存在,请求出点D的坐标;若不存在,请说明理由.(3)点P为该抛物线对称轴上的动点,使得△PAB为直角三角形,请求出点P的坐标.【解答】解:(1)∵抛物线y=ax2+x+m(a≠0)的图象经过点B(0,﹣4),点C(2,0),∴,解得,∴抛物线的解析式为y=x2+x﹣4;(2)存在.理由:如图1中,设D(t,t2+t﹣4),连接OD.令y=0,则x2+x﹣4=0,解得x=﹣4或2,∴A(﹣4,0),C(2,0),∵B(0,﹣4),∴OA=OB=4,=S△AOD+S△OBD﹣S△AOB=×4×(﹣﹣t+4)+×4×(﹣t)﹣×∵S△ABD4×4=﹣t2﹣4t=﹣(t+2)2+4,∵﹣1<0,∴t=﹣2时,△ABD的面积最大,最大值为4,此时D(﹣2,﹣4);(3)如图2中,设抛物线的对称轴交x轴于点N,过点B作BM⊥抛物线的对称轴于点M.则N(﹣1.0).M(﹣1,﹣4);∵OA=OB=4,∠AOB=90°,∴∠OAB=∠OBA=45°,当∠P1AB=90°时,△ANP1是等腰直角三角形,∴AN=NP1=3,∴P1(﹣1,3),当∠ABP2=90°时,△BMP2是等腰直角三角形,可得P2(﹣1,﹣5),当∠APB=90°时,设P(﹣1,n),设AB的中点为J,连接PJ,则J(﹣2,﹣2),∴PJ=AB=2,∴12+(n+2)2=(2)2,解得n=﹣2或﹣﹣2,∴P3(﹣1,﹣2),P4(﹣1,﹣﹣2),综上所述,满足条件的点P的坐标为(﹣1,3)或(﹣1,﹣5)或(﹣1,﹣2)或(﹣1,﹣﹣2).5.(2022•辽宁)如图,抛物线y=ax2﹣3x+c与x轴交于A(﹣4,0),B两点,与y轴交于点C(0,4),点D为x轴上方抛物线上的动点,射线OD交直线AC于点E,将射线OD绕点O逆时针旋转45°得到射线OP,OP交直线AC 于点F,连接DF.(1)求抛物线的解析式;(2)当点D在第二象限且=时,求点D的坐标;(3)当△ODF为直角三角形时,请直接写出点D的坐标.【解答】解:(1)将点A(﹣4,0),C(0,4)代入y=ax2﹣3x+c,∴,解得,∴y=﹣x2﹣3x+4;(2)过点D作DG⊥AB交于G,交AC于点H,设直线AC的解析式为y=kx+b,∴,解得,∴y=x+4,设D(n,﹣n2﹣3n+4),H(n,n+4),∴DH=﹣n2﹣4n,∵DH∥OC,∴==,∵OC=4,∴DH=3,∴﹣n2﹣4n=3,解得n=﹣1或n=﹣3,∴D(﹣1,6)或(﹣3,4);(3)设F(t,t+4),当∠FDO=90°时,过点D作MN⊥y轴交于点N,过点F作FM⊥MN交于点M,∵∠DOF=45°,∴DF=DO,∵∠MDF+∠NDO=90°,∠MDF+∠MFD=90°,∴∠NDO=∠MFD,∴△MDF≌△NOD(AAS),∴DM=ON,MF=DN,∴DN+ON=﹣t,DN=ON+(﹣t﹣4),∴DN=﹣t﹣2,ON=2,∴D点纵坐标为2,∴﹣x2﹣3x+4=2,解得x=或x=,∴D点坐标为(,2)或(,2);当∠DFO=90°时,过点F作KL⊥x轴交于L点,过点D作DK⊥KL交于点K,∵∠KFD+∠LFO=90°,∠KFD+∠KDF=90°,∴∠LFO=∠KDF,∵DF=FO,∴△KDF≌△LFO(AAS),∴KD=FL,KF=LO,∴KL=t+4﹣t=4,∴D点纵坐标为4,∴﹣x2﹣3x+4=4,解得x=0或x=﹣3,∴D(0,4)或(﹣3,4);综上所述:D点坐标为(,2)或(,2)或(0,4)或(﹣3,4).三.等腰三角形的存在性6.(2022•百色)已知抛物线经过A(﹣1,0)、B(0,3)、C(3,0)三点,O 为坐标原点,抛物线交正方形OBDC的边BD于点E,点M为射线BD上一动点,连接OM,交BC于点F.(1)求抛物线的表达式;(2)求证:∠BOF=∠BDF;(3)是否存在点M,使△MDF为等腰三角形?若不存在,请说明理由;若存在,求ME的长.【解答】(1)解:设抛物线的表达式为y=ax2+bx+c,把A(﹣1,0)、B(0,3)、C(3,0)代入得:,解得,∴抛物线的表达式为:y=﹣x2+2x+3;(2)证明:∵正方形OBDC,∴∠OBC=∠DBC,BD=OB,∵BF=BF,∴△BOF≌△BDF,∴∠BOF=∠BDF;(3)解:∵抛物线交正方形OBDC的边BD于点E,∴令y=3,则3=﹣x2+2x+3,解得:x1=0,x2=2,∴E(2,3),①如图,当M在线段BD的延长线上时,∠BDF为锐角,∴∠FDM为钝角,∵△MDF为等腰三角形,∴DF=DM,∴∠M=∠DFM,∴∠BDF=∠M+∠DFM=2∠M,∵BM∥OC,∴∠M=∠MOC,由(2)得∠BOF=∠BDF,∴∠BDF+∠MOC=3∠M=90°,∴∠M=30°,在Rt△BOM中,BM=,∴ME=BM﹣BE=3﹣2;②如图,当M在线段BD上时,∠DMF为钝角,∵△MDF为等腰三角形,∴MF=DM,∴∠BDF=∠MFD,∴∠BMO=∠BDF+∠MFD=2∠BDF,由(2)得∠BOF=∠BDF,∴∠BMO=2∠BOM,∴∠BOM+∠BMO=3∠BOM=90°,∴∠BOM=30°,在Rt△BOM中,BM=,∴ME=BE﹣BM=2﹣,综上所述,ME的值为:3﹣2或2﹣.7.(2022•山西)综合与探究如图,二次函数y=﹣x2+x+4的图象与x轴交于A,B两点(点A在点B 的左侧),与y轴交于点C.点P是第一象限内二次函数图象上的一个动点,设点P的横坐标为m.过点P作直线PD⊥x轴于点D,作直线BC交PD于点E.(1)求A,B,C三点的坐标,并直接写出直线BC的函数表达式;(2)当△CEP是以PE为底边的等腰三角形时,求点P的坐标;(3)连接AC,过点P作直线l∥AC,交y轴于点F,连接DF.试探究:在点P运动的过程中,是否存在点P,使得CE=FD,若存在,请直接写出m的值;若不存在,请说明理由.【解答】解:(1)在y=﹣x2+x+4中,令x=0得y=4,令y=0得x=8或x=﹣2,∴A(﹣2,0),B(8,0),C(0,4),设直线BC解析式为y=kx+4,将B(8,0)代入得:8k+4=0,解得k=﹣,∴直线BC解析式为y=﹣x+4;(2)过C作CG⊥PD于G,如图:设P(m,﹣m2+m+4),∴PD=﹣m2+m+4,∵∠COD=∠PDO=∠CGD=90°,∴四边形CODG是矩形,∴DG=OC=4,CG=OD=m,∴PG=PD﹣DG=﹣m2+m+4﹣4=﹣m2+m,∵CP=CE,CG⊥PD,∴GE=PG=﹣m2+m,∵∠GCE=∠OBC,∠CGE=90°=∠BOC,∴△CGE∽△BOC,∴=,即=,解得m=0(舍去)或m=4,∴P(4,6);(3)存在点P,使得CE=FD,理由如下:过C作CH⊥PD于H,如图:设P(m,﹣m2+m+4),由A(﹣2,0),C(0,4)可得直线AC解析式为y=2x+4,根据PF∥AC,设直线PF解析式为y=2x+b,将P(m,﹣m2+m+4)代入得:﹣m2+m+4=2m+b,∴b=﹣m2﹣m+4,∴直线PF解析式为y=2x﹣m2﹣m+4,令x=0得y=﹣m2﹣m+4,∴F(0,﹣m2﹣m+4),∴OF=|﹣m2﹣m+4|,同(2)可得四边形CODH是矩形,∴CH=OD,∵CE=FD,∴Rt△CHE≌Rt△DOF(HL),∴∠HCE=∠FDO,∵∠HCE=∠CBO,∴∠FDO=∠CBO,∴tan∠FDO=tan∠CBO,∴=,即=,∴﹣m2﹣m+4=m或﹣m2﹣m+4=﹣m,解得m=2﹣2或m=﹣2﹣2或m=4或m=﹣4,∵P在第一象限,∴m=2﹣2或m=4.8.(2022•东营)如图,抛物线y=ax2+bx﹣3(a≠0)与x轴交于点A(﹣1,0),点B(3,0),与y轴交于点C.(1)求抛物线的表达式;(2)在对称轴上找一点Q,使△ACQ的周长最小,求点Q的坐标;(3)点P是抛物线对称轴上的一点,点M是对称轴左侧抛物线上的一点,当△PMB是以PB为腰的等腰直角三角形时,请直接写出所有点M的坐标.【解答】解:(1)将点A(﹣1,0),点B(3,0)代入y=ax2+bx﹣3,∴,解得,∴y=x2﹣2x﹣3;(2)连接CB交对称轴于点Q,∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的对称轴为直线x=1,∵A、B关于对称轴x=1对称,∴AQ=BQ,∴AC+AQ+CQ=AC+CQ+BQ≥AC+BC,当C、B、Q三点共线时,△ACQ的周长最小,∵C(0,﹣3),B(3,0),设直线BC的解析式为y=kx+b,∴,解得,∴y=x﹣3,∴Q(1,﹣2);(3)当∠BPM=90°时,PM=PB,∴M点与A点重合,∴M(﹣1,0);当∠PBM=90°时,PB=BM,如图1,当P点在M点上方时,过点B作x轴的垂线GH,过点P作PH⊥GH 交于H,过点M作MG⊥HG交于G,∵∠PBM=90°,∴∠PBH+∠MBG=90°,∵∠PBH+∠BPH=90°,∴∠MBG=∠BPH,∵BP=BM,∴△BPH≌△MBG(AAS),∴BH=MG,PH=BG=2,设P(1,t),则M(3﹣t,﹣2),∴﹣2=(3﹣t)2﹣2(3﹣t)﹣3,解得t=2+或t=2﹣,∴M(1﹣,﹣2)或(1+,﹣2),∵M点在对称轴的左侧,∴M点坐标为(1﹣,﹣2);如图2,当P点在M点下方时,同理可得M(3+t,2),∴2=(3+t)2﹣2(3+t)﹣3,解得t=﹣2+(舍)或t=﹣2﹣,∴M(1﹣,2);综上所述:M点的坐标为(1﹣,﹣2)或(1﹣,2)或(﹣1,0).9.(2022•枣庄)如图①,已知抛物线L:y=x2+bx+c经过点A(0,3),B(1,0),过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点.(1)求抛物线的关系式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当△OPE面积最大时,求出P点坐标;(3)将抛物线L向上平移h个单位长度,使平移后所得抛物线的顶点落在△OAE内(包括△OAE的边界),求h的取值范围;(4)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P,使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线L:y=x2+bx+c经过点A(0,3),B(1,0),∴,解得,∴抛物线的解析式为:y=x2﹣4x+3;(2)如图,过P作PG∥y轴,交OE于点G,设P(m,m2﹣4m+3),∵OE平分∠AOB,∠AOB=90°,∴∠AOE=45°,∴△AOE是等腰直角三角形,∴AE=OA=3,∴E(3,3),∴直线OE的解析式为:y=x,∴G(m,m),∴PG=m﹣(m2﹣4m+3)=﹣m2+5m﹣3,=S△OPG+S△EPG∴S△OPE=PG•AE=×3×(﹣m2+5m﹣3)=﹣(m2﹣5m+3)=﹣(m﹣)2+,∵﹣<0,∴当m=时,△OPE面积最大,此时,P点坐标为(,﹣);(3)由y=x2﹣4x+3=(x﹣2)2﹣1,得抛物线l的对称轴为直线x=2,顶点为(2,﹣1),抛物线L向上平移h个单位长度后顶点为F(2,﹣1+h).设直线x=2交OE于点M,交AE于点N,则E(3,3),∵直线OE的解析式为:y=x,∴M(2,2),∵点F在△OAE内(包括△OAE的边界),∴2≤﹣1+h≤3,解得3≤h≤4;(4)设P(m,m2﹣4m+3),分四种情况:①当P在对称轴的左边,且在x轴下方时,如图,过P作MN⊥y轴,交y 轴于M,交l于N,∴∠OMP=∠PNF=90°,∵△OPF是等腰直角三角形,∴OP=PF,∠OPF=90°,∴∠OPM+∠NPF=∠PFN+∠NPF=90°,∴∠OPM=∠PFN,∴△OMP≌△PNF(AAS),∴OM=PN,∵P(m,m2﹣4m+3),则﹣m2+4m﹣3=2﹣m,解得:m=(舍)或,∴P的坐标为(,);②当P在对称轴的左边,且在x轴上方时,同理得:2﹣m=m2﹣4m+3,解得:m1=(舍)或m2=,∴P的坐标为(,);③当P在对称轴的右边,且在x轴下方时,如图,过P作MN⊥x轴于N,过F作FM⊥MN于M,同理得△ONP≌△PMF,∴PN=FM,则﹣m2+4m﹣3=m﹣2,解得:m1=或m2=(舍);P的坐标为(,);④当P在对称轴的右边,且在x轴上方时,如图,同理得m2﹣4m+3=m﹣2,解得:m=或(舍),P的坐标为:(,);综上所述,点P的坐标是:(,)或(,)或(,)或(,).方法二:作直线DE:y=x﹣2,E(1,﹣1)是D点(2,0)绕O点顺时针旋转45°并且OD缩小倍得到,易知直线DE即为对称轴上的点绕O点顺时针旋转45°,且到O点距离缩小倍的轨迹,联立直线DE和抛物线解析式得x2﹣4x+3=x﹣2,解得x1=,x2=,同理可得x3=或x4=;综上所述,点P的坐标是:(,)或(,)或(,)或(,).10.(2023•澄城县一模)如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)、B,与y轴交于点C(0,3),直线l是抛物线的对称轴.(1)求抛物线的函数解析式;(2)在对称轴l上是否存在点M,使△MAC为等腰三角形,若存在,求出所有符合条件的点M的坐标;若不存在,请说明理由.【解答】解:(1)把点A(﹣1,0)、点C(0,3)分别代入y=﹣x2+bx+c,得.解得.故该抛物线解析式为:y=﹣x2+2x+3;(2)由(1)知,该抛物线解析式为:y=﹣x2+2x+3.则该抛物线的对称轴为直线x=﹣=1.故设M(1,m).∵A(﹣1,0)、点C(0,3),∴AC2=10,AM2=4+m2,CM2=1+(m﹣3)2.①若AC=AM时,10=4+m2,解得m=±.∴点M的坐标为(1,)或(1,﹣);②若AC=CM时,10=1+(m﹣3)2,解得m=0或m=6,∴点M的坐标为(1,0)或(1,6).当点M的坐标为(1,6)时,点A、C、M共线,∴点M的坐标为(1,0);③当AM=CM时,4+m2=1+(m﹣3)2,解得m=1,∴点M的坐标为(1,1).综上所述,符合条件的点M的坐标为(1,)或(1,﹣)或(1,0)或(1,1).11.(2023•碑林区校级一模)二次函数y=ax2+bx+2的图象交x轴于A(﹣1,0),B(4,0)两点,交y轴于点C,动点M从点A出发,以每秒2个单位长度的速度沿AB方向运动,过点M作MN⊥x轴交直线BC于点N,交抛物线于点D,连接AC,设运动的时间为t秒.(1)求二次函数y=ax2+bx+2的表达式;(2)在直线MN上存在一点P,当△PBC是以∠BPC为直角的等腰直角三角形时,求此时点D的坐标.【解答】解:(1)将点(﹣1,0),B(4,0)代入y=ax2+bx+2,∴a=﹣,b=,∴y=﹣x2+x+2;(2)∵BM=5﹣2t,∴M(2t﹣1,0),设P(2t﹣1,m),∵PC2=(2t﹣1)2+(m﹣2)2,PB2=(2t﹣5)2+m2,∵PB=PC,∴(2t﹣1)2+(m﹣2)2=(2t﹣5)2+m2,∴m=4t﹣5,∴P(2t﹣1,4t﹣5),∵PC⊥PB,∴×=﹣1,∴t=1或t=2,∴M(1,0)或M(3,0),∴D(1,3)或D(3,2).12.(2023•东洲区模拟)抛物线y=ax2+bx+3经过A(﹣1,0),B(3,0)两点,与y轴正半轴交于点C.(1)求此抛物线解析式;(2)如图①,连接BC,点P为抛物线第一象限上一点,设点P的横坐标为m,△PBC的面积为S,求S与m的函数关系式,并求S最大时P点坐标;(3)如图②,连接AC,在抛物线的对称轴上是否存在点M,使△MAC为等腰三角形?若存在,请直接写出符合条件的点M的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线y=ax2+bx+3经过A(﹣1,0),B(3,0)两点,∴,解得:,∴抛物线解析式为y=﹣x2+2x+3;(2)点P作PF⊥x轴于点F,交BC于点E,设BC直线解析式为:y=kx+b,∵B(3,0),C(0,3),∴,解得,∴y=﹣x+3,由题意可知P(m,﹣m2+2m+3),E(m,﹣m+3),S=S△PBE+S△PCE,S=PE•OB=(﹣m2+2m+3+m﹣3)×3,,∵,∴当时,S有最大值,此时P点坐标为;(3)存在,M 1(1,0),,,M4(1,1),①当AC=AM时,如图,设对称轴l与AB交于点E,则,∵AM2=AE2+EM2,∴,解得:,∴M点的坐标为或,②当AC=MC时,则OC为AM的垂直平分线.因此M与E重合,因此,M点的坐标为(1,0),③当AM=CM时,如图,设M点的坐标为(1,n),则AM2=22+n2=4+n2,CM2=12+(3﹣n)2,∴4+n2=12+(3﹣n)2,解得:n=1,∴M点的坐标为(1,1),综上可知,潢足条件的M点共四个,其坐标为M1(1,0),,,M 4(1,1).13.(2023•三亚一模)如图,抛物线y =ax 2+3x +c (a ≠0)与x 轴交于点A (﹣2,0)和点B ,与y 轴交于点C (0,8),顶点为D ,连接AC ,CD ,DB ,直线BC 与抛物线的对称轴l 交于点E .(1)求抛物线的解析式和直线BC 的解析式;(2)求四边形ABDC 的面积;(3)P 是第一象限内抛物线上的动点,连接PB ,PC ,当S △PBC =S △ABC 时,求点P 的坐标;(4)在抛物线的对称轴l 上是否存在点M ,使得△BEM 为等腰三角形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.【解答】解:(1)∵抛物线y =ax 2+3x +c (a ≠0)过点A (﹣2,0)和C (0,8),∴,解得,∴抛物线的解析式为y =﹣x 2+3x +8.令y =0,得.解得x 1=﹣2,x 2=8.∴点B 的坐标为(8,0).设直线BC 的解析式为y =kx +b .把点B (8,0),C (0,8)分别代入y =kx +b ,得,解得,∴直线BC 的解析式为y =﹣x +8.(2)如图1,设抛物线的对称轴l 与x 轴交于点H .∵抛物线的解析式为,∴顶点D 的坐标为.∴S 四边形ABDC =S △AOC +S 梯形OCDH +S △BDH ===70.(3)∵.∴.如图2,过点P作PG⊥x轴,交x轴于点G,交BC于点F.设点.∵点F在直线BC上,∴F(t,﹣t+8).∴.∴.∴.解得t1=2,t2=6.∴点P的坐标为(2,12)或P(6,8).(4)存在.∵△BEM为等腰三角形,∴BM=EM或BE=BM或BE=EM,设M(3,m),∵B(8,0),E(3,5),∴BE==5,EM=|m﹣5|,BM==,当BM=EM时,=|m﹣5|,∴m2+25=(m﹣5)2,解得:m=0,∴M(3,0);当BE=BM时,5=,∴m2+25=50,解得:m=﹣5或m=5(舍去),∴M(3,﹣5);当BE=EM时,5=|m﹣5|,解得:m=5+5或m=5﹣5,∴M(3,5+5)或(3,5﹣5),综上所述,点M的坐标为(3,0)或(3,﹣5)或(3,5+5)或(3,5﹣5).14.(2023•南海区一模)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3(a >0)与x轴交于A(﹣1,0)、B(3,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)点P为直线BC下方抛物线上的一动点,PM⊥BC于点M,PN∥y轴交BC于点N.求线段PM的最大值和此时点P的坐标;(3)点E为x轴上一动点,点Q为抛物线上一动点,是否存在以CQ为斜边的等腰直角三角形CEQ?若存在,请直接写出点E的坐标;若不存在,请说明理由.【解答】解:(1)将A(﹣1,0),B(3,0)代入函数y=ax2+bx﹣3(a>0)中,得,解得,∴解析式为y=x2﹣2x﹣3,故抛物线解析式为y=x2﹣2x﹣3;(2)当x=0时,y=3,∴C(0,﹣3),∵B(3,0),∴∠OCB=∠OBC=45°,∵PN∥y轴,∴∠MNP=45°,∵PM⊥BC,∴PM=PN,则当PN最大时,PM也最大,设BC的解析式为y=mx+n,∴,解得,∴BC解析式为y=x﹣3,设P(x,x2﹣2x﹣3),N(x,x﹣3),∴PN=x﹣3﹣(x2﹣2x﹣3)=﹣(x﹣)2+,当x=时,PN最大,则PM=PN=×=,∴P(,),故PM最大值为,P点坐标为(,﹣);(3)存在,点E的坐标为(﹣5,0),(,0),(0,0),(,0).∵CEQ是以CQ为斜边的等腰直角三角形,∴设Q(x,x2﹣2x﹣3),①如图,过点E作x轴的垂线l,再分别过点C和点Q作垂线l的垂线,分别交于点M和点N,∵∠CEQ=90°,∴∠QEM+∠CEN=90°,∵∠QEM+∠MQE=90°,∴∠EQM=∠CEN,∵∠CNE=∠QME=90°,EC=EQ,∴△EMQ≌△CNE(AAS),∴CN=EM=x2﹣2x﹣3,MQ=EN=3,∴|x Q|+MQ=CN,﹣x+3=x2﹣2x﹣3,解得x=﹣2,x=3(舍去),∴OE=CM=2+3=5,E(﹣5,0),②如图,过点E作x轴的垂线l,再分别过点C和点Q作垂线l的垂线,分别交于点M和点N,同理:△EMC≌△QNE(AAS),CM=EN=x2﹣2x﹣3,NQ=EM=3,∴﹣x+x2﹣2x﹣3=3,解得x=,x=(舍去),∴OE=CM=,E(,0),③如图,点E和点O重合,点Q和点B重合,此时E(0,0),④如图,过点E作x轴的垂线l,再分别过点C和点Q作垂线l的垂线,分别交于点M和点N,同理:△EMC≌△QNE(AAS),CM=EN=x2﹣2x﹣3,NQ=EM=3,∴x+3=x2﹣2x﹣3,解得x=,x=(舍去),∴OE=CM=,E(,0),综上所述,点E的坐标为(﹣5,0),(,0),(0,0),(,0).41。
二次函数与相似三角形、全等三角形及等角的存在性问题
二次函数与相似三角形、全等三角形及等角的存在性问题(一)、相似三角形的存在性问题:1、如图,直线y=−x+3与x 轴、y 轴分别相交于点B. C,经过B. C 两点的抛物线c bx ax y ++=2与x 轴的另一个交点为A ,顶点为P ,且对称轴为直线x=2. (1)、求该抛物线的解析式; (2)、连接PB 、PC ,求△PBC 的面积;(3)、连接AC ,在x 轴上是否存在一点Q ,使得以点P ,B ,Q 为顶点的三角形与△ABC 相似?若存在,求出点Q 的坐标;若不存在,请说明理由。
2、如图,在平面直角坐标系中,直线y =kx ﹣4k +4与抛物线y =x 2﹣x 交于A 、B 两点. (1)、直线总经过定点,请直接写出该定点的坐标; (2)、点P 在抛物线上,当k =﹣时,解决下列问题:①、在直线AB 下方的抛物线上求点P ,使得△PAB 的面积等于20;②、连接OA ,OB ,OP ,作PC ⊥x 轴于点C ,若△POC 和△ABO 相似,请直接写出点P 的坐标.3、如图,在平面直角坐标系中,直线y=-x-3与抛物线y=x2+mx+n相交于两个不同的点A、B,其中点A在x轴上.(1)、则A点坐标为▲;(2)、若点B为该抛物线的顶点,求m、n的值;(3)、在(2)条件下,设该抛物线与x轴的另一个交点为C,请你探索在平面内是否存在点D,使得△DAC与△DCO相似?如果存在,求出点D的坐标;如果不存在,请说明理由.4、已知某二次函数的图象与x轴分别相交于点A(−3,0)和点B(1,0),与y轴相交于C(0,−3m)(m>0),顶点为点D.(1)、求该二次函数的解析式(系数用含m的代数式表示);(2)、如图①,当m=2时,点P为第三象限内抛物线上的一个动点,设△APC的面积为S,试求出S与点P的横坐标x之间的函数关系式及S的最大值;(3)、如图②,当m取何值时,以A. D. C三点为顶点的三角形与△OBC相似?5、如图,抛物线y=ax2+bx+c(a≠0)经过点A(﹣3,0)、B(1,0)、C(﹣2,1),交y轴于点M.(1)、求抛物线的表达式;(2)、D为抛物线在第二象限部分上的一点,作DE垂直x轴于点E,交线段AM于点F,求线段DF长度的最大值,并求此时点D的坐标;(3)、抛物线上是否存在一点P,作PN垂直x轴于点N,使得以点P、A、N为顶点的三角形与△MAO相似?若存在,求点P的坐标;若不存在,请说明理由.6、如图,直线y =﹣x +3与x 轴交于点C ,与y 轴交于点B ,抛物线y =ax 2+x +c 经过B 、C 两点. (1)、求抛物线的解析式;(2)、点E 是直线BC 上方抛物线上的一动点,过点E 作y 轴的平行线交直线BC 于点M ,交x 轴于点F ,设E 的横坐标为m ,请用含m 的代数式表示线段EM 的长;(3)、在(2)的条件下,若B ,E ,M 为顶点的三角形与△BOC 相似,请直接写出m 的值.7、如图所示抛物线2y x bx c =++经过A 、B 两点,A 、B 两点的坐标分别为(-1,0)、(0,-3)(1)、求抛物线的解析式;(2)、点E 为抛物线的顶点,点C 为抛物线与x 轴的另一个交点,点D 为y 轴上一点,且DC=DE ,求出点D 的坐标;(3)、在(2)的条件下,在直线DE 上存在点P ,使得以C 、D 、P 为顶点的三角形与△DOC 相似,请直接写出....所有满足条件的点P 的坐标。
二次函数存在性问题(相似专题)
二次函数存在性问题——相似三角形例一、如图,抛物线y=ax2+bx+c(a≠0)经过点A(﹣3,0)、B(1,0)、C(﹣2,1),交y轴于点M.(1)求抛物线的表达式;(2)D为抛物线在第二象限部分上的一点,作DE垂直x轴于点E,交线段AM于点F,求线段DF长度的最大值,并求此时点D的坐标;(3)抛物线上是否存在一点P,作PN垂直x轴于点N,使得以点P、A、N为顶点的三角形与△MAO相似?若存在,求点P的坐标;若不存在,请说明理由.例二.如图,已知抛物线经过A(﹣2,0),B(﹣3,3)及原点O,顶点为C(1)求抛物线的函数解析式.(2)设点D在抛物线上,点E在抛物线的对称轴上,且以AO为边的四边形AODE是平行四边形,求点D的坐标.(3)P是抛物线上第一象限内的动点,过点P作PM⊥x轴,垂足为M,是否存在点P,使得以P,M,A为顶点的三角形与△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.随堂练习1.如图,抛物线21y ax bx =++与x 轴交于A (-1,0)、B (1,0)两点,与y 轴交于点C .(1)求抛物线的解析式;(2)过点B 作BD ∥CA 与抛物线交于点D ,求四边形ACBD 的面积;(3)M 是x 轴下方抛物线上的一个动点,过M 作MN ⊥x 轴于点N ,是否存在点M ,使以A 、M 、N 为顶点的三角形与△BCD 相似?若存在,请求出点M 的坐标;若不存在,请说明理由.2. 如图,在平面直角坐标系xOy 中,直线y=x+4与坐标轴分别交于A 、B 两点,过A 、B 两点的抛物线为y=﹣x2+bx+c.点D为线段AB上一动点,过点D作CD⊥x 轴于点C,交抛物线于点E.(1)求抛物线的解析式.(2)当DE=4时,求四边形CAEB的面积.(3)连接BE,是否存在点D,使得△DBE和△DAC相似?若存在,求此点D坐标;若不存在,说明理由.3.如图,抛物线y=ax2+b与x轴交于点A、B,且A点的坐标为(1,0),与y轴交于点C(0,1).(1)求抛物线的解析式,并求出点B坐标;(2)过点B作BD∥CA交抛物线于点D,连接BC、CA、AD,求四边形ABCD的周长;(结果保留根号)(3)在x轴上方的抛物线上是否存在点P,过点P作PE垂直于x轴,垂足为点E,使以B、P、E为顶点的三角形与△CBD 相似?若存在请求出P点的坐标;若不存在,请说明理由.4.如图所示,直线l:y=3x+3与x轴交于点A,与y轴交于点B.把△AOB沿y轴翻折,点A落到点C,抛物线过点B、C 和D(3,0).(1)求直线BD和抛物线的解析式.(2)若BD与抛物线的对称轴交于点M,点N在坐标轴上,以点N、B、D为顶点的三角形与△MCD相似,求所有满足条件的点N的坐标.(3)在抛物线上是否存在点P,使S△PBD=6?若存在,求出点P的坐标;若不存在,说明理由.5. 如图,四边形ABCD是平行四边形,AB=4,OB=2,抛物线过A、B、C三点,与x轴交于另一点D.一动点P以每秒1个单位长度的速度从B点出发沿BA向点A运动,运动到点A停止,同时一动点Q从点D出发,以每秒3个单位长度的速度沿DC向点C运动,与点P同时停止.(1)求抛物线的解析式;(2)若抛物线的对称轴与AB交于点E,与x轴交于点F,当点P运动时间t为何值时,四边形POQE是等腰梯形?(3)当t为何值时,以P、B、O为顶点的三角形与以点Q、B、O为顶点的三角形相似?6. 如图,抛物线y=ax2﹣2ax+c(a≠0)交x轴于A、B两点,A点坐标为(3,0),与y轴交于点C(0,4),以OC、OA为边作矩形OADC交抛物线于点G.(1)求抛物线的解析式;(2)抛物线的对称轴l在边OA(不包括O、A两点)上平行移动,分别交x轴于点E,交CD于点F,交AC于点M,交抛物线于点P,若点M的横坐标为m,请用含m的代数式表示PM的长;(3)在(2)的条件下,连结PC,则在CD上方的抛物线部分是否存在这样的点P,使得以P、C、F为顶点的三角形和△AEM相似?若存在,求出此时m的值,并直接判断△PCM的形状;若不存在,请说明理由.。
第二讲二次函数中有关三角形存在性问题
+第二讲 二次函数中有关三角形存在性问题一、课题说明:二、知识梳理:动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
)等。
1.基本步骤:(1)分类讨论 (2)尺规作图 (3)计算 2.常用公式:(1)如果A(x 1,y 1)B(x 2,y 2),那么则它们的中点P 的坐标为((x 1+x 2)/2, (y 1+y 2)/2);(2)直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系:①两直线平行⇔21k k =且21b b ≠ ②两直线垂直⇔121-=k k po三、典例精讲: 1.等腰三角形问题例1.【A 类】(2015师大4模)uprt 如图,在平面直角坐标系中,抛物线与x 轴交于A 、B 两点(A 在B 的左侧),与y 轴交于点C (0,4),顶点为(1,29). (1)求抛物线的函数表达式;教学目标1、使学生掌握二次函数中特殊三角形存在性问题的解题思路及解题方法;2提高学生的综合分析与解决问题的能力。
教学重点 二次函数图像在等腰三角形、直角三角形、相似三角形存在性问题中的综合应用。
教学难点 让学生学会归纳并熟练掌握类型题的作图方法与解答技巧。
教学方法 分类讨论法、尺规作图、归纳法。
常见考法此类型通常会出现在陕西省中考数学第24题,分值为10分;其他省市中考题与也均以解答题形式出现。
选材程度及数量课堂精讲例题课堂训练题课后作业A 类 1 2B 类 1 1 2C 类211(2)设抛物线的对称轴与x 轴交于点D ,试在对称轴上找出点P ,使△CDP 为等腰三角形,请直接写出满足条件的所有点P 的坐标;【教法参考】(1).分类讨论:分类标准:讨论顶角的位置或者底边的位置例如:本题第二问:在抛物线上找一点p ,使得P D C 、、三点构成等腰三角形,则可分成以下几种情况:(1)当C ∠为顶角时,CP CD = (2)当D ∠为顶角时,DP DC = (3)当P ∠为顶角时,PD PC =(2).尺规作图:两圆一线(①当C ∠为顶角时,以C 为圆心CD 为半径画圆,与对称轴交点即为所求点P ,②当D ∠为顶角时,以D 为圆心DC 为半径画圆,与对称轴交点即为所求点P ,③当P ∠为顶角时,线段DC 的垂直平分线与对称轴交点即为所求点P 。
【中考数学几何模型】第二十五节:二次函数三角形相似存在性问题
中考数学几何模型第二十五节:二次函数三角形相似存在性问题448.二次函数三角形相似存在性问题(初三)x2+bx+c与x轴交于A,B两点,点A,B分别位于原点的左、右两侧,B0=3A0=3,过点B的直如图,抛物线y=3+36线与y轴正半轴和抛物线的交点分别为C,D,BC=3CD(1)求b,c的值;(2)求直线BD的函数解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ相似时,请直接写出所有满足条件的点Q的坐标.449.二次函数线段最大值三角形相似存在性问题(初三),D 如图,抛物线y=ax2+bx+2与x轴交于A,B两点,且OA=20B,与y轴交于点C,连接BC,抛物线对称轴为直线x=12为第一象限内抛物线上一动点,过点D作DE⊥OA于点E,与AC交于点F,设点D的横坐标为m.(1)求抛物线的表达式;(2)当线段DF的长度最大时,求D点的坐标;(3)抛物线上是否存在点D,使得以点0,D,E为顶点的三角形与△BOC相似?若存在,求出m的值;若不存在,请说明理由.450.二次函数铅垂定理面积最大值三角形形似存在性(初三)如图,已知抛物线y=ax2+bx+6经过两点A(―1,0),B(3,0),C是抛物线与y轴的交点.(1)求抛物线的解析式;(2)点P(m,n)在平面直角坐标系第一象限内的抛物线上运动,设△PBC的面积为S,求S关于m的函数表达式(指出自变量m的取值范围)和S的最大值;(3)点M在抛物线上运动,点N在y轴上运动,是否存在点M、点N使得∠CMN=90∘,且△CMN与△OBC相似,如果存在,请求出点M和点N的坐标.451.二次函数三角形面积定值三角形相似存在性问题(初三)如图,抛物线y=ax2+bx+8(a≠0)与x轴交于点A(―2,0)和点B(8,0),与y轴交于点C,顶点为D,连接AC,BC,BC与抛物线的对称轴l交于点E.(1)求抛物线的表达式;S△ABC时,求点P的坐标;(2)点P是第一象限内抛物线上的动点,连接PB,PC,当S△PBC=35(3)点N是对称轴1右侧抛物线上的动点,在射线ED上是否存在点M,使得以点M,N,E为顶点的三角形与△OBC相似?若存在,求点M的坐标;若不存在,请说明理由.452.二次函数平行四边形存在性三角形相似存在性问题(初三)如图,二次函数y=ax2+bx+4的图象与x轴交于点A(―1,0),B(4,0),与y轴交于点C,抛物线的顶点为D,其对称轴与线段BC交于点E,垂直于x轴的动直线1分别交抛物线和线段BC于点P和点F,动直线1在抛物线的对称轴的右侧(不含对称轴)沿x轴正方向移动到B点.(1)求出二次函数y=ax2+bx+4和BC所在直线的表达式;(2)在动直线1移动的过程中,试求使四边形DEFP为平行四边形的点P的坐标;(3)连接CP,CD,在动直线1移动的过程中,抛物线上是否存在点P,使得以点P,C,F为顶点的三角形与△DCE相似?如果存在,求出点P的坐标;如果不存在,请说明理由.453.二次函数三角形相似存在性问题(初三)已知抛物线y =ax 2+bx +3与x 轴分别交于A(―3,0),B(1,0)两点,与y 轴交于点C .(1)求抛物线的表达式及顶点D 的坐标;(2)点F 是线段AD 上一个动点.①如图1,设k =AFAD ,当k 为何值时,CF =12AD ?②如图2,以A,F,0为顶点的三角形是否与△ABC 相似?若相似,求出点F 的坐标;若不相似,请说明理由.454.二次函数三角形相似存在性问题(初三)如图1,直线y =―12x +b 与抛物线y =ax 2交于A,B 两点,与y 轴于点C ,其中点A 的坐标为(―4,8).(1)求a,b 的值;(2)将点A 绕点C 逆时针旋转90∘得到点D .①试说明点D 在抛物线上;②如图2,将直线AB 向下平移,交抛物线于E,F 两点(点E 在点F 的左侧),点G 在线段OC 上.若△GEF ∼△DBA (点G,E,F 分别与点D,B,A 对应),求点G 的坐标.455.二次函数三角形存在性问题面积倍分动点问题(初三)如图,已知抛物线y =ax 2+bx(a ≠0)过点A(3,―3)和点B(33,0).过点A 作直线AC//x 轴,交y 轴于点C .(1)求抛物线的解析式;(2)在抛物线上取一点P ,过点P 作直线AC 的垂线,垂足为D .连接OA ,使得以A,D,P 为顶点的三角形与△AOC 相似,求出对应点P 的坐标;(3)抛物线上是否存在点Q ,使得S △AOC =13S △ACQ ?若存在,求出点Q 的坐标;若不存在,请说明理由.答案448.【解】(1)∵BO=3AO=3,∴点B(3,0),点A(-1,0),∴抛物线解析式为:y =3+36(x +1)(x -3)=3+36x 2-3+33x -3+32,∴b =-3+33,c =-3+32;(2)如图1,过点D 作DE ⊥AB 于E,∴CO//DE,∴BCCD =BOOE ,∵BC =3CD,BO =3,∴3=3OE,∴OE =3,∴点D 横坐标为-3,∴点D 坐标为(-3,3+1),设直线BD 的函数解析式为:y =kx +m,把点B(3,0),D(-3,3+1)代入得:{3+1=-3k +m0=3k +m ,解得:{k =-33m =3,∴直线BD 的函数解析式为y =-33x +3;(3)∵点B(3,0),点A(-1,0),点D(-3,3+1),∴AB =4,AD =22,BD =23+2,对称轴为直线x =1,∵直线BD:y =-33x +3与y 轴交于点C,∴点C(0,3),∴OC =3,∵tan ∠CBO =COBO =33,∴∠CBO =30∘,如图1,过点A 作AF ⊥BD 于F,∴AF =12AB =2,BF =3AF =23,BD =2DE =23+2∴DF =BD -BF =23+2-23=2,∴DF =AF,∴∠ADB =45∘,设对称轴与x 轴的交点为N,即点N (1,0),BN =3-1=2,现在分两种情况讨论:第一种情况:若∠CBO =∠PBO =30∘,如图3:∴BN =3PN =2,BP =2PN,∴PN =233,BP =433,(1)当△BAD ∽△BPQ,∴BP BA=BQBD ,∴BQ =2+233,∴点Q1(1-233,0);(2)当△BAD ∽△BQP,∴BPBD=BQAB ,∴BQ =4-433,∴点Q2(-1+433,0);第二种情况:若∠PBO =∠ADB =45∘,如图3:∴BN =PN =2,BP =2BN =22,(3).当△DAB ∽△BPQ,∴BP AD=BQBD ,∴2222=BQ23+2,∴BQ =23+2,∴点Q3(1-23,0);(4).当△BAD ∽△PQB,∴BPBD=BQAD ,∴2223+2=BQ22,∴BQ ==23-2,∴点Q4(5-23,0);综上所述:满足条件的点Q 的坐标为(1-233,0)或(-1+433,0)或(1-23,0)或(5-23,0).449.【解】(1).设OB =t,则OA =2t,则点A 、B 的坐标分别为(2t,0)、(-t,0),则x =12=12(2t -t),解得:t =1,故点A 、B 的坐标分别为(2,0)、(-1,0),则抛物线的表达式为:y =a(x -2)(x +1)=ax 2+bx +2,解得:a =-1,b =1,故抛物线的表达式为:y =-x 2+x +2;(2).对于y =-x 2+x +2,令x =0,则y =2,故点C(0,2),由点A 、C 的坐标得,直线AC 的表达式为:y =-x +2,设点D 的横坐标为m,则点D (m,-m 2+m +2),则点F(m,-m +2),则DF =-m 2+m +2-(-m +2)=-m 2+2m,∵-1<0,故DF 有最大值,DF 最大时m =1,∴点D(1,2);(3)存在,理由如下:点D (m,-m 2+m +2)(m >0),则OE =m,DE =-m 2+m +2,以点O,D,E 为顶点的三角形与△BOC 相似,则DEOE =OBOC 或DEOE =OCOB ,即DOOE =12或DOOE =2,即-m 2+m +2m=12或-m 2+m +2m=2,解得:m =1或-2(舍去)或1+334或1-334(舍去),经检验m =1或1+334是方程的解,且符合题意,故m =1或1+334.450.【解】(1)将A(-1,0)、B(3,0)代入y =ax 2+bx +6,得:{a -b +6=09a +3b +6=0,解得:{a =-2b =4,∴抛物线的解析式为y =-2x 2+4x +6.(2)过点P 作PF ⊥x 轴,交BC 于点F,如图1所示.当x =0时,y =-2x 2+4x +6=6,∴点C 的坐标为(0,6).设直线BC 的解析式为y =kx +c,将B(3,0)、C(0,6)代入y =kx +c,得:{3k +c =0c =6,解得:{k =-2c =6,∴直线BC 的解析式为y =-2x +6.∵点P(m,n)在平面直角坐标系第一象限内的抛物线上运动,∴点P 的坐标为(m,-2m 2+4m +6),则点F 的坐标为(m,-2m +6),∴PF =-2m 2+4m +6-(-2m +6)=-2m 2+6m,∴S =12PF ⋅OB =-3m 2+9m =-3(m -32)2+274,∴当m =32时,△PBC 面积取最大值,最大值为274.∵点P(m,n)在平面直角坐标系第一象限内的抛物线上运动,∴0<m <3.综上所述,S 关于m 的函数表达式为:S =-3m 2+9m(0<m <3),S 的最大值为274.(3)存在点M 、点N 使得∠CMN =90∘,且△CMN 与△OBC 相似.第一种情况:如图2,∠CMN =90∘,当点M 位于点C 上方,过点M 作MD ⊥y 轴于点D,∵∠CDM =∠CMN =90∘,∠DCM =∠NCM,∴△MCD ∼△NCM,若△CMN 与△OBC 相似,则△MCD 与△OBC 相似,设M (a,-2a 2+4a +6),C(0,6),∴DC =-2a 2+4a,DM =a,当DMCD =OBOC =36=12时,△COB ∽△CDM ∽△CMN,∴a-2a 2+4a =12,解得,a =1,∴M(1,8),此时ND =12DM =12,∴N (0,172),当CDDM =OBOC =12时,△COB ∼△MDC ∼△NMC,∴-2a 2+4a a=12,解得a =74,∴M (74,558),∴DN =2DM =72此时N (0,838).第二种情况:如图3,当点M 位于点C 的下方,过点M 作ME ⊥y 轴于点E,设M (a,-2a 2+4a +6),C(0,6),∴EC =2a 2-4a,EM =a,同理可得:2a 2-4aa =12或2a 2-4aa=2,△CMN 与△OBC 相似,解得a =94或a =3,∴M (94,398)或M(3,0),此时N 点坐标为(0,38)或(0,-32).综合以上得,存在M(1,8),N (0,172)或M (74,558),N (0,838)或M (94,398),N (0,38)或M(3,0),N (0,-32),使得∠CMN =90∘,且△CMN 与△OBC 相似.451.【解】(1)∵抛物线y =ax 2+bx +8(a ≠0)过点A (-2,0)和点B(8,0),∴{4a -2b +8=064a +8b +8=0,解得{a =-12b =3.∴拋物线解析式为:y =-12x 2+3x +8;(2)当x =0时,y =8,∴C(0,8),∴直线BC 解析式为:y =-x +8,∵S △ABC =12AB ×OC =12×10×8=40,∴S △PBC =35S △ABC =24,如图1,过点P 作PG ⊥x 轴,交x 轴于点G,交BC 于点F,设p (x,-12x 2+3x +8),∴F(x,-x +8),∴PF =-12x 2+4x,∵S △PBC =12×PF ×OB =24,∴12×(-12x 2+4x )×8=24,∴t 1=2,t 2=6,∴P 1(2,12),P 2(6,8);(3)存在,理由如下:∵C(0,8),B(8,0),∠COB =90∘,∴△OBC 为等腰直角三角形,易知拋物线的对称轴为x =3,∴点E 的横坐标为3,又∵点E 在直线BC 上,∴点E 的纵坐标为5,∴E(3,5),设M(3,m),N (n,-12n 2+3n +8),(1)如图2,当MN =EM,∠EMN =90∘,△NME ∽△COB,则{m -5=n -3-12n 2+3n +8=m ,解得{n =6m =8或{n =-2m =0(舍去),∴此时点M 的坐标为(3,8),(2)如图3,当ME =EN,∠MEN =90∘时,△MEN ∼△COB,则{m -5=n -3-12n 2+3n +8=5,解得:{m =5+15n =3+15或{m =5-15n =3-15(舍去),∴此时点M 的坐标为(3,5+15);(3)如图4,当MN =EN,∠MNE =90∘时,此时△MNE 与△COB 相似,此时的点M 与点E 关于(1)的结果(3,8)对称,设M(3,m),则m -8=8-5,解得m =11,∴M(3,11);此时点M 的坐标为(3,11);故在射线ED 上存在点M,使得以点M,N,E 为顶点的三角形与△OBC 相似,点M 的坐标为:(3,8)或(3,5+15)或(3,11).452.【解】(1)将点A(-1,0),B(4,0),代入y =ax 2+bx +4,得:{0=a -b +40=16a +4b +4,解得:{a =-1b =3,∴次函数的表达式为:y =-x 2+3x +4,当x =0时,y =4,∴C(0,4),设BC 所在直线的表达式为:y =mx +n,将C(0,4)、B(4,0)代入y =mx +n,得:{4=n o =4m +n ,解得:{m =-1n =4,∴BC所在直线的表达式为:y=-x+4;(2)∵DE⊥x轴,PF⊥x轴,∴DE//PF,只要DE=PF,四边形DEFP即为平行四边形,∵y=-x2+3x+4=-(x-32)2+254,∴点D的坐标为:(32,254),将x=32代入y=-x+4,即y=-32+4=52,∴点E的坐标为:(32,52),∴DE=254-52=154,设点P的横坐标为t,则P的坐标为:(t,-t2+3t+4),F的坐标为:(t,-t+4),∴PF=-t2+3t+4-(-t+4)=-t2+4t,由DE=PF得:-t2+4t=154,解得:t1=32(不合题意舍去),t2=52,当t=52时,-t2+3t+4=-(52)2+3×52+4=214,∴点P的坐标为(52,214);(3)存在,理由如下:如下图,连接CD,连接CP:由(2)得:PF//DE,∴∠CED=∠CFP,又∵∠PCF与∠DCE有共同的顶点C,且∠PCF在∠DCE的内部,∴∠PCF≠∠DCE,∴只有∠PCF=∠CDE时,△PCF∼△CDE,∴PFCE =CFDE,∵C(0,4),E(32,52),∴CE=322,由(2)得:DE=154,PF=-t2+4t,F的坐标为:(t,-t+4),∴CF=2t,∴-t2+4t322=2t154,∵t≠0,∴154(-t+4)=3,解得:t =165,当t =165时,-t 2+3t +4=-(165)2+3×165+4=8425,∴点P 的坐标为:(165,8425).453.【解】(1)∵抛物线y =ax 2+bx +3过点A(-3,0),B(1,0),∴{9a -3b +3=0a +b +3=0,解得:{a =-1b =-2,∴拋物线解析式为y =-x 2-2x +3;∵y =-x 2-2x +3=-(x +1)2+4∴顶点D 的坐标为(-1,4);(2)①∵在Rt △AOC 中,OA =3,OC =3,∴AC 2=OA 2+OC 2=18∵D(-1,4),C(0,3),A(-3,0),∴CD 2=12+12=2∴AD 2=22+42=20∴AC 2+CD 2=AD 2∴△ACD 为直角三角形,且∠ACD =90∘.求得直线AD 的解析式为y =2x +6,设F(m,2m +6),∵CF =12AD,∴(2m +6-3)2+m 2=(5)2,解得m =-2或m =-25(舍去),∴F(-2,2),∴F 为AD 的中点,∴AFAD=12,∴k =12.②在Rt △ACD 中,tan ∠CAD =DC AC =232=13,在Rt △OBC 中,tan ∠OCB =OBOC =13,∴∠CAD =∠OCB,∵OA =OC∴∠OAC =∠OCA =45∘,∴∠FAO =∠ACB,若以A,F,O 为顶点的三角形与△ABC 相似,则可分两种情况考虑:第一种情况:当∠AOF =∠ABC 时,△AOF ∼△CBA,∴OF//BC,设直线BC 的解析式为y =kx +b,∴{k +b =0b =3,解得:{k =-3b =3,∴直线BC 的解析式为y =-3x +3,∴直线OF 的解析式为y =-3x,设直线AD 的解析式为y =mx +n,∴{-k +b =4-3k +b =0,解得:{k =2b =6,∴直线AD 的解析式为y =2x +6,联立方程组,并解得:x =-65:,y =185∴F (-65,185).第二种情况:当∠AOF =∠CAB =45∘时,△AOF ∼△CAB,∵∠CAB =45∘,∴OF ⊥AC,即OF 是∠AOC 的角平分线,∴直线OF 的解析式为y =-x,∴联立得:{y =-xy =2x +6,解得:{x =-2y =2,∴F(-2,2).综合以上可得F 点的坐标为F (-65,185)或(-2,2).454.【解】(1)由题意,得{-12×(-4)+b =8(-4)2×a =8,解得{a =12b =6.(2)①如图,分别过点A,D 作AM ⊥y 轴于点M,DN ⊥y 轴于点N.由(1)可知,直线AB 的解析式为y =-12x +6,∴C(0,6),∵∠AMC =∠DNC =∠ACD =90∘,∴∠ACM +∠DCN =90∘,∠DCN +∠CDN =90∘,∴∠ACM =∠CDN∵CA =CD,∴△AMC ≅△CND(SAS)∴AN =AM =4,DN =CM =2,∴D(-2,2),当x =-2时,y =12×22=2,∴点D 在抛物线y =12x 2上.②由{y =-12x +6y =12x 2,解得{x =-4y =8或{x =3y =92,∴点B 的坐标为(3,92),∴直线AD 的解析式为y =-3x -4,直线BD 的解析式为y =12x +3,设E (t,12t 2),∴直线EF 的解析式为y =-12x +12t 2+12t,由{y =-12x +12t 2+12t y =12x 2,解得{y =t y =12t 2或{x =-t -1y =12(t +1)2,∴F (-t -1,12(t +1)2),∵△GEF ∼△DBA,EF//AB,由题意可知,EG//DB,GF//AD,∴直线EG 的解析式为y =12x +12t 2-12t,直线FG 的解析式为y =-3x +12(t +1)2-3(t +1),联立,解得:{x =-37t -57y =12t 2-57t -514,∴G (-37t -57,12t 2-57t -514),令-37t -57=0,解得t =-53,∴G (0,209)455.【解】(1)把A(3,-3)和点B(33,0)代入拋物线得:{3a +3b =-327a +33b =0,解得:a =12,b =-332,则抛物线解析式为y =12x 2-332x;(2)存在,分两种情况讨论:第一种情况:当P 在直线AD 上方时,设P 坐标为(x,12x 2-332x ),则有AD =x -3,PD =12x 2-332x +3,①当△OCA ∽△ADP 时,OCAD =CADP ,即3x -3=312x 2-332x +3,整理得:3x 2-93x +18=23x -6,即3x 2-113x +24=0,解得:x =833或x =3(舍去),此时P(833,-43);②.当△OCA ∽△PDA 时,OCPD =CAAD ,即312x 2-332x +3=3x-3,整理得:3x 2-9x +63=6x -63,即x 2-53x +12=0,解得:x =43或x =3(舍去),此时P(43,6);当点P(0,0)时,也满足△OCA ∽△PDA;第二种情况,当P 在直线AD 下方时,同理可得:P 的坐标为(433,-103),综上所述,P 的坐标为(833,-43)或(43,6)或(433,-103)或(0,0);(3)在Rt △AOC 中,OC =3,AC =3,根据勾股定理得:OA =23,∵12OC ⋅AC =12OA ⋅h,∴h =32,∵S △AOC =13S △AOQ =332,∴△AOQ 边OA 上的高为∴S =12×PM ×OA =12(-x 2-3x )×392,过O 作OM ⊥OA,截取OM =92,过M 作MN//=-32(x +32)2+278.当x =-32时,S 最大=278,OA,交y 轴于点N,如下图所示:在Rt △OMN 中,ON =2OM =9,即N(0,9),过M 作MH ⊥x 轴,在Rt △OMH 中,MH =12OM =94,OH =32OM =934,即M (934,94),设直线MN 解析式为y =kx +9,把M(934,94)代入得:94=934k +9,即k =-3,即y =-3x +9,联立得:{y =-3x +9y =12x 2-332x,解得:{x =33y =0或{x =-23y =15,即Q(33,0)(此时与B 点重合)或(-23,15),则拋物线上存在点Q,使得S △AOC =13S △AOQ ,此时点Q 的坐标为(33,0)或(-23,15).。
二次函数综合(动点)问题——相似三角形存在问题培优学案(横版)
②非直角三角形相似的几种常见模型
3、解题技巧 函数中因动点产生的相似三角形问题一般有三个解题途径。 ① 求相似三角形的第三个顶点时,先要分析已知三角形的边和角的特点,进而得出已知三角形是否为 特殊三角形。根据未知三角形中已知边与已知三角形可能对应边成比例进行分类讨论。 ②或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角函数、对称、旋转等知识来推导边 的大小。 ③若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利 用相似来列方程。
a>0
a<0
图象
开口 对称轴 顶点坐标 最值
当 x= 时,y 有最 值是 当 x=
时,y 有最 值
增 在对称轴左侧 y 随 x 的增大而
减 在对称轴右侧 y 随 x 的增大而
性
是 y 随 x 的增大而
y 随 x 的增大而
(二)梯形的性质:一组对边平行,另一组对边不平行的四边形; 直角梯形的性质:有两个角是直角的梯形; 等腰梯形:两底角相等,两顶角相等,两腰相等,对角线相等的梯形。
2、掌握相似三角形的性质;
3、会对相似三角形模型进行探究,分类讨论不同对应边的、首先要掌握二次函数 y=ax2+bx+c 的图像和性质,因为相似三角形存在问题是在二 次函数的前提下进行的; 2、掌握相似三角形的性质,先脱离二次函数,再回到二次函数的情景中研究; 3、先从简单入手探究相似三角形的具体模型,引导学生归纳总结出解决此类问题 的方法技巧,然后回到二次函数前提下的相似三角形的存在问题; 4、根据不同学生的实际情况,要求不同学生掌握简单、巩固、拔高各种层次的题 型; 5、充分运用数形结合、转化、方程、分类讨论等数学思想来帮助解题。 三、 情感、态度与价值观 1、培养学生的处理图像综合运用的能力; 2、让学生养成从特殊到一般,从简单到复杂的学习方法;
中考 压轴专题02 二次函数的存在性问题 - 解析
压轴专题02:二次函数与存在性问题方法点拨:二次函数与动点存在性问题,平面上任意两点P 1(x 1,y 1),P 2(x 2,y 2) 距离为|P 1P 2|=221221)()(y y x x -+- 中点坐标:2,22121y y y x x x +=+=对于两条不重合的直线l 1,l 2,其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2l 1⊥l 2⇔k 1·k 2=-1,特殊情况:当一条直线斜率为零,另一条直线斜率不存在时,两条直线垂直. 把点用坐标表示出来,根据以上公式结合几何性质,代数化处理,构造方程解之即可。
【考点1】二次函数与相似三角形问题【例1】如图,抛物线2y ax bx c =++与x 轴交于点(1,0)A -,点(3,0)B ,与y 轴交于点C ,且过点(2,3)D -.点P 、Q 是抛物线2y ax bx c =++上的动点. (1)求抛物线的解析式;(2)直线OQ 与线段BC 相交于点E ,当OBE ∆与ABC ∆相似时,求点Q 的坐标.【分析】(1)函数的表达式为:y=a (x+1)(x-3),将点D 坐标代入上式,即可求解;(2)分∠ACB=∠BOQ 、∠BAC=∠BOQ ,两种情况分别求解,通过角的关系,确定直线OQ 倾斜角,进而求解. 【详解】解:(1)函数的表达式为:(1)(3)y a x x =+-,将点D 坐标代入上式并解得:1a =, 故抛物线的表达式为:223y x x =--…①; (2)∵3OB OC ==,∴45OCB OBC ︒∠=∠=,∵ABC OBE ∠=∠,故OBE ∆与ABC ∆相似时,分为两种情况: ①当ACB BOQ ∠=∠时,4AB =,32BC =,10AC =, 过点A 作AH ⊥BC 与点H ,1122ABC S AH BC AB OC ∆=⨯⨯=⨯,解得:22AH =,∴CH 2tan 2ACB ∠=, 则直线OQ 的表达式为: 2 y x =-…②,联立①②并解得:3x =±3,23)Q -或(3,3; ②BAC BOQ ∠=∠时,3tan 3tan 1OC BAC BOQ OA ∠====∠,则直线OQ 的表达式为:3 y x =-…③,联立①③并解得:1132x -±=,故点1133313Q -+-⎝⎭或1133313--+⎝⎭; 综上,点3,23)Q -或(3,3或113113-+-⎝⎭或1133313--+⎝⎭. 【点睛】本题考查的是二次函数综合运用,涉及到解直角三角形、三角形相似等,其中(2),要注意分类求解,避免遗漏.【变式1-1】如图,在平面直角坐标系中,抛物线y =﹣x 2+bx +c 经过点A (﹣1,0)和点C (0,4),交x轴正半轴于点B,连接AC,点E是线段OB上一动点(不与点O,B重合),以OE 为边在x轴上方作正方形OEFG,连接FB,将线段FB绕点F逆时针旋转90°,得到线段FP,过点P作PH∥y轴,PH交抛物线于点H,设点E(a,0).(1)求抛物线的解析式.(2)若△AOC与△FEB相似,求a的值.(3)当PH=2时,求点P的坐标.【详解】(1)点C(0,4),则c=4,二次函数表达式为:y=﹣x2+bx+4,将点A的坐标代入上式得:0=﹣1﹣b+4,解得:b=3,故抛物线的表达式为:y=﹣x2+3x+4;(2)tan∠ACO=AOCO=14,△AOC与△FEB相似,则∠FBE=∠ACO或∠CAO,即:tan∠FEB=14或4,∵四边形OEFG为正方形,则FE=OE=a,EB=4﹣a,则144aa=-或44aa=-,解得:a=165或45;(3)令y=﹣x2+3x+4=0,解得:x=4或﹣1,故点B(4,0);分别延长CF、HP交于点N,∵∠PFN+∠BFN=90°,∠FPN+∠PFN=90°,∴∠FPN=∠NFB,∵GN∥x轴,∴∠FPN=∠NFB=∠FBE,∵∠PNF=∠BEF=90°,FP=FB,∴△PNF≌△BEF(AAS),∴FN=FE=a,PN=EB=4﹣a,∴点P(2a,4),点H(2a,﹣4a2+6a+4),∵PH=2,即:﹣4a2+6a+4﹣4=|2|,解得:a=1或12317+317-舍去),故:点P的坐标为(2,4)或(1,4)或3+17,4).【考点2】二次函数与直角三角形问题【例2】如图,在平面直角坐标系中,直线122y x =-+与x 轴交于点A ,与y 轴交于点B ,抛物线223y x bx c =-++过点B 且与直线相交于另一点53,24C ⎛⎫ ⎪⎝⎭.(1)求抛物线的解析式;(2)点P 是抛物线上的一动点,当PAO BAO ∠=∠时,求点P 的坐标; (3)点5(,0)02N n n ⎛⎫<< ⎪⎝⎭在x 轴的正半轴上,点(0,)M m 是y 轴正半轴上的一动点,且满足90MNC ︒∠=.①求m 与n 之间的函数关系式;②当m 在什么范围时,符合条件的N 点的个数有2个? 【分析】(1)利用一次函数求出A 和B 的坐标,结合点C 坐标,求出二次函数表达式;(2)当点P 在x 轴上方时,点P 与点C 重合,当点P 在x 轴下方时,AP 与y 轴交于点Q ,求出AQ 表达式,联立二次函数,可得交点坐标,即为点P ; (3)①过点C 作CD ⊥x 轴于点D ,证明△MNO ∽△NCD ,可得MO NOND CD=,整理可得结果; ②作以MC 为直径的圆E ,根据圆E 与线段OD 的交点个数来判断M 的位置,即可得到m 的取值范围. 【详解】解:(1)∵直线122y x =-+与x 轴交于点A ,与y 轴交于点B ,令x=0,则y=2,令y=0,则x=4,∴A (4,0),B (0,2),∵抛物线223y x bx c =-++经过B (0,2),53,24C ⎛⎫⎪⎝⎭,∴2322554342c b c =⎧⎪⎨=-⨯++⎪⎩,解得:762b c ⎧=⎪⎨⎪=⎩,∴抛物线的表达式为:227236y x x =-++; (2)当点P 在x 轴上方时,点P 与点C 重合,满足PAO BAO ∠=∠, ∵53,24C ⎛⎫⎪⎝⎭,∴53,24P ⎛⎫ ⎪⎝⎭, 当点P 在x 轴下方时,如图,AP 与y 轴交于点Q , ∵PAO BAO ∠=∠,∴B ,Q 关于x 轴对称,∴Q (0,-2),又A (4,0),设直线AQ 的表达式为y=px+q ,代入,204q p q -=⎧⎨=+⎩,解得:122p q ⎧=⎪⎨⎪=-⎩,∴直线AQ 的表达式为:122y x =-,联立得:212227236y x y x x ⎧=-⎪⎪⎨⎪=-++⎪⎩,解得:x=3或-2,∴点P 的坐标为(3,12-)或(-2,-3), 综上,当PAO BAO ∠=∠时,点P 的坐标为:53,24⎛⎫⎪⎝⎭或(3,12-)或(-2,-3);(3)①如图,∠MNC=90°,过点C 作CD ⊥x 轴于点D ,∴∠MNO+∠CND=90°, ∵∠OMN+∠MNO=90°,∴∠CND=∠OMN,又∠MON=∠CDN=90°,∴△MNO ∽△NCD ,∴MO NO ND CD =,即5324m nn =-,整理得:241033m n n =-+;②如图,∵∠MNC=90°,以MC为直径画圆E,∵5 (,0)02N n n⎛⎫<<⎪⎝⎭,∴点N在线段OD上(不含O和D),即圆E与线段OD有两个交点(不含O和D),∵点M在y轴正半轴,当圆E与线段OD相切时,有NE=12MC,即NE2=14MC2,∵M(0,m),53,24C⎛⎫⎪⎝⎭,∴E(54,382m+),∴2382m⎛⎫+⎪⎝⎭=22153424m⎡⎤⎛⎫⎛⎫+-⎢⎥⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦,解得:m=2512,当点M与点O重合时,如图,此时圆E与线段OD(不含O和D)有一个交点,∴当0<m<2512时,圆E与线段OD有两个交点,故m的取值范围是:0<m<25 12.【点睛】本题是二次函数综合,考查了求二次函数表达式,相似三角形的判定和性质,圆周角定理,一次函数表达式,难度较大,解题时要充分理解题意,结合图像解决问题.【变式2-1】如图,抛物线24y ax bx=+-经过A(-3,6),B(5,-4)两点,与y轴交于点C,连接AB,AC,BC.(1)求抛物线的表达式;(2)求证:AB平分CAO∠;(3)抛物线的对称轴上是否存在点M,使得ABM∆是以AB为直角边的直角三角形.若存在,求出点M的坐标;若不存在,说明理由.【分析】(1)将A(-3,0),B(5,-4)代入抛物线的解析式得到关于a、b的方程组,从而可求得a、b 的值;(2)先求得AC的长,然后取D(2,0),则AD=AC,连接BD,接下来,证明BC=BD,然后依据SSS可证明△ABC≌△ABD,接下来,依据全等三角形的性质可得到∠CAB=∠BAD;(3)作抛物线的对称轴交x轴与点E,交BC与点F,作点A作AM′⊥AB,作BM⊥AB,分别交抛物线的对称轴与M′、M,依据点A和点B的坐标可得到tan∠BAE=12,从而可得到tan∠M′AE=2或tan∠MBF=2,从而可得到FM和M′E的长,故此可得到点M′和点M的坐标.【详解】解:(1)将A(-3,0),B(5,-4)两点的坐标分别代入,得9340,25544a ba b--=⎧⎨+-=-⎩,解得1,65,6ab⎧=⎪⎪⎨⎪=-⎪⎩故抛物线的表达式为y =215466y x x =--. (2)证明:∵AO=3,OC=4,∴AC=2234+=5.取D (2,0),则AD=AC=5.由两点间的距离公式可知BD=22(52)(40)-+--=5. ∵C (0,-4),B (5,-4),∴BC=5.∴BD=BC . 在△ABC 和△ABD 中,AD=AC ,AB=AB ,BD=BC , ∴△ABC ≌△ABD ,∴∠CAB=∠BAD ,∴AB 平分∠CAO ; (3)存在.如图所示:抛物线的对称轴交x 轴与点E ,交BC 与点F .抛物线的对称轴为x=52,则AE=112. ∵A (-3,0),B (5,-4),∴tan ∠EAB=12. ∵∠M′AB=90°.∴tan ∠M′AE=2.∴M′E=2AE=11,∴M′(52,11). 同理:tan ∠MBF=2.又∵BF=52,∴FM=5,∴M (52,-9). ∴点M 的坐标为(52,11)或(52,-9).【点睛】本题考查了二次函数的综合应用,主要应用了待定系数法求二次函数的解析式,全等三角形的性质和判定、锐角三角函数的定义,求得FM 和M′E 的长是解题的关键【考点3】二次函数与等腰三角形问题【例3】如图1,抛物线y =﹣x 2+bx +c 过点A (﹣1,0),点B (3,0)与y 轴交于点C .在x 轴上有一动点E (m ,0)(0<m <3),过点E 作直线l ⊥x 轴,交抛物线于点M . (1)求抛物线的解析式及C 点坐标;(2)当m =1时,D 是直线l 上的点且在第一象限内,若△ACD 是以∠DCA 为底角的等腰三角形,求点D 的坐标;(3)如图2,连接BM 并延长交y 轴于点N ,连接AM ,OM ,设△AEM 的面积为S 1,△MON 的面积为S 2,若S 1=2S 2,求m 的值.【分析】(1)用待定系数法即可求解;(2)若△ACD 是以∠DCA 为底角的等腰三角形,则可以分CD =AD 或AC =AD 两种情况,分别求解即可; (3)S 1=12AE ×y M ,2S 2=ON •x M ,即可求解. 【详解】解:(1)将点A 、B 的坐标代入抛物线表达式得-1-b+c=0-9+3b+c=0⎧⎨⎩,解得b=2c=3⎧⎨⎩,故抛物线的表达式为y =﹣x 2+2x +3,当x =0时,y =3,故点C (0,3); (2)当m =1时,点E (1,0),设点D 的坐标为(1,a ), 由点A 、C 、D 的坐标得,AC ()()220+1+3-0=10,同理可得:ADCD①当CD=AD,解得a=1;②当AC=AD时,同理可得a=(舍去负值);故点D的坐标为(1,1)或(1);(3)∵E(m,0),则设点M(m,﹣m2+2m+3),设直线BM的表达式为y=sx+t,则2-m+2m+3=sm+t0=3s+t⎧⎨⎩,解得:1s=-m+13t=m+1⎧⎪⎪⎨⎪⎪⎩,故直线BM的表达式为y=﹣1m+1x+3m+1,当x=0时,y=3m+1,故点N(0,3m+1),则ON=3m+1;S1=12⨯AE×y M=12×(m+1)×(﹣m2+2m+3),2S2=ON•x M=3m+1×m=S1=12×(m+1)×(﹣m2+2m+3),解得m=﹣舍去负值),经检验m2是方程的根,故m2.【点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质、等腰三角形的性质、面积的计算等,其中(2),要注意分类求解,避免遗漏.【变式3-1】已知抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点(点A在点B的左边),与y轴交于点C(0,﹣3),顶点D的坐标为(1,﹣4).(1)求抛物线的解析式.(2)在y轴上找一点E,使得△EAC为等腰三角形,请直接写出点E的坐标.(3)点P是x轴上的动点,点Q是抛物线上的动点,是否存在点P、Q,使得以点P、Q、B、D为顶点,BD为一边的四边形是平行四边形?若存在,请求出点P、Q坐标;若不存在,请说明理由.【分析】(1)根据抛物线的顶点坐标设出抛物线的解析式,再将点C坐标代入求解,即可得出结论;(2)先求出点A,C坐标,设出点E坐标,表示出AE,CE,AC,再分三种情况建立方程求解即可;(3)利用平移先确定出点Q的纵坐标,代入抛物线解析式求出点Q的横坐标,即可得出结论.【详解】解:(1)∵抛物线的顶点为(1,﹣4),∴设抛物线的解析式为y=a(x﹣1)2﹣4,将点C(0,﹣3)代入抛物线y=a(x﹣1)2﹣4中,得a﹣4=﹣3,∴a=1,∴抛物线的解析式为y=a(x﹣1)2﹣4=x2﹣2x﹣3;(2)由(1)知,抛物线的解析式为y=x2﹣2x﹣3,令y=0,则x2﹣2x﹣3=0,∴x=﹣1或x=3,∴B(3,0),A(﹣1,0),令x=0,则y=﹣3,∴C(0,﹣3),∴AC10,设点E(0,m),则AE21m+CE=|m+3|,∵△ACE是等腰三角形,∴①当AC=AE1021m+∴m=3或m=﹣3(点C的纵坐标,舍去),∴E(3,0),②当AC=CE10=|m+3|,∴m=﹣310,∴E(0,﹣10)或(0,﹣310),③当AE=CE21m+|m+3|,∴m=﹣43,∴E(0,﹣43),即满足条件的点E的坐标为(0,3)、(0,﹣10)、(0,﹣310)、(0,﹣43 );(3)如图,存在,∵D(1,﹣4),∴将线段BD向上平移4个单位,再向右(或向左)平移适当的距离,使点B的对应点落在抛物线上,这样便存在点Q,此时点D的对应点就是点P,∴点Q的纵坐标为4,设Q(t,4),将点Q的坐标代入抛物线y=x2﹣2x﹣3中得,t2﹣2t﹣3=4,∴t=1+22或t=1﹣22,∴Q(1+22,4)或(1﹣22,4),分别过点D,Q作x轴的垂线,垂足分别为F,G,∵抛物线y=x2﹣2x﹣3与x轴的右边的交点B的坐标为(3,0),且D(1,﹣4),∴FB=PG=3﹣1=2,∴点P的横坐标为(1+22)﹣2=﹣1+22或(1﹣22)﹣2=﹣1﹣22,即P(﹣1+22,0)、Q(1+22,4)或P(﹣1﹣22,0)、Q(1﹣22,4).【考点4】二次函数与平行四边形问题【例4】如图,抛物线过点A(0,1)和C,顶点为D,直线AC与抛物线的对称轴BD的交点为B30),平行于y轴的直线EF与抛物线交于点E,与直线AC交于点F,点F的横坐标为433,四边形BDEF为平行四边形.(1)求点F的坐标及抛物线的解析式;(2)若点P为抛物线上的动点,且在直线AC上方,当△PAB面积最大时,求点P的坐标及△PAB面积的最大值;(3)在抛物线的对称轴上取一点Q,同时在抛物线上取一点R,使以AC为一边且以A,C,Q,R为顶点的四边形为平行四边形,求点Q和点R的坐标.【分析】(1)由待定系数法求出直线AB 的解析式为y 3,求出F 点的坐标,由平行四边形的性质得出﹣3a+1=163a ﹣8a+1﹣(﹣13),求出a 的值,则可得出答案; (2)设P (n ,﹣n 23n+1),作PP'⊥x 轴交AC 于点P',则P'(n 3),得出PP'=﹣n 2733,由二次函数的性质可得出答案; (3)联立直线AC 和抛物线解析式求出C 73343),设Q 3,m ),分两种情况:①当AQ 为对角线时,②当AR 为对角线时,分别求出点Q 和R 的坐标即可. 【详解】解:(1)设抛物线的解析式为y =ax 2+bx+c (a≠0),∵A (0,1),B 30),设直线AB 的解析式为y =kx+m ,∴3k m 0m 1+==⎪⎩,解得31k m ⎧=⎪⎨⎪=⎩∴直线AB 的解析式为y 3, ∵点F 43,∴F 343+1=﹣13,∴F 点的坐标为433,﹣13), 又∵点A 在抛物线上,∴c =1,对称轴为:x =﹣32ba=,∴b =﹣3a ,∴解析式化为:y =ax 2﹣23ax+1,∵四边形DBFE 为平行四边形.∴BD =EF ,∴﹣3a+1=163a ﹣8a+1﹣(﹣13),解得a =﹣1, ∴抛物线的解析式为y =﹣x 2+23x+1;(2)设P (n ,﹣n 2+23n+1),作PP'⊥x 轴交AC 于点P',则P'(n 3),∴PP'=﹣n 2733,S △ABP =12OB•PP'2372+n 2374936324n ⎝, ∴当n 736△ABP 49324,此时P 7364712). (3)∵231331y x y x x ⎧=+⎪⎨⎪=-++⎩,∴x =0或x 733C 73343),设Q 3m ), ①当AQ 为对角线时,∴R (473,33m +), ∵R 在抛物线y =2(3)x -+4上,∴m+73=﹣24333⎛ ⎝+4,解得m =﹣443, ∴Q 443,3⎫-⎪⎭,R 4373,33⎛⎫- ⎪⎝⎭;②当AR 为对角线时,∴R 1073,33m -), ∵R 在抛物线y =2(3)x -+4上,∴m ﹣27103333=-+4,解得m =﹣10,∴Q 310),R 10373,33-).综上所述,Q 443,3⎛⎫- ⎪⎝⎭,R 4373,33⎛⎫-- ⎪⎝⎭;或Q (3,﹣10),R (10373,33-). 【点睛】本题是二次函数综合题,考查了待定系数法,二次函数的性质,二次函数图象上点的坐标特征,平行四边形的性质等知识,熟练掌握二次函数的性质及方程思想,分类讨论思想是解题的关键.【变式4-1】如图,二次函数2y x bx c =++的图象交x 轴于点()30A -,,()10B ,,交y 轴于点C .点(),0P m 是x 轴上的一动点,PM x ⊥轴,交直线AC 于点M ,交抛物线于点N .(1)求这个二次函数的表达式;(2)①若点P 仅在线段AO 上运动,如图1.求线段MN 的最大值;②若点P 在x 轴上运动,则在y 轴上是否存在点Q ,使以M ,N ,C ,Q 为顶点的四边形为菱形.若存在,请直接写出所有满足条件的点Q 的坐标;若不存在,请说明理由. 【分析】(1)把(3,0),(1,0)A B -代入2y x bx c =++中求出b ,c 的值即可; (2)①由点(),0P m 得()2(,3),,23M m m N m m m --+-,从而得()2(3)23MN m m m =---+-,整理,化为顶点式即可得到结论;②分MN=MC 和2MC MN =两种情况,根据菱形的性质得到关于m 的方程,求解即可.【详解】解:(1)把(3,0),(1,0)A B -代入2y x bx c =++中,得093,01.b c x c =-+⎧⎨=++⎩ 解得2,3.b c =⎧⎨=-⎩∴223y x x =+-.(2)设直线AC 的表达式为y kx b =+,把(3,0),(0,3)A C --代入y kx b =+.得,03,3.k b b =-+⎧⎨-=⎩解这个方程组,得1,3.k b =-⎧⎨=-⎩∴3y x =--.∵点(),0P m 是x 轴上的一动点,且PM x ⊥轴.∴()2(,3),,23M m m N m m m --+-.∴()2(3)23MN m m m =---+-23m m =--23924m ⎛⎫=-++ ⎪⎝⎭.∵10a =-<,∴此函数有最大值. 又∵点P 在线段OA 上运动,且3302-<-<∴当32m =-时,MN 有最大值94. ②∵点(),0P m 是x 轴上的一动点,且PM x ⊥轴.∴()2(,3),,23M m m N m m m --+-.∴()2(3)23MN m m m =---+-23m m =--(i )当以M ,N ,C ,Q 为顶点的四边形为菱形,则有MN=MC ,如图,∵C (0,-3)∴222(0)(33)2m m m -+--+=∴223=2m m m --整理得,432670m m m ++= ∵20m ≠,∴2670m m ++=,解得,132m =-,232m =-32m =-+CQ=MN=322, ∴OQ=-3-(322)=321-∴Q(0,321-);当m=32--时,CQ=MN=-322-,∴OQ=-3-(-322-)=321-∴Q(0,321-); (ii)若2MC MN =,如图,则有223=22m m m --整理得,432650m m m ++= ∵20m ≠,∴2650m m ++=,解得,11m =-,25m =- 当m=-1时,MN=CQ=2,∴Q (0,-1), 当m=-5时,MN=-10<0(不符合实际,舍去)综上所述,点Q 的坐标为123(0,321),(0,1),(0,321)Q Q Q --- 【点睛】本题考查了二次函数综合题,解(1)的关键是待定系数法;解(2)的关键是利用线段的和差得出二次函数,又利用了二次函数的性质,解(3)的关键是利用菱形的性质得出关于m 的方程,要分类讨论,以防遗漏.。
中考之二次函数与全等、相似三角形
3)2+c,又抛物线经过点(0,0)和(8,4)代入得 ������ =
1 4 9,所以二次函数解析式为
9������ + ������ = 0 ,解得 25������ + ������ = 4
4
������ = - 4
y=
1 4
9 2 (x-3) -
=
1 2 3 x - x. 4 2
(2)设点M的坐标为(m,0)设直线AB解析式为y=kx+b,则
8������ + ������ = 4 ������ = 2 ,解得 ,所以直线 AB 解析式为 y=2x-12. 6������ + ������ = 0 ������ = -12 因为 MN 平行于 AB,所以设 MN 解析式为 y=2x+k,点 M(m,0)在 MN 1 上,直线 MN 表达式为 y=2x-2m,直线 OA 的解析式为 y= x,由 MN 与 OA 组成方程组求得点 N 坐标为(3m,3m).
������������ ������������
长度,设 Q(q,q-5),根据(5-q)2+(q-5)2=DQ2 列方程,解方程可得 q 值,进 7 8 而求出 Q(3,-3).
解:(1)把点A(m,0)、点B(4,n)代入y=x-1中,得m=1,n=3. ∴A(1,0),B(4,3),把A、B点坐标代入y=-x2+bx+c,得 -1 + ������ + ������ = 0 ������ = 6 .解得 .∴y=-x2+6x-5. -16 + 4������ + ������ = 3 ������ = -5 (2)∵△APM和△DPN为等腰直角三角形, ∴∠APM=∠DPN=45°,∴∠MPN=90°, ∴△MPN为直角三角形. 令-x2+6x-5=0,解得x1=1,x2=5, ∴D(5,0),AD=4. 设AP=m,则DP=4-m,
中考数学 二次函数存在性问题 及参考答案
中考数学二次函数存在性问题及参考答案中考数学二次函数存在性问题及参考答案一、二次函数中相似三角形的存在性问题1.如图,把抛物线 $y=x^2$ 向左平移1个单位,再向下平移4个单位,得到抛物线 $y=(x-h)^2+k$。
所得抛物线与x轴交于A,B两点(点A在点B的左边),与y轴交于点C,顶点为D。
1)写出h、k的值;2)判断△ACD的形状,并说明理由;3)在线段AC上是否存在点M,使△AOM∽△ABC?若存在,求出点M的坐标;若不存在,说明理由。
2.如图,已知抛物线经过A($-2,0$),B($-3,3$)及原点O,顶点为C。
1)求抛物线的解析式;2)若点D在抛物线上,点E在抛物线的对称轴上,且A、O、D、E为顶点的四边形是平行四边形,求点D的坐标;3)P是抛物线上的第一象限内的动点,过点P作PM⊥x 轴,垂足为M,是否存在点P,使得以P、M、A为顶点的三角形△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由。
二、二次函数中面积的存在性问题3.如图,抛物线 $y=ax^2+bx$ ($a>0$)与双曲线$y=\frac{k}{x}$ 相交于点A,B。
已知点B的坐标为($-2,-2$),点A在第一象限内,且 $\tan\angle AOX=4$。
过点A作直线AC∥x轴,交抛物线于另一点C。
1)求双曲线和抛物线的解析式;2)计算△ABC的面积;3)在抛物线上是否存在点D,使△ABD的面积等于△ABC的面积。
若存在,请写出点D的坐标;若不存在,请说明理由。
4.如图,抛物线 $y=ax^2+c$ ($a>0$)经过梯形ABCD的四个顶点,梯形的底AD在x轴上,其中A($-2,0$),B($-1,-3$)。
1)求抛物线的解析式;2)点M为y轴上任意一点,当点M到A、B两点的距离之和为最小时,求此时点M的坐标;3)在第(2)问的结论下,抛物线上的点P使$\triangle PAD=4\triangle ABM$ 成立,求点P的坐标。
相似三角形的存在性(分析对应关系)(含答案)
学生做题前请先回答以下问题问题1:图形间关系的存在性问题,关键是___________,找准_________,根据__________尝试分类、画图,结合________探索解决一种情形,再类比处理其他情形.问题2:相似三角形存在性问题处理思路是什么?相似三角形的存在性(分析对应关系)一、单选题(共4道,每道25分)1.如图,二次函数的图象经过点A(1,4),对称轴是直线,线段AD平行于x轴,交抛物线于点D.在y轴上取一点C(0,2),直线AC交抛物线于点B,连结OA,OB,OD,BD.(1)该二次函数的解析式及点B的坐标为( )A.,B.,C.,D.,,答案:A解题思路:试题难度:三颗星知识点:二次函数的表达式2.(上接第1题)(2)坐标平面内使△EOD∽△AOB的点E的坐标为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:相似三角形的存在性3.如图,在平面直角坐标系xOy中,点A的坐标为(-2,2),点B的坐标为(6,6),抛物线经过A,O,B三点,M为线段OB下方的抛物线上一动点(不与点O,B重合).(1)设△BOM的面积为S,则S的最大值为( )A. B. C. D.答案:B解题思路:试题难度:三颗星知识点:铅垂法4.(上接第3题)(2)当△BOM的面积最大时,连接AM,若P为坐标平面内一点,且△BOP∽△OAM,则点P的坐标为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:相似三角形的存在性学生做题后建议通过以下问题总结反思问题1:结合试题4分析,如何分析相似三角形的存在性问题?问题2:图形间关系的存在性问题,关键是___________,找准_________,根据__________尝试分类、画图,结合________探索解决一种情形,再类比处理其他情形.问题3:相似三角形存在性问题处理思路是什么?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数的存在性问题(相似三角形)1、已知抛物线的顶点为A (2,1),且经过原点O ,与x 轴的另一交点为B 。
(1)求抛物线的解析式;(2)若点C 在抛物线的对称轴上,点D 在抛物线上,且以O 、C 、D 、B 四点为顶点的四边形为平行四边形,求D 点的坐标;(3)连接OA 、AB ,如图②,在x 轴下方的抛物线上是否存在点P ,使得△OBP 与△OAB 相似?若存在,求出P 点的坐标;若不存在,说明理由。
A AB B OO x x y yxyF - 2 -4-6ACE PDB5 2 1 24 6 G 2、设抛物线22y ax bx =+-与x 轴交于两个不同的点A(一1,0)、B(m ,0),与y 轴交于点C .且∠ACB=90°. (1)求m 的值和抛物线的解析式;(2)已知点D(1,n )在抛物线上,过点A 的直线1y x =+交抛物线于另一点E .若点P 在x 轴上,以点P 、B 、D 为顶点的三角形与△AEB 相似,求点P 的坐标.(3)在(2)的条件下,△BDP 的外接圆半径等于________________.解:(1)令x=0,得y=-2 ∴C(0,一2).∵ACB=90°,CO ⊥AB,.∴ △AOC ∽△COB,.∴OA ·OB=OC 2;∴OB=22241OC OA == ∴m=4.3、已知抛物线2y ax bx c =++经过点A (5,0)、B (6,-6)和原点.(1)求抛物线的函数关系式; (2)若过点B 的直线y kx b '=+与抛物线相交于点C (2,m ),请求出∆OBC 的面积S 的值.(3)过点C 作平行于x 轴的直线交y 轴于点D ,在抛物线对称轴右侧位于直线DC 下方的抛物线上,任取一点P ,过点P 作直线PF 平行于y 轴交x 轴于点F ,交直线DC 于点E . 直线PF 与直线DC 及两坐标轴围成矩形OFED (如图),是否存在点P ,使得∆OCD 与∆CPE 相似?若存在,求出点P 的坐标;若不存在,请说明理由.解:(1)由题意得:255036600a b c a b c c ++=⎧⎪++=⎨⎪=⎩ 解得150a b c =-⎧⎪=⎨⎪=⎩故抛物线的函数关系式为25y x x =-+(2)C 在抛物线上,2252,6m m ∴-+⨯=∴= C ∴点坐标为(2,6),B 、C 在直线y kx b '=+上∴6266k b k b '=+⎧⎨'-=+⎩ 解得3,12k b '=-=∴直线BC 的解析式为312y x =-+ 设BC 与x 轴交于点G ,则G 的坐标为(4,0)1146462422OBCS∴=⨯⨯+⨯⨯-= (3)存在P ,使得OCD ∽CPE 设P (,)m n ,90ODC E ∠=∠=︒ 故2,6CE m EP n =-=-若要OCD ∽CPE ,则要OD DC CE EP =或OD DC EP CE = 即6226m n =--或6262n m =-- 解得203m n =-或123n m =- 又(,)m n 在抛物线上,22035m n n m m =-⎧⎨=-+⎩或21235n mn m m=-⎧⎨=-+⎩ 解得12211023,,6509m m n n ⎧=⎪=⎧⎪⎨⎨=⎩⎪=⎪⎩或121226,66m m n n ==⎧⎧⎨⎨==-⎩⎩ 故P 点坐标为1050()39,和(6,6)- 4、如图,抛物线(1)(5)y a x x =+-与x 轴的交点为M N ,.直线y kx b =+与x 轴交于(20)P -,,与y 轴交于C .若A B ,两点在直线y kx b =+上,且AO BO ==,AO BO ⊥.D 为线段MN 的中点,OH 为Rt OPC △斜边上的高.(1)OH 的长度等于 ;k = ,b = .(2)是否存在实数a ,使得抛物线(1)(5)y a x x =+-以D N E ,,为顶点的三角形与AOB △是否还有符合条件的E 点(简要说明理由)每一个E 点,直线NE 与直线AB 的交点G 是否总满足10PB PG < 解:(1)1OH =;k =b =(2)设存在实数a D N E ,,为顶点的三角形与等腰直角AOB △相似.∴以D N E ,,为顶点的三角形为等腰直角三角形,且这样的三角形最多只有两类,一类是以DN 为直角边的等腰直角三角形,另一类是以DN 为斜边的等腰直角三角形.①若DN 为等腰直角三角形的直角边,则ED DN ⊥.由抛物线(1)(5)y a x x =+-得:(10)M -,,(50)N ,.(20)D ∴,,3ED DN ∴==.E ∴的坐标为(23),.把(23)E ,代入抛物线解析式,得13a =-.∴抛物线解析式为1(1)(5)3y x x =-+-.即2145333y x x =-++.②若DN 为等腰直角三角形的斜边,则DE EN ⊥,DE EN =.E ∴的坐标为(3.51.5),.把(3.51.5)E ,代入抛物线解析式,得29a =-. ∴抛物线解析式为2(1)(5)9y x x =-+-,即22810999y x x =-++当13a =-时,在抛物线2145333y x x =-++上存在一点(23)E ,满足条件,如果此抛物线上还有满足条件的E 点,不妨设为E '点,那么只有可能DE N '△是以DN 为斜边的等腰直角三角形,由此得(3.51.5)E ',, 显然E '不在抛物线2145333y x x =-++上,故抛物线2145333y x x =-++上没有符合条件的其他的E 点. 当29a =-时,同理可得抛物线22810999y x x =-++上没有符合条件的其他的E 点. 当E 的坐标为(23),,对应的抛物线解析式为2145333y x x =-++时,EDN △和ABO △都是等腰直角三角形,45GNP PBO ∴∠=∠=又NPG BPO ∠=∠,NPG BPO∴△∽△.PG PNPO PB∴=,2714PB PG PO PN ∴==⨯=,∴总满足10PB PG <.当E 的坐标为(3.51.5),,对应的抛物线解析式为22810999y x x =-++时,同理可证得:2714PB PG PO PN ==⨯=,∴总满足10PB PG <5、如图,抛物线的顶点为A (2,1),且经过原点O ,与x 轴的另一个交点为B .(1)求抛物线的解析式;(2)在抛物线上求点M ,使△MOB 的面积是△AOB 面积的3倍;(3)连结OA ,AB ,在x 轴下方的抛物线上是否存在点N ,使△OBN 与△OAB 相似?若存在,求出N 点的坐标;若不存在,说明理由. 解:(1)由题意可设抛物线的解析式为1)2(2+-=x a y∵抛物线过原点 ∴01)20(2=+-a ∴41-=a ∴抛物线的解析式为1)2(412+--=x y 即x x y +-=241. (2)∵△AOB 与△MOB 同底不等高 又∵S △MOB =3 S △AOB ∴△MOB 的高是△∴x x +-=-2413 ∴01242=--x x 解得 61=x ,22-=x ∴)36(1-,M )32(2--,My CNP(3)由抛物线的对称性可知:AO =AB ABO AOB ∠=∠若△OBN 与△OAB 相似, 必须有BNO BOA BON ∠=∠=∠, 显然 )12('-,A ∴直线ON 的解析式为x y 21-=, 由x x x +-=24121,得01=x ,62=x ∴)36(-,N 过N 作NE ⊥x 轴,垂足为E . 在Rt △BEN 中,BE =2,NE =3,∴133222=+=NB 又OB =4 ∴NB ≠OB ∴∠BON ≠∠BNO ∴△OBN 与△OAB 不相似,同理说明在对称轴左边的抛物线上也不存在符合条件的N 点.故在抛物线上不存在N 点,使得△OBN 与△OAB 相似6、如图所示,将矩形OABC 沿AE 折叠,使点O 恰好落在BC 上F 处,以CF 为边作正方形CFGH ,延长BC 至M , 使CM =|CE —EO |,再以CM 、CO 为边作矩形CMNO. (1)试比较EO 、EC 的大小,并说明理由;(2)令CMNOCFGH S S m 四边形四边形=,请问m 是否为定值?若是,请求出m 的值;若不是,请说明理由;(3)在(2)的条件下,若CO =1,CE =31,Q 为AE 上一点且QF =32,抛物线y =mx 2+bx+c 经过C 、Q 两点,请求出此抛物线的解析式. (4)在(3)的条件下,若抛物线y =mx 2+bx+c 与线段AB 交于点P ,试问在直线BC 上是否存在点K ,使得以P 、B 、K 为顶点的三角形与△AEF 相似?若存在,请求直线KP 与y 轴的交点T 的坐标?若不存在,请说明理由。
解(1)EO >EC ,理由如下:由折叠知,EO=EF ,在Rt △EFC 中,EF 为斜边,∴EF >EC , 故EO >EC (2)m 为定值。
∵S 四边形CFGH =CF 2=EF 2-EC 2=EO 2-EC 2=(EO+EC)(EO ―EC)=CO ·(EO ―EC) S 四边形CMNO =CM ·CO=|CE ―EO|·CO=(EO ―EC) ·CO ∴1==CMNOCFGH S S m四边形四边形(3)∵CO=1,3231==QF CE ∴EF=EO=QF ==-32311 ∴cos ∠FEC=21∴∠FEC=60°, ∴︒=∠∠=︒=︒-︒=∠3060260180EAO OEA FEA , ∴△EFQ 为等边三角形,32=EQ作QI ⊥EO 于I ,EI=3121=EQ ,IQ=3323=EQ ∴IO=313132=-∴Q 点坐标为)31,33( ∵抛物线y=mx 2+bx+c 过点C(0,1), Q 31,33(,m=1,∴可求得3-=b ,c=1 ∴抛物线解析式为132+-=x x y(4)由(3),3323==EO AO 当332=x 时,3113323)332(2=+⨯-=y <AB∴P 点坐标为)31,332(∴BP=32311=-AO 方法1:若△PBK 与△AEF 相似,而△AEF ≌△AEO ,则分情况如下:图2①3323232=BK 时,932=BK ∴K 点坐标为)1,934(或)1,938(; ②3232332=BK 时,332=BK ,∴K 点坐标为)1,334(或)1,0(故直线KP 与y 轴交点T 的坐标为)1,0()31,0()37,0()35,0(或或或--方法2:若△BPK 与△AEF 相似,由(3)得:∠BPK=30°或60°,过P 作PR ⊥y 轴于R ,则∠RTP=60°或30°①当∠RTP=30°时,23332=⨯=RT ②当∠RTP=60°时,323332=÷=RT∴)1,0()31,0()35,0()37,0(4321T T T T ,,,--7、如图,二次函数2y ax bx c =++(0a ≠)的图象与x 轴交于A B 、两点,与y 轴相交于点C .连结AC BC A C 、,、两点的坐标分别为(30)A -,、(0C ,且当4x =-和2x =时二次函数的函数值y 相等.(1)求实数a b c ,,的值;(2)若点M N 、同时从B 点出发,均以每秒1个单位长度的速度分别沿BA BC、边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t 秒时,连结MN ,将BMN △沿MN 翻折,B 点恰好落在AC 边上的P 处,求t 的值及点P 的坐标;(3)在(2)的条件下,二次函数图象的对称轴上是否存在点Q ,使得以B N Q ,,为项点的三角形与ABC △相似?如果存在,请求出点Q 的坐标;如果不存在,请说明理由.8、已知:在平面直角坐标系中,抛物线32+-=x ax y (0≠a )交x 轴于A 、B 两点,交y 轴于点C , 且对称轴为直线2x =-.(1)求该抛物线的解析式及顶点D 的坐标;(2)若点P (0,t )是y 轴上的一个动点, 请进行如下探究:探究一:如图1,设△P AD 的面积为S ,令W =t ·S ,当0<t <4时,W 是否有最大值?如果有,求出W 的最大值和此时t 的值;如果没有,说明理由;探究二:如图2,是否存在以P 、A 、D 为顶点的三角形与Rt △AOC 相似?如果存在,求点P 的坐标;如果不存在,请说明理由.解:(1)∵抛物线23y ax x =-+(0a ≠)的对称轴为直线2x =-.∴122a --=-,∴14a =-, ∴2134y x x =--+.∴(24)D -,. (2)探究一:当04t <<时,W 有最大值.∵抛物线2134y x x =--+交x 轴于A B 、两点,交y 轴于点C ,∴(60)A -,,(20)B ,,(03)C ,, ∴63OA OC ==,.当04t <<时,作DM y ⊥轴于M ,则24DM OM ==,. ∵(0)P t ,,∴4OP t MP OM OP t ==-=-,. ∵PAD AOP DMP OADM S S S S =--△△△梯形 111()222DM OA OM OA OP DM MP =+-- 111(26)462(4)222t t =+⨯-⨯⨯-⨯⨯-122t =- ∴2(122)2(3)18W t t t =-=--+ ∴当3t =时,W 有最大值,18W =最大值.探究二:存在.分三种情况:①当190PDA ∠=°时,作DE x ⊥轴于E ,则2490OE DE DEA ==∠=,,°, ∴624AE OA OE DE =-=-==.∴45DAE ADE ∠=∠=°,AD ==,∴11904545PDE PDA ADE ∠=∠-∠=-=°°°.∵DM y ⊥轴,OA y ⊥轴, ∴DM OA ∥,∴90MDE DEA ∠=∠=°,∴11904545MDP MDE PDE ∠=∠-∠=-=°°°.∴12PM DM ==,1PD ==.此时1OC OA PD AD ==,又因为190AOC PDA ∠=∠=°, ∴1Rt Rt ADP AOC △∽△,∴11422OP OM PM =-=-=,∴1(02)P ,. ∴当190PDA ∠=°时,存在点1P ,使1Rt Rt ADP AOC △∽△,此时1P 点的坐标为(0,2). ②当290PAD ∠=°时,则245P AO ∠=°,∴2cos 45OAP A ==°,∴2P A OA ==. ∵3AD OC =,∴2P AAD OC OA≠.∴2P AD △与AOC △不相似,此时点2P 不存在. ③当390AP D∠=°时,以AD 为直径作1O ⊙,则1O ⊙的半径2ADr ==, 圆心1O 到y 轴的距离4d =.∵d r >,∴1O ⊙与y 轴相离.不存在点3P ,使390AP D ∠=°.∴综上所述,只存在一点(02)P ,使Rt ADP △与Rt AOC △相似.9、矩形OABC 在平面直角坐标系中位置如图13所示,A C 、两点的坐标分别为(60)A ,,(03)C -,,直线34y x =-与BC 边相交于D 点. (1)求点D 的坐标; (2)若抛物线294y ax x =-经过点A ,试确定此抛物线的表达式; (3)设(2)中的抛物线的对称轴与直线OD 交于点M ,点P 以P O M 、、为顶点的三角形与OCD △相似,求符合条件的点P 的坐标. 解:(1)点D 的坐标为(43)-,. (2)抛物线的表达式为23984y x x =-. (3)抛物线的对称轴与x 轴的交点1P 符合条件.∵OA CB ∥, ∴1POM CDO ∠=∠.∵190OPM DCO ∠=∠=°, ∴1Rt Rt POM CDO △∽△.∵抛物线的对称轴3x =,∴点1P 的坐标为1(30)P ,. 过点O 作OD 的垂线交抛物线的对称轴于点2P .∵对称轴平行于y 轴,∴2P MO DOC ∠=∠. ∵290P OM DCO ∠=∠=°,∴21Rt Rt P M O DOC △∽△.∴点2P 也符合条件,2OP M ODC ∠=∠.∴121390PO CO P PO DCO ==∠=∠=,°, ∴21Rt Rt P PO DCO △≌△.∴124PP CD ==.∵点2P 在第一象限,∴点2P 的坐标为2P (34),, ∴符合条件的点P 有两个,分别是1(30)P ,,2P (34),.。