全等三角形模型(教案)
三角形全等的判定“边角边”判定定理教案

三角形全等的判定-“边角边”判定定理教案一、教学目标1. 让学生理解并掌握“边角边”判定定理(SAS),能够运用该定理证明两个三角形全等。
2. 培养学生运用几何知识解决实际问题的能力。
3. 提高学生的逻辑思维能力和团队合作能力。
二、教学内容1. 三角形全等的概念。
2. “边角边”判定定理(SAS)的定义及证明过程。
3. 运用“边角边”判定定理解决实际问题。
三、教学重点与难点1. 教学重点:掌握“边角边”判定定理(SAS),能够运用该定理证明两个三角形全等。
2. 教学难点:如何判断两个三角形是否全等,以及如何运用“边角边”判定定理进行证明。
四、教学方法1. 采用讲授法,讲解三角形全等的概念和“边角边”判定定理。
2. 采用案例分析法,分析实际问题,引导学生运用“边角边”判定定理解决问题。
3. 采用小组讨论法,培养学生团队合作精神,提高解决问题的能力。
五、教学过程1. 导入:通过复习三角形全等的概念,引入“边角边”判定定理。
2. 讲解:讲解“边角边”判定定理(SAS)的定义及证明过程,让学生理解并掌握。
3. 案例分析:分析实际问题,引导学生运用“边角边”判定定理解决问题。
4. 小组讨论:让学生分组讨论,运用“边角边”判定定理证明三角形全等。
5. 总结:对本节课的内容进行总结,强调“边角边”判定定理的应用。
6. 作业布置:布置相关练习题,巩固所学知识。
教学反思:在课后,教师应认真反思本节课的教学效果,针对学生的掌握情况,调整教学策略,以提高教学效果。
关注学生在解决问题时的创新意识和逻辑思维能力,为后续教学做好准备。
六、教学评价1. 通过课堂讲解、案例分析和小组讨论,评价学生对“边角边”判定定理(SAS)的理解和掌握程度。
2. 评价学生在解决实际问题时,能否正确运用“边角边”判定定理,以及证明的逻辑性和准确性。
3. 观察学生在小组讨论中的表现,评估其团队合作能力和交流沟通能力。
七、教学拓展1. 引导学生思考其他三角形全等的判定定理,如“角边角”(ASA)、“角角边”(AAS)等,让学生了解并掌握更多判定定理。
八年级数学上册《全等三角形的判定SAS》教案、教学设计

(四)课堂练习
1.教师出示几道具有代表性的习题,要求学生独立完成。
a.判断以下两个三角形是否全等,并说明理由。
b.运用SAS判定方法,证明以下两个三角形全等。
c.运用全等三角形的性质和判定方法解决实际问题。
2.教师对学生的解答进行点评,针对错误进行讲解,帮助学生掌握正确的方法。
3.采用小组合作、讨论交流等形式,培养学生合作解决问题的能力,提高学生的数学表达和逻辑推理能力。
4.通过解决实际问题,让学生体会数学与生活的紧密联系,培养学生的数学应用意识。
(三)情感态度与价值观
在本章节的学习中,学生将形成以下情感态度与价值观:
1.培养学生对数学学科的兴趣,激发学生主动探索、积极思考的学习热情。
因此,在教学过程中,教师应关注学生的个体差异,针对不同学生的需求进行分层教学,注重培养学生的几何直观和逻辑思维能力,提高学生对全等三角形判定方法的掌握和应用。
三、教学重难点和教学设想
(一)教学重点
1.全等三角形的定义及判定方法SAS的理解与应用。
2.对应边和对应角的识别,以及如何运用SAS判定等三角形。
(五)总结归纳
1.教师引导学生回顾本节课所学内容,总结全等三角形的判定方法SAS及其应用。
2.学生分享自己在学习本节课过程中的收获和感悟,以及遇到的困难和问题。
3.教师针对学生的总结,进行补充和强调,确保学生对本节课的知识点有全面、深入的理解。
4.教师布置课后作业,要求学生完成相关的练习题,巩固所学知识。
八年级数学上册《全等三角形的判定SAS》教案、教学设计
一、教学目标
(一)知识与技能
1.理解全等三角形的定义,掌握全等三角形的判定方法SAS(边角边)。
全等三角形模型(教案)(完整资料).doc

教学过程一、课堂导入【问题】如图,你能感觉到哪两个三角形全等吗?【思考】△ABD≌△ACE二、复习预习【问题】工人师傅常用角尺平分一个任意角,作法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON.移动角尺,使角尺两边相同的刻度分别与M、N重合.则过角尺顶点P 的射线OP便是∠AOB的角平分线,为什么?请你说明理由.【解答】OP平分∠AOB理由如下:∵OM=ON,PM=PN,OP=OP∴△MOP≌△NOP(SSS)∴∠MOP=∠NOP∴OP平分∠MON(即OP是∠AOB的角平分线)三、知识讲解考点1全等三角形性质:全等三角形的对应边相等,对应角相等,对应边上的高、中线相等,对应角的平分线相等。
考点2全等三角形的判定:所有三角形SAS、ASA、AAS、SSS;直角三角形HL四、例题精析【例题1】【题干】如图,正方形ABCD中,E、F分别为BC、CD上的点,且AE⊥BF,垂足为点G.求证:AE=BF.【答案】证明:∵正方形ABCD,∴∠ABC=∠C=90°,AB=BC.∵AE⊥BF,∴∠AGB=∠BAG+∠ABG=90°,∵∠ABG+∠CBF=90°,∴∠BAG=∠CBF.在△ABE和△BCF中,BAE CBFAB CBABE BCF∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABE≌△BCF(ASA),∴AE=BF.【解析】根据正方形的性质,可得∠ABC与∠C的关系,AB与BC的关系,根据两直线垂直,可得∠AGB的度数,根据直角三角形锐角的关系,可得∠ABG与∠BAG的关系,根据同角的余角相等,可得∠BAG与∠CBF的关系,根据ASA,可得△ABE≌△BCF,根据全等三角形的性质,可得答案.【例题2】【题干】如图,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G.(1)求证:AE=CF;(2)求证:AE⊥CF.【答案】(1)证明:∵四边形ABCD是正方形,∴∠ABC=90°,AB=BC,∵BE⊥BF,∴∠FBE=90°,∵∠ABE+∠EBC=90°,∠CBF+∠EBC=90°,∴∠ABE=∠CBF,在△AEB和△CFB中,AB BCABE CBF BE BF=⎧⎪∠=∠⎨⎪=⎩∴△AEB≌△CFB(SAS),∴AE=CF.(2)延长AE交BC于O,交CF于H,∵△AEB≌△CFB,∴∠BAE=∠BCF,∵∠ABC=90°,∴∠BAE+∠AOB=90°,∵∠AOB=∠COH,∴∠BCF+∠COH=90°,∴∠CHO=90°,∴AE⊥CF【解析】(1)利用△AEB≌△CFB来求证AE=CF.(2)利用全等三角形对应角相等、对顶角相等、等量代换即可证明.【例题3】【题干】(2014•顺义区一模)已知:如图1,△MNQ中,MQ≠NQ.(1)请你以MN为一边,在MN的同侧构造一个与△MNQ全等的三角形,画出图形,并简要说明构造的方法;(2)参考(1)中构造全等三角形的方法解决下面问题:如图2,在四边形ABCD中,∠ACB+∠CAD=180°,∠B=∠D.求证:CD=AB.【答案】:(1)如图1,以N 为圆心,以MQ 为半径画圆弧;以M 为圆心,以NQ 为半径画圆弧;两圆弧的交点即为所求.主要根据“SSS”判定三角形的全等.(2)如图3,延长DA至E,使得AE=CB,连结CE.∵∠ACB+∠CAD=180°,∠DAC DAC +∠EAC=180°∴∠BAC BCA =∠EAC在△EAC和△BAC中,AE CEAC CAEAC BCN=⎧⎪=⎨⎪∠=∠⎩∴△AECEAC≌△BCA (SAS),∴∠B=∠E,AB=CE∵∠B=∠D,∴∠D=∠E,∴CD=CE,∴CD=AB.【解析】(1)以点N为圆心,以MQ长度为半径画弧,以点M为圆心,以NQ长度为半径画弧,两弧交于一点F,则△MNF为所画三角形.(2)延长DA至E,使得AE=CB,连结CE.证明△EAC≌△BCA,得:∠B =∠E,AB=CE,根据等量代换可以求得答案.【例题4】再证明△AEF≌△AGF,可得出结论,他的结论应是;探索延伸:向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.∴∠EAF=∠GAF,五、课堂运用【基础】1.在平面内正方形ABCD与正方形CEFH如图放置,连DE,BH,两线交于M.求证:(1)BH=DE.(2)BH⊥DE.【答案】证明:(1)在正方形ABCD与正方形CEFH中,BC=CD,CE=CH,∠BCD=∠ECH=90°,∴∠BCD+∠DCH=∠ECH+∠DCH,即∠BCH=∠DCE,在△BCH和△DCE中,BC CDBCH DCECE CH=⎧⎪∠=∠⎨⎪=⎩,∴△BCH≌△DCE(SAS),∴BH=DE;(2)∵△BCH≌△DCE,∴∠CBH=∠CDE,又∵∠CGB=∠MGD,∴∠DMB=∠BCD=90°,∴BH⊥DE.【解析】(1)根据正方形的性质可得BC=CD,CE=CH,∠BCD=∠ECH=90°,然后求出∠BCH=∠DCE,再利用“边角边”证明△BCH和△DCE全等,根据全等三角形对应边相等证明即可;(2)根据全等三角形对应角相等可得∠CBH=∠CDE,然后根据三角形的内角和定理求出∠DMB=∠BCD=90°,再根据垂直的定义证明即可.2.(1)操作发现如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B,C),连接AM,以AM为边作等边△AMN,连接CN,猜想∠ABC与∠ACN有何数量关系?并证明你的结论;(2)类比探究如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其他条件不变,(1)中的结论是否仍然成立?请说明理由.【答案】(1)∵在等边△ABC中,AB=AC,∠BAC=∠BAM+∠MAC=60°在等边△AMN中,AM=AN,∠MAN=∠NAC+∠MAC=60°∴∠BAM=∠NAC=60°-∠MAC,在△ABM和△ACN中,AB ACBAM NACAM AN=⎧⎪∠=∠⎨⎪=⎩,∴△ABM≌△ACN(SAS),∴∠ABC=∠ACN.(2)∵在等边△ABC中,AB=AC,∠BAM=∠BAC+∠MAC=60°+∠MAC在等边△AMN中,AM=AN,∠NAC=∠NAM+∠MAC=60°+∠MAC,∴∠BAM=∠NAC=60°+∠MAC,在△ABM和△ACN中,AB ACBAM NACAM AN=⎧⎪∠=∠⎨⎪=⎩,∴△ABM≌△ACN(SAS),∴∠ABC=∠ACN.【解析】(1)由全等三角形可以判定AB=AC,AM=AN,即可求证△ABM≌△ACN,即可求得∠ABC=∠ACN;(2)和(1)同理,由全等三角形可以判定AB=AC,AM=AN,即可求证△ABM≌△ACN,即可求得∠ABC=∠CAN.【巩固】1.如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.求证:BD=CE.【答案】∵△ABC和△ADE都是等腰直角三角形,∴AD=AE,AB=AC,又∵∠EAC=90°+∠CAD,∠DAB=90°+∠CAD,∴∠DAB=∠EAC,【答案】如图,过点D作DG∥AB交AC于G,∵△ABC是等边三角形,∴∠GDC=∠ABC=∠C=60°,AC=BC,∴△CDG是等边三角形,∴DG=CD=CG,∠AGD=120°,∴BD=AG,∵CD=BE,∴BE=DG,又∵△BEF是等边三角形∴∠EBF=60°,∴∠EBD=∠DGA=120°,在△EBD和△DGA中.BD AGEBD AGD EB DG=⎧⎪∠=∠⎨⎪=⎩.∴△EBD≌△DGA(SAS),∴∠EDB=∠CAD.【解析】过点D作DG∥AB交AC于G,求出∠EBD=∠AGD=120°,BD=AG,根据SAS证△EBD ≌△DGA,根据全等三角形的性质推出即可.【拔高】正方形ABCD中,点E、F分别是边AD、AB的中点,连接EF.(1)如图1,若点G是边BC的中点,连接FG,则EF与FG关系为:;(2)如图2,若点P为BC延长线上一动点,连接FP,将线段FP以点F为旋转中心,逆时针旋转90°,得到线段FQ,连接EQ,请猜想BF、EQ、BP三者之间的数量关系,并证明你的结论.(3)若点P为CB延长线上一动点,按照(2)中的作法,在图3中补全图形,并直接写出BF、EQ、BP三者之间的数量关系:.【答案】(1)∵点E 、F 分别是边AD 、AB 的中点,G 是BC 的中点,∴AE=AF=BF=BG ,在△AEF 和△BFG 中,AE BG A B AF BF=⎧⎪∠=∠⎨⎪=⎩,∴△AEF ≌△BFG (SAS ), ∴EF=FG ,∠AFE=∠BFG=45°,∴EF ⊥FG ,EF=FG ;(2)BF+EQ=BP .理由:如图2,取BC 的中点G ,连接FG ,则EF ⊥FG ,EF=FG ,∴∠1+∠2=90°,又∵∠2+∠3=90°,∴∠1=∠3, 在△FQE 和△FPG 中,13FQ FPEF FG=⎧⎪∠=∠⎨⎪=⎩,∴△FQE ≌△FPG (SAS ),∴QE=PG 且BF=BG ,∵BG+GP=BP ,∴BF+EQ=BP ;(3)如图3所示,BF+BP=EQ .【解析】(1)根据线段中点的定义求出AE=AF=BF=BG,然后利用“边角边”证明△AEF和△BFG全等,根据全等三角形对应边相等可得EF=FG,全等三角形对应角相等可得∠AFE=∠BFG=45°,再求出∠EFG=90°,然后根据垂直的定义证明即可;(2)取BC的中点G,连接FG,根据同角的余角相等求出∠1=∠3,然后利用“边角边”证明△FQE和△FPG全等,根据全等三角形对应边相等可得QE=FG,BF=BG,再根据BG+GP=BP 等量代换即可得证;(3)根据题意作出图形,然后同(2)的思路求解即可.课程小结1.全等三角形的性质2.全等三角形的判定【最新整理,下载后即可编辑】。
全等三角形数学教案

全等三角形数学教案标题:全等三角形数学教案一、教学目标:1. 知识与技能:学生能理解并掌握全等三角形的定义和性质,能够识别和判断两个三角形是否全等。
2. 过程与方法:通过观察、分析、讨论和实践,培养学生的逻辑思维能力和空间观念。
3. 情感态度价值观:培养学生严谨的科学态度和积极的学习热情。
二、教学重点难点:1. 教学重点:理解和掌握全等三角形的定义和性质。
2. 教学难点:准确判断两个三角形是否全等。
三、教学过程:(一)导入新课教师可以先展示一些生活中的实例,如门框、窗户等,引导学生思考这些形状为什么都是三角形。
然后提出问题:“如果有两个三角形,它们看起来完全一样,那它们就一定是一样的吗?”从而引入全等三角形的概念。
(二)讲解新课1. 全等三角形的定义:大小和形状都相同的两个三角形叫做全等三角形。
2. 全等三角形的性质:全等三角形的对应角相等,对应边相等。
(三)实践操作让学生用纸片或几何工具制作出一些三角形,然后尝试将它们拼接在一起,看哪些可以完全重合,哪些不能。
以此来帮助他们理解和掌握全等三角形的定义和性质。
(四)巩固练习设计一些习题,让学生判断给出的两个三角形是否全等,或者找出需要满足什么条件才能使两个三角形全等。
(五)总结提升让学生自己总结本节课所学的内容,并鼓励他们在日常生活中寻找全等三角形的例子,以提高他们的观察能力和应用能力。
四、教学反思:在教学过程中,教师应注重引导学生主动参与学习,激发他们的学习兴趣。
同时,也要注意对学生的反馈进行及时的调整和改进,确保每一个学生都能理解和掌握全等三角形的相关知识。
12.1 全等三角形教案

12.1全等三角形一、教学目标1.了解全等形、全等三角形的概念,理解全等三角形中对应顶点、对应边、对应角的含义.2.经历实验、操作的过程,理解、掌握全等三角形的性质.二、教学重难点重点:全等三角形的概念与性质.难点:全等三角形中对应边、对应角的确定.教学过程一、情境引入在我们的周围,经常可以看到形状、大小完全相同的图形.通过多媒体展示下列实例:教材图12.1-1所示的例子中都有形状、大小完全相同的图形.【探究】把一块三角尺按在纸板上,画下图形,照图形裁下来的纸板和三角尺的形状、大小完全一样吗?把三角尺和裁得的纸板放在一起能够完全重合吗?从同一张底片冲洗出来的两张尺寸相同的照片上的图形,放在一起也能够完全重合吗?(1)你能找出生活实际中形状、大小完全相同的图形吗?说说你的理由.鼓励学生踊跃说出生活中的实例,并提问:大家举出的实例中,怎样能判别两个图形的形状、大小是完全相同的呢?学生通过同伴间的相互讨论、交流,在探索活动中逐渐体会:将两个图形重叠,看看它们是否能够完全重合,能完全重合的,它们的形状、大小就完全相同.在认识上形成两个图形完全重合的初步体验.(2)什么是“全等形”?在学生从“两个图形的形状、大小完全相同”到“两个图形完全重合”的知识建构的基础上,教师适时点题,提出“全等形”的概念.教师指出:能够完全重合的两个图形叫做全等形.追问:上述各实例中,哪些是全等形?动口说一说,为什么这些图形是全等形?你能再举些实际的例子,说明他们是全等形吗?教师期待学生能说出自己正确的生活体验或亲手制作的模型.教师适时地引导学生发散思维,回想和链接起生活中的全等形,并实现认识上从“两个图形的形状、大小完全相同”到“两个图形完全重合”再到“全等形”的飞跃.二、互动新授1.全等三角形将两个图形相互重叠,就可以发现它们是否完全重合,从而判别它们是不是全等形.那么,请同学们来说说看,什么是全等三角形呢?从“全等形”这个概念,导出“全等三角形”这个子概念,蕴含着思维上的逻辑推理,学生把“全等形”中的“图形”换成“三角形”,正好符合了“三段论式”的要求.这样导出“全等三角形”的概念就是水到渠成的事情.让学生说出什么是“全等三角形”,并进行讨论,让学生得到逻辑推理的初步体验.教师总结:能够完全重合的两个三角形叫做全等三角形.全等用符号“≌”表示,读作“全等于”.【思考】在教材图12.1-2(1)中,把△ABC沿直线BC平移,得到△DEF.在教材图12.1-2(2)中,把△ABC沿直线BC翻折180°,得到△DBC. 在教材图12.1-2(3)中,把△ABC绕点A旋转,得到△ADE.各图中的两个三角形全等吗?(1)(2)一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等.把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.例如教材图12.1-2(1)中的△ABC和△DEF全等,记作△ABC≌△DEF,其中点A和点D,点B和点E,点C和点F是对应顶点;AB和DE,BC和EF,AC和DF是对应边;∠A和∠D,∠B和∠E,∠C和∠F是对应角.指名个别同学说说图(2)(3)中的对应顶点,对应边和对应角.其他学生一起来评判是否正确.2.巩固应用【例题】如下图,用字母表示出各图中全等三角形的对应顶点、对应边和对应角.(1)(2)(3)【分析】根据“全等三角形中互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角”,利用三角形纸板模型找出两个三角形互相重合的过程、重合的边、重合的角,从而正确地找出全等三角形的对应边和对应角.【解】图(1)中,对应顶点:A与A,B与B,C与D;对应边:AB与AB,AC与AD,BC 与BD.对应角:∠BAC与∠BAD,∠C与∠D,∠CBA与∠DBA;图(2)中,对应顶点:A与A,B与C,D与E;对应边:AB与AC,AD与AE,BD与CE.对应角:∠A与∠A,∠B与∠C,∠ADB与∠AEC;图(3)中,对应顶点:A与B,B与A,C与D;对应边:AB与BA,BD与AC,AD与BC.对应角:∠BAD与∠ABC,∠ABD与∠BAC,∠D与∠C.3.反思与归纳通过上述的探索,你有哪些新的体会?若已经确定了对应顶点,你能快速地确定出对应边和对应角吗?同样,确定了对应边或对应角,能确定其他的对应元素吗?说说你的发现和体会.比如:(1)按相同对应点的顺序确定的边一定是对应边,按相同对应点的顺序确定的角一定是对应角;(2)对应边所夹角是对应角;对应角夹的边是对应边;(3)对应边所对的角是对应角;对应角所对的边为对应边.教师说明:记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上.这样,确定了对应顶点,就容易确定对应边和对应角了.【思考】教材图12.1-2(1)中,△ABC≌△DEF,对应边有什么关系?对应角呢?师生合作探究:从教材图12.1-2(1)中容易看出:AB=DE,BC=EF,AC=DF,∠A=∠D,∠B=∠E,∠C=∠F.让学生观察教材图12.1-2(2)、(3),写出发现的结论.教师总结:全等三角形有这样的性质:全等三角形的对应边相等,全等三角形的对应角相等.三、课堂小结四、板书设计五、教学反思本节课的主要内容是全等三角形的概念和性质.重点要让学生学会正确确定全等三角形的对应顶点、对应边和对应角,养成按对应顶点的顺序表示三角形的习惯,同时,可提出全等三角形判定的说法,为后续内容的学习做好准备.课堂上,教师引导学生通过模型演示与想象结合,通过不断的探索活动,逐步积累学习的经验与体会.练习中让学生多动口、动手,积极参与探索活动,进而更好地理解和掌握知识.导学方案一.学法点津学生在理解全等三角形概念时,要突出两个三角形能够完全重合这一特性.在领会全等三角形性质及全等三角形的对应顶点、对应边、对应角时,要多从全等的三角形中体会哪两个顶点、哪两个角、哪两边会完全重合,从而正确地找出全等三角形的对应顶点、对应边、对应角.不但会说出全等三角形的对应顶点、对应边、对应角,而且还要写得对,如“点A 和点D是对应顶点”,或者“对应顶点是点A和点D”.而不能写成“A=B”之类的错误格式.二、学点归纳总结(一)知识要点总结1.全等三角形能够完全重合的两个三角形是全等三角形.2.全等三角形性质全等三角形的对应边相等,全等三角形的对应角相等.3.一个图形经过平移、旋转、翻折180°后,前后两个图形全等.(二)规律方法总结1.先确定全等三角形的对应顶点,然后按对应顶点的相同顺序就容易找出全等三角形的对应边和对应角.2.对应角所对的边是对应边,对应边所夹的角是对应角.课时作业设计一、选择题1.下列说法中,正确的个数是( ).(1)正方形都是全等形;(2)等边三角形都是全等形;(3)形状相同的图形是全等形;(4)大小相同的图形是全等形;(5)能够完全重合的图形是全等形.A.1个 B.2个C.3个D.4个2.下列说法中,正确的个数是( ).(1)全等三角形对应顶点所对应的角是对应角;(2)全等三角形对应顶点所对应的边是对应边;(3)全等三角形对应边所夹角是对应角;(4)全等三角形对应角夹的边是对应边. A.3 B.4 C.2 D.1二、填空题3.如图所示,△ABC≌△AED,点B和点E,点C和点D是两对对应顶点,∠B的对应角是__________,∠C的对应角是__________,AB的对应边是__________,BC的对应边是__________,AC的对应边是__________.4.如图所示,△ABC≌△DEF,∠A和∠EDF,∠C和∠F分别是两组对应角,如果AE=12cm,BD=3cm,则AB=________.第3题图第4题图三、解答题5.如右图,已知△ABC≌△DEF,A和D是对应顶点,∠B与∠E是对应角,写出图中其他的对应边和对应角.【参考答案】1.A2.B3.∠E∠D AE ED AD4.7.5cm5.对应边:AB与DE,BC与EF,CA与FD,对应角:∠A与∠D,∠ACB与∠DFE.。
12.2《全等三角形》判定 (胖瘦模型)教案 2022--2023学年人教版八年级数学上册

12.2《全等三角形》判定(胖瘦模型)教案一、教学目标•知识与技能:掌握利用全等三角形的定义和性质判定两个三角形是否全等的方法,并能够应用于解决相关问题。
•过程与方法:通过引入胖瘦模型的概念,引导学生理解全等三角形的定义和性质,学会利用胖瘦模型进行全等三角形的判定。
•情感态度与价值观:培养学生观察、思考和动手实践的能力,培养学生合作、探究和创新的精神。
二、教学重难点•教学重点:掌握利用全等三角形的定义和性质判定两个三角形是否全等的方法。
•教学难点:能够应用所学方法解决实际问题,提高判断辨析的能力。
三、教学过程1. 导入新知通过给学生提出一个问题引入本节课的内容。
例如,将一张纸对折,然后剪出一个形状,然后再将原始纸展开,剪出的形状能否与原始纸相重合?2. 引入胖瘦模型解释胖瘦模型的概念,即数量和位置都完全相同的两个几何图形。
并通过与学生一起进行实物模型的制作,加深学生对胖瘦模型的理解。
3. 引出全等三角形的定义和性质通过展示两个完全相同的三角形,并引导学生总结出全等三角形的定义和性质。
•定义:在平面上,两个三角形的对应边长相等,对应角度相等,则称这两个三角形是全等三角形。
•性质:全等三角形的对应部分(边和角)完全相等。
4. 胖瘦模型法判定全等三角形•胖模型法:如果已知两个三角形的三边对应相等,那么可以判定这两个三角形是全等的。
•瘦模型法:如果已知两个三角形的两边及夹角对应相等,那么可以判定这两个三角形是全等的。
5. 综合应用通过一些实例,让学生运用胖瘦模型法判定两个三角形是否全等。
示例题:已知△ABC中,∠B=∠D,AC=DF,BC=EF,判定△ABC≌△DEF。
解题步骤: - 根据已知条件,用瘦模型法判定两个三角形的对应边和对应角是否相等。
- 验证两个三角形的对应部分是否完全相等。
- 根据全等三角形的定义和性质,得出结论。
6. 拓展探索让学生在实际生活中找寻更多的全等三角形,并通过比较发现和归纳全等三角形的其他判断方法。
第十二章全等三角形中的全等模型(教案)

一、教学内容
第十二章全等三角形中的全等模型(教案)
1.全等三角形的定义及判定定理
(1)SSS(Side-Side-Side)判定定理
(2)SAS(Side-Angle-Side)判定定理
(3)ASA(Angle-Side-Angle)判定定理
(4)AAS(Angle-Angle-Side)判定定理
(3)识别全等模型
-难点:学生在识别全等模型时,容易忽略关键信息,导致无法正确运用全等定理。
-解决方法:通过丰富的练习题,训练学生的观察能力,提高识别全等模型的能力。
(4)几何证明中的逻辑推理
-难点ห้องสมุดไป่ตู้学生在几何证明过程中,逻辑推理不严密,容易出错。
-解决方法:教授学生如何运用已知条件和全等三角形的性质,进行严密的逻辑推理。
3.重点难点解析:在讲授过程中,我会特别强调SSS、SAS、ASA、AAS这四个判定定理和全等三角形的性质这两个重点。对于难点部分,我会通过具体例题和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与全等三角形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示全等三角形的基本原理。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了全等三角形的基本概念、判定定理、性质以及在实际中的应用。同时,我们也通过实践活动和小组讨论加深了对全等三角形全等模型的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
12.2三角形全等的判定SAS(教案)

1.理论介绍:首先,我们要了解SAS全等判定的基本概念。SAS是指两个三角形中有两边和它们之间的夹角分别相等,那么这两个三角形全等。它是解决几何问题的重要工具,帮助我们确定两个三角形的完全一致性。
2.案例分析:接下来,我们来看一个具体的案例。假设在两个三角形中,我们已知两边长度相等,以及它们之间的夹角也相等,通过SAS判定,我们可以确定这两个三角形是全等的。
2.掌握运用SAS判定两个三角形全等的具体步骤。
3.能够运用直尺和圆规作出符合条件的全等三角形。
4.解决实际问题,如运用SAS判定方法判断两个三角形是否全等,并解释其在现实生活中的应用。
5.通过例题和练习,加深对SAS判定全等三角形方法的理解,培养几何逻辑思维和解决问题的能力。
二、核心素养目标
本节课的核心素养目标旨在培养学生以下能力:
-掌握SAS全等判定的步骤:学生应学会如何通过以下步骤应用SAS判定全等:a)确认两个三角形中有两边相等;b)确认这两边的夹角相等;c)确认第三边也相等。
-应用SAS全等判定解决具体问题:学生应能够将SAS全等判定应用于解决实际几何问题,如计算未知长度或角度等。
-举例解释:如在三角形ABC和三角形DEF中,若AB=DE,AC=DF,且∠BAC=∠EDF,则根据SAS全等判定,三角形ABC和三角形DEF全等。
3.重点难点解析:在讲授过程中,我会特别强调SAS判定中“边角边”的顺序和角的定位。对于难点部分,我会通过举例和比较来帮助大家理解,例如,讲解为何SSA不能判定全等,而SAS可以。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与三角形全等判定相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。学生们用直尺和圆规尝试作出符合SAS全等条件的两个三角形。
全等三角形模型教案-全整理

全等三角形证明目录类型1平移模型 (2)类型2一线三等角模型 (3)类型3一线三垂直模型 (4)类型4对称模型 (6)类型5旋转型模型 (9)类型6半角旋转模型 (12)类型7手拉手模型 (16)类型8倍长中线模型 (21)类型1平移模型解题思路:此模型的特征是有一组边共线或部分重合,另两组边分别平行,需要在移动方向上加(减)公共线段,构造线段相等,或利用平行线性质找到对应角相等.1.如图,点B ,E ,C ,F 在同一直线上,A D ∠=∠,AB DE ∥,BE CF =.求证:AB DE =.题1图题2图2.如图,点A 、D 、C 、F 在同一条直线上,AD CF =,AB DE =,AB DE ∥.(1)求证:ABC DEF ≌△△;(2)若65A ∠=︒,82B ∠=︒,求F ∠的度数.习题:1.已知:如图,DC ∥AB ,且DC =AE ,E 为AB 的中点,(1)求证:△AED ≌△EBC .(2)观看图前,在不添辅助线的情况下,除△EBC 外,请再写出两个与△AED 的面积相等的三角形.(直接写出结果,不要求证明):O E DCB A1.(1)如图1,直线m 经过等边三角形ABC 的顶点A,在直线m 上取两点D,E,使得∠ADB=60°,∠AEC=60°.求证:BD+CE=DE;(2)将(1)中的直线m 绕着点A 逆时针方向旋转一个角度到如图2的位置,并使∠ADB=120°,∠AEC=120°.若BD=3,CE=7,求DE 的长.题1图题2图2.如图,在ABC 中,BAC ∠是钝角,AB AC =,,BAD CAE BDA AEC BAC ∠<∠∠=∠=∠,直线m 与CB 的延长线交于点F ,若3BC FB =,ABC 的面积是12,求FBD 与ACE的面积之和.1.如图,在△ACB 中,∠ACB =90°,AC =BC ,点C 的坐标为(-2,0),点A 的坐标为(-6,3),则B 点的坐标为.题1图2.通过对下面数学模型的研究学习,解决下列问题:(1)如图1,点A 在直线l 上,90,BAD AB AD ∠=︒=,过点B 作BC l ⊥于点C ,过点D 作DE l ⊥交于点E .得1D ∠=∠.又90BCA AED ∠=∠=︒,可以推理得到()ABC DAE AAS ≌.进而得到结论:AC =_____,BC =_____.我们把这个数学模型称为“K 字”模型或“一线三直角”模型;(2)如图2,于点C ,于点E ,与直线交于点P ,求证:.ND 90,,,BAD MAN AB AD AM AN BM l ∠=∠=︒==⊥DE l ⊥NP DP =l 图题23.如图,在ABC 中,90ACB ∠=︒,AC BC =,直线MN 经过点C ,且AD MN ⊥于D ,BE MN ⊥于E .(1)当直线MN 绕点C 旋转到①的位置时,求证:①ADC CEB △△≌;②DE AD BE =+;(2)当直线MN 绕点C 旋转到②的位置时,求证:DE AD BE =-;(3)当直线MN 绕点C 旋转到③的位置时,试问DE 、AD 、BE 具有怎样的数量关系?请直接写出这个等量关系,不需要证明..4类型4对称模型所给图形可沿某一直线折叠,直线两旁的部分能完全重合,重合的顶点就是全等三角形的对应顶点,解题时要注意其隐含条件,即公共边、公共角、对顶角相等或角平分线等.1.如图1,已知,BD平分∠ABC和∠ADC,若AB=3,则BC=.图1图2图32.如图2,点D在AB上,点E在AC上,AB AC=,∠C=20°,求∠B.=,BD CE3.如图3,在四边形ABCD中,CB AB⊥于点D,点E,F分别在⊥于点B,CD ADAB,AD上,AE AF=.=,CE CFCD=,求四边形AECF的面积;(1)若8AE=,6(2)猜想∠DAB,∠ECF,∠DFC三者之间的数量关系,并证明你的猜想4.如图,已知AC∥BD,EA、EB分别平分∠CAB和∠DBA,CD过点E,求证:AB=AC+BD.5.已知∠ABC=3∠C,∠1=∠2,BE⊥AE,求证:AC-AB=2BE题5图题6图6.P 是∠BAC 平分线AD 上一点,AC>AB,求证:PC-PB<AC-AB习题:1.在四边形ABDC 中,AC =AB ,DC =DB ,∠CAB =60°,∠CDB =120°,E 是AC 上一点,F 是AB 延长线上一点,且CE =BF .(1)试说明:DE =DF :(2)在图中,若G 在AB 上且∠EDG =60°,试猜想CE ,EG ,BG 之间的数量关系并证明所归纳结论.(3)若题中条件“∠CAB =60°,∠CDB =120°改为∠CAB =α,∠CDB =180°﹣α,G 在AB 上,∠EDG 满足什么条件时,(2)中结论仍然成立并证明?题1图题2图2.在四边形ABDE 中,点C 是BD 边的中点.(1)如图①,AC 平分BAE ∠,90ACE ∠=︒,写出线段AE ,AB ,DE 间的数量关系及理由;(2)如图②,AC 平分BAE ∠,EC 平分AED ∠,120ACE ∠=︒,写出线段AB ,BD,P DA CBDE ,AE 间的数量关系及理由.3.已知:AC 平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BEA B C DEF 21题3图题4图4.已知:BC=DE,∠B=∠E,∠C=∠D,F 是CD 中点,求证:∠1=∠25.已知:AD 平分∠BAC,AC=AB+BD,求证:∠B=2∠CCD B 题5图题6图6.已知:AP 平分∠MAN,AC>AB,PB=PC,求证:∠BAC+∠BPC=180°A类型5旋转型模型解题思路:此模型特征是可以通过旋转一定角度重合,需要找对顶角或找互余互补角,通过角度加减得等角。
数学全等三角形教案8篇

数学全等三角形教案8篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作汇报、述职报告、发言致辞、心得体会、规章制度、应急预案、合同协议、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work reports, job reports, speeches, insights, rules and regulations, emergency plans, contract agreements, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!数学全等三角形教案8篇下面是本店铺收集的数学全等三角形教案8篇(全等三角形的讲课教案),供大家赏析。
全等三角形教学设计优秀4篇

全等三角形教学设计优秀4篇全等三角形教案篇一一、教学内容分析本节课选自北师大版《七年级数学下册》第五章第四节探索三角形全等的条件第一课时,本节课探索第一种判定方法—边边边,为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法,积累数学活动经验,为以后的证明打下基础。
二、学生学习情况分析学生的知识技能基础:学生在前几节中,已经了解了三角形的有关概念(内角、外角、中线、高、角平分线),以及三角形三边之间的关系、图形的全等,对本节课要学习的三角形全等条件中的“边边边”和三角形的稳定性来说已经具备了一定的知识技能基础。
学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些探索图形全等的活动,通过拼图、折纸等方式解决了一些简单的现实问题,获得了一些数学活动经验的基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
三、设计思想我们所在的学校处于市区,教学设备齐全,学生学习基础较好,在这之前他们已了解了图形全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。
另外,学生也基本具备了利用已知条件拼出三角形的能力,具备探索的热情和愿望,这使学生能主动参与本节课的操作、探究。
遵循启发式教学原则,采用引探式教学方法。
用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法。
四、教学目标1.知识与技能目标:掌握三角形全等的“边边边”条件,了解三角形的稳定性。
2.过程与方法目标:在探索三角形全等的条件及其运用的过程中,体会利用操作、归纳获得数学结论的过程,初步形成解决问题的基本策略。
12.2三角形全等的判定-一线三等角全等模型(教案)

(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与“一线三等角”全等模型相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如使用直尺和量角器来构造满足“一线三等角”条件的三角形,并验证它们的全等关系。
3.能够运用“一线三等角”全等模型解决实际问题,如几何图形的拼接、角度的求解等。
二、核心素养目标
本节课的核心素养目标旨在培养学生以下能力:
1.增强空间观念:通过“一线三等角”全等模型的探究,使学生能够把握图形的空间特征,提高空间想象力和直观感知能力。
2.提升逻辑推理能力:在学习SSA判定方法的过程中,培养学生严谨的逻辑思维,让学生学会从特殊到一般、从具体到抽象的分析和解决问题。
- SSA判定方法的应用:重点讲解在已知一边和两个角(其中一个为非夹角)的情况下,如何判定两个三角形全等,并强调在应用时需要注意角的对应关系。
-实际问题的解决:将全等知识应用于解决实际问题,如测量、建筑、艺术等领域的问题。
举例:在讲解“一线三等角”全等模型时,可以给出以下例题进行强调:
问题:在直线MN上,有∠AMN=∠BPN=∠CQO=90°,AB=BC,证明△ABC全等于△PQN。
其次,实践活动中的分组讨论环节,我发现有些学生参与度不高,可能是由于主题难度较大或者他们对讨论的主题不够感兴趣。针对这个问题,我计划在下次的活动中,提供更多元化的讨论主题,或者引入一些竞争机制,以提高学生的参与度和积极性。
在学生小组讨论环节,我发现很多学生能够提出有见地的观点,但他们的表达和逻辑推理能力还有待提高。在接下来的教学中,我将更加注重培养学生的表达能力和逻辑思维,通过提问和引导,帮助他们更好地组织语言和思考。
常考全等三角形模型教案

常考全等三角形模型教案一、教学目标。
1. 知识与技能:(1)掌握全等三角形的定义和性质;(2)能够运用全等三角形的性质解决相关问题;(3)能够灵活运用全等三角形模型进行证明和计算。
2. 过程与方法:(1)培养学生观察问题、提出问题、解决问题的能力;(2)培养学生分析问题、探索问题、解决问题的能力;(3)培养学生合作探究、独立思考、自主学习的能力。
3. 情感态度与价值观:(1)培养学生的数学思维能力和数学解决问题的兴趣;(2)培养学生的合作意识和团队精神;(3)培养学生的耐心和细心的品质。
二、教学重点与难点。
1. 教学重点:(1)全等三角形的定义和性质;(2)全等三角形模型的运用。
2. 教学难点:(1)全等三角形的性质证明;(2)全等三角形模型的灵活运用。
三、教学过程。
1. 导入新知识。
教师可通过提问或举例的方式,引导学生了解全等三角形的定义和性质,激发学生的学习兴趣。
2. 讲解新知识。
(1)讲解全等三角形的定义和性质,包括全等三角形的判定条件、全等三角形的性质等内容;(2)讲解全等三角形模型的运用,包括利用全等三角形模型解决实际问题、利用全等三角形模型进行证明和计算等内容。
3. 案例分析。
教师可选择一些典型的案例,引导学生利用全等三角形模型进行分析和解决,帮助学生加深对全等三角形模型的理解和运用。
4. 练习与训练。
(1)教师布置一些练习题,让学生利用全等三角形模型进行练习和训练;(2)教师组织学生进行小组合作,让学生在合作中相互交流、相互学习,提高解决问题的能力。
5. 总结与拓展。
教师对本节课的内容进行总结,并对全等三角形模型的拓展进行引导,让学生在课后能够继续深入学习和探究。
四、教学反思。
本节课采用了导入新知识、讲解新知识、案例分析、练习与训练、总结与拓展等教学方法,使学生在实际操作中更好地理解和掌握了全等三角形模型的相关知识。
同时,通过小组合作的方式,培养了学生的合作意识和团队精神。
然而,在教学过程中,也存在一些不足之处,如案例分析的数量和质量有待提高,学生的自主学习能力有待培养等。
全等三角形教案6篇

全等三角形教案6篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、工作计划、心得体会、讲话致辞、教育教学、书信文档、述职报告、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, work plans, reflections, speeches, education and teaching, letter documents, job reports, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!全等三角形教案6篇我们的教案需要定期更新以反映新的教育趋势,教师编写教案不仅促进了自我管理,还增强了他们的教育专业素养,以下是本店铺精心为您推荐的全等三角形教案6篇,供大家参考。
人教版八年级数学上册《全等三角形之手拉手模型》教学设计

全等三角形之手拉手模型一、内容和内容解析1.内容全等三角形之手拉手模型.2.内容解析本节课是在学生已经学习了全等三角形、等腰三角形等知识的基础上,进一步研究由顶角相等的两个等腰三角形共顶点所组成的数学模型——手拉手模型的特征.由这个基本模型探究出固定的结论,为后续解决以这个模型为基础的问题提供了方法.全等三角形之手拉手模型是数学中常见的模型,熟悉并掌握这个模型,有助于学生解决等边三角形共顶点和等腰直角三角形共顶点的问题;善于发现并应用这个基本模型,可以使解题由难到易,化繁为简.基于以上分析,确定本节课的教学重点:能识别手拉手模型,能证明两组结论.二、目标和目标解析1.目标(1)能识别全等三角形之手拉手模型,掌握相关的两组结论.(2)能应用模型中的基本结论,解决其他数学问题.2.目标解析达成目标(1)的标志是:学生能记住基本模型的特征,能证明两组结论.达成目标(2)的标志是:能运用基本结论来解决有关数学问题.三、教学问题诊断分析很多同学在解决几何问题的时候总是找不准方向,没有解题思路,看到几何题就蒙了,不知道从何入手.因此,对所学的几何知识模型化,有利于学生提高解题能力,使逻辑思维能力得到发展.本节课的教学难点:会用手拉手模型的基本结论解决数学问题.四、教学过程设计1.创设情境看到标题中的手拉手,同学们一定会想到这样的画面:两位同学手拉着手,面带笑容,一起在做着游戏.本节课,我们将跟大家介绍另一种类型的手拉手,拉手的对象由两个人变成了两个顶角相等的等腰三角形.设计意图:利用手拉手图片引入课题,激发学生的学习兴趣.2.感知模型演示手拉手过程(如图)探究1: △ABD和△ACE的关系?BD和CE的长度关系?探究2:∠BOC和∠BAC的关系?问题1:如果△ADE的位置发生变化,那么上面两组结论是否还成立呢?(如图)学生合作交流,教师指导归纳:只要两个等腰三角形的顶点重合,顶角相等,无论两个三角形的位置如何,这两组结论都是成立的.我们将这个图形和两个结论统称为手拉手模型.大家应像记公式一样记住这个模型.强调一下模型的特征:条件---两个顶角相等的等腰三角形共顶点.结论---①两只左手与顶点组成的三角形和两只右手与顶点组成的三角形全等;②相等的两条线段是左手拉左手,右手拉右手得到的两条线段;③相等的两个角,它们一个是等腰三角形的顶角,另一个是手拉手以后得到的两条直线的夹角.设计意图:介绍基本模型,为下面应用模型解决数学问题作铺垫.3.熟悉模型⑴学生练习根据下面等腰三角形共顶点的手拉手模型,请直接写出相应的两组结论:1、△ADB和△AEC均为等边三角形2、△ABC和△ADE均为等腰直角三角形,∠BAC=∠DAE=9003、四边形ABCD和四边形DEFG均为正方形⑵教师评讲.设计意图:通过有趣的活动,让学生补全模型,写出基本结论,加深学生对基本模型的认识.4.应用模型教师:通过上面3道变式题E FPBA C的练习,相信大家已经对等腰三角形手拉手模型比较熟悉了.为了让大家对这个模型活学活用,我们来看一看由一个中考题改编的例题.例题:如图,△ABC是等边三角形,点P为射线AD任意一点(P与A不重合),连结CP,若CP=CQ, ∠PCQ=600,连结QB并延长交直线AD于点E.(1)请直接写出∠QEP的度数和AP与BQ的数量关系.(不用证明)(2)若∠APC=30°,∠ACP=15°①∠BFC=.②当BF=4时,求AP的长.问题2:你能找出图中隐藏的手拉手模型吗?问题3:你能说出模型中的2组结论吗?点学生回答:结论1:△CBQ≌△CAP;AP=BQ;结论2:∠E=∠PCQ=60º教师:解几何计算题,我们一般采用顺推的方式来分析,也就是由已知条件,逐步推出未知的结果.请大家分小组进行推理,看哪个组最先做出来?学生写出解答过程.教师巡查.设计意图:引导学生运用手拉手模型的基本结论解决数学问题,加深学生对模型化解题的认识.5.课堂小结1、本节课你学到了什么知识?2、手拉手模型中还有其它结论,大家以后可以深入研究.3、数学模型是解题经验的总结,你自己也可以把一些有用的图形和结论归纳为数学模型,为自己所用.设计意图:回顾所学内容,加深学生对手拉手模型的理解,揭示数学模型的实质.6.目标检测(每题10分)(1)如图,分别以△ABC的边AB,AC同时向外作等腰直角三角形,其中AB=AE,AC=AD,∠BAE=∠CAD=90°,点G为BC中点,点F为BE中点,点H为CD中点.GF与GH的数量关系为:,∠FGH=(2)如图,点A为线段BD上一点,△ABC和△ADE均是等边三角形,(1)CD=BE;(2)∠CFB=∠BAC;(3)连接AF,AF 平分∠BFD;(4)连接GH,△GAH为等边三角形;下面选项正确的是()A.(1)(2)(3)B.(1)(2)(4)C.(1)(3)(4)D.(1)(2)(3)(4)设计意图:检验本节课学习效果,便于课后查漏补缺.7.布置作业:在△ABC中,AB=AC,点D是射线CB上的一动点(不与点B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.(1)如图1,当点D在线段CB上,且︒=BAC时,那么∠90∠=;DCE(2)设α=∠BAC,β=∠DCE.①如图2,当点D在线段CB上,︒BAC时,请你探究α≠∠90与β之间的数量关系,并证明你的结论;②如图3,当点D在线段CB的延长线上,︒BAC时,∠90≠请将图3补充完整,并直接写出此时α与β之间的数量关系.(3)结论:α与β之间的数量关系是.。
初中三角形全等公开课教案

初中三角形全等公开课教案教学目标:1. 知识与技能:理解并掌握三角形全等的概念及性质。
2. 过程与方法:经历观察、操作、测量等探究活动,增强动手能力和解决问题的能力。
3. 情感、态度价值观:感受生活中的数学,体会数学的魅力,从而激发学习数学的兴趣,获得成功的情感体验。
教学重难点:1. 教学重点:三角形全等的概念与性质。
2. 教学难点:三角形全等的性质。
教学过程:一、导入新课1. 图片导入:展示一些生活中的全等图形,如全等的三角形、正方形等。
2. 提问:这些图形有什么特点?它们能够完全重合,形状和大小完全相同。
3. 引导学生思考:为什么我们会说这些图形是全等的呢?二、讲解新知1. 操作观察,得出概念a. 给学生分发纸板,请他们将各自的三角尺按在纸板上,画下图形,并裁下。
b. 提问:照图形裁下来的纸板和三角尺的形状、大小完全一样吗?把三角尺和裁得的纸板放在一起能够完全重合吗?c. 预设:形状大小完全一样,能完全重合。
d. 多媒体上展示用同一张底片冲洗出来的两张尺寸大小一样的照片,请学生观察,放在一起是否也能完全重合。
e. 教师总结全等形和全等三角形的概念。
2. 平移、翻折、旋转,对应关系a. 小组活动:对一个三角形作出平移、翻折、旋转三种变换,然后动手操作进行探究,看看对于变换前后的两个三角形是否全等。
b. 学生汇报探究结果,教师引导学生总结三角形全等的性质。
三、巩固练习1. 让学生独立完成一些关于三角形全等的练习题,巩固所学知识。
2. 教师选取一些学生的作业进行点评,解答学生的疑问。
四、课堂小结1. 让学生回顾本节课所学的内容,总结三角形全等的概念和性质。
2. 强调三角形全等在实际生活中的应用价值。
五、课后作业1. 请学生总结三角形全等的性质,并写在日记中。
2. 设计一些关于三角形全等的习题,提高学生的解题能力。
教学反思:本节课通过图片导入、操作观察、小组活动等方式,让学生直观地理解了三角形全等的概念和性质。
全等三角形教案六篇

全等三角形教案六篇全等三角形教案范文1同学的学问技能基础:同学通过前面的学习已经了解了全等三角形的概念,把握了全等三角形的对应边、对应角的关系,这为探究三角形全等的条件做好了学问上的预备。
同学活动阅历基础:同学也具备了利用直尺、量角器作三角形的基本作图力量,这将使同学能够主动参加本节课的操作、探究成为可能。
二、教学任务分析全等三角形是两个三角形间最简洁,最常见的关系,它不仅是学习后面学问的基础,还是证明线段相等、角相等以及两线相互平行、垂直的重要依据。
因此必需娴熟地把握全等三角形的判定方法,并且能够敏捷应用。
《探究三角形全等的条件》共三课时,本节课探究第一种判定方法―边边边,为了使同学更好地把握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导同学操作、观看、探究、沟通、发觉、思维,真正把同学放到主置,进展同学的空间观念,体会分析问题、解决问题的方法,积累数学活动阅历,为以后的证明打下基础。
为此,本节课的教学目标是:1.学问与技能:经受探究三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程,把握三角形全等的“边边边”条件,了解三角形的稳定性,在探究的过程中,能够进行有条理的思索并进行简洁的推理。
2.方法与过程:争论、引导教学法。
3.情感、态度、价值观:使同学在自主探究三角形全等的过程中,经受画图、观看、比较、推理、沟通等环节,从而获得正确的学习方式和良好的情感体验,让同学体验数学源于生活,服务于生活的辨证思想。
三、教学设计分析本节课设计了五个教学环节:学问回顾引入新知、创设情境提出问题、建立模型探究发觉、巩固运用及其推广、反思小结布置作业。
第一环节学问回顾引入新知活动内容:回顾全等三角形的定义及其性质。
全等三角形的定义:两个能够重合的三角形称为全等三角形。
全等三角形的性质:全等三角形的对应边、对应角相等。
活动目的:回忆前面学习过的学问,为探究新学问作预备。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ﻬ教学过程一、课堂导入【问题】如图,你能感觉到哪两个三角形全等吗?【思考】△ABD≌△ACEﻬ二、复习预习【问题】工人师傅常用角尺平分一个任意角,作法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON.移动角尺,使角尺两边相同的刻度分别与M、N重合.则过角尺顶点P的射线OP便是∠AOB的角平分线,为什么?请你说明理由.ﻬ【解答】OP平分∠AOB理由如下:∵OM=ON,PM=PN,OP=OP∴△MOP≌△NOP(SSS)∴∠MOP=∠NOP∴OP平分∠MON(即OP是∠AOB的角平分线)三、知识讲解考点1全等三角形性质:全等三角形的对应边相等,对应角相等,对应边上的高、中线相等,对应角的平分线相等。
ﻬ考点2全等三角形的判定:所有三角形SAS、ASA、AAS、SSS;直角三角形HLﻬ四、例题精析【例题1】【题干】如图,正方形ABCD中,E、F分别为BC、CD上的点,且AE⊥BF,垂足为点G.求证:AE=BF.【答案】证明:∵正方形ABCD,∴∠ABC=∠C=90°,AB=BC.∵AE⊥BF,∴∠AGB=∠BAG+∠ABG=90°,∵∠ABG+∠CBF=90°,∴∠BAG=∠CBF.在△ABE和△BCF中,BAE CBF AB CBABE BCF∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABE≌△BCF(ASA),∴AE=BF.【解析】根据正方形的性质,可得∠ABC与∠C的关系,AB与BC的关系,根据两直线垂直,可得∠AGB的度数,根据直角三角形锐角的关系,可得∠ABG与∠BAG的关系,根据同角的余角相等,可得∠BAG与∠CBF的关系,根据ASA,可得△A BE≌△BCF,根据全等三角形的性质,可得答案.ﻬ【例题2】【题干】如图,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G.(1)求证:AE=CF;(2)求证:AE⊥CF.ﻬ 【答案】(1)证明:∵四边形AB CD 是正方形,∴∠ABC=90°,AB=B C,∵BE⊥BF,∴∠FBE=90°,∵∠ABE+∠EBC=90°,∠CBF+∠EBC=90°,∴∠ABE =∠CBF ,在△AEB 和△CFB 中,AB BCABE CBF BE BF =⎧⎪∠=∠⎨⎪=⎩∴△AEB ≌△CFB(SAS ),∴AE=CF.(2)延长AE 交BC 于O,交CF于H,∵△AEB≌△CFB,∴∠BAE=∠BCF,∵∠ABC=90°,∴∠BAE+∠AOB=90°,∵∠AOB=∠COH,∴∠BCF+∠COH=90°,∴∠CHO=90°,∴AE⊥CF【解析】(1)利用△AEB≌△CFB来求证AE=CF.(2)利用全等三角形对应角相等、对顶角相等、等量代换即可证明. ﻬ【例题3】【题干】(2014•顺义区一模)已知:如图1,△MNQ中,MQ≠NQ.(1)请你以MN为一边,在MN的同侧构造一个与△MNQ全等的三角形,画出图形,并简要说明构造的方法;(2)参考(1)中构造全等三角形的方法解决下面问题:如图2,在四边形ABCD中,∠ACB+∠CAD=180°,∠B=∠D.求证:CD=AB.ﻬ【答案】:(1)如图1,以N 为圆心,以MQ为半径画圆弧;以M 为圆心,以NQ 为半径画圆弧;两圆弧的交点即为所求.主要根据“SSS”判定三角形的全等.(2)如图3,延长DA至E,使得AE=CB,连结CE.∵∠ACB+∠CAD=180°,∠DACDAC +∠EAC=180°∴∠BACBCA=∠EAC在△EAC和△BAC中,AE CEAC CAEAC BCN=⎧⎪=⎨⎪∠=∠⎩∴△AECEAC≌△BCA (SAS),∴∠B=∠E,AB=CE∵∠B=∠D,∴∠D=∠E,∴CD=CE,∴CD=AB.【解析】(1)以点N为圆心,以MQ长度为半径画弧,以点M为圆心,以NQ长度为半径画弧,两弧交于一点F,则△MNF 为所画三角形.(2)延长DA至E,使得AE=CB,连结CE.证明△EAC≌△BCA,得:∠B =∠E,AB=CE,根据等量代换可以求得答案.ﻬ【例题4】【题干】问题背景:如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;ﻬ五、课堂运用【基础】1.在平面内正方形ABCD与正方形CEFH如图放置,连DE,BH,两线交于M.求证:(1)BH=DE.(2)BH⊥DE.ﻬ 【答案】证明:(1)在正方形ABCD 与正方形CEFH 中,BC=CD,CE=CH,∠BCD =∠ECH =90°,∴∠BCD+∠DCH=∠ECH+∠DCH,即∠BC H=∠DCE,在△BCH 和△DCE 中,BC CDBCH DCE CE CH =⎧⎪∠=∠⎨⎪=⎩, ∴△BCH ≌△DCE (SAS),∴B H=D E;(2)∵△BCH≌△DCE,∴∠CBH=∠CDE,又∵∠CGB=∠MGD,∴∠DMB=∠BCD=90°,∴BH⊥DE.【解析】(1)根据正方形的性质可得BC=CD,CE=CH,∠BCD=∠ECH=90°,然后求出∠BCH=∠DCE,再利用“边角边”证明△BCH和△DCE全等,根据全等三角形对应边相等证明即可;(2)根据全等三角形对应角相等可得∠CBH=∠CDE,然后根据三角形的内角和定理求出∠DMB=∠BCD=90°,再根据垂直的定义证明即可.2.(1)操作发现如图1,在等边△ABC中,点M是BC上的任意一点(不含端点B,C),连接AM,以AM为边作等边△AMN,连接CN,猜想∠ABC与∠ACN有何数量关系?并证明你的结论;(2)类比探究如图2,在等边△ABC中,点M是BC延长线上的任意一点(不含端点C),其他条件不变,(1)中的结论是否仍然成立?请说明理由.【答案】(1)∵在等边△ABC中,AB=AC,∠BAC=∠BAM+∠MAC=60°在等边△AMN中,AM=AN,∠MAN=∠NAC+∠MAC=60°∴∠BAM=∠NAC=60°-∠MAC,在△ABM和△ACN中,AB ACBAM NACAM AN=⎧⎪∠=∠⎨⎪=⎩,∴△ABM≌△ACN(SAS),∴∠ABC=∠ACN.(2)∵在等边△ABC中,AB=AC,∠BAM=∠BAC+∠MAC=60°+∠MAC在等边△AMN中,AM=AN,∠NAC=∠NAM+∠MAC=60°+∠MAC,∴∠BAM=∠NAC=60°+∠MAC,在△ABM和△ACN中,AB ACBAM NACAM AN=⎧⎪∠=∠⎨⎪=⎩,∴△ABM≌△ACN(SAS),∴∠ABC=∠ACN.【解析】(1)由全等三角形可以判定AB=AC,AM=AN,即可求证△ABM≌△ACN,即可求得∠ABC=∠ACN;(2)和(1)同理,由全等三角形可以判定AB=AC,AM=AN,即可求证△ABM≌△ACN,即可求得∠ABC=∠CAN.ﻬ【巩固】1.如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.求证:BD=CE.【答案】∵△ABC和△ADE都是等腰直角三角形,∴AD=AE,AB=AC, 又∵∠EAC=90°+∠CAD,∠DAB=90°+∠CAD,∴∠DAB=∠EAC,∵在△ADB和△AEC中AB ACBAD CAEAD AE=⎧⎪∠=∠⎨⎪=⎩,∴△ADB≌△AEC(SAS),∴BD=CE.【解析】求出AD=AE,AB=AC,∠DAB=∠EAC,根据SAS证出△ADB≌△AEC即可.2.如图,△ABC与△BEF都是等边三角形,D是BC上一点,且CD=BE,求证:∠EDB=∠CAD.【答案】如图,过点D作DG∥AB交AC于G,∵△ABC是等边三角形,∴∠GDC=∠ABC=∠C=60°,AC=BC,∴△CDG是等边三角形,∴DG=CD=CG,∠AGD=120°,∴BD=AG,∵CD=BE,∴BE=DG,又∵△BEF是等边三角形∴∠EBF=60°,∴∠EBD=∠DGA=120°,在△EBD和△DGA中.BD AGEBD AGDEB DG=⎧⎪∠=∠⎨⎪=⎩.∴△EBD≌△DGA(SAS),∴∠EDB=∠CAD.【解析】过点D作DG∥AB交AC于G,求出∠EBD=∠AGD=120°,BD=AG,根据SAS证△EBD≌△DGA,根据全等三角形的性质推出即可.【拔高】正方形ABCD中,点E、F分别是边AD、AB的中点,连接EF.(1)如图1,若点G是边BC的中点,连接FG,则EF与FG关系为: ;(2)如图2,若点P为BC延长线上一动点,连接FP,将线段FP以点F为旋转中心,逆时针旋转90°,得到线段FQ,连接EQ,请猜想BF、EQ、BP三者之间的数量关系,并证明你的结论.(3)若点P为CB延长线上一动点,按照(2)中的作法,在图3中补全图形,并直接写出BF、EQ、BP三者之间的数量关系:.【答案】(1)∵点E、F分别是边AD、AB的中点,G是BC的中点,∴AE=AF=BF=BG,在△AEF和△BFG中,AE BGA BAF BF=⎧⎪∠=∠⎨⎪=⎩,∴△AEF≌△BFG(SAS),∴EF=FG,∠AFE=∠BFG=45°,∴EF⊥FG,EF=FG;(2)BF+EQ=BP.理由:如图2,取BC的中点G,连接FG,则EF⊥FG,EF=FG,∴∠1+∠2=90°,又∵∠2+∠3=90°,∴∠1=∠3,在△FQE 和△FPG 中,13FQ FPEF FG =⎧⎪∠=∠⎨⎪=⎩,∴△FQE ≌△FPG (S AS ), ∴QE =PG 且BF=BG,∵BG+GP=BP,∴BF+EQ=BP ;(3)如图3所示,BF+B P=E Q.【解析】(1)根据线段中点的定义求出A E=AF=BF=BG ,然后利用“边角边”证明△AEF 和△BF G全等,根据全等三角形对应边相等可得EF =FG ,全等三角形对应角相等可得∠A FE=∠B FG =45°,再求出∠E FG=90°,然后根据垂直的定义证明即可;(2)取BC 的中点G,连接FG,根据同角的余角相等求出∠1=∠3,然后利用“边角边”证明△FQE 和△FPG 全等,根据全等三角形对应边相等可得QE=FG,BF=BG ,再根据BG+GP=BP 等量代换即可得证;(3)根据题意作出图形,然后同(2)的思路求解即可.ﻬ课程小结1.全等三角形的性质2.全等三角形的判定。