高中数学复习提纲(总)

合集下载

高考数学知识点提纲

高考数学知识点提纲

高考数学知识点提纲一、函数与方程A. 函数的概念与性质1. 函数定义2. 定义域与值域3. 奇偶性与周期性B. 一次函数与二次函数1. 一次函数的表示与性质2. 一次函数的图像与应用3. 二次函数的表示与性质4. 二次函数的图像与应用C. 指数函数与对数函数1. 指数函数的定义与性质2. 对数函数的定义与性质3. 指数与对数的运算规律二、三角函数与图形变换A. 三角比的概念与性质1. 正弦、余弦、正切的定义2. 三角函数之间的关系B. 三角函数的图像与性质1. 周期性与对称性2. 幅值与相位差C. 三角函数的图像变换1. 上下平移与缩放2. 左右平移与周期改变3. 反函数与复合函数的图像变换三、数列与数学归纳法A. 数列的概念与性质1. 数列的定义与表示2. 等差数列与等比数列3. 通项公式与前n项和公式B. 递推数列与数学归纳法1. 递推数列的定义与求解2. 数学归纳法的原理与应用四、几何与易混易错题型A. 三角形与四边形的性质1. 三角形的角度与边长关系2. 四边形的边长与对角线关系B. 平面几何的应用题1. 几何问题的建模与解法2. 相似三角形与勾股定理的应用C. 易混易错题型的解题技巧1. 注意题目条件的限制与合理性2. 多角度思考与审题的重要性五、概率与统计A. 概率的基本概念与性质1. 随机事件与样本空间2. 概率的计算与性质B. 统计与数据分析1. 数据的收集与整理2. 描述性统计与数据解读3. 相关性与回归分析六、解析几何A. 平面与空间的基本概念1. 平面方程与交点计算2. 球面与圆锥曲线的性质B. 直线与圆的性质与方程1. 直线的方程与位置关系2. 圆的方程与位置关系3. 平面与直线的位置关系C. 空间几何的应用题1. 距离计算与相交问题2. 空间图形的投影与旋转总结:以上为高考数学知识点的提纲整理,涵盖了函数与方程、三角函数与图形变换、数列与数学归纳法、几何与易混易错题型、概率与统计以及解析几何等重要内容。

高中数学复习大纲

高中数学复习大纲

高中数学复习大纲高中数学基础部分
(一)集合与不定式
(二)函数基础部分
(三)简易逻辑推理
(四)直线方程与圆
(五)立体几何初步
(六)数系的新扩充
(七)平面向量应用
(八)简易程序框图
(九)统计概率基础
(十)三角形的性质
(十一)相似图形
(十二)函数方程
高中数学主干部分
(一)导数应用
(二)数列知识
(三)立体几何证明
(四)空间向量
(五)正余弦定理
(六)三角函数
(七)排列组合与期望
(八)圆锥曲线
高中数学选修部分
(一)几何证明选讲
(二)坐标系与参数方程
(三)不等式选讲
高中数学专题部分
(一)三角函数专题
(二)三角形专题
(三)数列专题
(四)统计概率专题
(五)立体几何专题
(六)导数专题
(七)圆锥曲线专题。

高中数学知识点提纲(5篇)

高中数学知识点提纲(5篇)

高中数学知识点提纲(5篇)第一篇:高中数学知识点提纲学数学要对整个数学知识点的脉络有清晰的掌握,就是心中要有一个发展的数学框架。

把每单元前的单元介绍看看,注意后几行,一般都是重点。

以下是小编给大家整理的高中数学知识点提纲,希望对大家有所帮助,欢迎阅读!高中数学知识点提纲1一、集合、简易逻辑(14课时,8个)1.集合;2.子集;3.补集;4.交集;5.并集;6.逻辑连结词;7.四种命题;8.充要条件.二、函数(30课时,12个)1.映射;2.函数;3.函数的单调性;4.反函数;5.互为反函数的函数图象间的关系;6.指数概念的扩充;7.有理指数幂的运算;8.指数函数;9.对数;10.对数的运算性质;11.对数函数.12.函数的应用举例.三、数列(12课时,5个)1.数列;2.等差数列及其通项公式;3.等差数列前n项和公式;4.等比数列及其通顶公式;5.等比数列前n项和公式.四、三角函数(46课时17个)1.角的概念的推广;2.弧度制;3.任意角的三角函数;4,单位圆中的三角函数线;5.同角三角函数的基本关系式;6.正弦、余弦的诱导公式’7.两角和与差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函数、余弦函数的图象和性质;10.周期函数;11.函数的奇偶性;12.函数的图象;13.正切函数的图象和性质;14.已知三角函数值求角;15.正弦定理;16余弦定理;17斜三角形解法举例.五、平面向量(12课时,8个)1.向量2.向量的加法与减法3.实数与向量的积;4.平面向量的坐标表示;5.线段的定比分点;6.平面向量的数量积;7.平面两点间的距离;8.平移.六、不等式(22课时,5个)1.不等式;2.不等式的基本性质;3.不等式的证明;4.不等式的解法;5.含绝对值的不等式.七、直线和圆的方程(22课时,12个)1.直线的倾斜角和斜率;2.直线方程的点斜式和两点式;3.直线方程的一般式;4.两条直线平行与垂直的条件;5.两条直线的交角;6.点到直线的距离;7.用二元一次不等式表示平面区域;8.简单线性规划问题.9.曲线与方程的概念;10.由已知条件列出曲线方程;11.圆的标准方程和一般方程;12.圆的参数方程.八、圆锥曲线(18课时,7个)1椭圆及其标准方程;2.椭圆的简单几何性质;3.椭圆的参数方程;4.双曲线及其标准方程;5.双曲线的简单几何性质;6.抛物线及其标准方程;7.抛物线的简单几何性质.九、(B)直线、平面、简单何体(36课时,28个)1.平面及基本性质;2.平面图形直观图的画法;3.平面直线;4.直线和平面平行的判定与性质;5,直线和平面垂直的判与性质;6.三垂线定理及其逆定理;7.两个平面的位置关系;8.空间向量及其加法、减法与数乘;9.空间向量的坐标表示;10.空间向量的数量积;11.直线的方向向量;12.异面直线所成的角;13.异面直线的公垂线;14异面直线的距离;15.直线和平面垂直的性质;16.平面的法向量;17.点到平面的距离;18.直线和平面所成的角;19.向量在平面内的射影;20.平面与平面平行的性质;21.平行平面间的距离;22.二面角及其平面角;23.两个平面垂直的判定和性质;24.多面体;25.棱柱;26.棱锥;27.正多面体;28.球.十、排列、组合、二项式定理(18课时,8个)1.分类计数原理与分步计数原理.2.排列;3.排列数公式’4.组合;5.组合数公式;6.组合数的两个性质;7.二项式定理;8.二项展开式的性质.十一、概率(12课时,5个)1.随机事件的概率;2.等可能事件的概率;3.互斥事件有一个发生的概率;4.相互独立事件同时发生的概率;5.独立重复试验.选修Ⅱ(24个)十二、概率与统计(14课时,6个)1.离散型随机变量的分布列;2.离散型随机变量的期望值和方差;3.抽样方法;4.总体分布的估计;5.正态分布;6.线性回归.十三、极限(12课时,6个)1.数学归纳法;2.数学归纳法应用举例;3.数列的极限;4.函数的极限;5.极限的四则运算;6.函数的连续性.十四、导数(18课时,8个)1.导数的概念;2.导数的几何意义;3.几种常见函数的导数;4.两个函数的和、差、积、商的导数;5.复合函数的导数;6.基本导数公式;7.利用导数研究函数的单调性和极值;8函数的值和最小值.十五、复数(4课时,4个)1.复数的概念;2.复数的加法和减法;3.复数的乘法和除法答案补充高中数学有130个知识点,从前一份试卷要考查90个知识点,覆盖率达70%左右,而且把这一项作为衡量试卷成功与否的标准之一.这一传统近年被打破,取而代之的是关注思维,突出能力,重视思想方法和思维能力的考查.现在的我们学数学比前人幸福啊!相信对你的学习会有帮助的,祝你成功!答案补充一试全国高中数x的一试竞赛大纲,完全按照全日制中学《数学教学大纲》中所规定的教学要求和内容,即高考所规定的知识范围和方法,在方法的要求上略有提高,其中概率和微积分初步不考。

高中数学总复习提纲

高中数学总复习提纲

常用的知识点一、集合、简易逻辑、推理与证明1、集合中的元素具有确定性、互异性、无序性.2、描述法表示的集合一定要注意代表元素,注意区分是点集还是数集.3、分析子集或真子集(或应用条件)时是否忽略的情况.4、解集合问题时应注意分类讨论,不要忘了借助数轴或文氏图进行求解,同时注意端点值是否相等.5、四种命题及其相互关系,互为逆否命题同真假.复合命题的真假如何判断?6、“命题的否定”与“否命题”是两个不同的概念.命题的否定即“非p”,是对命题结论的否定;否命题是对原命题“若p则q”既否定条件又否定其结论.7、全称命题、特称命题的否定是怎样的?全称命题为真需推证对所有的条件结论都成立,只要有一个反例就可以判断全称命题为假;特称命题只要找到使结论成立的一个条件就可判断为真,只有推证所有的条件都不能使结论成立才能判断为假.8、充要条件的概念及判断(定义法、集合法).充要关系的判断可以转化为判断其逆否命题,也可以用反例或问题的特殊性作为推理的依据.9、判断条件的充要关系时,要弄清充分条件与必要条件、充分条件与充要条件的区别.考虑问题要全面准确,使结论成立的充分条件或必要条件可以不只一个.10、推理形式包括哪几种?常用的证明方法有哪些?是否掌握了每种证明方法的要求.二、函数、导数、不等式11、映射与函数的概念了解了吗?映射中,你是否注意到了A中元素的任意性和B中与它对应元素的唯一性.12、函数的三要素及三种题型.注意定义域、值域为非空数集;定义域、值域要写成集合或区间的形式.13、在解决函数问题时你是否注意到“定义域优先”的原则.14、求函数的解析式时,你是否标明了定义域;判断函数的奇偶性时,是否先检验函数的定义域关于原点对称.15、判定函数的单调性(求单调区间)时,你是否先求出定义域?是否错误地在各个单调区间之间添加了符号“ ”和“或”.16、函数单调性的判定方法是什么?(定义、图像、导数).复合函数单调性的判断遵循“同增异减”的原则.是否掌握了已知函数的单调性求参数范围的方法?17、特别注意函数单调性和奇偶性的逆用(比较大小、解不等式、求参数范围).18、下列结论记住了吗?①如果函数f (x)满足f (a+x)= f (a-x)或f (x)= f (2a-x),则函数f (x)的图像关于x=a 对称;②如果函数f (x)满足f (a+x)= - f (a-x)或f (x)= - f (2a-x),则函数f (x)的图像关于点(a,0)对称;③如果函数f (x)满足f (x+T)= -f (x)或f (x+T)= ,则函数f(x)的周期为2T.19、函数的奇偶性、对称性、周期性之间又怎样的关系?(知道其中的两个可求第三个)20、函数的零点、方程的根、函数图像与x轴的交点的横坐标之间的关系.怎样判断函数y=f (x)在所给区间(a,b)上是否有零点?与函数有零点的关系是怎样的?22、三个“二次”的关系和应用掌握了吗?求二次函数的最值时用“两看法”:一看开口方向;二看对称轴与所给区间的相对位置关系.求参数的范围可转化为根的分布.23、特别提醒:二次方程ax2+bx+c=0的两根为不等式ax2+bx+c>0(<0)解集的端点值,也是二次函数y=ax2+bx+c的图像与x轴交点的横坐标.24、研究函数问题准备好“数形结合”这个工具了吗?25、函数图像的变换有哪几种?(平移、伸缩、对称)26、函数的图像及单调区间掌握了吗?如何利用它求函数的最值?与利用不等式求函数的最值的联系是什么?27、恒成立问题不要忘了“主参换位”,注意验证等号是否成立.注意分离参数的方法.28、解分式不等式应注意什么问题?(不能去分母,常采用移项通分求解)29、解指数、对数不等式应注意什么问题?(化同底,利用单调性求解.注意底数不为1,对数的真数大于0)30、不等式| ax+b | < c, | ax+b | > c (c>0)及不等式| x+a | +| x+b| >c(<c)的解法掌握了吗?(几何意义、零点分区间法、图像法)31、会用不等式| a +b| | a | + | b | 、| a +b| | a- c | + | c-b |解(证)一些简单问题.32、利用基本不等式求最值时,易忽略其使用的条件.(一正二定三相等)33、重要不等式是指那几个不等式,由它推出的不等式链是什么?34、不等式证明的基本方法掌握了吗?(比较法、综合法、分析法、反证法、放缩法、数学归纳法、单调性法)35、注意线性规划的常见题型.线性规划问题中你是否考虑到目标函数中z的几何意义?36、导数的定义还记得吗?它的几何意义和物理意义分别是什么?37、常见函数的求导公式与和、差、积、商的求导法则及复合函数的求导法则你都熟记了吗?38、利用导数可解决哪些问题,具体步骤是什么?(切线、单调性、极值、最值)39、函数的单调性和导函数的符号之间又怎样的关系?(充分条件) 极值点与使导函数值为0的点之间有怎样的关系?(必要条件)40、三次函数y = ax3 + bx2 + cx + d (a 0)的图像你熟悉吗?单调性如何?它的对称中心是什么?41、你能根据函数的单调性、极值画出函数的大致图像吗?借助函数的图像如何求已知函数在动区间上的极值(最值)?42、已知函数零点的个数、两函数图像交点的个数、两函数图像的位置关系如何求参数范围?三、三角函数43、你对象限角、锐角、小于900的角、负角、终边相同的角等概念理解有误吗?角度制与弧度制是否混用?44、记住三角函数的两种定义了吗?(比值定义、有向线段定义)45、利用三角函数线和图像解三角不等式是否熟练?46、求三角函数的值时是否考虑到x的范围?是否习惯用图像或单调性求解.47、三角变换公式你记熟了吗?(同角三角关系、诱导公式、两角和差的三角函数、倍角公式)48、已知三角函数值求角时,要注意三角函数的选择、角的范围的挖掘.49、三角变换过程中要注意“拆角、拼角”、切化弦的问题.50、如何求函数y = Asin(ωx +φ)的单调区间、对称轴(中心)、周期?(求单调区间时要注意A、ω的正负;求周期时要注意ω的正负)51、“五点作图法”你是否熟练掌握?如何作函数y = Asin(ωx +φ)的图像?如何由图像确定函数的解析式?(关键是确定A、ω、φ)52、由y = sinx → y = Asin(ωx +φ)的变换你掌握了吗?反之怎样?53、求y = sinx +cosx+ sinxcosx类型的函数的值域,换元时令时,要注意.54、在解决三角形问题时,要及时应用正、余弦定理进行边角之间的转化.四、数列、数学归纳法55、利用等差、等比数列的定义:()要重视条件.56、求等比数列的前n项和时,要注意分q = 1和q≠1两种情况.57、数列求通项有几种方法?(公式、递推关系、归纳猜想证明).数列求和有几种常用方法?(公式、错位相减、裂项相消)58、已知Sn 求an时你是否考虑到分n=1和n≠1两种情况?59、如何解决数列中的单调性、最值问题?60、应用数学归纳法时,一要注意步骤齐全(两步三结论);二要注意从n = k 到n = k+1的过程中,先应用归纳假设,再灵活应用比较法、分析法等其它方法.61、你是否注意到数列与函数、方程、不等式的结合?五、平面向量、解析几何62、记住直线的倾斜角的范围,直线的斜率和倾斜角的关系是怎样的?63、何为直线的方向向量?直线的方向向量与直线的斜率有何关系?64、直线方程有几种形式,各有什么限制?是否注意到x = my + n形式的运用?65、截距是距离吗?“截距相等”意味着什么?66、两直线A1x + B1y + C1=0与A2x + B2y + C2=0平行、垂直的充要条件分别是什么?67、要熟记点到直线的距离公式、两平行线间的距离公式.68、解析几何中的对称有几种?(轴对称、中心对称)分别如何求解?69、求曲线方程的一般步骤是什么?求曲线的方程与求曲线的轨迹有什么不同?求轨迹的常用方法有哪些?70、直线和圆的位置关系如何判定(几何法、代数法)?直线和圆锥曲线的位置关系怎样判定?71、圆锥曲线方程中a、b、c与e的关系记住了吗?72、解题中是否注意到圆锥曲线定义的应用?要注意圆中由半径、弦心距和半弦长构成的直角三角形;椭圆、双曲线中的特征三角形和焦点三角形.73、记住圆、椭圆、双曲线、抛物线中的常用结论.74、容易忽略双曲线一支上的点P到相应焦点F的距离| PF |≥c-a这一条件来取舍.75、记住解析几何的常见题型了吗?(位置关系问题、弦长问题、对称问题、中点弦问题、定点问题、定线问题、定值问题等)76、记住解析几何中常用的解题方法(如设而不求、点差法等.用点差法求弦所在直线方程时要注意检验.)77、在直线与圆锥曲线的有关计算中,经常由二次曲线方程与直线方程联立消元得形如Ax2 + Bx + C = 0的方程,在后面的计算中务必要考虑两个问题:①A 与0的关系;②判别式△与0 的关系,你想到了吗?78、解析几何问题的求解中,是否注意到平面几何知识的利用?如何挖掘平面几何图形中的隐含条件?是否注意到向量在解析几何中的运用?79、解析几何中常用的数学思想方法:换元的思想,方程的思想,整体的思想等.解题中会考虑吗?六、立体几何80、空间图形应注意的两个问题:一是根据空间图形正确识别空间元素点、线、面的位置关系,二是要注意改变视角,能正确判定空间图形位置、形状及存在的数量关系,寻找解题思路或途径.81、立体几何虽是平面几何的继续和发展,但并不是所有平面几何的结论都能无条件地推广到立体几何中.82、由几何体(或直观图)作三视图,及由三视图还原几何体(或画出相应的直观图)你熟练吗?注意到线的虚实了吗?83、立体几何中,平行、垂直关系可以进行以下转化:线‖线线‖面面‖面,线⊥线线⊥面面⊥面.这些转化的依据是什么?84、异面直线所成角的范围是什么?线面角的范围是什么?二面角的范围是什么?85、求作线面角的关键是找直线在平面上的射影.86、作二面角的平面角的方法有哪些?(利用定义、三垂线法、作二面角的棱的垂面).这些方法你掌握了吗?87、立体几何的求解问题分为“作”、“证”、“算”三个部分,你是否只重视了“作”、“算”,而忽视了“证”这一环节?88、会求直线的方向向量、平面的法向量吗?如何利用向量法求异面直线所成的角、线面角、二面角的大小?89、用向量研究角的有关问题时,是否弄清了向量夹角与图形角的关系?90、用空间向量的坐标来解决立体几何题,要合理建系并且要建立右手直角坐标系,正确地写出需用点的坐标,注意向量表达与图形表达的转化.91、你是否记住了以下结论:①从点O出发的三条射线OA、OB、OC,若∠AOB=∠AOC,则点A在平面BOC 上的射影在∠BOC的平分线上.②已知长方体的体对角线与过同一顶点的三条棱所成的角分别为,则有cos2α+cos2β+cos2γ=2.③正方体、长方体的外接球的直径等于其体对角线的长.七、排列、组合、二项式定理、概率统计92、选用两个原理的关键是什么?(分类还是分步)93、排列数、组合数的计算公式你记住了吗?它们的条件限制你注意了吗?94、组合数有哪些性质?在杨辉三角中如何体现?95、排列与组合的区别和联系你清楚吗?解决排列组合问题的常用方法你掌握了吗?解综合题可别忘了“合理分类、先选后排”啊!96、排列应用题的解决策略可有直接法和间接法;对附加条件的组合应用题,你对“含”与“不含”,“至多”与“至少”型题一定要注意分类或从反面入手啊!97、求二项展开式特定项一般要用到二项式的展开式的通项.98、二项式定理的主要应用有哪些?99、二项式定理(a+b)n与(b+a)n展开式上有区别吗?定理的逆用熟悉吗?100、求二项(或多项)展开式中特定项的系数你会用组合法解决吗?101、“二项式系数”与“项的系数”是两个不同的概念.求系数问题常用赋值法!求展开式中系数最大的项(或系数绝对值最大的项)的方法你熟悉吗?千万要注意解法技巧的变形啊!102、二项式展开式各项的二项式系数和、奇数项的二项式系数和、偶数项的二项式系数和,奇次(偶次)项的二项式系数和你能区分开吗?它们的项的系数和呢?103、四种常见的概率类型你掌握了吗?是否注意到每种概率应用的前提?104、在用几何概型求概率时你是否能正确选择几何量?(线段长度、区域面积、几何体体积)105、求随机事件概率的问题常用的思考方法是:正向思考时要善于将复杂的问题进行分解,解决有些问题时还要学会运用逆向思考的方法.是否注意到“至多”、“至少”事件概率的求法有分类、间接两种.106、概率应用题你有写“答语”的习惯吗?解题的步骤完整吗?求分布列的解答题你能把步骤写全吗?求期望、方差的步骤齐全吗?107、记住常用的三个分布.二项分布的期望和方差公式是什么?108、正态密度曲线有怎样的性质?你会利用它的对称性求概率吗?109、抽样方法有哪些?它们具有怎样的联系与区别?110、用样本估计总体的方法有几种?具体是什么?111、统计图有几种?频率分布直方图、条形图中纵轴的意义相同吗?对各种统计图你能正确应用吗?112、样本的数字特征有几种?你能正确应用它们对总体进行估计吗?113、变量间的关系包括哪几种?你能应用最小二乘法求线性回归方程、并作出预测吗?114、独立性检验的基本思想是什么?如何根据K2的值判断两个变量存在关系的可能性的大小?八、算法初步、复数115、你能正确区分、使用各种框图吗?(起止框、输入输出框、处理框、判断框)116、对各种算法语句你能正确理解和使用吗?是否熟悉赋值语句与数列的关系?117、在循环结构中能正确判断循环的次数吗?118、对所给的程序框图、程序,你能读懂吗?能给出正确的运算结果吗?能正确判断缺少的条件吗?119、你熟悉复数与实数的关系吗?是否记住实数、虚数、纯虚数定义中的条件?120、复数不能比较大小.记住复数相等的定义,会利用复数相等把复数问题实数化.121、记清复数的几何意义.记住复数、复平面内的点、向量之间建立了一一对应的关系.122、你能熟练进行复数的加、减、乘、除运算吗?这是高考的常考题型!九、基本方法123、解答选择题的特殊方法是什么?(估算法、特值法、特征分析法、直观选择法、逆推验证法)124、解答开放型问题时,透彻理解问题中的新信息,这是准确解题的前提.125、解答多参型问题时,关键在于恰当地引出参变量,设法摆脱参变量的困扰.这当中,参变量的分离、集中、消去、代换以及反客为主等策略,似乎是解答这类问题的通性方法.126、在分类讨论时,要做到“不重不漏,层次分明”,最后要进行总结.127、做应用题时,运算后的单位要弄准,不要忘了“答”及变量的范围;在填写填空题中的应用题的答案时,要写上单位.128、换元的思想,逆求的思想,从特殊到一般的思想,方程的思想,整体的思想等,在解题中你会考虑吗?129、在解答题中,如果要应用教材中没有的重要结论,则在解题过程中要给出简单的证明.。

2023年高考数学复习提纲及大纲(最新最全)

2023年高考数学复习提纲及大纲(最新最全)

2023年高考数学复习提纲及大纲(最新最全)复提纲1. 函数- 函数的概念及分类- 函数的性质及其图像- 常见函数及其性质2. 数列- 数列的概念及其分类- 数列的通项公式及前n项和公式- 常见数列及其性质3. 三角函数- 三角函数的概念及其关系式- 常见三角函数的性质- 解三角函数的基本方程4. 平面向量- 向量的概念及其运算- 向量的线性运算及应用- 向量共线、垂直及夹角的判定5. 解析几何- 二维平面直角坐标系、极坐标系及其应用- 空间直角坐标系及其应用- 点、直线、圆、锥面、曲面及其方程大纲1. 函数与导数1.1 函数的概念与性质1.2 常见函数及其变换1.3 导数概念及其计算法1.4 函数的极值与最值1.5 函数的单调性及曲线的凹凸性2. 不等式组与线性规划2.1 一元一次不等式及其解法2.2 多元一次不等式组及其解法2.3 线性规划基本概念及其解法3. 数列与数学归纳法3.1 数列的概念及性质3.2 等差数列、等比数列及其应用3.3 数学归纳法的原理及应用4. 三角函数4.1 角度及弧度制与三角函数关系4.2 常见三角函数及其性质4.3 三角函数的图像及其变换4.4 解三角形的基本原理及解法5. 平面向量5.1 向量的概念及其运算5.2 向量的线性运算及应用5.3 向量的共线、垂直、平行及夹角的判定6. 解析几何6.1 二维平面直角坐标系、极坐标系及其应用6.2 空间直角坐标系及其应用6.3 几何图形的基本性质及其坐标表示7. 概率论基础7.1 随机事件与概率的概念7.2 基本概型及其计算7.3 条件概率及乘法公式7.4 全概率公式及贝叶斯公式8. 统计与统计图8.1 样本与总体的概念及其统计量8.2 常见统计图及其应用8.3 正态分布及其应用。

新人教版高中数学必修一复习提纲

新人教版高中数学必修一复习提纲

数学必修一复习提纲第一章 集合及其运算 一.集合的概念、分类: 二.集合的特征:⑴ 确定性 ⑵ 无序性 ⑶ 互异性 三.表示方法:⑴ 列举法 ⑵ 描述法 ⑶ 图示法 ⑷ 区间法 四.两种关系:从属关系:对象 ∈、∉ 集合;包含关系:集合 ⊆、 集合五.三种运算: 交集:{|}A B x x A x B =∈∈且 并集:{|}A B x x A x B =∈∈或补集:UA {|U }x x x A =∈∉且六.运算性质: ⑴ A∅=A ,A ∅=∅.⑵ 空集是任意集合的子集,是任意非空集合的真子集. ⑶ 若B A ⊆,则A B =A ,A B =B .⑷ U A A =()∅,U A A =()U ,U U A =()A. ⑸U U A B =()()U AB (),U U A B =()()U AB ().⑹ 集合123{,,,,}n a a a a ⋅⋅⋅的所有子集的个数为2n,所有真子集的个数为21n-,所有非空真子集的个数为22n-,所有二元子集(含有两个元素的子集)的个数为2nC .第二章 函数 指数与对数运算一.分数指数幂与根式:如果nx a =,则称x 是a 的n 次方根,0的n 次方根为0,若0a ≠,则当n 为奇数时,a 的n 次方根有1个,当n 为偶数时,负数没有n 次方根,正数a 的n 次方根有2个,其中正的n.负的n 次方根记做.1.负数没有偶次方根;2.两个关系式:n a =;||a n a n ⎧=⎨⎩为奇数为偶数 3、正数的正分数指数幂的意义:m na =正数的负分数指数幂的意义:m na-=4、分数指数幂的运算性质:⑴ mnm na a a+⋅=; ⑵ m n m na a a-÷=;⑶ ()m n mn a a =; ⑷ ()m m m a b a b ⋅=⋅;⑸ 01a =,其中m 、n 均为有理数,a ,b 均为正整数 二.对数及其运算1.定义:若b a N =(0a >,且1a ≠,0)N >,则log a b N =. 2.两个对数:⑴ 常用对数:10a =,10log lg b N N==;⑵ 自然对数: 2.71828a e =≈,log ln e b N N==.3.三条性质: ⑴ 1的对数是0,即log 10a =;⑵ 底数的对数是1,即log 1a a =;⑶ 负数和零没有对数.4.四条运算法则:⑴log ()log log a a a MN M N=+; ⑵log log log aa a MM N N =-;⑶ log log na a M n M =; ⑷1log log a a M n =.5.其他运算性质: ⑴ 对数恒等式:log a bab =; ⑵ 换底公式:log log logc a c ab b =;⑶log log log a b a b c c ⋅=;log log 1a b b a ⋅=;⑷log log m n a a nb b m =.函数的概念一.映射:设A、B 两个集合,如果按照某中对应法则f ,对于集合A 中的任意一个元素,在集合B 中都有唯一的一个元素与之对应,这样的对应就称为从集合A 到集合B 的映射.二.函数:在某种变化过程中的两个变量x 、y ,对于x 在某个范围内的每一个确定的值,按照某个对应法则,y 都有唯一确定的值和它对应,则称y 是x 的函数,记做()y f x =,其中x 称为自变量,x 变化的范围叫做函数的定义域,和x 对应的y 的值叫做函数值,函数值y 的变化范围叫做函数的值域. 三.函数()y f x =是由非空数集A 到非空数集B的映射.四.函数的三要素:解析式;定义域;值域.函数的解析式一.根据对应法则的意义求函数的解析式;例如:已知xxxf2)1(+=+,求函数)(xf的解析式.二.已知函数的解析式一般形式,求函数的解析式;例如:已知()f x是一次函数,且[()]43f f x x=+,函数)(xf的解析式.三.由函数)(xf的图像受制约的条件,进而求)(xf的解析式.函数的定义域一.根据给出函数的解析式求定义域:⑴整式:x R∈⑵分式:分母不等于0⑶偶次根式:被开方数大于或等于0⑷含0次幂、负指数幂:底数不等于0⑸对数:底数大于0,且不等于1,真数大于0 二.根据对应法则的意义求函数的定义域:例如:已知()y f x=定义域为]5,2[,求(32)y f x=+定义域;已知(32)y f x=+定义域为]5,2[,求()y f x=定义域;三.实际问题中,根据自变量的实际意义决定的定义域.函数的值域一.二.求函数值域(最值)的常用方法:函数的值域决定于函数的解析式和定义域,因此求函数值域的方法往往取决于函数解析式的结构特征,常用解法有:观察法、配方法、换元法(代数换元与三角换元)、常数分离法、单调性法、不等式法、*反函数法、*判别式法、*几何构造法和*导数法等.反函数一.反函数:设函数()y f x =()x A ∈的值域是C ,根据这个函数中x ,y 的关系,用y 把x 表示出,得到()x y ϕ=.若对于C 中的每一y 值,通过()x y ϕ=,都有唯一的一个x 与之对应,那么,()x y ϕ=就表示y 是自变量,x 是自变量y 的函数,这样的函数()x y ϕ=()y C ∈叫做函数()y f x =()x A ∈的反函数,记作1()x f y -=,习惯上改写成1()y f x -=.二.函数()f x 存在反函数的条件是:x 、y 一一对应. 三.求函数()f x 的反函数的方法:⑴ 求原函数的值域,即反函数的定义域⑵ 反解,用y 表示x ,得1()x f y -= ⑶ 交换x 、y ,得1()y f x -= ⑷ 结论,表明定义域四.函数()y f x =与其反函数1()y f x -=的关系: ⑴ 函数()y f x =与1()y f x -=的定义域与值域互换. ⑵ 若()y f x =图像上存在点(,)a b ,则1()y f x -=的图像上必有点(,)b a ,即若()f a b =,则1()f b a -=.⑶ 函数()y f x =与1()y f x -=的图像关于直线y x =对称. 函数的奇偶性:一.定义:对于函数()f x 定义域中的任意一个x ,如果满足()()f x f x -=-,则称函数()f x 为奇函数;如果满足()()f x f x -=,则称函数()f x 为偶函数. 二.判断函数()f x 奇偶性的步骤:1.判断函数()f x 的定义域是否关于原点对称,如果对称可进一步验证,如果不对称;2.验证()f x 与()f x -的关系,若满足()()f x f x -=-,则为奇函数,若满足()()f x f x -=,则为偶函数,否则既不是奇函数,也不是偶函数.二.奇函数的图象关于原点对称,偶函数的图象关于y 轴对称. 三.已知()f x 、()g x 分别是定义在区间M 、N ()M N ≠∅上的奇(偶)函数,分别根据条件判断下列函数的奇偶性.五.若奇函数()f x 的定义域包含0,则(0)0f =.六.一次函数y kx b =+(0)k ≠是奇函数的充要条件是0b =;二次函数2y ax bx c =++(0)a ≠是偶函数的充要条件是0b =. 函数的周期性:一.定义:对于函数)(x f ,如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有()()f x T f x +=,则)(x f 为周期函数,T 为这个函数的一个周期.2.如果函数)(x f 所有的周期中存在一个最小的正数,那么这个最小正数就叫做)(x f 的最小正周期.如果函数()f x 的最小正周期为T ,则函数()f ax 的最小正周期为||Ta .函数的单调性一.定义:一般的,对于给定区间上的函数()f x ,如果对于属于此区间上的任意两个自变量的值1x ,2x,当12x x <时满足:⑴ 12()()f x f x <,则称函数()f x 在该区间上是增函数; ⑵12()()f x f x >,则称函数()f x 在该区间上是减函数.二.判断函数单调性的常用方法: 1.定义法:⑴ 取值; ⑵ 作差、变形; ⑶ 判断: ⑷ 定论: *2.导数法:⑴ 求函数f(x )的导数'()f x ;⑵ 解不等式'()0f x >,所得x 的范围就是递增区间; ⑶ 解不等式'()0f x <,所得x 的范围就是递减区间. 3.复合函数的单调性:对于复合函数[()]y f g x =,设()u g x =,则()y f u =,可根据它们的单调性确定复合函数[()]y f g x =,具体判断如下表:4.奇函数在对称区间上的单调性相反;偶函数在对称区间上的单调性相同.函数的图像一.基本函数的图像.二.图像变换:三.函数图像自身的对称四.两个函数图像的对称。

高中数学一到五整体复习考纲必修一必修二必修三必修四必修五及选修整体复习资料

高中数学一到五整体复习考纲必修一必修二必修三必修四必修五及选修整体复习资料

► 探究点三
函数的图象及应用
例 3 [2010·山东卷] 函数 y=2x-x2 的图象大致是(
)
图 1-2-1
已知函数 f(x)=ax3+bx2+cx+d 的图象如图 1-2-2,则( )
A.b∈(-∞,0) C.b∈(1,2)
3.周期性是函数的整体性质,一般地,对于函数 f(x),如果对于 定义域中的任意一个 x 的值: 若 f(x+T)=f(x)(T≠0),则 f(x)是周期函数,T 是它的一个周期; 若 f(x+a)=f(x+b)(a≠b),则 f(x)是周期函数,|b-a|是它的一个 周期; 若 f(x+a)=-f(x)(a≠0), f(x)是周期函数, 是它的一个周期; 则 2a 1 若 f(x+a)= (a≠0,且 f(x)≠0),则 f(x)是周期函数,2a 是它 fx 的一个周期; 1+fx 若 f(x+a)= (a≠0 且 f(x)≠1),则 f(x)是周期函数,4a 是它 1-fx 的一个周期.
设函数 f(x)定义在实数集上,它的图象关于直线 x=1 对称,且当 x≥1 时,f(x)=2x-x,则有( )
1 3 2 A.f3<f2<f3 2 1 3 C.f3<f3<f2 2 3 1 B.f3<f2<f3 3 2 1 D.f2<f3<f3
从近两年的高考可以看出,每年对集合与常用逻辑用语的 考查有 2~3 题,重点考查集合运算,充要条件、命题真假的 判断,考题的难度不大,但涉及的知识面较广,试题多以小题 形式出现.对函数、导数、不等式的考查有 4~5 道小题和一 道大题,重点考查函数的图象与性质,不等式的性质与解法, 小题一般是低中档,大题通常是中高档. 该部分的备考应以基本问题为主,高考对该部分的考查从 难度和比例上将保持相对稳定,预计 2012 年仍将延续这种趋 势,备考应给予足够的重视.

高中数学复习提纲

高中数学复习提纲

高中数学复习提纲
1. 数与式的运算
- 整数四则运算
- 分数的四则运算
- 有理数运算
- 开方、幂运算
- 代数式与方程的运算
2. 几何相关知识
- 点、线、面的基本概念
- 直线、曲线的性质
- 三角形、四边形的性质
- 圆的性质
- 直角坐标系与平面坐标系
3. 函数与图像
- 函数的概念和性质
- 一次函数、二次函数及其图像
- 指数函数与对数函数及其图像
- 三角函数及其图像
- 极坐标与参数方程
4. 概率与统计
- 事件与概率
- 随机事件与概率
- 排列与组合
- 统计基本概念和方法
5. 数学推理与证明
- 数学归纳法
- 数学问题的解答和证明方法- 数学问题与实际问题的联系
6. 解析几何
- 直线和圆的方程
- 空间直线和平面的方程
- 参数方程与联立方程
7. 微积分
- 函数的极限和连续性
- 导数和微分
- 积分和定积分
- 微分方程基本概念
8. 线性代数
- 矩阵的基本概念
- 线性方程组及其解法
- 行列式的基本概念
- 向量的基本概念和运算
以上是高中数学复习的主要内容提纲,可以根据这个提纲规划复习进度,着重掌握各个知识点,加强练习,提高数学水平。

高中数学复习提纲

高中数学复习提纲

第一章、集合与简易逻辑【简易逻辑】命题:可以判断真假的语句;逻辑联结词:或、且、非;简单命题:不含逻辑联结词的命题;复合命题:由简单命题与逻辑联结词构成的命题。

三种形式:p或q、p且q、非p真假判断:p或q,同假为假,否则为真;p且q,同真为真;非p,真假相反原命题:若p则q;逆命题:若q则p;否命题:若⌝p则⌝q;逆否命题:若⌝q则⌝p;互为逆否的两个命题是等价的。

反证法步骤:假设结论不成立→推出矛盾→假设不成立。

命题的四种形式及其相互关系原命题与逆否命题同真同假;逆命题与否命题同真同假.第二章、函数(一)函数的单调性与奇偶性练习:1、用单调性定义证明 1)(3+-=x x f 在),(+∞-∞上为减函数。

2、设)(x f 为奇函数,且在区间[a,b] (0<a<b)上是减函数,证明)(x f 在[-b,-a]上是减函数。

(二)指数函数(三)对数函数第三章、数列[数列的通项公式] ⎩⎨⎧≥-===-)2()1(111n S S n S a a n nn [数列的前n 项和] n n a a a a S ++++= 321(一)等差数列[等差数列的概念][定义]如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。

[等差数列的判定方法]1. 定义法:对于数列{}n a ,若d a a n n =-+1(常数),则数列{}n a 是等差数列。

2.等差中项:对于数列{}n a ,若212+++=n n n a a a ,则数列{}n a 是等差数列。

[等差数列的通项公式]如果等差数列{}n a 的首项是1a ,公差是d ,则等差数列的通项为d n a a n )1(1-+=。

[说明]该公式整理后是关于n 的一次函数。

[等差数列的前n 项和] 1.2)(1n n a a n S += 2. d n n na S n 2)1(1-+=[说明]对于公式2整理后是关于n 的没有常数项的二次函数。

高中数学知识点提纲(推荐6篇)

高中数学知识点提纲(推荐6篇)

高中数学知识点提纲〔推荐6篇〕篇1:人教版高中数学知识点提纲一.集合与函数1.进展集合的交、并、补运算时,不要忘了全集和空集的特殊情况,不要忘记了借助数轴和文氏图进展求解.2.在应用条件时,易A忽略是空集的情况3.你会用补集的思想解决有关问题吗?4.简单命题与复合命题有什么区别?四种命题之间的互相关系是什么?如何判断充分与必要条件?5.你知道“否命题”与“命题的否认形式”的区别.6.求解与函数有关的问题易忽略定义域优先的原那么.7.判断函数奇偶性时,易忽略检验函数定义域是否关于原点对称.8.求一个函数的解析式和一个函数的反函数时,易忽略标注该函数的定义域.9.原函数在区间[-a,a]上单调递增,那么一定存在反函数,且反函数也单调递增;但一个函数存在反函数,此函数不一定单调.例如:.10.你纯熟地掌握了函数单调性的证明方法吗?定义法(取值,作差,判正负)和导数法11.求函数单调性时,易错误地在多个单调区间之间添加符号“∪”和“或”;单调区间不能用集合或不等式表示.12.求函数的值域必须先求函数的定义域。

13.如何应用函数的单调性与奇偶性解题?①比拟函数值的大小;②解抽象函数不等式;③求参数的范围(恒成立问题).这几种根本应用你掌握了吗?14.解对数函数问题时,你注意到真数与底数的限制条件了吗?(真数大于零,底数大于零且不等于1)字母底数还需讨论15.三个二次(哪三个二次?)的关系及应用掌握了吗?如何利用二次函数求最值?16.用换元法解题时易忽略换元前后的等价性,易忽略参数的范围。

17.“实系数一元二次方程有实数解”转化时,你是否注意到:当时,“方程有解”不能转化为。

假设原题中没有指出是二次方程,二次函数或二次不等式,你是否考虑到二次项系数可能为的零的情形?二.不等式18.利用均值不等式求最值时,你是否注意到:“一正;二定;三等”.19.绝对值不等式的解法及其几何意义是什么?20.解分式不等式应注意什么问题?用“根轴法”解整式(分式)不等式的考前须知是什么?21.解含参数不等式的通法是“定义域为前提,函数的单调性为根底,分类讨论是关键”,注意解完之后要写上:“综上,原不等式的解集是……”.22.在求不等式的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示.23.两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即a>b>0,a篇2:高中数学知识点 1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。

高 三 数 学 复 习 提 纲

高 三 数 学 复 习 提 纲

高 三 数 学 复 习 提 纲排列、组合、二项式定理一.基础知识:1.分类计数原理(加法原理)12n N m m m =+++.2.分步计数原理(乘法原理)12n N m m m =⨯⨯⨯.3.排列数公式mn A =)1()1(+--m n n n =!!)(m n n -.(n ,m ∈N *,且m n ≤). 注:规定1!0=.4.排列恒等式(1)1(1)m m n n A n m A -=-+;(2)1mmn n n A A n m-=-; (3)11m m n n A nA --=; (4)11n n n n n n nA A A ++=-;(5)11m m m n n n A A mA -+=+.(6) 1!22!33!!(1)!1n n n +⋅+⋅++⋅=+-.5.组合数公式m n C=m n mmA A =m m n n n ⨯⨯⨯+-- 21)1()1(=!!!)(m n m n -⋅(n ∈N *,m N ∈,且m n ≤). 6.组合数的两个性质(1)m n C =m n n C - ;(2) m n C +1-m n C =mn C 1+.注:规定10=n C .7.组合恒等式(1)11mm n n n m C C m --+=;(2)1m mn n n C C n m-=-; (3)11m m n n n C C m --=; (4)∑=nr rn C 0=n 2;(5)1121++++=++++r n r n r r r r r r C C C C C . (6)n n n r n n n n C C C C C 2210=++++++ .(7)14205312-+++=+++n n n n n n n C C C C C C .(8)1321232-=++++n n n n n n n nC C C C . (9)r n m r n r m n r m n r m C C C C C C C +-=+++0110 .(10)n nn n n nn C C C C C 22222120)()()()(=++++ . 8.排列数与组合数的关系m mnn A m C=⋅! .9.单条件排列以下各条的大前提是从n 个元素中取m 个元素的排列. (1)“在位”与“不在位”①某(特)元必在某位有11--m n A 种;②某(特)元不在某位有11---m n mn A A (补集思想)1111---=m n n A A (着眼位置)11111----+=m n m m n A A A (着眼元素)种.(2)紧贴与插空(即相邻与不相邻)①定位紧贴:)(n m k k ≤≤个元在固定位的排列有km k n k k A A --种.②浮动紧贴:n 个元素的全排列把k 个元排在一起的排法有k k k n k n A A 11+-+-种.注:此类问题常用捆绑法;③插空:两组元素分别有k 、h 个(1+≤h k ),把它们合在一起来作全排列,k 个的一组互不能挨近的所有排列数有k h h h A A 1+种.(3)两组元素各相同的插空m 个大球n 个小球排成一列,小球必分开,问有多少种排法?当1+>m n 时,无解;当1+≤m n 时,有n m n nn m C A A 11++=种排法.(4)两组相同元素的排列:两组元素有m 个和n 个,各组元素分别相同的排列数为nn m C +.9.分配问题(1)(平均分组有归属问题)将相异的m 、n 个物件等分给m 个人,各得n 件,其分配方法数共有mnn n n n n mn n n mn n mn n mn C C C C C N )!()!(22=⋅⋅⋅⋅⋅=-- . (2)(平均分组无归属问题)将相异的m ·n 个物体等分为无记号或无顺序的m 堆,其分配方法数共有 mn nn n n n mn n n mn n mn n m mn m C C C C C N )!(!)!(!...22=⋅⋅⋅⋅=--. (3)(非平均分组有归属问题)将相异的)12m P(P=n +n ++n 个物体分给m 个人,物件必须被分完,分别得到1n ,2n ,…,m n 件,且1n ,2n ,…,m n 这m 个数彼此不相等,则其分配方法数共有!!...!!!! (212)11m n nnn p n p n n n m p m C C C N mm=⋅⋅=-. (4)(非完全平均分组有归属问题)将相异的)12m P(P=n +n ++n 个物体分给m 个人,物件必须被分完,分别得到1n ,2n ,…,m n 件,且1n ,2n ,…,m n 这m 个数中分别有a 、b 、c 、…个相等,则其分配方法数有!...!!! (2)11c b a m C C C N m mn n n n p n p ⋅⋅=- 12!!!!...!(!!!...)m p m n n n a b c =.(5)(非平均分组无归属问题)将相异的)12m P(P=n +n ++n 个物体分为任意的1n ,2n ,…,m n 件无记号的m堆,且1n ,2n ,…,m n 这m 个数彼此不相等,则其分配方法数有!!...!!21m n n n p N =.(6)(非完全平均分组无归属问题)将相异的)12m P(P=n +n ++n 个物体分为任意的1n ,2n ,…,m n 件无记号的m 堆,且1n ,2n ,…,m n 这m 个数中分别有a 、b 、c 、…个相等,则其分配方法数有!...)!!(!!...!!21c b a n n n p N m =.(7)(限定分组有归属问题)将相异的p (2m p n n n =1+++)个物体分给甲、乙、丙,……等m 个人,物体必须被分完,如果指定甲得1n 件,乙得2n 件,丙得3n 件,…时,则无论1n ,2n ,…,m n 等m 个数是否全相异或不全相异其分配方法数恒有!!...!! (212)11m n n n n p n p n n n p C C C N m m =⋅=-.10.二项式定理 nn n r r n r n n n n n nn nb C b a C b a C b aC a C b a ++++++=+--- 22211)( ;二项展开式的通项公式rr n r n r b a C T -+=1)210(n r ,,,=. .二项式系数具有下列性质:(1) 与首末两端等距离的二项式系数相等; (2) 若n 为偶数,中间一项(第2n +1项)的二项式系数最大;若n 为奇数,中间两项(第21+n 和21+n +1项)的二项式系数最大;(3);2;2131221-=⋅⋅⋅++=⋅⋅⋅++=+⋅⋅⋅+++n n n n n nnn n n n C C C C C C C C11.F(x)=(ax+b)n展开式的各项系数和为f(1);奇数项系数和为)]1()1([21--f f ;偶数项的系数和为)]1()1([21-+f f ;概率一.基础知识:1.等可能性事件的概率()mP A n=.2.互斥事件A ,B 分别发生的概率的和 P(A +B)=P(A)+P(B).164.n 个互斥事件分别发生的概率的和P(A 1+A 2+…+A n )=P(A 1)+P(A 2)+…+P(A n ). 3.独立事件A ,B 同时发生的概率 P(A ·B)= P(A)·P(B).4.n 个独立事件同时发生的概率P(A 1· A 2·…· A n )=P(A 1)· P(A 2)·…· P(A n ). 5.n 次独立重复试验中某事件恰好发生k 次的概率()(1).k kn k n n P k C P P -=-6. 如果事件A 、B 互斥,那么事件A 与B 、A 与B 及事件A 与B 也都是互斥事件;7.如果事件A 、B 相互独立,那么事件A 、B 至少有一个不发生的概率是1-P (AB )=1-P(A)P(B); 8.如果事件A 、B 相互独立,那么事件A 、B 至少有一个发生的概率是1-P (A ∙B )=1-P(A )P(B );概率与统计一.基础知识:1.离散型随机变量的分布列的两个性质 (1)0(1,2,)i P i ≥=; (2)121P P ++=.2.数学期望1122n n E x P x P x P ξ=++++170.数学期望的性质(1)()()E a b aE b ξξ+=+. (2)若ξ~(,)B n p ,则E np ξ=.(3) 若ξ服从几何分布,且1()(,)k P k g k p q p ξ-===,则1E pξ=.4.方差()()()2221122n n D x E p x E p x E p ξξξξ=-⋅+-⋅++-⋅+5.标准差σξ=ξD .6.方差的性质(1)()2D a b a D ξξ+=;(2)若ξ~(,)B n p ,则(1)D np p ξ=-.(3) 若ξ服从几何分布,且1()(,)k P k g k p qp ξ-===,则2qD pξ=.7.方差与期望的关系()22D E E ξξξ=-.8.正态分布密度函数()()()2226,,x f x x μ--=∈-∞+∞,式中的实数μ,σ(σ>0)是参数,分别表示个体的平均数与标准差.9.标准正态分布密度函数()()22,,x f x x -=∈-∞+∞. 10.对于2(,)N μσ,取值小于x 的概率()x F x μσ-⎛⎫=Φ ⎪⎝⎭.()()()12201x x P x x P x x x P <-<=<< ()()21F x F x =-21x x μμσσ--⎛⎫⎛⎫=Φ-Φ ⎪ ⎪⎝⎭⎝⎭.二.基本方法和数学思想1.理解随机变量,离散型随机变量的定义,能够写出离散型随机变量的分布列,由概率的性质可知,任意离散型随机变量的分布列都具有下述两个性质:(1)p i ≥0,i=1,2,...; (2) p 1+p 2+ (1)2.二项分布:记作ξ~B (n,p ),其中n,p 为参数,,)(k n k k n q p C k P -==ξ并记),;(p n k b q p C k n k k n =-;1 12 2 n n (2)方差D ξ=⋅⋅⋅+-+⋅⋅⋅+-+-n n p E x p E x p E x 2222121)()()(ξξξ ;(3)标准差ξξξξξδξD a b a D b aE b a E D 2)(;)(;=++=+=;(4)若ξ~B (n,p ),则E ξ=np, D ξ=npq,这里q=1-p;4.掌握抽样的三种方法:(1)简单随机抽样(包括抽签法和随机数表法);(2)系统抽样,也叫等距离抽样;(3)分层抽样,常用于某个总体由差异明显的几部分组成的情形;5.总体分布的估计:用样本估计总体,是研究统计问题的一个基本思想方法,一般地,样本容量越大,这种估计就越精确,要求能画出频率分布表和频率分布直方图;6.正态总体的概率密度函数:,,21)(222)(R x ex f x ∈=-σμσπ式中σμ,是参数,分别表示总体的平均数与标准差;7.正态曲线的性质:(1)曲线在x =μ 时处于最高点,由这一点向左、向右两边延伸时,曲线逐渐降低;(2)曲线的对称轴位置由确定;曲线的形状由确定,越大,曲线越矮胖;反过来曲线越高瘦;(3)曲线在x 轴上方,并且关于直线x=μ 对称;8.利用标准正态分布的分布函数数值表计算一般正态分布),(2σμN 的概率 P (x 1<ξ<x 2),可由变换t x =-σμ而得)()(σμφ-=x x F ,于是有P (x 1<ξ<x 2)=)()(12σμφσμφ---x x ;9.假设检验的基本思想:(1)提出统计假设,确定随机变量服从正态分布),(2σμN ;(2)确定一次试验中的取值a 是否落入范围)3,3(σμσμ+-;(3)作出推断:如果a ∈)3,3(σμσμ+-,接受统计假设;如果a ∉)3,3(σμσμ+-,由于这是小概率事件,就拒绝假设;导数一.基础知识:1.)(x f 在0x 处的导数(或变化率或微商)000000()()()lim lim x x x x f x x f x yf x y x x=∆→∆→+∆-∆''===∆∆.2.瞬时速度00()()()limlim t t s s t t s t s t t tυ∆→∆→∆+∆-'===∆∆.3.瞬时加速度00()()()limlim t t v v t t v t a v t t t∆→∆→∆+∆-'===∆∆.4.)(x f 在),(b a 的导数()dy df f x y dx dx ''===00()()lim lim x x y f x x f x x x∆→∆→∆+∆-==∆∆.5. 函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-.6.几种常见函数的导数 (1) 0='C (C 为常数).(2) '1()()n n x nxn Q -=∈.(3) x x cos )(sin ='. (4) x x sin )(cos -='.(5) x x 1)(ln =';e a xx a log 1)(log ='.(6) x x e e =')(; a a a xx ln )(='.7.导数的运算法则 (1)'''()u v u v ±=±. (2)'''()uv u v uv =+.(3)'''2()(0)u u v uv v v v -=≠. 8.复合函数的求导法则设函数()u x ϕ=在点x 处有导数''()x u x ϕ=,函数)(u f y =在点x 处的对应点U 处有导数''()u y f u =,则复合函数(())y f x ϕ=在点x 处有导数,且'''x u x y y u =⋅,或写作'''(())()()x f x f u x ϕϕ=.10.判别)(0x f 是极大(小)值的方法当函数)(x f 在点0x 处连续时, (1)如果在0x 附近的左侧0)(>'x f ,右侧0)(<'x f ,则)(0x f 是极大值; (2)如果在0x 附近的左侧0)(<'x f ,右侧0)(>'x f ,则)(0x f 是极小值.二.基本方法和数学思想1.导数的定义:f(x)在点x 0处的导数记作xx f x x f x f y x x x ∆-∆+='='→∆=)()(lim)(00000;2.根据导数的定义,求函数的导数步骤为:(1)求函数的增量(2));()(x f x x f y -∆+=∆(2)求平均变化率xx f x x f x y ∆-∆+=∆∆)()(; (3)取极限,得导数xy x f x ∆∆='→∆0lim )(;3.可导与连续的关系:如果函数y=f(x)在点x 0处可导,那么函数y=f(x)在点x 0处连续;但是y=f(x)在点x 0处连续却不一定可导;4.导数的几何意义:曲线y =f (x )在点P (x 0,f(x 0))处的切线的斜率是).(0x f '相应地,切线方程是);)((000x x x f y y -'=-5.导数的应用:(1)利用导数判断函数的单调性:设函数y =f (x )在某个区间内可导,如果,0)(>'x f 那么f(x)为增函数;如果,0)(<'x f 那么f(x)为减函数;如果在某个区间内恒有,0)(='x f 那么f(x)为常数;(2)求可导函数极值的步骤:①求导数)(x f ';②求方程0)(='x f 的根;③检验)(x f '在方程0)(='x f 根的左右的符号,如果左正右负,那么函数y=f(x)在这个根处取得最大值;如果左负右正,那么函数y=f(x)在这个根处取得最小值;(3)求可导函数最大值与最小值的步骤:①求y=f(x)在(a,b)内的极值;②将y=f(x)在各极值点的极值与f (a )、f (b )比较,其中最大的一个为最大值,最小的一个是最小值 6导数与函数的单调性的关系㈠0)(>'x f 与)(x f 为增函数的关系。

高中数学复习提纲总完整版

高中数学复习提纲总完整版

高中数学复习提纲总 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-第一章集合与简易逻辑集合及其运算一.集合的概念、分类:二.集合的特征:⑴确定性⑵无序性⑶互异性三.表示方法:⑴列举法⑵描述法⑶图示法⑷区间法四.两种关系:从属关系:对象∈、∉集合;包含关系:集合⊆、集合五.三种运算:交集:{|}A B x x A x B =∈∈且并集:{|}A B x x A x B =∈∈或补集:U A {|U }x x x A =∈∉且六.运算性质:⑴A ∅=A ,A ∅=∅.⑵空集是任意集合的子集,是任意非空集合的真子集.⑶若B A ⊆,则A B =A ,A B =B .⑷U A A =()∅,U A A =()U ,U U A =()A . ⑸U U AB =()()U A B (),U U A B =()()U A B ().⑹集合123{,,,,}n a a a a ⋅⋅⋅的所有子集的个数为2n ,所有真子集的个数为21n -,所有非空真子集的个数为22n -,所有二元子集(含有两个元素的子集)的个数为2n C .简易逻辑一.逻辑联结词:1.命题是可以判断真假的语句的语句,其中判断为正确的称为真命题,判断为错误的为假命题.2.逻辑联结词有“或”、“且”、“非”.3.不含有逻辑联结词的命题,叫做简单命题,由简单命题再加上一些逻辑联结词构成的命题叫复合命题.4.真值表:二.四种命题:1.原命题:若p则q逆命题:若P则q,即交换原命题的条件和结论;否命题:若q则p,即同时否定原命题的条件和结论;逆否命题:若┑P则┑q,即交换原命题的条件和结论,并且同时否定.2.四个命题的关系:⑴原命题为真,它的逆命题不一定为真;⑵原命题为真,它的否命题不一定为真;⑶原命题为真,它的逆否命题一定为真.三.充分条件与必要条件1.“若p则q”是真命题,记做p q⇒,“若p则q”为假命题,记做p q,2.若p q⇒,则称p是q的充分条件,q是p的必要条件3.若p q⇒,且p q,则称p是q的充分非必要条件;若p q,且p q⇐,则称p是q的必要非充分条件;若p q⇐,则称p是q的充要条件;⇒,且p q若p q,且p q,则称p是q的既不充分也不必要条件.4.若p的充分条件是q,则q p⇒;若p的必要条件是q,则p q⇒.第二章函数指数与对数运算一.分数指数幂与根式:如果n x a=,则称x是a的n次方根,0的n次方根为0,若0a≠,则当n为奇数时,a的n次方根有1n为偶数时,负数没有n次方根,正数a的n次方根有2个,其中正的n.负的n次方根记做1.负数没有偶次方根;2.两个关系式:n a=||a na n⎧=⎨⎩为奇数为偶数3、正数的正分数指数幂的意义:mna=正数的负分数指数幂的意义:mna-=.4、分数指数幂的运算性质:⑴m n m n a a a +⋅=;⑵m n m n a a a -÷=;⑶()m n mn a a =;⑷()m m m a b a b ⋅=⋅;⑸01a =,其中m 、n 均为有理数,a ,b 均为正整数二.对数及其运算1.定义:若b a N =(0a >,且1a ≠,0)N >,则log a b N =.2.两个对数:⑴常用对数:10a =,10log lg b N N ==;⑵自然对数: 2.71828a e =≈,log ln e b N N ==.3.三条性质:⑴1的对数是0,即log 10a =;⑵底数的对数是1,即log 1a a =;⑶负数和零没有对数.4.四条运算法则:⑴log ()log log a a a MN M N =+;⑵log log log a a a M M N N=-; ⑶log log n a a M n M =;⑷1log log a a M n=. 5.其他运算性质:⑴对数恒等式:log a b a b =; ⑵换底公式:log log log c a c a b b=; ⑶log log log a b a b c c ⋅=;log log 1a b b a ⋅=; ⑷log log m n a a n b b m=. 函数的概念一.映射:设A 、B 两个集合,如果按照某中对应法则f ,对于集合A 中的任意一个元素,在集合B 中都有唯一的一个元素与之对应,这样的对应就称为从集合A 到集合B 的映射.二.函数:在某种变化过程中的两个变量x 、y ,对于x 在某个范围内的每一个确定的值,按照某个对应法则,y 都有唯一确定的值和它对应,则称y 是x 的函数,记做()y f x =,其中x 称为自变量,x 变化的范围叫做函数的定义域,和x 对应的y 的值叫做函数值,函数值y 的变化范围叫做函数的值域.三.函数()y f x =是由非空数集A 到非空数集B 的映射.四.函数的三要素:解析式;定义域;值域.函数的解析式一.根据对应法则的意义求函数的解析式; 例如:已知x x x f 2)1(+=+,求函数)(x f 的解析式.二.已知函数的解析式一般形式,求函数的解析式;例如:已知()f x 是一次函数,且[()]43f f x x =+,函数)(x f 的解析式.三.由函数)(x f 的图像受制约的条件,进而求)(x f 的解析式.函数的定义域一.根据给出函数的解析式求定义域:⑴整式:x R ∈⑵分式:分母不等于0⑶偶次根式:被开方数大于或等于0⑷含0次幂、负指数幂:底数不等于0⑸对数:底数大于0,且不等于1,真数大于0二.根据对应法则的意义求函数的定义域:例如:已知()y f x =定义域为]5,2[,求(32)y f x =+定义域; 已知(32)y f x =+定义域为]5,2[,求()y f x =定义域;三.实际问题中,根据自变量的实际意义决定的定义域.函数的值域一.基本函数的值域问题:二.求函数值域(最值)的常用方法:函数的值域决定于函数的解析式和定义域,因此求函数值域的方法往往取决于函数解析式的结构特征,常用解法有:观察法、配方法、换元法(代数换元与三角换元)、常数分离法、单调性法、不等式法、*反函数法、*判别式法、*几何构造法和*导数法等.反函数一.反函数:设函数()y f x =()x A ∈的值域是C ,根据这个函数中x ,y 的关系,用y 把x 表示出,得到()x y ϕ=.若对于C 中的每一y 值,通过()x y ϕ=,都有唯一的一个x 与之对应,那么,()x y ϕ=就表示y 是自变量,x 是自变量y 的函数,这样的函数()x y ϕ=()y C ∈叫做函数()y f x =()x A ∈的反函数,记作1()x f y -=,习惯上改写成1()y f x -=.二.函数()f x 存在反函数的条件是:x 、y 一一对应.三.求函数()f x 的反函数的方法:⑴求原函数的值域,即反函数的定义域⑵反解,用y 表示x ,得1()x f y -=⑶交换x 、y ,得1()y f x -=⑷结论,表明定义域四.函数()y f x =与其反函数1()y f x -=的关系:⑴函数()y f x =与1()y f x -=的定义域与值域互换.⑵若()y f x =图像上存在点(,)a b ,则1()y f x -=的图像上必有点(,)b a ,即若()f a b =,则1()f b a -=.⑶函数()y f x =与1()y f x -=的图像关于直线y x =对称.函数的奇偶性:一.定义:对于函数()f x 定义域中的任意一个x ,如果满足()()f x f x -=-,则称函数()f x 为奇函数;如果满足()()f x f x -=,则称函数()f x 为偶函数.二.判断函数()f x 奇偶性的步骤:1.判断函数()f x 的定义域是否关于原点对称,如果对称可进一步验证,如果不对称;2.验证()f x 与()f x -的关系,若满足()()f x f x -=-,则为奇函数,若满足()()f x f x -=,则为偶函数,否则既不是奇函数,也不是偶函数. 二.奇函数的图象关于原点对称,偶函数的图象关于y 轴对称.三.已知()f x 、()g x 分别是定义在区间M 、N ()MN ≠∅上的奇(偶)函数,分别根据条件判断下列函数的奇偶性.五.若奇函数()f x 的定义域包含0,则(0)0f =.六.一次函数y kx b =+(0)k ≠是奇函数的充要条件是0b =;二次函数2y ax bx c =++(0)a ≠函数的周期性:一.定义:对于函数)(x f ,如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有()()f x T f x +=,则)(x f 为周期函数,T 为这个函数的一个周期.2.如果函数)(x f 所有的周期中存在一个最小的正数,那么这个最小正数就叫做)(x f 的最小正周期.如果函数()f x 的最小正周期为T ,则函数()f ax 的最小正周期为||T a . 函数的单调性一.定义:一般的,对于给定区间上的函数()f x ,如果对于属于此区间上的任意两个自变量的值1x ,2x ,当x x <时满足:⑴()()f x f x <,则称函数()f x 在该区间上是增函数;⑵()()f x f x >,则称函数()f x 在该区间上是减函数.二.判断函数单调性的常用方法:1.定义法:⑴取值;⑵作差、变形;⑶判断:⑷定论:*2.导数法:⑴求函数f(x)的导数'()f x;⑵解不等式'()0f x>,所得x的范围就是递增区间;⑶解不等式'()0f x<,所得x的范围就是递减区间.3.复合函数的单调性:对于复合函数[()]y f u=,则()=,可根据它们的单调性=,设()u g xy f g x确定复合函数[()]=,具体判断如下表:y f g x4.奇函数在对称区间上的单调性相反;偶函数在对称区间上的单调性相同.函数的图像一.基本函数的图像.二.图像变换:三.函数图像自身的对称四.两个函数图像的对称第三章数列数列的基本概念一.数列是按照一定的顺序排列的一列数,数列中的每一个数都叫做这个数列的项.二.如果数列{}n a 中的第n 项n a 与项数n 之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公事,它实质是定义在正整数集或其有限子集的函数解析式.三.数列的分类:按项的特点可分为递增数列、递减数列、常数列、摇摆数列按项数可分为有穷数列和无穷数列四.数列的前n 项和:1231n n n S a a a a a -=+++⋅⋅⋅++n S 与n a 的关系:1112n n n S n a S S n -=⎧=⎨-≥⎩五.如果已知数列{}n a 的第1项(或前几项),且任一项n a 与它的前一项1n a -(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.递推公式也是给出数列的一种方法.如:在数列{}n a 中,11a =,1112n n a a -=+,其中1112n n a a -=+即为数列{}n a 的递推公式,根据数列的递推公式可以求出数列中的每一项,同时可根据数列的前几项推断出数列{}n a 的通项公式,至于猜测的合理性,可利用数学归纳法进行证明.如上述数列{}n a ,根据递推公式可以得到:232a =,374a =,4158a =,53116a =,进一步可猜测1212n n n a --=. 等差数列一.定义:如果一个数列从第2项起,每一项与前一项的差是同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d 表示.二.通项公式:若已知1a 、d ,则1(1)n a a n d =+-;若已知m a 、d ,则()n m a a n m d =+-三.前n 项和公式:若已知1a ,n a ,则12n n a a S n +=⨯;若已知1a 、d ,则1(1)2n n n S na d -=+ 注:⑴前n 项和公式n S 的推导使用的是倒序相加法的方法.⑵在数列{}n a 中,通项公式n a ,前n 项和公式n S 均是关于项数n 的函数,在等差数列{}n a 通项公式n a 是关于n 的一次函数关系,前n 项和公式n S 是关于n 的没有常数项的二次函数关系.⑶在等差数列中包含1a 、d 、n 、n a 、n S 这五个基本量,上述的公式中均含有4基本量,因此在数列运算中,只需知道其中任意3个,可以求出其余基本量.四.如果a 、b 、c 成等差数列,则称b 为a 与c 的等差中项,且2a cb +=. 五.证明数列{}n a 是等差数列的方法:1.利用定义证明:1n n a a d --=(2)n ≥2.利用等差中项证明:2a cb += 3.利用通项公式证明:n a an b =+4.利用前n 项和公式证明:2n S an bn =+六.性质:在等差数列}{n a 中,1.若某几项的项数成等差数列,则对应的项也成等差数列,即:若2m n k +=,则2m n k a a a +=.2.若两项的项数之和与另两项的项数之和相等,则对应项的和也相等,即:若m n k l +=+,则m n k l a a a a +=+.3.依次相邻每k 项的和仍成等差数列,即:k S ,2k k S S -,32k k S S -成等差数列.4.n a ,1-n a ,2-n a ,…,2a ,1a 仍成等差数列,其公差为d -.三.等比数列一.定义:如果一个数列从第2项起,每一项与前一项的比都是同一个常数,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比,通常用宇母q (0)q ≠表示.二.通项公式:若已知1a 、q ,则n a =11n a q -;若已知m a 、q ,则n a =n m m a q -三.前n 项和公式:当公比1q =时,1n S na =当公比1q ≠时,若已知1a 、n a 、q ,则n S =11n a a q q--若已知1a 、q 、n ,则1(1)1n n a q S q-=- 注:⑴等比数列前n 项和公式n S 的推导使用的是错位相减的方法.⑵在等比数列中包含1a 、q 、n 、n a 、n S 这五个基本量,上述的公式中均含有4基本量,因此在数列运算中,只需知道其中任意3个,可以求出其余基本量.四.若a 、b 、c 成等比数列,则称b 为a 与c 的等比中项,且a 、b 、c 满足关系式b =五.证明数列{}n a 是等比数列的方法:1.利用定义证明:1n n a q a -=(2)n ≥ 2.利用等比中项证明:2b ac =3.利用通项公式证明:n n a aq =六.性质:在等比数列}{n a 中,1.若某几项的项数成等差数列,则对应的项成等比数列,即:若2m n k +=,则2m n k a a a ⋅=2.若两项的项数之和与另两项的项数之和相等,则对应项的积相等,即:若m n k l +=+,则m n k l a a a a ⋅=⋅3.若数列公比1q ≠-,则依次相邻每k 项的和仍成等比数列,即k S ,2k k S S -,32k k S S -成等比数列。

高考数学复习提纲

高考数学复习提纲

高中数学复习提纲1(第一册上)判断复合命题真假:(1)、思路:①、确定复合命题的结构,②、判断构成复合命题的简单命题的真假, ③、利用真值表判断复合命题的真假; (2)、真值表:p 或q ,同假为假,否则为真;p 且q ,同真为真;非p ,真假相反。

(2)、四种命题:原命题:若p 则q ; 逆命题:若q 则p ;否命题:若⌝p 则⌝q ; 逆否命题:若⌝q 则⌝p ;互为逆否的两个命题是等价的。

原命题与它的逆否命题是等价命题。

(3)、反证法步骤(4)、充分条件与必要条件:若q p ⇒,则p 叫q 的充分条件; 若q p ⇐,则p 叫q 的必要条件; 若q p ⇔,则p 叫q 的充要条件;第二章 函数1、映射:按照某种对应法则f ,集合A 中的任何一个元素,在B 中都有唯一确定的元素和它对应,记作f :A →B ,若B b A a ∈∈,,且元素a 和元素b 对应,那么b 叫a 的象,a 叫b 的原象。

2、函数:(1)、定义:设A ,B 是非空数集,若按某种确定的对应关系f ,对于集合A 中的任意一个数x ,集合B 中都有(2(3(4(5(62(7)、求f (x )的一般方法:①、待定系数法:一次函数f (x ),且满足172)1(2)1(3+=--+x x f x f ,求f (x )②、配凑法:,1)1(22x x x x f +=-求f (x )③、换元法:x x x f 2)1(+=+,求f (x )④、解方程(方程组):定义在(-1,0)∪(0,1)的函数f (x )满足xx f x f 1)()(2=-,求f (x )3、函数的单调性:(1)、定义:区间D 上任意两个值21,x x ,若21x x <时有)()(21x f x f <,称)(x f 为D 上增函数;若21x x <时有)()(21x f x f >,称)(x f 为D 上减函数。

(一致为增,不同为减)(2)、区间D 叫函数)(x f 的单调区间,单调区间⊆定义域;(3)、判断单调性的一般步骤:①、设,②、作差,③、变形,④、下结论)(1x 的b =,对数:a a a , 商的对数:Na a a, 幂的对数:M n M a n a log log =, 方根的对数:M nM a na log 1log =,7、指数函数和对数函数的图象性质(2)、通项公式:数列{n a }的第n 项n a 与n 之间的函数关系式;例:数列1,2,…,n 的通项公式n a = n1,-1,1,-1,…,的通项公式n a =1)1(--n ; 0,1,0,1,0,…,的通项公式n a 2)1(1n -+=(3)、递推公式:已知数列{n a }的第一项,且任一项n a 与它的前一项1-n a (或前几项)间的关系用一个公式表示,这个公式叫递推公式;例:数列{n a }:11=a ,111-+=n n a a ,求数列{n a }的各项。

2024年高中数学必修二知识点总结(复习提纲)

2024年高中数学必修二知识点总结(复习提纲)

2024年高中数学必修二知识点总结(复习提纲)前言高中数学是我国中学教育中的重要科目之一,其中必修二是一门基础课程,内容包括数列与数学归纳法、函数与常函数、二次函数、三角函数、圆和圆的方程、空间立体几何、向量等,是高中数学中重要的阶段性科目之一。

针对 2024 年高考数学综合科目和学生日常学习需求,本文将为读者展示高中数学必修二知识点的总结和复习提纲。

数列与数学归纳法数列的基本概念数列可以看作是按一定顺序排列的一组数,每个数列由元素$a_1,a_2,\\cdots,a_n$ 组成,a i称作数列的第i项。

数列的通项公式数列的通项公式是指可以用一个公式表达数列的第n项与n有关系的公式,通常用a n表示。

数列的递推公式数列的递推公式是指通过数列的前一项,得到数列的后一项的公式,可以用递归公式或差分法求解。

数学归纳法数学归纳法可以用来证明一个数学命题对于一系列自然数成立,原理是通过证明前一项成立,从而推出后一项也成立。

函数与常函数基本概念函数是一种映射关系,即将每个自变量映射为一个因变量,具有自变量和因变量两个基本要素,可以用公式y=f(x)表示。

常函数是一种函数,即函数值恒定,常以y=a形式表示,其中a是一个实数。

函数的图像函数的图像是指在平面直角坐标系上,由函数的自变量和因变量组成的一些点,通过连线或曲线,形成一条平面曲线。

函数的性质•奇偶性:若对任意x,有f(−x)=f(x),则称函数f(x)为偶函数,若对任意x,有f(−x)=−f(x),则称函数f(x)为奇函数。

•单调性:若对于任意x1<x2,恒有f(x1)<f(x2),则称函数f(x)在区间上是单调递增的;若对于任意x1<x2,恒有f(x1)>f(x2),则称函数f(x)在区间上是单调递减的。

•周期性:若对于任意x,恒有f(x+T)=f(x),则称函数f(x)的周期为T。

函数的应用•函数模型可以用来描述各种现象和问题,包括物理现象、经济现象和社会现象等。

高中数学全部知识点提纲整理

高中数学全部知识点提纲整理

高中数学全部知识点提纲整理高中数学全部知识点提纲整理一、集合与简易逻辑1.集合的元素具有确定性、无序性和互异性.2.对集合,时,必须注意到“极端”情况:或;求集合的子集时是否注意到是任何集合的子集、是任何非空集合的真子集.3.判断命题的真假关键是“抓住关联字词”;注意:“不‘或’即‘且’,不‘且’即‘或’”.4.“或命题”的真假特点是“一真即真,要假全假”;“且命题”的真假特点是“一假即假,要真全真”;“非命题”的真假特点是“一真一假”.5.四种命题中“‘逆’者‘交换’也”、“‘否’者‘否定’也”.原命题等价于逆否命题,但原命题与逆命题、否命题都不等价.反证法分为三步:假设、推矛、得果.8.充要条件二、函数1.指数式、对数式,2.(1)映射是“‘全部射出’加‘一箭一雕’”;映射中第一个集合中的元素必有像,但第二个集合中的元素不一定有原像( 中元素的像有且仅有下一个,但中元素的原像可能没有,也可任意个);函数是“非空数集上的映射”,其中“值域是映射中像集的子集”.(2)函数图像与轴垂线至多一个公共点,但与轴垂线的公共点可能没有,也可任意个.(3)函数图像一定是坐标系中的曲线,但坐标系中的曲线不一定能成为函数图像.3.单调性和奇偶性(1)奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同.偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反.(2)复合函数的单调性特点是:“同性得增,增必同性;异性得减,减必异性”.复合函数的奇偶性特点是:“内偶则偶,内奇同外”.复合函数要考虑定义域的变化。

(即复合有意义)4.对称性与周期性(以下结论要消化吸收,不可强记)(1)函数与函数的图像关于直线(轴)对称.推广一:如果函数对于一切,都有成立,那么的图像关于直线(由“和的一半确定”)对称.推广二:函数,的图像关于直线对称.(2)函数与函数的图像关于直线(轴)对称.(3)函数与函数的图像关于坐标原点中心对称.三、数列1.数列的通项、数列项的项数,递推公式与递推数列,数列的通项与数列的前项和公式的关系2.等差数列中(1)等差数列公差的取值与等差数列的单调性.(2)也成等差数列.(3)两等差数列对应项和(差)组成的新数列仍成等差数列.(4) 仍成等差数列.(5)“首正”的递等差数列中,前项和的最大值是所有非负项之和;“首负”的递增等差数列中,前项和的最小值是所有非正项之和;(6)有限等差数列中,奇数项和与偶数项和的存在必然联系,由数列的总项数是偶数还是奇数决定.若总项数为偶数,则“偶数项和“奇数项和=总项数的一半与其公差的积;若总项数为奇数,则“奇数项和-偶数项和”=此数列的中项.(7)两数的等差中项惟一存在.在遇到三数或四数成等差数列时,常考虑选用“中项关系”转化求解.(8)判定数列是否是等差数列的主要方法有:定义法、中项法、通项法、和式法、图像法(也就是说数列是等差数列的充要条件主要有这五种形式).3.等比数列中:(1)等比数列的符号特征(全正或全负或一正一负),等比数列的首项、公比与等比数列的单调性.(2)两等比数列对应项积(商)组成的新数列仍成等比数列.(3)“首大于1”的正值递减等比数列中,前项积的最大值是所有大于或等于1的项的积;“首小于1”的正值递增等比数列中,前项积的最小值是所有小于或等于1的项的积;(4)有限等比数列中,奇数项和与偶数项和的存在必然联系,由数列的总项数是偶数还是奇数决定.若总项数为偶数,则“偶数项和”=“奇数项和”与“公比”的积;若总项数为奇数,则“奇数项和“首项”加上“公比”与“偶数项和”积的和.(5)并非任何两数总有等比中项.仅当实数同号时,实数存在等比中项.对同号两实数的等比中项不仅存在,而且有一对.也就是说,两实数要么没有等比中项(非同号时),如果有,必有一对(同号时).在遇到三数或四数成等差数列时,常优先考虑选用“中项关系”转化求解.(6)判定数列是否是等比数列的方法主要有:定义法、中项法、通项法、和式法(也就是说数列是等比数列的充要条件主要有这四种形式).4.等差数列与等比数列的联系(1)如果数列成等差数列,那么数列( 总有意义)必成等比数列.(2)如果数列成等比数列,那么数列必成等差数列.(3)如果数列既成等差数列又成等比数列,那么数列是非零常数数列;但数列是常数数列仅是数列既成等差数列又成等比数列的必要非充分条件.(4)如果两等差数列有公共项,那么由他们的公共项顺次组成的新数列也是等差数列,且新等差数列的公差是原两等差数列公差的最小公倍数.如果一个等差数列与一个等比数列有公共项顺次组成新数列,那么常选用“由特殊到一般的方法”进行研讨,且以其等比数列的项为主,探求等比数列中那些项是他们的公共项,并构成新的数列.5.数列求和的常用方法:(1)公式法:①等差数列求和公式(三种形式),②等比数列求和公式(三种形式),(2)分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和.(3)倒序相加法:在数列求和中,若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前和公式的推导方法).(4)错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法,将其和转化为“一个新的的等比数列的和”求解(注意:一般错位相减后,其中“新等比数列的项数是原数列的项数减一的差”!)(这也是等比数列前和公式的推导方法之一).(5)裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和(6)通项转换法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章集合与简易逻辑 (2)第二章函数 (4)第三章数列 (11)第四章三角函数 (15)第五章平面向量 (23)第六章不等式 (28)第七章立体几何初步 (31)第八章直线和圆的方程 (41)第九章圆锥曲线方程 (44)第十章导数及其应用 (49)第十一章统计和概率 (51)第十二章复数 (60)第一章 集合与简易逻辑集合及其运算一.集合的概念、分类: 二.集合的特征:⑴ 确定性 ⑵ 无序性 ⑶ 互异性 三.表示方法:⑴ 列举法 ⑵ 描述法 ⑶ 图示法 ⑷ 区间法 四.两种关系:从属关系:对象 ∈、∉ 集合;包含关系:集合 ⊆、 集合五.三种运算:交集:{|}A B x x A x B =∈∈且 并集:{|}A B x x A x B =∈∈或 补集:U A {|U }x x x A =∈∉且 六.运算性质:⑴ A ∅=A ,A ∅=∅.⑵ 空集是任意集合的子集,是任意非空集合的真子集. ⑶ 若B A ⊆,则A B =A ,A B =B .⑷ U A A =()∅,U A A =()U ,U U A =()A . ⑸ U U A B =()()U AB (),U U A B =()()U AB ().⑹ 集合123{,,,,}n a a a a ⋅⋅⋅的所有子集的个数为2n ,所有真子集的个数为21n -,所有非空真子集的个数为22n -,所有二元子集(含有两个元素的子集)的个数为2n C .简易逻辑一.逻辑联结词:1.命题是可以判断真假的语句的语句,其中判断为正确的称为真命题,判断为错误的为假命题.2.逻辑联结词有“或”、“且”、“非”.3.不含有逻辑联结词的命题,叫做简单命题,由简单命题再加上一些逻辑联结词构成的命题叫复合命题.4.真值表:1.原命题:若p则q逆命题:若P则q,即交换原命题的条件和结论;否命题:若q则p,即同时否定原命题的条件和结论;逆否命题:若┑P则┑q,即交换原命题的条件和结论,并且同时否定.2.四个命题的关系:⑴原命题为真,它的逆命题不一定为真;⑵原命题为真,它的否命题不一定为真;⑶原命题为真,它的逆否命题一定为真.三.充分条件与必要条件1.“若p则q”是真命题,记做p q⇒,“若p则q”为假命题,记做p q,2.若p q⇒,则称p是q的充分条件,q是p的必要条件3.若p q⇒,且p q,则称p是q的充分非必要条件;若p q,且p q⇐,则称p是q的必要非充分条件;若p q⇒,且p q⇐,则称p是q的充要条件;若p q,且p q,则称p是q的既不充分也不必要条件.4.若p的充分条件是q,则q p⇒;若p的必要条件是q,则p q⇒.第二章 函数指数与对数运算一.分数指数幂与根式:如果n x a =,则称x 是a 的n 次方根,0的n 次方根为0,若0a ≠,则当n 为奇数时,a 的n 次方根有1;当n 为偶数时,负数没有n 次方根,正数a 的n 次方根有2个,其中正的n.负的n次方根记做. 1.负数没有偶次方根;2.两个关系式:n a =||a n a n ⎧=⎨⎩为奇数为偶数3、正数的正分数指数幂的意义:m na =正数的负分数指数幂的意义:m n a -=.4、分数指数幂的运算性质:⑴ m n m n a a a +⋅=; ⑵ m n m n a a a -÷=; ⑶ ()m n mn a a =; ⑷ ()m m m a b a b ⋅=⋅;⑸ 01a =,其中m 、n 均为有理数,a ,b 均为正整数 二.对数及其运算1.定义:若b a N =(0a >,且1a ≠,0)N >,则log a b N =. 2.两个对数:⑴ 常用对数:10a =,10log lg b N N ==; ⑵ 自然对数: 2.71828a e =≈,log ln e b N N ==. 3.三条性质:⑴ 1的对数是0,即log 10a =; ⑵ 底数的对数是1,即log 1a a =; ⑶ 负数和零没有对数. 4.四条运算法则:⑴ log ()log log a a a MN M N =+; ⑵ log log log aa a MM N N=-; ⑶ log log n a a M n M =; ⑷1log log a a M n=.5.其他运算性质:⑴ 对数恒等式:log a b a b =; ⑵ 换底公式:log log log c a c ab b=; ⑶ log log log a b a b c c ⋅=;log log 1a b b a ⋅=;⑷ log log m n a a nb b m=.函数的概念一.映射:设A 、B 两个集合,如果按照某中对应法则f ,对于集合A 中的任意一个元素,在集合B 中都有唯一的一个元素与之对应,这样的对应就称为从集合A 到集合B 的映射.二.函数:在某种变化过程中的两个变量x 、y ,对于x 在某个范围内的每一个确定的值,按照某个对应法则,y 都有唯一确定的值和它对应,则称y 是x 的函数,记做()y f x =,其中x 称为自变量,x 变化的范围叫做函数的定义域,和x 对应的y 的值叫做函数值,函数值y 的变化范围叫做函数的值域.三.函数()y f x =是由非空数集A 到非空数集B 的映射. 四.函数的三要素:解析式;定义域;值域.函数的解析式一.根据对应法则的意义求函数的解析式;例如:已知x x x f 2)1(+=+,求函数)(x f 的解析式. 二.已知函数的解析式一般形式,求函数的解析式;例如:已知()f x 是一次函数,且[()]43f f x x =+,函数)(x f 的解析式. 三.由函数)(x f 的图像受制约的条件,进而求)(x f 的解析式.函数的定义域一.根据给出函数的解析式求定义域: ⑴ 整式:x R ∈⑵ 分式:分母不等于0⑶ 偶次根式:被开方数大于或等于0 ⑷ 含0次幂、负指数幂:底数不等于0 ⑸ 对数:底数大于0,且不等于1,真数大于0 二.根据对应法则的意义求函数的定义域:例如:已知()y f x =定义域为]5,2[,求(32)y f x =+定义域; 已知(32)y f x =+定义域为]5,2[,求()y f x =定义域; 三.实际问题中,根据自变量的实际意义决定的定义域.函数的值域一.基本函数的值域问题:域,因此求函数值域的方法往往取决于函数解析式的结构特征,常用解法有:观察法、配方法、换元法(代数换元与三角换元)、常数分离法、单调性法、不等式法、*反函数法、*判别式法、*几何构造法和*导数法等.反函数一.反函数:设函数()y f x =()x A ∈的值域是C ,根据这个函数中x ,y 的关系,用y 把x 表示出,得到()x y ϕ=.若对于C 中的每一y 值,通过()x y ϕ=,都有唯一的一个x 与之对应,那么,()x y ϕ=就表示y 是自变量,x 是自变量y 的函数,这样的函数()x y ϕ=()y C ∈叫做函数()y f x =()x A ∈的反函数,记作1()x f y -=,习惯上改写成1()y f x -=. 二.函数()f x 存在反函数的条件是:x 、y 一一对应. 三.求函数()f x 的反函数的方法:⑴ 求原函数的值域,即反函数的定义域 ⑵ 反解,用y 表示x ,得1()x f y -= ⑶ 交换x 、y ,得1()y f x -= ⑷ 结论,表明定义域四.函数()y f x =与其反函数1()y f x -=的关系: ⑴ 函数()y f x =与1()y f x -=的定义域与值域互换.⑵ 若()y f x =图像上存在点(,)a b ,则1()y f x -=的图像上必有点(,)b a ,即若()f a b =,则1()f b a -=.⑶ 函数()y f x =与1()y f x -=的图像关于直线y x =对称.函数的奇偶性:一.定义:对于函数()f x 定义域中的任意一个x ,如果满足()()f x f x -=-,则称函数()f x 为奇函数;如果满足()()f x f x -=,则称函数()f x 为偶函数. 二.判断函数()f x 奇偶性的步骤:1.判断函数()f x 的定义域是否关于原点对称,如果对称可进一步验证,如果不对称;2.验证()f x 与()f x -的关系,若满足()()f x f x -=-,则为奇函数,若满足()()f x f x -=,则为偶函数,否则既不是奇函数,也不是偶函数.二.奇函数的图象关于原点对称,偶函数的图象关于y 轴对称. 三.已知()f x 、()g x 分别是定义在区间M 、N ()MN ≠∅上的奇(偶)函数,分别根据条件判断下列函数的奇偶性.五.若奇函数()f x 的定义域包含0,则(0)0f =.六.一次函数y kx b =+(0)k ≠是奇函数的充要条件是0b =; 二次函数2y ax bx c =++(0)a ≠函数的周期性:一.定义:对于函数)(x f ,如果存在一个非零常数T ,使得当x 取定义域内的每一个值时,都有()()f x T f x +=,则)(x f 为周期函数,T 为这个函数的一个周期.2.如果函数)(x f 所有的周期中存在一个最小的正数,那么这个最小正数就叫做)(x f 的最小正周期.如果函数()f x 的最小正周期为T ,则函数()f ax 的最小正周期为||Ta .函数的单调性一.定义:一般的,对于给定区间上的函数()f x ,如果对于属于此区间上的任意两个自变量的值1x ,2x ,当x x <时满足:⑴ ()()f x f x <,则称函数()f x 在该区间上是增函数; ⑵ 12()()f x f x >,则称函数()f x 在该区间上是减函数. 二.判断函数单调性的常用方法: 1.定义法:⑴ 取值; ⑵ 作差、变形; ⑶ 判断: ⑷ 定论: *2.导数法:⑴ 求函数f (x )的导数'()f x ;⑵ 解不等式'()0f x >,所得x 的范围就是递增区间; ⑶ 解不等式'()0f x <,所得x 的范围就是递减区间. 3.复合函数的单调性:对于复合函数[()]y f g x =,设()u g x =,则()y f u =,可根据它们的单调性确定复合函数[()]y f g x =,具体判断如下表:4函数的图像一.基本函数的图像.二.图像变换:三.函数图像自身的对称四.两个函数图像的对称第三章 数列数列的基本概念一.数列是按照一定的顺序排列的一列数,数列中的每一个数都叫做这个数列的项.二.如果数列{}n a 中的第n 项n a 与项数n 之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公事,它实质是定义在正整数集或其有限子集的函数解析式. 三.数列的分类:按项的特点可分为递增数列、递减数列、常数列、摇摆数列 按项数可分为有穷数列和无穷数列四.数列的前n 项和:1231n n n S a a a a a -=+++⋅⋅⋅++n S 与n a 的关系:1112n nn S n a S S n -=⎧=⎨-≥⎩五.如果已知数列{}n a 的第1项(或前几项),且任一项n a 与它的前一项1n a -(或前几项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式.递推公式也是给出数列的一种方法. 如:在数列{}n a 中,11a =,1112n n a a -=+,其中1112n n a a -=+即为数列{}n a 的递推公式,根据数列的递推公式可以求出数列中的每一项,同时可根据数列的前几项推断出数列{}n a 的通项公式,至于猜测的合理性,可利用数学归纳法进行证明.如上述数列{}n a ,根据递推公式可以得到:232a =,374a =,4158a =,53116a =,进一步可猜测1212n n n a --=.等差数列一.定义:如果一个数列从第2项起,每一项与前一项的差是同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d 表示. 二.通项公式:若已知1a 、d ,则1(1)n a a n d =+-;若已知m a 、d ,则()n m a a n m d =+- 三.前n 项和公式: 若已知1a ,n a ,则12nn a a S n +=⨯;若已知1a 、d ,则1(1)2n n n S na d -=+注:⑴ 前n 项和公式n S 的推导使用的是倒序相加法的方法.⑵ 在数列{}n a 中,通项公式n a ,前n 项和公式n S 均是关于项数n 的函数,在等差数列{}n a 通项公式n a 是关于n 的一次函数关系,前n 项和公式n S 是关于n 的没有常数项的二次函数关系.⑶ 在等差数列中包含1a 、d 、n 、n a 、n S 这五个基本量,上述的公式中均含有4基本量,因此在数列运算中,只需知道其中任意3个,可以求出其余基本量.四.如果a 、b 、c 成等差数列,则称b 为a 与c 的等差中项,且2a cb +=. 五.证明数列{}n a 是等差数列的方法: 1.利用定义证明:1n n a a d --=(2)n ≥ 2.利用等差中项证明:2a cb +=3.利用通项公式证明:n a an b =+ 4.利用前n 项和公式证明:2n S an bn =+ 六.性质:在等差数列}{n a 中,1.若某几项的项数成等差数列,则对应的项也成等差数列, 即:若2m n k +=,则2m n k a a a +=.2.若两项的项数之和与另两项的项数之和相等,则对应项的和也相等, 即:若m n k l +=+,则m n k l a a a a +=+. 3.依次相邻每k 项的和仍成等差数列, 即:k S ,2k k S S -,32k k S S -成等差数列.4.n a ,1-n a ,2-n a ,…,2a ,1a 仍成等差数列,其公差为d -.三.等比数列一.定义:如果一个数列从第2项起,每一项与前一项的比都是同一个常数,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比,通常用宇母q (0)q ≠表示. 二.通项公式:若已知1a 、q ,则n a =11n a q -;若已知m a 、q ,则n a =n m m a q - 三.前n 项和公式:当公比1q =时,1n S na =当公比1q ≠时,若已知1a 、n a 、q ,则n S =11n a a qq-- 若已知1a 、q 、n ,则1(1)1n n a q S q-=-注:⑴ 等比数列前n 项和公式n S 的推导使用的是错位相减的方法.⑵ 在等比数列中包含1a 、q 、n 、n a 、n S 这五个基本量,上述的公式中均含有4基本量,因此在数列运算中,只需知道其中任意3个,可以求出其余基本量.四.若a 、b 、c 成等比数列,则称b 为a 与c 的等比中项,且a 、b 、c 满足关系式b =五.证明数列{}n a 是等比数列的方法: 1.利用定义证明:1nn a q a -=(2)n ≥ 2.利用等比中项证明:2b ac = 3.利用通项公式证明:n n a aq = 六.性质:在等比数列}{n a 中,1.若某几项的项数成等差数列,则对应的项成等比数列, 即:若2m n k +=,则2m n k a a a ⋅=2.若两项的项数之和与另两项的项数之和相等,则对应项的积相等, 即:若m n k l +=+,则m n k l a a a a ⋅=⋅3.若数列公比1q ≠-,则依次相邻每k 项的和仍成等比数列, 即k S ,2k k S S -,32k k S S -成等比数列。

相关文档
最新文档