第二章 圆锥曲线章末小结

合集下载

人教选修1-1第二章 圆锥曲线章末小结

人教选修1-1第二章 圆锥曲线章末小结
数学(RA) 选修1-1
第二章章末小结
数学(RA) 选修1-1
1.椭圆、双曲线的标准方程和简单几何性质
椭圆 |PF1|+|PF2|=2a(2a>2c=|F1F2|)(a>b>0) 方程
x2 y 2
双曲线 ||PF1|-|PF2||=2a(2a<2c=|F1F2|)(a>0,b>0)
x2 y 2
+ =1(a>b>0) a2 b2
=������
4 2 = , + ������ ������ 1 3
数学(RA) 选修1-1
因此 AD 的垂直平分线的方程为 y-t=-2(x-x2), 令 y=0,得到点 E 的坐标是(2+x2,0), 由 E(3,0),得 x2=1,又点 B 在抛物线上,得 y2=±2. 所以点 B 坐标为(1,2)或(1,-2). 【小结】遇到弦的中点问题常采用点差法求解.
原点为对称中心 原点为对称中心 点为对称中心
������ ������ 2
点为对称中心
������ ������ 2
e=������ = 1- ������ 2 ∈(0,1)

������
������ 2
e=������ = 1- ������ 2 ∈(0,1)

������
������ 2
e=������ = 1 + ������ 2 ∈(1,+∞) e=������ = 1 + ������ 2 ∈(1,+∞) y=±������ x
������ 2 ������ 2 的轨迹方程是36 +27 =1,且轨迹是椭圆.
数学(RA) 选修1-1

第二章圆锥曲线与方程 章末归纳总结 课件(人教A版选修2-1)

第二章圆锥曲线与方程 章末归纳总结 课件(人教A版选修2-1)

2.(2014·福州月考)已知双曲线的一个焦点与抛物线 x2=
20y 的焦点重合,且其渐近线的方程为 3x±4y=0,则该双曲线
的标准方程为( )
A.1y62 -x92=1
B.1x62 -y92=1
C.y92-1x62 =1
D.x92-1y62 =1
[答案] C
第二章 圆锥曲线与方程
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·选修2-1
由A→M=2M→B得 x1=-2x2,
∴--2x2x=22=3-+3+-84kk482k,2,
消去 x2 得(3+8k4k2)2=3+44k2,
解得 k2=14,∴k=±12, 所以直线 l 的方程为 y=±12x+1,即 x-2y+2=0 或 x+2y -2=0.
第二章 圆锥曲线与方程
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·选修2-1
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·选修2-1
第二章 章末归纳总结
第二章 圆锥曲线与方程
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 ·选修2-1
1.椭圆的定义|PF1|+|PF2|=2a中,应有2a>|F1F2|,双曲 线定义||PF1|-|PF2||=2a中,应有2a<|F1F2|,抛物线定义中, 定点F不在定直线l上.
(2)由题意得直线 l 的斜率存在,设直线 l 方程为 y=kx+1, y=kx+1, 则由x42+y32=1. 消去 y 得(3+4k2)x2+8kx-8=0,且 Δ>0. 设 A(x1,y1),B(x2,y2),∴xx11·+x2x=2=3+-3-+48k842kk,2,
第二章 圆锥曲线与方程

高中数学 第2章 圆锥曲线与方程章末总结 苏教版选修12

高中数学 第2章 圆锥曲线与方程章末总结 苏教版选修12

章末总结知识点一圆锥曲线的定义和性质对于圆锥曲线的有关问题,要有运用圆锥曲线定义解题的意识,“回归定义”是一种重要的解题策略;应用圆锥曲线的性质时,要注意与数形结合思想、方程思想结合起来.总之,圆锥曲线的定义、性质在解题中有重要作用,要注意灵活运用.例1已知双曲线的焦点在x轴上,离心率为2,F1,F2为左、右焦点,P为双曲线上一点,且∠F1PF2=60°,S△PF1F2=123,求双曲线的标准方程.知识点二直线与圆锥曲线的位置关系直线与圆锥曲线一般有三种位置关系:相交、相切、相离.在直线与双曲线、抛物线的位置关系中有一种情况,即直线与其交于一点和切于一点,二者在几何意义上是截然不同的,反映在代数方程上也是完全不同的,这在解题中既是一个难点也是一个十分容易被忽视的地方.圆锥曲线的切线是圆锥曲线的割线与圆锥曲线的两个交点无限靠近时的极限情况,反映在消元后的方程上,就是一元二次方程有两个相等的实数根,即判别式等于零;而与圆锥曲线有一个交点的直线,是一种特殊的情况(抛物线中与对称轴平行,双曲线中与渐近线平行),反映在消元后的方程上,该方程是一次的.例2如图所示,O为坐标原点,过点P(2,0)且斜率为k的直线l交抛物线y2=2x于M(x1,y1),N(x2,y2)两点.(1)求x1x2与y1y2的值;(2)求证:OM⊥ON.知识点三轨迹问题轨迹是解析几何的基本问题,求解的方法有以下几种:(1)直接法:建立适当的坐标系,设动点为(x,y),根据几何条件直接寻求x、y之间的关系式.(2)代入法:利用所求曲线上的动点与某一已知曲线上的动点的关系,把所求动点转换为已知动点.具体地说,就是用所求动点的坐标x、y来表示已知动点的坐标并代入已知动点满足的曲线的方程,由此即可求得所求动点坐标x、y之间的关系式.(3)定义法:如果所给几何条件正好符合圆、椭圆、双曲线、抛物线等曲线的定义,则可直接利用这些已知曲线的方程写出动点的轨迹方程.(4)参数法:当很难找到形成曲线的动点P(x,y)的坐标x,y所满足的关系式时,借助第三个变量t,建立t和x,t和y的关系式x=φ(t),y=Φ(t),再通过一些条件消掉t就间接地找到了x和y所满足的方程,从而求出动点P(x,y)所形成的曲线的普通方程.例3设点A、B是抛物线y2=4px (p>0)上除原点O以外的两个动点,已知OA⊥OB,OM⊥AB,垂足为M,求点M的轨迹方程,并说明它表示什么曲线?知识点四 圆锥曲线中的定点、定值问题 圆锥曲线中的定点、定值问题是高考命题的一个热点,也是圆锥曲线问题中的一个难点,解决这个难点没有常规的方法,但解决这个难点的基本思想是明确的,定点、定值问题必然是在变化中所表现出来的不变的量,那么就可以用变化的量表示问题的直线方程、数量积、比例关系等,这些直线方程、数量积、比例关系不受变化的量所影响的某个点或值,就是要求的定点、定值.化解这类问题难点的关键就是引进变化的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量.例4 若直线l :y =kx +m 与椭圆x 24+y23=1相交于A 、B 两点(A 、B 不是左、右顶点),A 2为椭圆的右顶点且AA 2⊥BA 2,求证:直线l 过定点.知识点五 圆锥曲线中的最值、范围问题圆锥曲线中的最值、范围问题,是高考热点,主要有以下两种求解策略: (1)平面几何法平面几何法求最值问题,主要是运用圆锥曲线的定义和平面几何知识求解. (2)目标函数法建立目标函数解与圆锥曲线有关的最值问题,是常规方法,其关键是选取适当的变量建立目标函数,然后运用求函数最值的方法确定最值.例5 已知A(4,0),B(2,2)是椭圆x 225+y29=1内的两定点,点M 是椭圆上的动点,求MA+MB 的最值.例6 已知F 1、F 2为椭圆x 2+y22=1的上、下两个焦点,AB 是过焦点F 1的一条动弦,求△ABF 2面积的最大值.章末总结重点解读 例1 解如图所示,设双曲线方程为x 2a2-y 2b2=1 (a >0,b >0). ∵e =c a=2,∴c =2a .由双曲线的定义,得|PF 1-PF 2|=2a =c ,在△PF 1F 2中,由余弦定理,得:F 1F 22=PF 21+PF 22-2PF 1·PF 2cos 60°=(PF 1-PF 2)2+2PF 1·PF 2(1-cos 60°),即4c 2=c 2+PF 1·PF 2.① 又S △PF 1F 2=123, ∴12PF 1·PF 2sin 60°=123, 即PF 1·PF 2=48.②由①②,得c 2=16,c =4,则a =2,b 2=c 2-a 2=12,∴所求的双曲线方程为x 24-y 212=1.例2 (1)解 过点P (2,0)且斜率为k 的直线方程为:y =k (x -2).把y =k (x -2)代入y 2=2x ,消去y 得k 2x 2-(4k 2+2)x +4k 2=0, 由于直线与抛物线交于不同两点,故k 2≠0且Δ=(4k 2+2)2-16k 4=16k 2+4>0,x 1x 2=4,x 1+x 2=4+2k2,∵M 、N 两点在抛物线上, ∴y 21·y 22=4x 1·x 2=16, 而y 1·y 2<0,∴y 1y 2=-4.(2)证明∵ OM →=(x 1,y 1), ON →=(x 2,y 2), ∴OM →·ON →=x 1·x 2+y 1·y 2=4-4=0. ∴OM →⊥ON →,即OM ⊥ON .例3 解 设直线OA 的方程为y =kx (k ≠±1,因为当k =±1时,直线AB 的斜率不存在),则直线OB 的方程为y=-x k,进而可求A ⎝ ⎛⎭⎪⎫4p k 2,4p k 、B (4pk 2,-4pk ).于是直线AB 的斜率为k AB =k1-k2,从而k OM =k 2-1k,∴直线OM 的方程为y =k 2-1k x ,①直线AB 的方程为y +4pk =-k k 2-1(x -4pk 2).②将①②相乘,得y 2+4pky =-x (x -4pk 2),即x 2+y 2=-4pky +4pk 2x =4p (k 2x -ky ),③又k 2x -ky =x ,代入③式并化简,得(x -2p )2+y 2=4p 2.当k =±1时,易求得直线AB 的方程为x =4p .故此时点M 的坐标为(4p,0),也在(x -2p )2+y 2=4p 2(x ≠0)上.∴点M 的轨迹方程为(x -2p )2+y 2=4p 2(x ≠0),∴其轨迹是以(2p,0)为圆心,半径为2p 的圆,去掉坐标原点.例4证明 设A (x 1,y 1), B (x 2,y 2),联立⎩⎪⎨⎪⎧y =kx +m ,x 24+y23=1,得(3+4k 2)x 2+8mkx +4(m 2-3)=0,则⎩⎪⎨⎪⎧Δ=64m 2k 2-163+4k 2m 2-3>0,x 1+x 2=-8mk 3+4k 2,x 1x 2=4m 2-33+4k2.即⎩⎪⎨⎪⎧3+4k 2-m 2>0,x 1+x 2=-8mk 3+4k 2,x 1x 2=4m 2-33+4k2.又y 1y 2=(kx 1+m )(kx 2+m ) =k 2x 1x 2+mk (x 1+x 2)+m 2=3m 2-4k 23+4k2. ∵椭圆的右顶点为A 2(2,0),AA 2⊥BA 2,∴(x1-2)(x2-2)+y1y2=0.∴y1y2+x1x2-2(x1+x2)+4=0.∴3m2-4k23+4k2+4m2-33+4k2+16mk3+4k2+4=0.∴7m2+16km+4k2=0,解得m1=-2k,m2=-2k7,且均满足3+4k2-m2>0.当m1=-2k时,l的方程为y=k(x-2),直线过定点(2,0),与已知矛盾.当m2=-2k7时,l的方程为y=k⎝⎛⎭⎪⎫x-27,直线过定点⎝⎛⎭⎪⎫27,0,∴直线l过定点.例5解因为A(4,0)是椭圆的右焦点,设A′为椭圆的左焦点,则A′(-4,0),由椭圆定义知MA+MA′=10.如图所示,则MA+MB=MA+MA′+MB-MA′=10+MB-MA′≤10+A′B.当点M在BA′的延长线上时取等号.所以当M为射线BA′与椭圆的交点时,(MA+MB)max=10+A′B=10+210.又如图所示,MA+MB=MA+MA′-MA′+MB=10-(MA′-MB)≥10-A′B,当M在A′B的延长线上时取等号.所以当M为射线A′B与椭圆的交点时,(MA+MB)min=10-A′B=10-210.例6解由题意,F1F2=2.设直线AB方程为y=kx+1,代入椭圆方程2x2+y2=2,得(k2+2)x2+2kx-1=0,则x A+x B=-2kk2+2,x A·x B=-1k2+2,∴|x A-x B|=8k2+1k2+2.S△ABF2=12F1F2·|x A-x B|=22×k2+1k2+2=22×1k2+1+1k2+1≤22×12= 2.当k2+1=1k2+1,即k=0时,S△ABF2有最大面积为 2.。

高中数学 圆锥曲线 第二章小结(圆锥曲线与方程)

高中数学 圆锥曲线 第二章小结(圆锥曲线与方程)

y2 25m
1,
表示双曲线.
11. 在抛物线 y24x 上求一点 P, 使得点 P 到直 线 yx3 的距离最短.
解: 如图, 求直线 yx3 的平行线 与抛物线相切, 则切点到直
y yx3
P
线 yx3 的距离最短.
O
x
设直线 yx3 的平行线为
yxm,
将其代入抛物线方程得
x2(2m-4)xm20.
距地面 2384 km, 并且F2、A、B在同一直线上, 地球半径约为 6371 km, 求卫星运行的轨道方程 (精确到 1 km).
解: 如图, |AO| cr439, |BO| r-c2384,
2384 y
439
r6371,
由 |AO| |BO| 解得 c 972.5,
则 a |AO|cr439 = 7782.5, B
证明: 设抛物线为 y22px (如图), y
点 P 的坐标为 (xP, yP),
则 |PQ|2 |yP|2 yP2,
|OQ|
xP
yP2 2p
,
o
而 |BC| 2P,

|BC|·|OQ|
2
p
y 2
2 p
p
yP2
|PQ|2,
∴ |PQ| 是 |BC| 和 |OQ| 的比例中项.
P B
F Qx
C
7. 正三角形的一个顶点位于抛物线 y22px (p>0)
y
l
A
OB
x
| AB| (x2 - x1)2 ( y2 - y1)2
(x2 - x1)2 [2x2 b-(2x1 b)]2
5(x2 - x1)2
5[(x2 x1)2 - 4x1x2]

高中数学 第二章 圆锥曲线与方程章末总结 苏教版选修1

高中数学 第二章 圆锥曲线与方程章末总结 苏教版选修1

第二章圆锥曲线与方程章末总结知识点一圆锥曲线的定义和性质对于圆锥曲线的有关问题,要有运用圆锥曲线定义解题的意识,“回归定义”是一种重要的解题策略;应用圆锥曲线的性质时,要注意与数形结合思想、方程思想结合起来.总之,圆锥曲线的定义、性质在解题中有重要作用,要注意灵活运用.例1已知双曲线的焦点在x轴上,离心率为2,F1,F2为左、右焦点,P为双曲线上一点,且∠F1PF2=60°,S△PF1F2=123,求双曲线的标准方程.知识点二直线与圆锥曲线的位置关系直线与圆锥曲线一般有三种位置关系:相交、相切、相离.在直线与双曲线、抛物线的位置关系中有一种情况,即直线与其交于一点和切于一点,二者在几何意义上是截然不同的,反映在代数方程上也是完全不同的,这在解题中既是一个难点也是一个十分容易被忽视的地方.圆锥曲线的切线是圆锥曲线的割线与圆锥曲线的两个交点无限靠近时的极限情况,反映在消元后的方程上,就是一元二次方程有两个相等的实数根,即判别式等于零;而与圆锥曲线有一个交点的直线,是一种特殊的情况(抛物线中与对称轴平行,双曲线中与渐近线平行),反映在消元后的方程上,该方程是一次的.例2如图所示,O为坐标原点,过点P(2,0)且斜率为k的直线l交抛物线y2=2x于M(x1,y1),N(x2,y2)两点.(1)求x1x2与y1y2的值;(2)求证:OM⊥ON.知识点三轨迹问题轨迹是解析几何的基本问题,求解的方法有以下几种:(1)直接法:建立适当的坐标系,设动点为(x,y),根据几何条件直接寻求x、y之间的关系式.(2)代入法:利用所求曲线上的动点与某一已知曲线上的动点的关系,把所求动点转换为已知动点.具体地说,就是用所求动点的坐标x、y来表示已知动点的坐标并代入已知动点满足的曲线的方程,由此即可求得所求动点坐标x、y之间的关系式.(3)定义法:如果所给几何条件正好符合圆、椭圆、双曲线、抛物线等曲线的定义,则可直接利用这些已知曲线的方程写出动点的轨迹方程.(4)参数法:当很难找到形成曲线的动点P(x,y)的坐标x,y所满足的关系式时,借助第三个变量t,建立t和x,t和y的关系式x=φ(t),y=Φ(t),再通过一些条件消掉t就间接地找到了x和y所满足的方程,从而求出动点P(x,y)所形成的曲线的普通方程.例3设点A、B是抛物线y2=4px (p>0)上除原点O以外的两个动点,已知OA⊥OB,OM⊥AB,垂足为M,求点M的轨迹方程,并说明它表示什么曲线?知识点四 圆锥曲线中的定点、定值问题 圆锥曲线中的定点、定值问题是高考命题的一个热点,也是圆锥曲线问题中的一个难点,解决这个难点没有常规的方法,但解决这个难点的基本思想是明确的,定点、定值问题必然是在变化中所表现出来的不变的量,那么就可以用变化的量表示问题的直线方程、数量积、比例关系等,这些直线方程、数量积、比例关系不受变化的量所影响的某个点或值,就是要求的定点、定值.化解这类问题难点的关键就是引进变化的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量.例4 若直线l :y =kx +m 与椭圆x 24+y23=1相交于A 、B 两点(A 、B 不是左、右顶点),A 2为椭圆的右顶点且AA 2⊥BA 2,求证:直线l 过定点.知识点五 圆锥曲线中的最值、范围问题圆锥曲线中的最值、范围问题,是高考热点,主要有以下两种求解策略: (1)平面几何法平面几何法求最值问题,主要是运用圆锥曲线的定义和平面几何知识求解. (2)目标函数法建立目标函数解与圆锥曲线有关的最值问题,是常规方法,其关键是选取适当的变量建立目标函数,然后运用求函数最值的方法确定最值.例5 已知A(4,0),B(2,2)是椭圆x 225+y29=1内的两定点,点M 是椭圆上的动点,求MA +MB 的最值.例6 已知F 1、F 2为椭圆x 2+y22=1的上、下两个焦点,AB 是过焦点F 1的一条动弦,求△ABF 2面积的最大值.章末总结重点解读 例1 解如图所示,设双曲线方程为x 2a2-y 2b2=1 (a >0,b >0). ∵e =c a=2,∴c =2a .由双曲线的定义,得|PF 1-PF 2|=2a =c ,在△PF 1F 2中,由余弦定理,得:F 1F 22=PF 21+PF 22-2PF 1·PF 2cos 60°=(PF 1-PF 2)2+2PF 1·PF 2(1-cos 60°),即4c 2=c 2+PF 1·PF 2.① 又S △PF 1F 2=123, ∴12PF 1·PF 2sin 60°=123, 即PF 1·PF 2=48.②由①②,得c 2=16,c =4,则a =2,b 2=c 2-a 2=12,∴所求的双曲线方程为x 24-y 212=1.例2 (1)解 过点P (2,0)且斜率为k 的直线方程为:y =k (x -2).把y =k (x -2)代入y 2=2x ,消去y 得k 2x 2-(4k 2+2)x +4k 2=0, 由于直线与抛物线交于不同两点,故k 2≠0且Δ=(4k 2+2)2-16k 4=16k 2+4>0,x 1x 2=4,x 1+x 2=4+2k2,∵M 、N 两点在抛物线上, ∴y 21·y 22=4x 1·x 2=16, 而y 1·y 2<0,∴y 1y 2=-4.(2)证明 ∵OM → (x 1,y 1),ON →=(x 2,y 2), ∴OM →·ON →=x 1·x 2+y 1·y 2=4-4=0.∴OM →⊥ON →,即OM ⊥ON .例3 解 设直线OA 的方程为y =kx (k ≠±1,因为当k =±1时,直线AB 的斜率不存在),则直线OB 的方程为y =-x k, 进而可求A ⎝⎛⎭⎪⎫4p k 2,4p k 、B (4pk 2,-4pk ). 于是直线AB 的斜率为k AB =k1-k2,从而k OM =k 2-1k,∴直线OM 的方程为y =k 2-1k x ,①直线AB 的方程为y +4pk =-k k 2-1(x -4pk 2).②将①②相乘,得y 2+4pky =-x (x -4pk 2),即x 2+y 2=-4pky +4pk 2x =4p (k 2x -ky ),③又k 2x -ky =x ,代入③式并化简,得(x -2p )2+y 2=4p 2.当k =±1时,易求得直线AB 的方程为x =4p .故此时点M 的坐标为(4p,0),也在(x -2p )2+y 2=4p 2(x ≠0)上.∴点M 的轨迹方程为(x -2p )2+y 2=4p 2(x ≠0),∴其轨迹是以(2p,0)为圆心,半径为2p 的圆,去掉坐标原点.例4证明 设A (x 1,y 1), B (x 2,y 2),联立⎩⎪⎨⎪⎧y =kx +m ,x 24+y23=1,得(3+4k 2)x 2+8mkx +4(m 2-3)=0,则⎩⎪⎨⎪⎧Δ=64m 2k 2-+4k2m 2-,x 1+x 2=-8mk 3+4k 2,x 1x 2=m 2-3+4k2.即⎩⎪⎨⎪⎧3+4k 2-m 2>0,x 1+x 2=-8mk 3+4k 2,x 1x 2=m 2-3+4k2.又y 1y 2=(kx 1+m )(kx 2+m ) =k 2x 1x 2+mk (x 1+x 2)+m 2=m2-4k2 3+4k2.∵椭圆的右顶点为A2(2,0),AA2⊥BA2,∴(x1-2)(x2-2)+y1y2=0.∴y1y2+x1x2-2(x1+x2)+4=0.∴m2-4k23+4k2+m2-3+4k2+16mk3+4k2+4=0.∴7m2+16km+4k2=0,解得m1=-2k,m2=-2k7,且均满足3+4k2-m2>0.当m1=-2k时,l的方程为y=k(x-2),直线过定点(2,0),与已知矛盾.当m 2=-2k7时,l的方程为y=k⎝⎛⎭⎪⎫x-27,直线过定点⎝⎛⎭⎪⎫27,0,∴直线l过定点.例5解因为A(4,0)是椭圆的右焦点,设A′为椭圆的左焦点,则A′(-4,0),由椭圆定义知MA+MA′=10.如图所示,则MA+MB=MA+MA′+MB-MA′=10+MB-MA′≤10+A′B. 当点M在BA′的延长线上时取等号.所以当M为射线BA′与椭圆的交点时,(MA+MB)max=10+A′B=10+210.又如图所示,MA+MB=MA+MA′-MA′+MB=10-(MA′-MB)≥10-A′B,当M在A′B的延长线上时取等号.所以当M为射线A′B与椭圆的交点时,(MA+MB)min=10-A′B=10-210.例6解由题意,F1F2=2.设直线AB方程为y=kx+1,代入椭圆方程2x2+y2=2,得(k2+2)x2+2kx-1=0,则x A+x B=-2kk2+2,x A·x B=-1k2+2,∴|x A-x B|=k2+k2+2.S△ABF2=12F1F2·|x A-x B|=22×k2+1k2+2=22×1k2+1+1k2+1≤22×12= 2.当k2+1=1k2+1,即k=0时,S△ABF2有最大面积为 2.章末总结知识点一圆锥曲线的定义和性质对于圆锥曲线的有关问题,要有运用圆锥曲线定义解题的意识,“回归定义”是一种重要的解题策略;应用圆锥曲线的性质时,要注意与数形结合思想、方程思想结合起来.总之,圆锥曲线的定义、性质在解题中有重要作用,要注意灵活运用.例1已知双曲线的焦点在x轴上,离心率为2,F1,F2为左、右焦点,P为双曲线上一点,且∠F1PF2=60°,S△PF1F2=123,求双曲线的标准方程.知识点二直线与圆锥曲线的位置关系直线与圆锥曲线一般有三种位置关系:相交、相切、相离.在直线与双曲线、抛物线的位置关系中有一种情况,即直线与其交于一点和切于一点,二者在几何意义上是截然不同的,反映在代数方程上也是完全不同的,这在解题中既是一个难点也是一个十分容易被忽视的地方.圆锥曲线的切线是圆锥曲线的割线与圆锥曲线的两个交点无限靠近时的极限情况,反映在消元后的方程上,就是一元二次方程有两个相等的实数根,即判别式等于零;而与圆锥曲线有一个交点的直线,是一种特殊的情况(抛物线中与对称轴平行,双曲线中与渐近线平行),反映在消元后的方程上,该方程是一次的.例2如图所示,O为坐标原点,过点P(2,0)且斜率为k的直线l交抛物线y2=2x于M(x1,y1),N(x2,y2)两点.(1)求x1x2与y1y2的值;(2)求证:OM⊥ON.知识点三轨迹问题轨迹是解析几何的基本问题,求解的方法有以下几种:(1)直接法:建立适当的坐标系,设动点为(x,y),根据几何条件直接寻求x、y之间的关系式.(2)代入法:利用所求曲线上的动点与某一已知曲线上的动点的关系,把所求动点转换为已知动点.具体地说,就是用所求动点的坐标x、y来表示已知动点的坐标并代入已知动点满足的曲线的方程,由此即可求得所求动点坐标x、y之间的关系式.(3)定义法:如果所给几何条件正好符合圆、椭圆、双曲线、抛物线等曲线的定义,则可直接利用这些已知曲线的方程写出动点的轨迹方程.(4)参数法:当很难找到形成曲线的动点P(x,y)的坐标x,y所满足的关系式时,借助第三个变量t,建立t和x,t和y的关系式x=φ(t),y=Φ(t),再通过一些条件消掉t就间接地找到了x和y所满足的方程,从而求出动点P(x,y)所形成的曲线的普通方程.例3设点A、B是抛物线y2=4px (p>0)上除原点O以外的两个动点,已知OA⊥OB,OM⊥AB,垂足为M,求点M的轨迹方程,并说明它表示什么曲线?知识点四 圆锥曲线中的定点、定值问题 圆锥曲线中的定点、定值问题是高考命题的一个热点,也是圆锥曲线问题中的一个难点,解决这个难点没有常规的方法,但解决这个难点的基本思想是明确的,定点、定值问题必然是在变化中所表现出来的不变的量,那么就可以用变化的量表示问题的直线方程、数量积、比例关系等,这些直线方程、数量积、比例关系不受变化的量所影响的某个点或值,就是要求的定点、定值.化解这类问题难点的关键就是引进变化的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量.例4 若直线l :y =kx +m 与椭圆x 24+y23=1相交于A 、B 两点(A 、B 不是左、右顶点),A 2为椭圆的右顶点且AA 2⊥BA 2,求证:直线l 过定点.知识点五 圆锥曲线中的最值、范围问题圆锥曲线中的最值、范围问题,是高考热点,主要有以下两种求解策略: (1)平面几何法平面几何法求最值问题,主要是运用圆锥曲线的定义和平面几何知识求解. (2)目标函数法建立目标函数解与圆锥曲线有关的最值问题,是常规方法,其关键是选取适当的变量建立目标函数,然后运用求函数最值的方法确定最值.例5 已知A(4,0),B(2,2)是椭圆x 225+y29=1内的两定点,点M 是椭圆上的动点,求MA +MB 的最值.例6 已知F 1、F 2为椭圆x 2+y22=1的上、下两个焦点,AB 是过焦点F 1的一条动弦,求△ABF 2面积的最大值.章末总结重点解读 例1 解如图所示,设双曲线方程为x 2a2-y 2b2=1 (a >0,b >0). ∵e =c a=2,∴c =2a .由双曲线的定义,得|PF 1-PF 2|=2a =c ,在△PF 1F 2中,由余弦定理,得:F 1F 22=PF 21+PF 22-2PF 1·PF 2cos 60°=(PF 1-PF 2)2+2PF 1·PF 2(1-cos 60°),即4c 2=c 2+PF 1·PF 2.① 又S △PF 1F 2=123, ∴12PF 1·PF 2sin 60°=123, 即PF 1·PF 2=48.②由①②,得c 2=16,c =4,则a =2,b 2=c 2-a 2=12,∴所求的双曲线方程为x 24-y 212=1.例2 (1)解 过点P (2,0)且斜率为k 的直线方程为:y =k (x -2).把y =k (x -2)代入y 2=2x ,消去y 得k 2x 2-(4k 2+2)x +4k 2=0, 由于直线与抛物线交于不同两点,故k 2≠0且Δ=(4k 2+2)2-16k 4=16k 2+4>0,x 1x 2=4,x 1+x 2=4+2k2,∵M 、N 两点在抛物线上,∴y 21·y 22=4x 1·x 2=16,而y 1·y 2<0,∴y 1y 2=-4.(2)证明 ∵OM → (x 1,y 1),ON →=(x 2,y 2),∴OM →·ON →=x 1·x 2+y 1·y 2=4-4=0.∴OM →⊥ON →,即OM ⊥ON .例3 解 设直线OA 的方程为y =kx (k ≠±1,因为当k =±1时,直线AB 的斜率不存在),则直线OB 的方程为y =-x k ,进而可求A ⎝ ⎛⎭⎪⎫4pk 2,4p k 、B (4pk 2,-4pk ).于是直线AB 的斜率为k AB =k1-k 2,从而k OM =k 2-1k ,∴直线OM 的方程为y =k 2-1k x ,①直线AB 的方程为y +4pk =-k k 2-1(x -4pk 2).②将①②相乘,得y 2+4pky =-x (x -4pk 2),即x 2+y 2=-4pky +4pk 2x =4p (k 2x -ky ),③又k 2x -ky =x ,代入③式并化简,得(x -2p )2+y 2=4p 2.当k =±1时,易求得直线AB 的方程为x =4p .故此时点M 的坐标为(4p,0),也在(x -2p )2+y 2=4p 2 (x ≠0)上.∴点M 的轨迹方程为(x -2p )2+y 2=4p 2 (x ≠0),∴其轨迹是以(2p,0)为圆心,半径为2p 的圆,去掉坐标原点.例4证明 设A (x 1,y 1),B (x 2,y 2),联立⎩⎪⎨⎪⎧y =kx +m ,x 24+y23=1,得(3+4k 2)x 2+8mkx +4(m 2-3)=0,则⎩⎪⎨⎪⎧ Δ=64m 2k 2-+4k 2m 2-,x 1+x 2=-8mk3+4k 2,x 1x 2=m 2-3+4k 2.即⎩⎪⎨⎪⎧ 3+4k 2-m 2>0,x 1+x 2=-8mk3+4k 2,x 1x 2=m 2-3+4k 2.又y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+mk (x 1+x 2)+m 2=m 2-4k 23+4k 2.∵椭圆的右顶点为A 2(2,0),AA 2⊥BA 2,∴(x 1-2)(x 2-2)+y 1y 2=0.∴y 1y 2+x 1x 2-2(x 1+x 2)+4=0. ∴m 2-4k 23+4k 2+m 2-3+4k 2+16mk3+4k 2+4=0.∴7m 2+16km +4k 2=0,解得m 1=-2k ,m 2=-2k 7,且均满足3+4k 2-m 2>0.当m 1=-2k 时,l 的方程为y =k (x -2),直线过定点(2,0),与已知矛盾.当m 2=-2k 7时,l 的方程为y =k ⎝ ⎛⎭⎪⎫x -27,直线过定点⎝ ⎛⎭⎪⎫27,0,∴直线l 过定点.例5 解 因为A (4,0)是椭圆的右焦点,设A ′为椭圆的左焦点,则A ′(-4,0),由椭圆定义知MA +MA ′=10.如图所示,则MA +MB =MA +MA ′+MB -MA ′=10+MB -MA ′≤10+A ′B . 当点M 在BA ′的延长线上时取等号.所以当M 为射线BA ′与椭圆的交点时,(MA +MB )max =10+A ′B =10+210.又如图所示,MA +MB =MA +MA ′-MA ′+MB=10-(MA ′-MB )≥10-A ′B ,当M 在A ′B 的延长线上时取等号.所以当M 为射线A ′B 与椭圆的交点时,(MA +MB )min =10-A ′B =10-210.例6 解 由题意,F 1F 2=2.设直线AB 方程为y =kx +1,代入椭圆方程2x 2+y 2=2,得(k 2+2)x 2+2kx -1=0,则x A +x B =-2kk 2+2,x A ·x B =-1k 2+2,∴|x A -x B |=k 2+k 2+2.S △ABF 2=12F 1F 2·|x A -x B |=22×k 2+1k 2+2 =22×1k 2+1+1k 2+1≤22×12= 2.当k 2+1=1k 2+1,即k =0时,S △ABF 2有最大面积为 2.。

新教材北师大版高中数学选择性必修第一册第二章圆锥曲线 知识点考点重点难点解题规律归纳总结

新教材北师大版高中数学选择性必修第一册第二章圆锥曲线 知识点考点重点难点解题规律归纳总结

第二章 圆锥曲线1 椭圆 ........................................................................................................................... - 1 -1.1 椭圆及其标准方程 ......................................................................................... - 1 - 1.2 椭圆的简单几何性质 ..................................................................................... - 6 - 2 双曲线 ..................................................................................................................... - 11 -2.1 双曲线及其标准方程 ................................................................................... - 11 - 2.2 双曲线的简单几何性质 ............................................................................... - 15 - 3 抛物线 ..................................................................................................................... - 19 -3.1 抛物线及其标准方程 ................................................................................... - 19 - 3.2 抛物线的简单几何性质 ............................................................................... - 23 - 4 直线与圆锥曲线的位置关系 .................................................................................. - 28 -4.1 直线与圆锥曲线的交点 ............................................................................... - 28 - 4.2 直线与圆锥曲线的综合问题 ....................................................................... - 28 -1 椭圆1.1 椭圆及其标准方程1.椭圆的定义平面内到两个定点F 1,F 2的距离之和等于常数(大于|F 1F 2|)的点的集合(或轨迹)叫作椭圆.这两个定点叫作椭圆的焦点,两焦点间的距离叫作椭圆的焦距.1.椭圆定义中,将“大于|F 1F 2|”改为“等于|F 1F 2|”或“小于|F 1F 2|”,其他条件不变,点的轨迹是什么?[提示] 当距离之和等于|F 1F 2|时,动点的轨迹就是线段F 1F 2;当距离之和小于|F 1F 2|时,动点的轨迹不存在.2.椭圆的标准方程焦点在x 轴上 焦点在y 轴上 标准方程 x 2a 2+y 2b 2=1 (a >b >0) y 2a 2+x 2b 2=1 (a >b >0) 焦点 (-c ,0),(c ,0)(0,-c ),(0,c )a 、b 、c 的关系c 2=a 2-b 22.椭圆x 29+y 216=1的焦点是在x 轴上,还是在y 轴上?[提示] 椭圆x 29+y 216=1的焦点在y 轴上.疑难问题类型1 椭圆定义及应用【例1】 (1)椭圆x 225+y 29=1上一点A 到焦点F 的距离为2,B 为AF 的中点,O 为坐标原点,则|OB |的值为( )A .8B .4C .2D .32(2)已知B (-5,0)、C (5,0),且△ABC 的周长等于24,则顶点A 的轨迹方程为________.(3)已知F 1,F 2是椭圆x 2a 2+y 2b 2=1(a >b >0)的焦点,过F 1的直线AB 与椭圆交于A 、B 两点,则△ABF 2的周长为________.(1)B (2)x 249+y 224=1(y ≠0) (3)4a [(1)设F ′为椭圆的另一焦点,则|AF |+|AF ′|=2a =10,∴|AF ′|=8,∵O ,B 分别为FF ′,AF 的中点.∴|OB |=12|AF ′|=4.(2)由已知得,|AB |+|AC |=14,由椭圆的定义可知,顶点A 的轨迹是椭圆, 又2c =10,2a =14,即c =5,a =7, 所以b 2=a 2-c 2=24.当点A 在直线BC 上,即y =0时,A 、B 、C 三点不能构成三角形,所以点A 的轨迹方程是x 249+y 224=1(y ≠0).(3)∵|AF1|+|AF2|=2a,|BF1|+|BF2|=2a,∴△ABF2的周长=|AB|+|AF2|+|BF2|=|AF1|+|BF1|+|AF2|+|BF2|=2a+2a=4a.]由椭圆定义可知,椭圆上任一点到椭圆的两个焦点距离之和为定值,所以椭圆定义有以下应用:(1)实现两个焦半径之间的相互转化;,(2)将两个焦半径之和看成一个整体,求解定值问题.类型2求椭圆的标准方程[探究问题]1.同一椭圆在不同坐标系下的方程相同吗?[提示]不同.2.在椭圆标准方程的推导过程中,为什么令b2=a2-c2,b>0?[提示]令b2=a2-c2可以使方程变得简单整齐,在今后讨论椭圆的几何性质时,b还有明确的几何意义.3.椭圆x2a2+y2b2=1和y2a2+x2b2=1(a>b>0)有何异同点?[提示]因为椭圆标准方程中的两个参数a,b确定了椭圆的形状、大小,所以椭圆x2a2+y2b2=1和y2a2+x2b2=1(a>b>0)的形状、大小相同,但这两个椭圆的位置不同,焦点坐标也不同.【例2】写出适合下列条件的椭圆的标准方程:(1)焦点坐标为(-4,0),(4,0),并且过点(-5,3);(2)经过点P1(6,1),P2(-3,-2).[思路点拨](1)设出相应焦点位置的椭圆方程,利用关系式b2=a2-c2及点(-5,3)在椭圆上求待定系数;(2)由于焦点位置不明确,可将其设成Ax 2+By 2=1(A >0,B >0)的形式,再进一步确定A ,B .[解] (1)依题意知椭圆的焦点在x 轴上,可设它的标准方程为x 2a 2+y 2b 2=1(a >b >0).由已知得c =4,所以a 2-b 2=16.①因为点(-5,3)在椭圆上,所以(-5)2a 2+(3)2b 2=1,即5a 2+3b 2=1.② 由①②得a 2=20,b 2=4.因此,所求椭圆的标准方程为x 220+y 24=1.(2)设椭圆的方程为Ax 2+By 2=1(A >0,B >0),由已知得 ⎩⎨⎧6A +B =13A +2B =1, 解得A =19,B =13.∴所求的椭圆的标准方程为x 29+y 23=1.1.求椭圆标准方程的方法(1)定义法:根据椭圆的定义,判断出轨迹是椭圆,然后写出其方程. (2)待定系数法:设出椭圆的标准方程,再依据条件确定a 2、b 2的值,其一般步骤是:①定位:确定椭圆的焦点在x 轴还是y 轴上,从而设出相应的标准方程的形式. ②定量:根据已知条件,建立关于a 、b 、c 的方程组,求出a 2、b 2,从而写出椭圆的标准方程.2.椭圆的标准方程在形式上可统一为Ax 2+By 2=1,其中A 、B 是不等的正常数.类型3 椭圆标准方程的简单应用【例3】 (1)已知方程x 25-2m +y 2|m |-1=1表示焦点在y 轴上的椭圆,则实数m的取值范围为________.(2)已知椭圆方程为kx 2+3y 2-6k =0,焦距为4,则k 的值为________. (1)⎝ ⎛⎭⎪⎫2,52 (2)1或5 [(1)∵椭圆焦点在y 轴上,∴其标准方程应为y 2a 2+x 2b 2=1(a >b >0),∴|m |-1>5-2m >0,解得2<m <52,∴m 的取值范围为2<m <52.(2)将方程kx 2+3y 2-6k =0化为x 26+y 22k =1.∵焦距为4,∴2c =4,即c =2.当焦点在x 轴上时,6-2k =4,解得k =1; 当焦点在y 轴上时,2k -6=4,解得k =5. 综上,k =1或5.]1.判断焦点所在坐标轴的依据是看x 2项,y 2项的分母哪个大,焦点在分母大的对应的坐标轴上.2.对于方程x 2m +y 2n =1(m >0,n >0),当m >n >0时,方程表示焦点在x 轴上的椭圆;当n >m >0时,方程表示焦点在y 轴上的椭圆.特别地,当n =m >0时,方程表示圆心在原点的圆.归纳总结1.平面内到两定点F 1,F 2的距离之和为常数,即|MF 1|+|MF 2|=2a , 当2a >|F 1F 2|时,轨迹是椭圆;当2a =|F 1F 2|时,轨迹是一条线段F 1F 2; 当2a <|F 1F 2|时,轨迹不存在.2.涉及椭圆的焦点三角形问题,可结合椭圆的定义列出|PF 1|+|PF 2|=2a 求解,回归定义是求解椭圆的焦点三角形问题的常用方法.3.用待定系数法求椭圆的标准方程时,若已知焦点的位置,可直接设出标准方程;若焦点位置不确定,可分两种情况求解,也可设Ax 2+By 2=1(A >0,B >0,A ≠B )求解,避免分类讨论.1.2椭圆的简单几何性质椭圆的几何性质焦点的位置焦点在x轴上焦点在y轴上图形标准方程x2a2+y2b2=1(a>b>0)y2a2+x2b2=1(a>b>0)对称性对称轴x轴和y轴,对称中心(0,0)范围-a≤x≤a且-b≤y≤b -b≤x≤b且-a≤y≤a顶点A1(-a,0)、A2(a,0),B1(0,-b)、B2(0,b)A1(0,-a)、A2(0,a),B1(-b,0)、B2(b,0)轴长短轴长=2b,长轴长=2a焦点F1(-c,0)、F2(c,0)F1(0,-c)、F2(0,c)焦距|F1F2|=2c离心率e=ca(0<e<1)(1)椭圆方程x2a2+y2b2=1(a>b>0)中,a,b,c的几何意义是什么?(2)椭圆上的点到焦点的最大距离与最小距离分别是什么?[提示](1)在方程x2a2+y2b2=1(a>b>0)中,a,b,c的几何意义如图所示.即a,b,c正好构成了一个以对称中心,一个焦点、一个短轴顶点构成的直角三角形.(2)最大距离:a+c;最小距离:a-c.疑难问题类型1 椭圆的几何性质 [探究问题]1.椭圆x 2a 2+y 2b 2=1(a >b >0)上,到中心O 和焦点F 1(-c ,0)的距离最近和最远的点分别在什么位置?[提示] 椭圆上,到中心O 的距离最近的点是短轴端点B 1和B 2;到中心O 的距离最远的点是长轴端点A 1和A 2.点(a ,0),(-a ,0)与焦点F 1(-c ,0)的距离,分别是椭圆上的点与焦点F 1的最远距离和最近距离.2.利用椭圆方程如何判断点P (x 0,y 0)与椭圆x 2a 2+y 2b 2=1(a >b >0)的位置关系? [提示] 点P (x 0,y 0)与椭圆x 2a 2+y 2b 2=1(a >b >0)的位置关系: 点P 在椭圆上⇔x 20a 2+y 20b 2=1; 点P 在椭圆内部⇔x 20a 2+y 20b 2<1; 点P 在椭圆外部⇔x 20a 2+y 20b 2>1.3.椭圆的离心率是如何刻画椭圆的扁平程度的? [提示] e 的大小决定了椭圆的扁圆程度. 因为a 2=b 2+c 2,所以ba =1-e 2,因此,当e 越趋近于1时,ba 越接近于0,椭圆越扁; 当e 越趋近于0时,ba越接近于1,椭圆越接近于圆.【例1】 (1)椭圆x 225+y 29=1与x 29-k +y 225-k =1(0<k <9)的( )A .长轴长相等B .短轴长相等C .离心率相等D .焦距相等(2)已知椭圆的标准方程为x 2100+y 264=1,O 为坐标原点,则椭圆上的点P 到椭圆中心|OP |的范围为( )A .[6,10]B .[6,8]C .[8,10]D .[16,20](3)(一题两空)椭圆4x 2+9y 2=36的长轴长为________,短轴长为________. (1)D (2)C (3)6 4 [(1)椭圆x 225+y 29=1中c 21=25-9=16,椭圆x 29-k +y 225-k=1中c 22=25-k -(9-k )=16,∴两椭圆焦距相等.(2)设P (x 0,y 0),则|OP |=x 20+y 20.由椭圆的范围,知|x 0|≤a =10,|y 0|≤b =8, 又∵P 在椭圆上,∴x 20100+y 2064=1, ∴y 20=64-1625x 20,∴|OP |=925x 20+64.∵0≤x 20≤100,∴64≤925x 20+64≤100,∴8≤|OP |≤10.(3)把已知方程化为椭圆的标准方程为:x 29+y 24=1,∴a =3,b =2,∴长轴长为2a =6,短轴长为2b =4.]用标准方程研究几何性质的步骤 (1)将椭圆方程化为标准形式.(2)确定焦点位置.(焦点位置不确定的要分类讨论) (3)求出a ,b ,c . (4)写出椭圆的几何性质.类型2 由椭圆的简单性质求方程【例2】 求适合下列条件的椭圆的标准方程: (1)焦点在y 轴上,a =2,离心率e =12;(2)一焦点坐标为(-3,0),一顶点坐标为(0,5); (3)过点(3,0),离心率e =63.[思路点拨](1)由a=2,e=ca=12,易得c,代入b2=a2-c2可求得b2,此时可写出焦点在y轴上的椭圆方程;(2)由已知可以确定焦点在x轴上及c,b的值,从而可写出椭圆的标准方程;(3)不能确定焦点所在的坐标轴,需分类讨论.[解](1)由a=2,e=12,可得a2=4,且c2=12,即c=1,所以b2=a2-c2=4-1=3.已知椭圆的焦点在y轴上,所以所求的标准方程为y24+x23=1.(2)由椭圆的一个焦点坐标为(-3,0),可知椭圆的焦点在x轴上,且c=3.又由一顶点坐标为(0,5),可得b=5,所以a2=b2+c2=25+9=34.因此所求的标准方程为x234+y225=1.(3)当椭圆的焦点在x轴上时,因为a=3,e=63,所以c=6,从而b2=a2-c2=3,所以椭圆的标准方程为x29+y23=1;当椭圆的焦点在y轴上时,因为b=3,e=63,所以a2-b2a=63,所以a2=27,所以椭圆的标准方程为y227+x29=1.综上,所求椭圆的标准方程为x29+y23=1或y227+x29=1.已知椭圆的简单性质求标准方程:(1)先看题目的条件能否确定焦点所在的坐标轴,当不能确定焦点所在的坐标轴时,需分焦点在x轴上或在y轴上进行讨论.(2)然后依据关系式e=ca,b2=a2-c2确定a,b的值,从而求出椭圆的标准方程.类型3求椭圆的离心率【例3】已知F1,F2是椭圆的两个焦点,过F1且与椭圆长轴垂直的直线交椭圆于A,B两点,若△ABF2是正三角形,求该椭圆的离心率.[思路点拨]根据已知条件得出a、c的关系即可.[解]不妨设椭圆的焦点在x轴上,因为AB⊥F1F2,且△ABF2为正三角形,所以在Rt△AF1F2中,∠AF2F1=30°,令|AF1|=x,则|AF2|=2x,所以|F1F2|=|AF2|2-|AF1|2=3x=2c,由椭圆的定义,可知|AF1|+|AF2|=2a=3x,∴e=2c2a=3x3x=33.求椭圆的离心率通常有两种方法:(1)若给定椭圆的方程,则根据焦点位置先求a2、b2,再求出a、c的值,利用公式e=ca直接求解;(2)若椭圆的方程未知,则根据条件建立a、b、c之间的关系式,化为关于a、c的齐次方程,再将方程两边同除以a的最高次幂,得到e的方程,解方程求得e.归纳总结1.已知椭圆的方程讨论椭圆的性质时,若不是标准形式,应先化成标准形式.2.根据椭圆的几何性质,可以求椭圆的标准方程,其基本思路是“先定位,再定量”,常用的方法是待定系数法.3.椭圆的范围给出了椭圆上的点的横坐标、纵坐标的取值范围,常用来求解与椭圆有关的最值与范围问题.4.椭圆的对称性是椭圆的重要几何性质,在解题时,恰当使用对称性能简化求解过程.2双曲线2.1双曲线及其标准方程1.双曲线的定义平面内到两个定点F1,F2的距离之差的绝对值等于常数(大于零且小于|F1F2|)的点的集合(或轨迹)叫作双曲线.这两个定点叫作双曲线的焦点,两个焦点间的距离叫作双曲线的焦距.1.双曲线定义中,将“小于|F1F2|”改为“等于|F1F2|”或“大于|F1F2|”的常数,其他条件不变,点的轨迹是什么?[提示]当距离之差等于|F1F2|时,动点的轨迹就是两条射线,端点分别是F1、F2,当距离之差大于|F1F2|时,动点的轨迹不存在.2.双曲线定义中,将“差的绝对值”改为“差”,其他条件不变,点的轨迹是什么?[提示]动点的轨迹是双曲线的一支.2.双曲线的标准方程焦点在x轴上焦点在y轴上标准方程x2a2-y2b2=1(a>0,b>0)y2a2-x2b2=1(a>0,b>0)焦点F1(-c,0),F2(c,0)F1(0,-c),F2(0,c)焦距|F1F2|=2ca、b、c的关系c2=a2+b23.确定双曲线的标准方程需要知道哪些量?[提示]a,b的值及焦点所在的位置.疑难问题类型1双曲线的定义及应用双曲线中,焦点三角形的面积问题【例1】 已知双曲线x 29-y 216=1的左,右焦点分别是F 1,F 2,若双曲线上一点P 使得∠F 1PF 2=60°,求△F 1PF 2的面积.[解] 由x 29-y 216=1,得a =3,b =4,c =5.由定义和余弦定理得|PF 1|-|PF 2|=±6,|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|cos 60°,所以102=(|PF 1|-|PF 2|)2+|PF 1|·|PF 2|, 所以|PF 1|·|PF 2|=64,所以S △F 1PF 2=12|PF 1|·|PF 2|·sin ∠F 1PF 2=12×64×32=163.利用双曲线定义求点的轨迹方程【例2】 已知定点A (0,7),B (0,-7),C (12,2),以C 为一个焦点作过A ,B 的椭圆,求另一焦点F 的轨迹方程.[思路点拨] 考查点F 的几何性质,利用双曲线的定义求解. [解] 设F (x ,y )为轨迹上的任意一点, 因为A ,B 两点在以C ,F 为焦点的椭圆上,所以|F A |+|CA |=2a ,|FB |+|CB |=2a (其中a 表示椭圆的长半轴长). 所以|F A |+|CA |=|FB |+|CB |.所以|F A |-|FB |=|CB |-|CA |=122+92-122+(-5)2=2,即|F A |-|FB |=2. 由双曲线的定义知,F 点在以A ,B 为焦点,2为实轴长的双曲线的下半支上.所以点F 的轨迹方程是y 2-x248=1(y ≤-1).1.利用双曲线的定义解决与焦点有关的问题,一是要注意||PF 1|-|PF 2||=2a 的变形使用,特别是与|PF 1|2+|PF 2|2,|PF 1|·|PF 2|间的关系.2.利用双曲线的定义求曲线的轨迹方程, 其基本步骤为 ①寻求动点M 与定点F 1,F 2 之间的关系;②根据题目的条件计算是否满足||MF 1|-|MF 2||=2a (常数,a >0);③判断:若2a <2c =|F 1F 2|,满足定义,则动点M 的轨迹就是双曲线,且2c =|F 1F 2|,b 2=c 2-a 2,进而求出相应a ,b ,c ;④根据F 1,F 2所在的坐标轴写出双曲线的标准方程.类型2 求双曲线的标准方程【例3】 (1)已知双曲线过点(3,-42)和⎝ ⎛⎭⎪⎫94,5,求双曲线的标准方程;(2)求与双曲线x 216-y 24=1有公共焦点,且过点(32,2)的双曲线方程. [思路点拨] 用待定系数法求解.[解] (1)设所求双曲线方程为Ax 2-By 2=1()AB >0, 则⎩⎪⎨⎪⎧9A -32B =1,8116A -25B =1, 解得⎩⎪⎨⎪⎧A =-19,B =-116,∴双曲线的标准方程为y 216-x 29=1.(2)法一:设所求双曲线方程为x 2a 2-y 2b 2=1(a >0,b >0), 由题意易求得c =25.又双曲线过点(32,2), ∴(32)2a 2-4b 2=1.又∵a 2+b 2=(25)2, ∴a 2=12,b 2=8.故所求双曲线方程为x 212-y 28=1.法二:设双曲线方程为x 216-k -y 24+k =1(-4<k <16),将点(32,2)代入得k =4, ∴所求双曲线方程为x 212-y 28=1.待定系数法求双曲线方程的步骤类型3曲线类型的判定【例4】已知曲线C:x2t2+y2t2-1=1(t≠0,t≠±1).(1)求t为何值时,曲线C分别为椭圆、双曲线;(2)求证:不论t为何值,曲线C有相同的焦点.[思路点拨]方程Ax2+By2=1表示的轨迹是由参数A,B的值及符号确定,因此要确定轨迹,需对A,B进行讨论.[解](1)当|t|>1时,t2>0,t2-1>0,且t2≠t2-1,曲线C为椭圆;当|t|<1时,t2>0,t2-1<0,曲线C为双曲线.(2)证明:当|t|>1时,曲线C是椭圆,且t2>t2-1,因此c2=a2-b2=t2-(t2-1)=1,∴焦点为F1(-1,0),F2(1,0).当|t|<1时,双曲线C的方程为x2t2-y21-t2=1,∵c2=a2+b2=t2+1-t2=1,∴焦点为F1(-1,0),F2(1,0).综上所述,无论t为何值,曲线C有相同的焦点.方程Ax2+By2=1(A,B≠0)表示双曲线的充要条件为AB<0,若A<0,B>0,则方程表示焦点在y轴上的双曲线;若B<0,A>0,则方程表示焦点在x轴上的双曲线.即双曲线的焦点位置是由x2,y2的系数的正负决定的.归纳总结1.对双曲线定义的理解(1)定义中距离的差要加绝对值,否则只为双曲线的一支.设F1,F2表示双曲线的左,右焦点,若|MF1|-|MF2|=2a,则点M在右支上;若|MF2|-|MF1|=2a,则点M在左支上.(2)双曲线定义的应用:①若||MF1|-|MF2||=2a(0<2a<|F1F2|),则动点M的轨迹为双曲线.②若动点M在双曲线上,则||MF1|-|MF2||=2a.2.求双曲线标准方程的步骤(1)定位:在标准方程的前提下,确定焦点位于哪条坐标轴上,以确定方程的形式.(2)定量:确定a2,b2的数值.提醒:若焦点的位置不明确,应注意分类讨论,也可以设双曲线方程为mx2+ny2=1的形式,其中mn<0.2.2双曲线的简单几何性质双曲线的性质标准方程x2a2-y2b2=1(a>0,b>0)y2a2-x2b2=1(a>0,b>0)图形性质焦点F1(-c,0),F2(c,0)F1(0,-c),F2(0,c)焦距|F1F2|=2c范围x≥a或x≤-a,y∈R y≥a或y≤-a,x∈R 顶点(-a,0),(a,0)(0,-a),(0,a)对称性对称轴:x轴、y轴;对称中心:坐标原点轴长实轴长=2a,虚轴长=2b渐近线xa±yb=0或y=±ba xxb±ya=0或y=±ab x离心率e=ca(e>1)(1)渐近线相同的双曲线是同一条双曲线吗?(2)双曲线的离心率和渐近线的斜率有怎样的关系?[提示](1)渐近线相同的双曲线有无数条,但它们实轴与虚轴的长的比值相同.(2)e2=c2a2=1+b2a2,ba是渐近线的斜率或其倒数.疑难问题类型1双曲线的简单性质【例1】求双曲线9y2-4x2=-36的顶点坐标、焦点坐标、实轴长、虚轴长、离心率和渐近线方程.[思路点拨]先将双曲线的形式化为标准方程,再研究其性质.[解]双曲线的方程化为标准形式是x29-y24=1,∴a2=9,b2=4,∴a=3,b=2,c=13.又曲线的焦点在x轴上,∴顶点坐标为(-3,0),(3,0),焦点坐标为(-13,0),(13,0),实轴长2a=6,虚轴长2b=4,离心率e=ca=133,渐近线方程为y=±23x.1.由双曲线方程探究其简单几何性质时,需先看所给方程是否为标准方程,若不是,需先把方程化为标准方程,这是依据方程求参数a,b,c值的关键.2.写顶点坐标、焦点坐标、渐近线方程时,需先由方程确定焦点所在的坐标轴,否则易出错,需注意双曲线方程与渐近线方程的对应关系.类型2利用双曲线的性质求双曲线方程【例2】求适合下列条件的双曲线的标准方程.(1)实轴长为16,离心率为5 4;(2)双曲线C的右焦点为(2,0),右顶点为(3,0).[思路点拨]由双曲线的几何性质,列出关于a,b,c的方程,求出a,b,c 的值.[解](1)设双曲线的标准方程为x2a2-y2b2=1或y2a2-x2b2=1(a>0,b>0).由题意知2a=16,ca=54,c2=a2+b2,解得c=10,a=8,b=6,所以双曲线的标准方程为x264-y236=1或y264-x236=1.(2)设双曲线方程为x2a2-y2b2=1(a>0,b>0).由已知得a=3,c=2,∴b2=c2-a2=1.∴双曲线的标准方程为x23-y2=1.1.求双曲线方程,关键是求a,b的值,在解题过程中应熟悉a,b,c,e等元素的几何意义及它们之间的联系,并注意方程思想的应用.2.若已知双曲线的渐近线方程ax±by=0,可设双曲线方程为a2x2-b2y2=λ.类型3双曲线的离心率【例3】已知以双曲线C的两个焦点及虚轴的两个端点为顶点的四边形中,有一个内角为60°,求双曲线C的离心率.[思路点拨]确定四边形中为60°的内角,通过解三角形得a,b,c的关系,进而求出离心率.[解]设双曲线方程为x2a2-y2b2=1(a>0,b>0),如图所示,由于在双曲线中c>b,故在Rt△OF1B2中,只能是∠OF1B2=30°,所以bc=tan 30°,c=3b,所以a=2b,离心率e=ca=32=62.求双曲线离心率的两种方法(1)直接法:若已知a,c可直接利用e=ca求解.(2)方程法:若无法求出a,b,c的具体值,但根据条件可确定a,b,c之间的关系,可通过b2=c2-a2,将关系式转化为关于a,c的齐次方程,借助于e=ca,转化为关于e的n次方程求解.归纳总结1.由已知双曲线的方程求双曲线的几何性质时,注意首先应将方程化为标准形式,并要特别注意焦点所在的位置,防止将焦点坐标和渐近线方程写错.2.注意双曲线性质间的联系,尤其是双曲线的渐近线斜率与离心率之间的联系,并注意数形结合,从直观入手.3.椭圆、双曲线的标准方程都可写成Ax2+By2=1的形式,当A>0,B>0且A≠B 时表示椭圆,当AB<0时表示双曲线.3 抛物线3.1 抛物线及其标准方程1.抛物线的定义平面内与一个定点F 和一条定直线l (l 不经过点F )的距离相等的点的集合(或轨迹)叫作抛物线,定点F 叫作抛物线的焦点,定直线l 叫作抛物线的准线.1.抛物线的定义中,若点F 在直线l 上,那么动点的轨迹是什么? [提示] 点的轨迹是过点F 且垂直于直线l 的直线. 2.抛物线的标准方程 图形标准 方程 y 2=2px (p >0) y 2=-2px(p >0) x 2=2py (p >0) x 2=-2py (p >0) 焦点 坐标 ⎝ ⎛⎭⎪⎫p 2,0 ⎝ ⎛⎭⎪⎫-p 2,0 ⎝ ⎛⎭⎪⎫0,p 2 ⎝ ⎛⎭⎪⎫0,-p 2 准线 方程x =-p 2x =p 2y =-p 2y =p 22.抛物线的标准方程y 2=2px (p >0)中p 的几何意义是什么? [提示] 焦点到准线的距离.3.已知抛物线的标准方程,怎样确定抛物线的焦点位置和开口方向? [提示] 一次项变量为x (或y ),则焦点在x 轴(或y 轴)上;若系数为正,则焦点在正半轴上;系数为负,则焦点在负半轴上.焦点确定,开口方向也随之确定.疑难问题类型1 抛物线的定义【例1】 已知F 是抛物线y 2=x 的焦点,A ,B 是该抛物线上的两点,|AF |+|BF |=3,则线段AB 的中点到y 轴的距离为( )A .34B .1C .54D .74[思路点拨] 如图,过A 、B 分别作准线l 的垂线AD ,BC ,垂足分别为D ,C ,M 是线段AB 的中点,MN 垂直准线l 于N ,由于MN 是梯形ABCD 的中位线,所以|MN |=|AD |+|BC |2.C [由抛物线的定义知|AD |+|BC |=|AF |+|BF |=3,所以|MN |=32,又由于准线l 的方程为x =-14,所以线段AB 中点到y 轴的距离为32-14=54,故选C .]1.解答本题的关键是利用抛物线的定义把到焦点的距离转化为到准线的距离.2.与抛物线有关的问题中,涉及到焦点的距离或到准线的距离时,一般是利用定义对两个距离进行相互转化.类型2 求抛物线的标准方程求抛物线的焦点坐标或准线方程【例2】 求下列抛物线的焦点坐标和准线方程. (1)y 2=40x ;(2)4x 2=y ;(3)6y 2+11x =0.[解] (1)焦点坐标为(10,0),准线方程为x =-10. (2)由4x 2=y 得x 2=14y . ∵2p =14,∴p =18.∴焦点坐标为(0,116),准线方程为y =-116.(3)由6y 2+11x =0,得y 2=-116x , 故焦点坐标为(-1124,0),准线方程为x =1124.求抛物线的标准方程【例3】 求满足下列条件的抛物线的标准方程.(1)过点(-3,2); (2)已知抛物线焦点在y 轴上,焦点到准线的距离为3.[思路点拨] 确定p 的值和抛物线的开口方向,写出标准方程.[解] (1)设所求的抛物线方程为y 2=-2p 1x (p 1>0)或x 2=2p 2y (p 2>0),∵过点(-3,2),∴4=-2p 1×(-3)或9=2p 2×2.∴p 1=23或p 2=94.故所求的抛物线方程为y 2=-43x 或x 2=92y .(2)由题意知,抛物线标准方程为x 2=2py (p >0)或x 2=-2py (p >0)且p =3, ∴抛物线标准方程为x 2=6y 或x 2=-6y .1.根据抛物线方程求准线方程或焦点坐标时,应先把抛物线的方程化为标准方程,这样才能准确写出抛物线的准线方程.2.求抛物线方程的主要方法是待定系数法,若已知抛物线的焦点位置,则可设出抛物线的标准方程,求出p 值即可,若抛物线的焦点位置不确定,则要分情况讨论,另外,焦点在x 轴上的抛物线方程可统一设成y 2=ax (a ≠0),焦点在y 轴上的抛物线方程可统一设成x 2=ay (a ≠0).类型3 抛物线的实际应用【例4】 一辆卡车高3 m ,宽1.6 m ,欲通过断面为抛物线型的隧道,已知拱口宽恰好是拱高的4倍,若拱口宽为a m ,求使卡车通过的a 的最小整数值.[思路点拨] 解答本题首先建系,转化成抛物线的问题,再利用抛物线的方程解决问题.[解] 以隧道顶点为原点,拱高所在直线为y 轴建立直角坐标系,则点B 的坐标为⎝ ⎛⎭⎪⎫a 2,-a 4,如图所示.设隧道所在抛物线方程为x 2=my ,则⎝ ⎛⎭⎪⎫a 22=m ·⎝ ⎛⎭⎪⎫-a 4,∴m =-a .即抛物线方程为x 2=-ay . 将(0.8,y )代入抛物线方程,得0.82=-ay ,即y =-0.82a . 欲使卡车通过隧道,应有y -⎝ ⎛⎭⎪⎫-a 4>3,即a 4-0.82a >3. ∵a >0,∴a >12.21.∴a 应取13.1.解答本题的关键是把实际问题转化为数学问题,利用数学模型,通过数学语言(文字、符号、图形、字母等)表达、分析、解决问题.2.在建立抛物线的标准方程时,以抛物线的顶点为坐标原点,对称轴为一条坐标轴建立坐标系.这样可使得标准方程不仅具有对称性,而且曲线过原点,方程不含常数项,形式更为简单,便于应用.归纳总结1.焦点在x 轴上的抛物线,其标准方程可以统设为y 2=mx (m ≠0),此时焦点为F ⎝ ⎛⎭⎪⎫m 4,0,准线方程为x =-m 4;焦点在y 轴上的抛物线,其标准方程可以统设为x 2=my (m ≠0),此时焦点为F ⎝ ⎛⎭⎪⎫0,m 4,准线方程为y =-m 4. 2.设M (x 0,y 0)是抛物线y 2=2px (p >0)上一点,焦点为F ,则根据抛物线的定义,抛物线的焦半径|MF |=x 0+p 2.3.对于抛物线上的点,利用定义可以把其到焦点的距离与到准线的距离相互转化.4.对于抛物线的四种形式的标准方程,应准确把握、熟练应用,能利用图形分析性质,学习时应能根据一种类型归纳出另外三种的相关性质,注意数形结合思想的应用.3.2 抛物线的简单几何性质1.抛物线的几何性质 标准方程 y 2=2px (p >0) y 2=-2px (p >0)x 2=2py (p >0) x 2=-2py (p >0) 图形性质 范围x ≥0,y ∈R x ≤0,y ∈R y ≥0,x ∈R y ≤0,x ∈R 对称轴 x 轴 y 轴顶点(0,0) 离心率e =1 2.过焦点的弦若直线过抛物线y 2=2px (p >0)的焦点F ,与抛物线交于A (x 1,y 1)、B (x 2,y 2)两点,则(1)抛物线的焦半径|AF |=x 1+p 2,|BF |=x 2+p 2;(2)过焦点的弦|AB |=x 1+x 2+p ;(3)当直线AB 垂直于抛物线的对称轴时,弦AB 叫作抛物线的通径,它的长为2p ,通径是过焦点最短的弦.直线与抛物线只有一个公共点,那么直线与抛物线一定相切吗?[提示] 可能相切,也可能相交,当直线与抛物线的对称轴平行或重合时,直线与抛物线相交且只有一个公共点.疑难问题类型1抛物线几何性质的应用【例1】正三角形的一个顶点位于坐标原点,另外两个顶点在抛物线y2=2px(p>0)上.求这个正三角形的边长.[思路点拨]正三角形及抛物线都是轴对称图形,如果能证明x轴是它们的公共对称轴,则容易求出等边三角形的边长.[解]设正三角形OAB的顶点A,B在抛物线上,且坐标分别为(x1,y1),(x2,y2),则y21=2px1,y22=2px2.由|OA|=|OB|,得x21+y21=x22+y22,即(x1+x2)(x1-x2)=2px2-2px1.∴(x1-x2)(x1+x2+2p)=0.∵x1>0,x2>0,2p>0,∴x1-x2=0,即x1=x2.由此可知|y1|=|y2|,即点A、B关于x轴对称,∴AB⊥x轴,且∠AOx=30°,∴y1x1=tan 30°=33.∵x1=y212p,∴y1=23p,|AB|=2y1=43p.∴这个正三角形的边长为43p.抛物线各元素间的关系,抛物线的焦点在其对称轴上,顶点就是抛物线与对称轴的交点,准线与对称轴垂直,准线与对称轴的交点和焦点关于顶点对称,顶点到焦点的距离与顶点到准线的距离均为p 2.类型2与中点弦、焦点弦有关的问题【例2】 (1)过点Q (4,1)作抛物线y 2=8x 的弦AB ,恰被点Q 所平分,则AB 所在直线的方程为________.(2)已知过抛物线y 2=2px (p >0)的焦点,斜率为22的直线交抛物线于A ,B 两点,且|AB |=9.则该抛物线的方程为________.[思路点拨] (1)法一:设A (x 1,y 1),B (x 2,y 2),用点差法求k AB ;法二:设直线AB 的方程,建立方程求解.(2)设出直线方程,直线方程与抛物线方程联立,根据焦点弦长公式求解.(1)4x -y -15=0 (2)y 2=8x [(1)法一:设以Q 为中点的弦AB 的端点坐标为A (x 1,y 1),B (x 2,y 2),则有y 21=8x 1,y 22=8x 2,∴(y 1+y 2)(y 1-y 2)=8(x 1-x 2).又y 1+y 2=2,∴y 1-y 2=4(x 1-x 2),即4=y 1-y 2x 1-x 2, ∴k =4.∴所求弦AB 所在直线的方程为y -1=4(x -4),即4x -y -15=0.法二:设弦AB 所在直线的方程为y =k (x -4)+1.联立⎩⎨⎧ y 2=8x ,y =k (x -4)+1,消去x ,得ky 2-8y -32k +8=0, 设A (x 1,y 1),B (x 2,y 2)(x 1<x 2),由根与系数的关系得y 1+y 2=8k .又y 1+y 2=2,∴k =4.∴所求弦AB 所在直线的方程为4x -y -15=0.(2)设直线AB 的方程为y =22⎝ ⎛⎭⎪⎫x -p 2, 联立⎩⎪⎨⎪⎧ y 2=2px ,y =22⎝ ⎛⎭⎪⎫x -p 2,化简得4x 2-5px +p 2=0,∴x 1+x 2=5p 4,∵|AB |=9=x 1+x 2+p ,∴5p 4+p =9,∴p =4,∴抛物线的方程为y 2=8x .]直线与抛物线相交的弦长问题直线和抛物线相交于A(x1,y1),B(x2,y2)两点,直线的斜率为k.(1)一般的弦长公式:|AB|=1+k2|x1-x2|.(2)焦点弦长公式:当直线经过抛物线y2=2px(p>0)的焦点时,弦长|AB|=x1+x2+p.(3)“中点弦”问题解题策略两种方法类型3抛物线中的最值问题【例3】已知抛物线y2=2x的焦点是F,点P是抛物线上的动点,又有点A(3,2),求|P A|+|PF|的最小值,并求出取最小值时点P的坐标.[思路点拨]利用抛物线的定义可将|PF|转化为P到准线的距离来考虑.[解]由定义知,抛物线上点P到焦点F的距离等于点P到准线l的距离d,则|P A|+|PF|=|P A|+d.将x=3代入抛物线方程y2=2x,得y=±6.∵6>2,∴点A在抛物线内部.由图可知,当P A⊥l时,|P A|+d最小,最小值为7 2,即|P A|+|PF|的最小值为7 2,此时点P纵坐标为2,代入y2=2x,得x=2.∴此时点P坐标为(2,2).1.本题若设P(x,y),利用两点间的距离公式建模求解,难以得到答案,而由抛物线的定义将|PF|转化为点P到准线的距离,则当P,A,Q三点共线时,|P A|+|PF|取得最小值,从而使问题迎刃而解.2.解决这类题,就是用抛物线的定义与平面几何的知识把折线段变为直线段,即知最小值.归纳总结1.抛物线只有一个焦点,一个顶点,一条对称轴,一条准线,无对称中心.2.抛物线上一点与焦点F的连线的线段叫做焦半径,设抛物线y2=2px(p>0)上任一点A(x0,y0),则|AF|=x0+p 2.3.抛物线的顶点也在抛物线上,作为抛物线上的一个特殊点,它到焦点的距离也等于到准线的距离,解题时注意应用.4.直线与抛物线有一个交点,是直线与抛物线相切的必要不充分条件.。

高中数学第2章圆锥曲线与方程章末小结讲义含解析湘教版选修2_104163103.doc

高中数学第2章圆锥曲线与方程章末小结讲义含解析湘教版选修2_104163103.doc

第2章 圆锥曲线与方程1.圆锥曲线的标准方程求椭圆、双曲线、抛物线的标准方程包括“定位”和“定量”两方面,一般要先确定焦点的位置,再确定参数,当焦点位置不确定时,要分情况讨论,也可将方程设为一般形式:①椭圆方程为Ax 2+By 2=1(A >0,B >0,A ≠B );②双曲线方程为Ax 2+By 2=1(AB <0);③抛物线方程为x 2=2py (p ≠0)或y 2=2px (p ≠0).2.椭圆、双曲线的离心率求椭圆、双曲线的离心率常用以下两种方法:(1)定义法:由椭圆(双曲线)的标准方程可知,不论椭圆(双曲线)的焦点在x 轴上还是y 轴上都有关系式a 2-b 2=c 2(a 2+b 2=c 2)以及e =ca,已知其中的任意两个参数,可以求其他的参数,这是基本且常用的方法.(2)方程法:建立参数a 与c 之间的齐次关系式,从而求出其离心率,这是求离心率的十分重要的思路及方法.3.直线与圆锥曲线的位置关系(1)从几何的角度看,直线和圆锥曲线的位置关系可分为三类:无公共点、仅有一个公共点及有两个相异的公共点.其中,直线与圆锥曲线仅有一个公共点,对于椭圆,表示直线与其相切;对于双曲线,表示与其相切或直线与双曲线的渐近线平行;对于抛物线,表示与其相切或直线与其对称轴平行或重合.(2)从代数的角度看,可通过将表示直线的方程与曲线的方程组成方程组,消元后利用所得形如一元二次方程根的情况来判断.4.求曲线的方程求曲线方程的常用方法有:(1)直接法:建立适当的坐标系,设动点为(x ,y ),根据几何条件直接寻求x ,y 之间的关系式.(2)代入法:利用所求曲线上的动点与某一已知曲线上的动点的关系,把所求动点转换为已知动点.具体地说,就是用所求动点的坐标x ,y 来表示已知动点的坐标并代入已知动点满足的曲线的方程,由此即可求得所求动点坐标x ,y 之间的关系式.(3)定义法:如果所给几何条件正好符合圆、椭圆、双曲线、抛物线等曲线的定义,则可直接利用这些已知曲线的方程写出动点的轨迹方程.(4)参数法:选择一个(或几个)与动点变化密切相关的量作为参数,用参数表示动点的坐标(x ,y ),即得动点轨迹的参数方程,消去参数,可得动点轨迹的普通方程.[例1] 设圆(x -OA 中点B 的轨迹方程.[解] 法一(直接法):设B 点坐标为(x ,y ), 由题意,得|OB |2+|BC |2=|OC |2,如图所示, 即x 2+y 2+[(x -1)2+y 2]=1,即OA 中点B 的轨迹方程为⎝ ⎛⎭⎪⎫x -122+y 2=14(去掉原点).法二(几何法):设B 点坐标为(x ,y ),由题意知CB ⊥OA ,OC 的中点记为M ⎝ ⎛⎭⎪⎫12,0, 如法一中图,则|MB |=12|OC |=12,故B 点的轨迹方程为⎝ ⎛⎭⎪⎫x -122+y 2=14(去掉原点).法三(代入法):设A 点坐标为(x 1,y 1),B 点坐标为(x ,y ),由题意得⎩⎪⎨⎪⎧x =x 12,y =y12,即⎩⎪⎨⎪⎧x 1=2x ,y 1=2y .又因为(x 1-1)2+y 21=1,所以(2x -1)2+(2y )2=1.即⎝ ⎛⎭⎪⎫x -122+y 2=14(去掉原点).法四(交点法):设直线OA 的方程为y =kx ,当k =0时,B 为(1,0);当k ≠0时,直线BC 的方程为:y =-1k(x -1),直线OA ,BC 的方程联立消去k 即得其交点轨迹方程:y 2+x (x -1)=0,即⎝ ⎛⎭⎪⎫x -122+y 2=14(x ≠0,1),显然B (1,0)满足⎝ ⎛⎭⎪⎫x -122+y 2=14,故⎝ ⎛⎭⎪⎫x -122+y 2=14(去掉原点)为所求.(1)解决轨迹问题要明确圆锥曲线的性质,做好对图形变化情况的总体分析,选好相应的解题策略和拟定好具体的方法,注意将动点的几何特性用数学语言表述.(2)要注意一些轨迹问题所包含的隐含条件,也就是曲线上点的坐标的取值范围.1.求与圆x 2+y 2=1外切,且和x 轴相切的动圆圆心M 的轨迹方程. 解:设两圆的切点为A ,M 的坐标为(x ,y ),圆M 与x 轴相切于点N ,∴|AM |=|MN |, |MO |-1=|MN |=|y |. ∴x 2+y 2-1=|y |. 化简得:x 2=2|y |+1.∴动圆圆心M 的轨迹方程为x 2=2|y |+1.2.已知定点A (4,0)和圆x 2+y 2=4上的动点B ,点P 分AB 之比为AP ∶PB =2∶1,求点P 的轨迹方程.解:设点P 的坐标为(x ,y ),点B 的坐标为(x 0,y 0), 由题意得AP ―→=2PB ―→,即(x -4,y )=2(x 0-x ,y 0-y ), ∴⎩⎪⎨⎪⎧x -4=2x 0-2x ,y =2y 0-2y ,即⎩⎪⎨⎪⎧x 0=3x -42,y 0=3y2,代入圆的方程x 2+y 2=4,得⎝ ⎛⎭⎪⎫3x -422+9y 24=4, 即⎝ ⎛⎭⎪⎫x -432+y 2=169.∴所求轨迹方程为⎝ ⎛⎭⎪⎫x -432+y 2=169.[例2] 12P 为双曲线上一点,且∠F 1PF 2=60°,S △PF 1F 2=123,求双曲线的标准方程.[解] 如图所示,设双曲线方程为x 2a 2-y 2b2=1(a >0,b >0).∵e =c a=2,∴c =2a . 由双曲线的定义,得 ||PF 1|-|PF 2||=2a =c , 在△PF 1F 2中,由余弦定理,得:|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos 60° =(|PF 1|-|PF 2|)2+2|PF 1||PF 2|(1-cos 60°), 即4c 2=c 2+|PF 1||PF 2|.① 又S △PF 1F 2=123,∴12|PF 1||PF 2|sin 60°=123, 即|PF 1||PF 2|=48.② 由①②,得c 2=16,c =4, 则a =2,b 2=c 2-a 2=12, ∴所求的双曲线方程为x 24-y 212=1.(1)圆锥曲线的定义是标准方程和几何性质的根源,对于圆锥曲线的有关问题,要有运用圆锥曲线定义解题的意识,“回归定义”是一种重要的解题策略.(2)应用圆锥曲线的性质时,要注意与数形结合思想、方程思想结合起来.3.(2017·全国卷Ⅲ)已知双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线方程为y =52x ,且与椭圆x 212+y 23=1有公共焦点,则C 的方程为( )A.x 28-y 210=1 B.x 24-y 25=1 C.x 25-y 24=1 D.x 24-y 23=1 解析:根据双曲线C 的渐近线方程为y =52x , 可知b a =52.① 又椭圆x 212+y 23=1的焦点坐标为(3,0)和(-3,0),所以a 2+b 2=9.②根据①②可知a 2=4,b 2=5, 所以C 的方程为x 24-y 25=1.答案:B4.抛物线y 2=2px (p >0)上有A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)三点,F 是它的焦点,若|AF |,|BF |,|CF |成等差数列,则( )A .x 1,x 2,x 3成等差数列B .y 1,y 2,y 3成等差数列C .x 1,x 3,x 2成等差数列D .y 1,y 3,y 2成等差数列解析:由抛物线定义:|AF |=|AA ′|,|BF |=|BB ′|,|CF |=|CC ′|. ∵2|BF |=|AF |+|CF |, ∴2|BB ′|=|AA ′|+|CC ′|.又∵|AA ′|=x 1+p 2,|BB ′|=x 2+p 2,|CC ′|=x 3+p2,∴2⎝ ⎛⎭⎪⎫x 2+p 2=x 1+p 2+x 3+p2⇒2x 2=x 1+x 3.答案:A[例3] 已知椭圆的一个顶点为A (0,-1),焦点在x 轴上,若右焦点到直线x -y +22=0的距离为3.(1)求椭圆的方程;(2)设椭圆与直线y =kx +m (k ≠0)相交于不同的两点M ,N ,当|AM |=|AN |时,求m 的取值范围.[解] (1)依题意可设椭圆方程为x 2a2+y 2=1(a >1),则右焦点F (a 2-1,0), 由题设,知|a 2-1+22|2=3,解得a 2=3,故所求椭圆的方程为x 23+y 2=1.(2)设点P 为弦MN 的中点,由⎩⎪⎨⎪⎧y =kx +m ,x 23+y 2=1,得(3k 2+1)x 2+6mkx +3(m 2-1)=0, 由于直线与椭圆有两个交点, 所以Δ>0,即m 2<3k 2+1, ① 所以x P =x M +x N2=-3mk3k 2+1,从而y P =kx P +m =m3k 2+1,所以k AP =y P +1x P =-m +3k 2+13mk,又|AM |=|AN |,所以AP ⊥MN ,则-m +3k 2+13mk =-1k,即2m =3k 2+1, ②把②代入①得2m >m 2, 解得0<m <2, 由②得k 2=2m -13>0,解得m >12,故所求m 的取值范围是⎝ ⎛⎭⎪⎫12,2.讨论直线与圆锥曲线的位置关系,一般是将直线方程与圆锥曲线方程联立,组成方程组,消去一个未知数,转化为关于x (或y )的一元二次方程,由根与系数的关系求出x 1+x 2,x 1x 2(或y 1+y 2,y 1y 2)进而解决了与“距离”“中点”等有关的问题.5.设抛物线y 2=4x 截直线y =2x +k 所得弦长|AB |=3 5. (1)求k 的值;(2)以弦AB 为底边,x 轴上的P 点为顶点组成的三角形面积为39时,求点P 的坐标. 解:(1)设A (x 1,y 1),B (x 2,y 2). 由⎩⎪⎨⎪⎧y =2x +k ,y 2=4x ,得4x 2+4(k -1)x +k 2=0,Δ=16(k -1)2-16k 2>0,∴k <12.又由根与系数的关系有x 1+x 2=1-k ,x 1x 2=k 24,∴|AB |=x 1-x 22+y 1-y 22=1+22·x 1+x 22-4x 1x 2=5·1-2k , 即-2k =35,∴k =-4.(2)设x 轴上点P (x,0),P 到AB 的距离为d , 则d =|2x -0-4|5=|2x -4|5,S △PAB =12·35·|2x -4|5=39, ∴|2x -4|=26,∴x =15或x =-11. ∴P 点坐标为(15,0)或(-11,0).[例4] (2017·全国卷Ⅲ)已知椭圆C :a 2+b 2=1(a >b >0),四点P 1(1,1),P 2(0,1),P 3⎝ ⎛⎭⎪⎫-1,32,P 4⎝⎛⎭⎪⎫1,32中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.[解析] (1)由于P 3,P 4两点关于y 轴对称, 故由题设知椭圆C 经过P 3,P 4两点. 又由1a 2+1b 2>1a 2+34b 2知,椭圆C 不经过点P 1,所以点P 2在椭圆C 上. 因此⎩⎪⎨⎪⎧1b 2=1,1a 2+34b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1.故椭圆C 的方程为x 24+y 2=1.(2)证明:设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2.如果l 与x 轴垂直,设l :x =t ,由题设知t ≠0,且|t |<2,可得A ,B 的坐标分别为⎝⎛⎭⎪⎫t ,4-t 22,⎝ ⎛⎭⎪⎫t ,-4-t 22.则k 1+k 2=4-t 2-22t -4-t 2+22t =-1,得t =2,不符合题设.从而可设l :y =kx +m (m ≠1).将y =kx +m 代入x 24+y 2=1得(4k 2+1)x 2+8kmx +4m 2-4=0. 由题设可知Δ=16(4k 2-m 2+1)>0. 设A (x 1,y 1),B (x 2,y 2), 则x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1.而k 1+k 2=y 1-1x 1+y 2-1x 2=kx 1+m -1x 1+kx 2+m -1x 2=2kx 1x 2+m -x 1+x 2x 1x 2.由题设k 1+k 2=-1,故(2k +1)x 1x 2+(m -1)(x 1+x 2)=0. 即(2k +1)·4m 2-44k 2+1+(m -1)·-8km4k 2+1=0.解得k =-m +12.当且仅当m >-1时,Δ>0,于是l :y =-m +12x +m ,即y +1=-m +12(x -2),所以l过定点(2,-1).(1)圆锥曲线中的定点、定值问题往往与圆锥曲线中的“常数”有关,如椭圆的长轴、短轴,双曲线的虚轴、实轴,抛物线的焦点等,可以通过直接计算求解,也可用“特例法”和“相关系数法”.(2)圆锥曲线中的最值问题,通常有两类:一类是有关长度、面积等的最值问题;一类是圆锥曲线中有关几何元素的最值问题,这两类问题的解决往往要通过回归定义,结合几何知识,建立目标函数,利用函数的性质或不等式知识,以及数形结合、设参、转化代换等途径来解决.6.设椭圆x 29+y 24=1上的动点P (x ,y ),点A (a,0)(0<a <3).若|AP |的最小值为1,求a 的值.解:|AP |2=(x -a )2+y 2=(x -a )2+4⎝ ⎛⎭⎪⎫1-x 29=59⎝ ⎛⎭⎪⎫x -9a 52-4a25+4.因为x 29=1-y 24,所以x 29≤1,0≤|x |≤3. (1)当0<9a 5≤3,即0<a ≤53时,x =9a 5,|AP |2取最小值4-4a25=1.解得a =152.因为152>53,所以a 不存在. (2)当9a 5>3,即53<a <3时,x =3,|AP |2取最小值59⎝ ⎛⎭⎪⎫3-9a 52+4-4a25=1.解得a =2或a =4(舍).所以,当a =2时,|AP |的最小值为1.7.过抛物线y 2=2px (p >0)的焦点F 的直线交抛物线于A ,B 两点,点C 在抛物线的准线上,且BC ∥x 轴,证明:直线AC 经过原点O .证明:如图所示.∵抛物线y 2=2px (p >0)的焦点为F ⎝ ⎛⎭⎪⎫p 2,0,∴经过点F 的直线AB 的方程可设为x =my +p2,代入抛物线方程得y2-2pmy -p 2=0,设A (x 1,y 1),B (x 2,y 2),则y 1,y 2是该方程的两个根, ∴y 1y 2=-p 2,∵BC ∥x 轴,且点C 在准线x =-p2上,∴点C 的坐标为⎝ ⎛⎭⎪⎫-p2,y 2,故直线CO 的斜率k =y 2-p 2=-2y 2p =y 1x 1,即k 也是直线OA 的斜率, ∴直线AC 经过原点O .(时间120分钟,满分150分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2017·浙江高考)椭圆x 29+y 24=1的离心率是( )A.133B.53C.23D.59解析:根据题意知,a =3,b =2,则c =a 2-b 2=5,∴椭圆的离心率e =c a =53. 答案:B2.如果方程x 2+ky 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( ) A .(1,+∞)B .(1,2) C.⎝ ⎛⎭⎪⎫12,1 D .(0,1)解析:由x 2+ky 2=2,得x 22+y 22k=1,又∵椭圆的焦点在y 轴上, ∴2k>2,即0<k <1.答案:D3.若抛物线x 2=2ay 的焦点与椭圆x 23+y 24=1的下焦点重合,则a 的值为( )A .-2B .2C .-4D .4解析:椭圆x 23+y 24=1的下焦点为(0,-1),∴a2=-1,即a =-2. 答案:A4.θ是任意实数,则方程x 2+y 2sin θ=4的曲线不可能是( ) A .椭圆B .双曲线C .抛物线D .圆解析:由于θ∈R ,对sin θ的值举例代入判断.sin θ可以等于1,这时曲线表示圆,sin θ可以小于0,这时曲线表示双曲线,sin θ可以大于0且小于1,这时曲线表示椭圆.答案:C5.已知椭圆E 的中心在坐标原点,离心率为12,E 的右焦点与抛物线C :y 2=8x 的焦点重合,A ,B 是C 的准线与E 的两个交点,则|AB |=( )A .3B .6C .9D .12解析:抛物线y 2=8x 的焦点为(2,0), ∴椭圆中c =2,又c a =12,∴a =4,b 2=a 2-c 2=12, 从而椭圆的方程为x 216+y 212=1.∵抛物线y 2=8x 的准线为x =-2, ∴x A =x B =-2,将x A =-2代入椭圆方程可得|y A |=3, 由图象可知|AB |=2|y A |=6.故选B. 答案:B6.设已知抛物线C 的顶点在坐标原点,焦点为F (1,0),过F 的直线l 与抛物线C 相交于A ,B 两点,若直线l 的倾斜角为45°,则弦AB 的中点坐标为( )A .(1,0)B .(2,2)C .(3,2)D .(2,4)解析:依题意得,抛物线C 的方程是y 2=4x ,直线l 的方程是y =x -1.由⎩⎪⎨⎪⎧y 2=4x ,y =x -1,消去y 得(x -1)2=4x ,即x 2-6x +1=0.因此线段AB 的中点的横坐标是62=3,纵坐标是y =3-1=2.所以线段AB 的中点坐标是(3,2).答案:C7.过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点F (-c,0)(c >0)作圆x 2+y 2=a 24的切线,切点为E ,延长FE 交双曲线右支于点P ,若OE ―→=12(OF ―→+OP ―→),则双曲线的离心率为( )25C.10D. 2解析:设双曲线右焦点为M ,∵OE ⊥PF ,∴在直角三角形OEF 中,|EF |= c 2-a 24.又OE ―→=12(OF ―→+OP ―→),∴E 是PF 的中点.∴|PF |=2c 2-a 24,|PM |=a .又|PF |-|PM |=2a ,∴2c 2-a 24-a =2a .∴离心率e =c a =102. 答案:A8.已知|AB ―→|=3,A ,B 分别在y 轴和x 轴上运动,O 为原点,OP ―→=13OA ―→+23OB ―→,则动点P 的轨迹方程是( )A.x 24+y 2=1B .x 2+y 24=1C.x 29+y 2=1 D .x 2+y 29=1解析:设P (x ,y ),A (0,y 0),B (x 0,0), 由已知得(x ,y )=13(0,y 0)+23(x 0,0),即x =23x 0,y =13y 0,所以x 0=32x ,y 0=3y .因为|AB ―→|=3,所以x 20+y 20=9,即⎝ ⎛⎭⎪⎫32x 2+(3y )2=9, 化简整理得动点P 的轨迹方程是x 24+y 2=1.答案:A9.已知双曲线x 29-y 216=1的左、右焦点分别是F 1,F 2,P 是双曲线上的一点,若|PF 1|=7,则△PF 1F 2最大内角的余弦值为( )A .-17B.1711713解析:由双曲线定义知|PF 2|=|PF 1|±2a . 所以|PF 2|=13或|PF 2|=1<c -a =2(舍去) 又|F 1F 2|=10,所以△PF 1F 2的最大内角为∠PF 1F 2, cos ∠PF 1F 2=102+72-1322×10×7=-17.答案:A10.设双曲线C :x 2a2-y 2=1(a >0)与直线l :x +y =1相交于两个不同的点,则双曲线C的离心率e 的取值范围为( )A.⎝⎛⎭⎪⎫62,2 B .(2,+∞) C.⎝ ⎛⎭⎪⎫62,+∞ D.⎝⎛⎭⎪⎫62,2∪(2,+∞) 解析:由⎩⎪⎨⎪⎧x 2a2-y 2=1,x +y =1消去y 并整理得(1-a 2)x 2+2a 2x -2a 2=0.由于直线与双曲线相交于两个不同的点,则1-a 2≠0⇒a 2≠1,且此时Δ=4a 2(2-a 2)>0⇒a 2<2,所以a 2∈(0,1)∪(1,2).另一方面e =1a2+1,则a 2=1e 2-1,从而e ∈⎝ ⎛⎭⎪⎫62,2∪(2,+∞). 答案:D11.以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为( )A .2B .4C .6D .8解析:设抛物线的方程为y 2=2px (p >0),圆的方程为x 2+y 2=r 2. ∵|AB |=42,|DE |=25, 抛物线的准线方程为x =-p2,∴不妨设A ⎝ ⎛⎭⎪⎫4p ,22,D ⎝ ⎛⎭⎪⎫-p 2,5.∵点A ⎝ ⎛⎭⎪⎫4p ,22,D ⎝ ⎛⎭⎪⎫-p 2,5在圆x 2+y 2=r 2上,∴⎩⎪⎨⎪⎧16p 2+8=r 2,p 24+5=r 2,∴16p 2+8=p24+5,∴p =4(负值舍去). ∴C 的焦点到准线的距离为4. 答案:B12.已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点,A ,B 分别为C 的左、右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )A.13B.12C.23D.34解析:如图所示,由题意得A (-a,0),B (a,0),F (-c,0). 设E (0,m ),由PF ∥OE ,得|MF ||OE |=|AF ||AO |,则|MF |=m a -ca.① 又由OE ∥MF ,得12|OE ||MF |=|BO ||BF |,则|MF |=m a +c2a.② 由①②得a -c =12(a +c ),即a =3c ,∴e =c a =13.答案:A二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上) 13.已知F 1,F 2为椭圆x 225+y 29=1的两个焦点,过F 1的直线交椭圆于A ,B 两点,若|F 2A |=|AB |=6,则|F 2B |=________.解析:由椭圆定义知|F 1A |+|F 2A |=|F 1B |+|F 2B |=2a =10,所以|F 1A |=10-|F 2A |=4,|F 1B |=|AB |-|F 1A |=2,故|F 2B |=10-|F 1B |=8.答案:814.已知点P 是抛物线y 2=2x 上的动点,点P 在y 轴上的射影是M ,点A 的坐标是⎝ ⎛⎭⎪⎫72,4,则|PA |+|PM |的最小值是________.解析:设抛物线焦点为F ,则|PM |=|PF |-12,∴|PA |+|PM |=|PA |+|PF |-12.∴当且仅当A ,P ,F 共线时|PA |+|PF |取最小值为|AF |=5,∴|PA |+|PM |最小值为92.答案:9215.设F 1,F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上任一点,点M 的坐标为(6,4),则|PM |+|PF 1|的最大值为________.解析:由椭圆的定义知|PF 1|+|PF 2|=10,|PF 1|=10-|PF 2|,|PM |+|PF 1|=10+|PM |-|PF 2|,易知M 点在椭圆外,连接MF 2并延长交椭圆于点P ,此时|PM |-|PF 2|取最大值|MF 2|,故|PM |+|PF 1|的最大值为10+|MF 2|=10+-2+42=15.答案:1516.已知动点P 与双曲线x 2-y 2=1的两个焦点F 1,F 2的距离之和为定值,且cos ∠F 1PF 2的最小值为-13,则动点P 的轨迹方程为____________.解析:∵x 2-y 2=1,∴c = 2.设|PF 1|+|PF 2|=2a (常数a >0),2a >2c =22, ∴a > 2. 由余弦定理有cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|=PF 1|+|PF 22-2|PF 1||PF 2|-|F 1F 2|22|PF 1||PF 2|=2a 2-4|PF 1||PF 2|-1, ∵|PF 1||PF 2|≤⎝⎛⎭⎪⎫|PF 1|+|PF 2|22=a 2,∴当且仅当|PF 1|=|PF 2|时, |PF 1||PF 2|取得最大值a 2.此时cos ∠F 1PF 2取得最小值2a 2-4a2-1. 由题意2a 2-4a 2-1=-13,解得a 2=3,∴b 2=a 2-c 2=3-2=1. ∴P 点的轨迹方程为x 23+y 2=1.答案:x 23+y 2=1三、解答题(本大题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)设F (1,0),M 点在x 轴上,P 点在y 轴上,且MN ―→=2MP ―→,PM ―→⊥PF ―→,当点P 在y 轴上运动时,求N 点的轨迹C 的方程.解:∵MN ―→=2MP ―→,故P 为MN 中点. 又∵PM ―→⊥PF ―→,P 在y 轴上,F 为(1,0), 故M 在x 轴的负方向上.设N (x ,y ),则M (-x,0),P ⎝ ⎛⎭⎪⎫0,y 2,(x >0).∴PM ―→=⎝ ⎛⎭⎪⎫-x ,-y 2,PF ―→=⎝ ⎛⎭⎪⎫1,-y 2.∵PM ―→⊥PF ―→,∴PM ―→·PF ―→=0,即-x +y 24=0.∴y 2=4x (x >0)是轨迹C 的方程.18.(本小题满分12分)已知双曲线C 的两个焦点坐标分别为F 1(-2,0),F 2(2,0),双曲线C 上一点P 到F 1,F 2距离差的绝对值等于2.(1)求双曲线C 的标准方程;(2)经过点M (2,1)作直线l 交双曲线C 的右支于A ,B 两点,且M 为AB 的中点,求直线l 的方程.解:(1)依题意,得双曲线C 的实半轴长为a =1,焦半距为c =2,所以其虚半轴长b =c 2-a 2= 3.又其焦点在x 轴上,所以双曲线C 的标准方程为x 2-y 23=1.(2)设A ,B 的坐标分别为(x 1,y 1),(x 2,y 2),则⎩⎪⎨⎪⎧3x 21-y 21=3,3x 22-y 22=3,两式相减,得3(x 1-x 2)(x 1+x 2)-(y 1-y 2)(y 1+y 2)=0. 因为M (2,1)为AB 的中点,所以⎩⎪⎨⎪⎧x 1+x 2=4,y 1+y 2=2.所以12(x 1-x 2)-2(y 1-y 2)=0, 即k AB =y 1-y 2x 1-x 2=6. 故AB 所在直线l 的方程为y -1=6(x -2), 即6x -y -11=0.19.(本小题满分12分)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :y 2=2px (p >0)于点P ,M 关于点P 的对称点为N ,连接ON 并延长交C 于点H .(1)求|OH ||ON |;(2)除H 以外,直线MH 与C 是否有其他公共点?说明理由.解:(1)如图,由已知得M (0,t ),P ⎝ ⎛⎭⎪⎫t 22p ,t . 又N 为M 关于点P 的对称点,故N ⎝ ⎛⎭⎪⎫t 2p ,t , 故直线ON 的方程为y =ptx ,将其代入y 2=2px 整理得px 2-2t 2x =0, 解得x 1=0,x 2=2t 2p.因此H ⎝ ⎛⎭⎪⎫2t 2p ,2t .所以N 为OH 的中点,即|OH ||ON |=2.(2)直线MH 与C 除H 以外没有其他公共点. 理由如下:直线MH 的方程为y -t =p 2t x ,即x =2tp(y -t ).代入y 2=2px 得y 2-4ty +4t 2=0,解得y 1=y 2=2t , 即直线MH 与C 只有一个公共点,所以除H 以外,直线MH 与C 没有其他公共点.20.(本小题满分12分)设F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,M 是C 上一点且MF 2与x 轴垂直.直线MF 1与C 的另一个交点为N .(1)若直线MN 的斜率为34,求C 的离心率;(2)若直线MN 在y 轴上的截距为2,且|MN |=5|F 1N |,求a ,b .解:(1)根据a 2-b 2=c 2及题设知M ⎝ ⎛⎭⎪⎫c ,b 2a ,b 2a 2c =34,得2b 2=3ac .将b 2=a 2-c 2代入2b 2=3ac ,解得c a =12,ca=-2(舍去).故C 的离心率为12.(2)设直线MN 与y 轴的交点为D ,由题意,原点O 为F 1F 2的中点,MF 2∥y 轴,所以直线MF 1与y 轴的交点D (0,2)是线段MF 1的中点,故b 2a=4,即b 2=4a .①由|MN |=5|F 1N |得|DF 1|=2|F 1N |. 设N (x 1,y 1),由题意知y 1<0,则⎩⎪⎨⎪⎧-c -x 1=c ,-2y 1=2,即⎩⎪⎨⎪⎧x 1=-32c ,y 1=-1.代入C 的方程,得9c 24a 2+1b 2=1.②将①及a 2-b 2=c 2代入②得a 2-4a 4a 2+14a=1. 解得a =7,b 2=4a =28, 故a =7,b =27.21.(本小题满分12分)已知抛物线C :y 2=2px (p >0)过点A (1,-2). (1)求抛物线C 的方程,并求其准线方程;(2)是否存在平行于OA (O 为坐标原点)的直线l ,使得直线l 与抛物线C 有公共点,且直线OA 与l 的距离等于55?若存在,求直线l 的方程;若不存在,说明理由. 解:(1)将(1,-2)代入y 2=2px ,得(-2)2=2p ·1, 所以p =2.故所求抛物线C 的方程为y 2=4x , 其准线方程为x =-1.(2)假设存在符合题意的直线l , 设其方程为y =-2x +t ,由⎩⎪⎨⎪⎧y =-2x +t ,y 2=4x ,消去x ,得y 2+2y -2t =0.因为直线l 与抛物线C 有公共点,所以Δ=4+8t ≥0,解得t ≥-12.由直线OA 与l 的距离d =55可得|t |5=15, 解得t =±1.因为-1∉⎣⎢⎡⎭⎪⎫-12,+∞,1∈⎣⎢⎡⎭⎪⎫-12,+∞,所以符合题意的直线l 存在,其方程为2x +y -1=0.22.(2017·全国卷Ⅱ)设O 为坐标原点,动点M 在椭圆C :x 22+y 2=1上,过M 作x 轴的垂线,垂足为N ,点P 满足NP ―→= 2 NM ―→.(1)求点P 的轨迹方程;(2)设点Q 在直线x =-3上,且OP ―→·P Q ―→=1.证明:过点P 且垂直于O Q 的直线l 过C 的左焦点F .解:(1)设P (x ,y ),M (x 0,y 0),则N (x 0,0),NP ―→=(x -x 0,y ),NM ―→=(0,y 0). 由NP ―→= 2 NM ―→,得x 0=x ,y 0=22y .因为M (x 0,y 0)在椭圆C 上,所以x 22+y 22=1.因此点P 的轨迹方程为x 2+y 2=2.(2)证明:由题意知F (-1,0).设Q(-3,t ),P (m ,n ), 则O Q ―→=(-3,t ),PF ―→=(-1-m ,-n ), O Q ―→·PF ―→=3+3m -tn ,OP ―→=(m ,n ),P Q ―→=(-3-m ,t -n ). 由OP ―→·P Q ―→=1,得-3m -m 2+tn -n 2=1, 又由(1)知m 2+n 2=2,故3+3m -tn =0. 所以O Q ―→·PF ―→=0,即O Q ―→⊥PF ―→. 又过点P 存在唯一直线垂直于O Q ,所以过点P 且垂直于O Q 的直线l 过C 的左焦点F .精美句子1、善思则能“从无字句处读书”。

人教版高中数学选修1-1第二章2.2圆锥曲线知识点总结

人教版高中数学选修1-1第二章2.2圆锥曲线知识点总结

2 G 圆锥曲线知识点小结圆锥曲线在高考中的地位:圆锥曲线在高考数学中占有十分重要的地位,是高考的重点、热点和难点。

通过以圆锥曲线为载体,与平面向量、导数、数列、不等式、平面几何等知识进行综合,结合数学思想方法,并与高等数学基础知识融为一体,考查学生的数学思维能力及创新能力,其设问形式新颖、有趣、综合性很强。

(1).重视圆锥曲线的标准方程和几何性质与平面向量的巧妙结合。

(2).重视圆锥曲线性质与数列的有机结合。

(3).重视解析几何与立体几何的有机结合。

高考再现:2011年(文22)在平面直角坐标系xOy中,已知椭圆C:+y2= 1.如图所示,斜率为k(k>0)且不过原点的直线l交椭圆C于A、B两点,线段AB的中点为E,射线OE交椭圆C于点G,交直线x=-3于点D(-3,m).(1)求m2+k2的最小值;(2)若∣OG∣=∣OD∣·∣OE∣,①求证:直线l过定点;②试问点B、能否关于x轴对称?若能,求出此时△ABG的外接圆方程;若不能,请说明理由.(理22)已知动直线l与椭圆C:+=1相交于P(x,y),Q(x,112y△2)两个不同点,且OPQ的面积△SOPQ=,其中O为坐标原点.(1)证明:+ 和 + 均为定值;(2)设线段 PQ 的中点为 M ,求∣OM ∣·∣PQ∣的最大值;(3)椭圆 C 上是否存在三点 D,E,G ,使得 △S OD E= △S OD G= S △OEG= ?若存在,判断△DEG 的形状;若不存在,请说明理由.(2009 年山东卷)设 m ∈R,在平面直角坐标系中,已知向量 a =(mx,y+1),向量 b =(x,y-1),a⊥b ,动点 M(x,y)的轨迹为 E.(1)求轨迹 E 的方程,并说明该方程所表示曲线的形状;(2)已知 m=1/4,证明:存在圆心在原点的圆,使得该圆的任意一条切线与轨 迹 E 恒有两个交点 A,B,且 OA⊥OB(O 为坐标原点),并求出该圆的方程;(3)已知 m=1/4,设直线 l 与圆 C:x 2+y 2=R 2(1<R<2)相切于 A ,且 l 与轨迹 E 只有1一个公共点 B ,当 R 为何值时,|A B |取得最大值?并求最大值.11 1一.圆锥曲线的定义:椭圆:平面内与两个定点的距离之和等于定长(大于 )的点的轨迹叫做椭圆。

人教版高中数学选修2-1第二章圆锥曲线与方程小结优质

人教版高中数学选修2-1第二章圆锥曲线与方程小结优质

作业:
复习题
圆锥曲线小结
复习目标
1)掌握椭圆的定义,标准方程和椭圆的 几何性质
2)掌握双曲线的定义,标准方程和双曲 线的几何性质 3)掌握抛物线的定义,标准方程和抛物 线的几何性质
4)能够根据条件利用工具画圆锥曲线的 图形,并了解圆锥曲线的初步应用。
课前热身
(1) 求长轴与短轴之和为20,焦距为4 5 的 椭圆的标准方程_________________
6 已知抛物线的方程为 ,直线 过定点P (-2,1),斜率为 , 为值时,直线 与抛物 线 :只有一个公共点;有两个公共点;没 有公共点? 7 动点C和两个定点A(3,2)和B(-1,5)为顶点 的三角形的面积恒为2,求动点C的轨迹方程. 8 已知长为2a的线段AB,它的一个端点 A在 X 轴上 滑动,另一个端点B只在Y轴的正半轴上滑动,求线 段中点C的轨迹方程.
y
5 4
3
2
P
O
1
1
-1
O
-1
F
2
3
4
5
x
-2
-3
-4
-5
练习
1 求椭圆 16 x2 + 25y2 =400的长轴和短轴的长、离心 率、焦点和顶点坐标。 2
x2 y2 如果方程 1 表示双曲线,求m的取值范围. 2m m1
3 已知双曲线的焦点为F1(-5,0),F2(5,0),双曲线上一点 P到F1、F2的距离的差的绝对值等于6,求双曲线的标 准方程. 4 已知双曲线与椭圆x2+4y2=64共焦点,它的一条渐近线 方程为 ,求此双曲线方程. 5 点M与点F(4,0)的距离比它到直线l:x+5=0的距离小1, 求点M的轨迹方程.

人教新课标版数学高二数学选修1-1第二章《圆锥曲线与方程》章末总结

人教新课标版数学高二数学选修1-1第二章《圆锥曲线与方程》章末总结

第二章章末总结知识点一圆锥曲线的定义和性质对于圆锥曲线的有关问题,要有运用圆锥曲线定义解题的意识,“回归定义”是一种重要的解题策略;应用圆锥曲线的性质时,要注意与数形结合思想、方程思想结合起来.总之,圆锥曲线的定义、性质在解题中有重要作用,要注意灵活运用.例1已知双曲线的焦点在x轴上,离心率为2,F1,F2为左、右焦点,P为双曲线上一点,且∠F1PF2=60°,S△PF1F2=123,求双曲线的标准方程.知识点二直线与圆锥曲线的位置关系直线与圆锥曲线一般有三种位置关系:相交、相切、相离.在直线与双曲线、抛物线的位置关系中有一种情况,即直线与其交于一点和切于一点,二者在几何意义上是截然不同的,反映在代数方程上也是完全不同的,这在解题中既是一个难点也是一个十分容易被忽视的地方.圆锥曲线的切线是圆锥曲线的割线与圆锥曲线的两个交点无限靠近时的极限情况,反映在消元后的方程上,就是一元二次方程有两个相等的实数根,即判别式等于零;而与圆锥曲线有一个交点的直线,是一种特殊的情况(抛物线中与对称轴平行,双曲线中与渐近线平行),反映在消元后的方程上,该方程是一次的.例2如图所示,O为坐标原点,过点P(2,0)且斜率为k的直线l交抛物线y2=2x于M(x1,y1),N(x2,y2)两点.(1)求x1x2与y1y2的值;(2)求证:OM⊥ON.知识点三轨迹问题轨迹是解析几何的基本问题,求解的方法有以下几种:(1)直接法:建立适当的坐标系,设动点为(x,y),根据几何条件直接寻求x、y之间的关系式.(2)代入法:利用所求曲线上的动点与某一已知曲线上的动点的关系,把所求动点转换为已知动点.具体地说,就是用所求动点的坐标x、y来表示已知动点的坐标并代入已知动点满足的曲线的方程,由此即可求得所求动点坐标x、y之间的关系式.(3)定义法:如果所给几何条件正好符合圆、椭圆、双曲线、抛物线等曲线的定义,则可直接利用这些已知曲线的方程写出动点的轨迹方程.(4)参数法:当很难找到形成曲线的动点P(x,y)的坐标x,y所满足的关系式时,借助第三个变量t,建立t和x,t和y的关系式x=φ(t),y=Φ(t),再通过一些条件消掉t就间接地找到了x和y所满足的方程,从而求出动点P(x,y)所形成的曲线的普通方程.例3设点A、B是抛物线y2=4px (p>0)上除原点O以外的两个动点,已知OA⊥OB,OM⊥AB,垂足为M,求点M的轨迹方程,并说明它表示什么曲线?知识点四 圆锥曲线中的定点、定值问题圆锥曲线中的定点、定值问题是高考命题的一个热点,也是圆锥曲线问题中的一个难点,解决这个难点没有常规的方法,但解决这个难点的基本思想是明确的,定点、定值问题必然是在变化中所表现出来的不变的量,那么就可以用变化的量表示问题的直线方程、数量积、比例关系等,这些直线方程、数量积、比例关系不受变化的量所影响的某个点或值,就是要求的定点、定值.化解这类问题难点的关键就是引进变化的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量.例4 若直线l :y =kx +m 与椭圆x 24+y 23=1相交于A 、B 两点(A 、B 不是左、右顶点),A 2为椭圆的右顶点且AA 2⊥BA 2,求证:直线l 过定点.知识点五 圆锥曲线中的最值、范围问题圆锥曲线中的最值、范围问题,是高考热点,主要有以下两种求解策略:(1)平面几何法平面几何法求最值问题,主要是运用圆锥曲线的定义和平面几何知识求解.(2)目标函数法建立目标函数解与圆锥曲线有关的最值问题,是常规方法,其关键是选取适当的变量建立目标函数,然后运用求函数最值的方法确定最值.例5 已知A (4,0),B (2,2)是椭圆x 225+y 29=1内的两定点,点M 是椭圆上的动点,求|MA |+|MB |的最值.例6 已知F 1、F 2为椭圆x 2+y 22=1的上、下两个焦点,AB 是过焦点F 1的一条动弦,求△ABF 2面积的最大值.章末总结 答案重点解读例1 解如图所示,设双曲线方程为x 2a 2-y 2b2=1 (a >0,b >0). ∵e =c a=2,∴c =2a . 由双曲线的定义,得||PF 1|-|PF 2||=2a =c ,在△PF 1F 2中,由余弦定理,得:|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos 60°=(|PF 1|-|PF 2|)2+2|PF 1||PF 2|(1-cos 60°),即4c 2=c 2+|PF 1||PF 2|. ①又S △PF 1F 2=123,∴12|PF 1||PF 2|sin 60°=123, 即|PF 1||PF 2|=48. ②由①②,得c 2=16,c =4,则a =2,b 2=c 2-a 2=12,∴所求的双曲线方程为x 24-y 212=1. 例2 (1)解 过点P (2,0)且斜率为k 的直线方程为:y =k (x -2).把y =k (x -2)代入y 2=2x ,消去y 得k 2x 2-(4k 2+2)x +4k 2=0,由于直线与抛物线交于不同两点,故k 2≠0且Δ=(4k 2+2)2-16k 4=16k 2+4>0,x 1x 2=4,x 1+x 2=4+2k 2, ∵M 、N 两点在抛物线上,∴y 21·y 22=4x 1·x 2=16,而y 1·y 2<0,∴y 1y 2=-4.(2)证明 ∵ OM →=(x 1,y 1),ON →=(x 2,y 2),OM →·ON →=x 1·x 2+y 1·y 2=4-4=0.OM →⊥ON →,即OM ⊥ON .例3 解 设直线OA 的方程为y =kx (k ≠±1,因为当k =±1时,直线AB 的斜率不存在),则直线OB 的方程为y =-x k, 进而可求A ⎝⎛⎭⎫4p k 2,4p k 、B (4pk 2,-4pk ).于是直线AB 的斜率为k AB =k 1-k 2, 从而k OM =k 2-1k, ∴直线OM 的方程为y =k 2-1kx , ① 直线AB 的方程为y +4pk =-k k 2-1(x -4pk 2). ② 将①②相乘,得y 2+4pky =-x (x -4pk 2),即x 2+y 2=-4pky +4pk 2x =4p (k 2x -ky ), ③又k 2x -ky =x ,代入③式并化简,得(x -2p )2+y 2=4p 2.当k=±1时,易求得直线AB的方程为x=4p.故此时点M的坐标为(4p,0),也在(x-2p)2+y2=4p2 (x≠0)上.∴点M的轨迹方程为(x-2p)2+y2=4p2 (x≠0),∴其轨迹是以(2p,0)为圆心,半径为2p的圆,去掉坐标原点.例4证明设A(x1,y1),B(x2,y2),联立⎩⎪⎨⎪⎧y=kx+m,x24+y23=1,得(3+4k2)x2+8mkx+4(m2-3)=0,则⎩⎪⎨⎪⎧Δ=64m2k2-16(3+4k2)(m2-3)>0,x1+x2=-8mk3+4k2,x1x2=4(m2-3)3+4k2.即⎩⎪⎨⎪⎧3+4k2-m2>0,x1+x2=-8mk3+4k2,x1x2=4(m2-3)3+4k2.又y1y2=(kx1+m)(kx2+m)=k2x1x2+mk(x1+x2)+m2=3(m2-4k2)3+4k2.∵椭圆的右顶点为A2(2,0),AA2⊥BA2,∴(x 1-2)(x 2-2)+y 1y 2=0.∴y 1y 2+x 1x 2-2(x 1+x 2)+4=0.∴3(m 2-4k 2)3+4k 2+4(m 2-3)3+4k 2+16mk 3+4k 2+4=0. ∴7m 2+16km +4k 2=0,解得m 1=-2k ,m 2=-2k 7,且均满足3+4k 2-m 2>0. 当m 1=-2k 时,l 的方程为y =k (x -2),直线过定点(2,0),与已知矛盾.当m 2=-2k 7时,l 的方程为y =k ⎝⎛⎭⎫x -27,直线过定点⎝⎛⎭⎫27,0, ∴直线l 过定点.例5 解 因为A (4,0)是椭圆的右焦点,设A ′为椭圆的左焦点,则A ′(-4,0),由椭圆定义知|MA |+|MA ′|=10.如图所示,则|MA |+|MB |=|MA |+|MA ′|+|MB |-|MA ′|=10+|MB |-|MA ′|≤ 10+|A ′B |.当点M 在BA ′的延长线上时取等号.所以当M 为射线BA ′与椭圆的交点时,(|MA |+|MB |)max =10+|A ′B |=10+210.又如图所示,|MA |+|MB |=|MA |+|MA ′|-|MA ′|+|MB |=10-(|MA ′|-|MB |)≥10-|A ′B |,当M 在A ′B 的延长线上时取等号.所以当M 为射线A ′B 与椭圆的交点时, (|MA |+|MB |)min =10-|A ′B |=10-210. 例6 解 由题意,|F 1F 2|=2.设直线AB 方程为y =kx +1,代入椭圆方程2x 2+y 2=2,得(k 2+2)x 2+2kx -1=0,则x A +x B =-2k k 2+2,x A ·x B =-1k 2+2, ∴|x A -x B |=8(k 2+1)k 2+2. S △ABF 2=12|F 1F 2|·|x A -x B | =22×k 2+1k 2+2=22×1k 2+1+1k 2+1≤22×12= 2. 当k 2+1=1k 2+1,即k =0时,S △ABF 2有最大面积为 2.。

高中数学 第2章 圆锥曲线与方程 章末小结(含解析)1数学教案

高中数学 第2章 圆锥曲线与方程 章末小结(含解析)1数学教案

第2章圆锥曲线与方程1.圆锥曲线的标准方程求椭圆、双曲线、抛物线的标准方程包括“定位”和“定量”两方面,一般要先确定焦点的位置,再确定参数,当焦点位置不确定时,要分情况讨论,也可将方程设为一般形式:①椭圆方程为Ax2+By2=1(A>0,B>0,A≠B);②双曲线方程为Ax2+By2=1(AB<0);③抛物线方程为x2=2py(p≠0)或y2=2px(p≠0).2.椭圆、双曲线的离心率求椭圆、双曲线的离心率常用以下两种方法:(1)定义法:由椭圆(双曲线)的标准方程可知,不论椭圆(双曲线)的焦点在x轴上还是y轴上都有关系式a2-b2=c2(a2+b2=c2)以及e=ca,已知其中的任意两个参数,可以求其他的参数,这是基本且常用的方法.(2)方程法:建立参数a与c之间的齐次关系式,从而求出其离心率,这是求离心率的十分重要的思路及方法.3.直线与圆锥曲线的位置关系(1)从几何的角度看,直线和圆锥曲线的位置关系可分为三类:无公共点、仅有一个公共点及有两个相异的公共点.其中,直线与圆锥曲线仅有一个公共点,对于椭圆,表示直线与其相切;对于双曲线,表示与其相切或直线与双曲线的渐近线平行;对于抛物线,表示与其相切或直线与其对称轴平行或重合.(2)从代数的角度看,可通过将表示直线的方程与曲线的方程组成方程组,消元后利用所得形如一元二次方程根的情况来判断.4.求曲线的方程求曲线方程的常用方法有:(1)直接法:建立适当的坐标系,设动点为(x,y),根据几何条件直接寻求x,y之间的关系式.(2)代入法:利用所求曲线上的动点与某一已知曲线上的动点的关系,把所求动点转换为已知动点.具体地说,就是用所求动点的坐标x,y来表示已知动点的坐标并代入已知动点满足的曲线的方程,由此即可求得所求动点坐标x,y之间的关系式.(3)定义法:如果所给几何条件正好符合圆、椭圆、双曲线、抛物线等曲线的定义,则可直接利用这些已知曲线的方程写出动点的轨迹方程.(4)参数法:选择一个(或几个)与动点变化密切相关的量作为参数,用参数表示动点的坐标(x,y),即得动点轨迹的参数方程,消去参数,可得动点轨迹的普通方程.曲线方程的求法[例1] 过原点作圆的弦OA,求OA中点B的轨迹方程.[解] 法一(直接法):设B点坐标为(x,y),由题意,得|OB|2+|BC|2=|OC|2,如图所示,即x 2+y 2+[(x -1)2+y 2]=1, 即OA 中点B 的轨迹方程为⎝⎛⎭⎪⎫x -122+y 2=14(去掉原点).法二(几何法):设B 点坐标为(x ,y ), 由题意知CB ⊥OA ,OC 的中点记为M ⎝ ⎛⎭⎪⎫12,0, 如法一中图,则|MB |=12|OC |=12,故B 点的轨迹方程为⎝⎛⎭⎪⎫x -122+y 2=14(去掉原点).法三(代入法):设A 点坐标为(x 1,y 1),B 点坐标为(x ,y ),由题意得⎩⎪⎨⎪⎧x =x 12,y =y12,即⎩⎪⎨⎪⎧x 1=2x ,y 1=2y .又因为(x 1-1)2+y 21=1,所以(2x -1)2+(2y )2=1.即⎝⎛⎭⎪⎫x -122+y 2=14(去掉原点).法四(交点法):设直线OA 的方程为y =kx ,当k =0时,B 为(1,0);当k ≠0时,直线BC 的方程为: y =-1k(x -1),直线OA ,BC 的方程联立消去k 即得其交点轨迹方程:y 2+x (x -1)=0,即⎝⎛⎭⎪⎫x -122+y 2=14(x ≠0,1),显然B (1,0)满足⎝⎛⎭⎪⎫x -122+y 2=14,故⎝⎛⎭⎪⎫x -122+y 2=14(去掉原点)为所求.(1)解决轨迹问题要明确圆锥曲线的性质,做好对图形变化情况的总体分析,选好相应的解题策略和拟定好具体的方法,注意将动点的几何特性用数学语言表述.(2)要注意一些轨迹问题所包含的隐含条件,也就是曲线上点的坐标的取值范围.1.求与圆x 2+y 2=1外切,且和x 轴相切的动圆圆心M 的轨迹方程.解:设两圆的切点为A ,M 的坐标为(x ,y ),圆M 与x 轴相切于点N ,∴|AM |=|MN |, |MO |-1=|MN |=|y |. ∴x 2+y 2-1=|y |. 化简得:x 2=2|y |+1.∴动圆圆心M 的轨迹方程为x 2=2|y |+1.2.已知定点A (4,0)和圆x 2+y 2=4上的动点B ,点P 分AB 之比为AP ∶PB =2∶1,求点P 的轨迹方程.解:设点P 的坐标为(x ,y ),点B 的坐标为(x 0,y 0),由题意得AP ―→=2PB―→,即(x -4,y )=2(x 0-x ,y 0-y ),∴⎩⎪⎨⎪⎧x -4=2x 0-2x ,y =2y 0-2y ,即⎩⎪⎨⎪⎧x 0=3x -42,y 0=3y 2,代入圆的方程x 2+y 2=4,得⎝ ⎛⎭⎪⎫3x -422+9y 24=4, 即⎝⎛⎭⎪⎫x -432+y 2=169.∴所求轨迹方程为⎝⎛⎭⎪⎫x -432+y 2=169.圆锥曲线的定义及性质问题[例2] F 1,F 2为左、右焦点,P 为双曲线上一点,且∠F 1PF 2=60°,S △PF 1F 2=123,求双曲线的标准方程.[解] 如图所示,设双曲线方程为x 2a 2-y 2b2=1(a>0,b >0).∵e =ca=2,∴c =2a .由双曲线的定义,得||PF1|-|PF2||=2a=c,在△PF1F2中,由余弦定理,得:|F1F2|2=|PF1|2+|PF2|2-2|PF1||PF2|cos 60°=(|PF1|-|PF2|)2+2|PF1||PF2|(1-cos 60°),即4c2=c2+|PF1||PF2|.①又S△PF1F2=123,∴12|PF1||PF2|sin 60°=123,即|PF1||PF2|=48.②由①②,得c2=16,c=4,则a=2,b2=c2-a2=12,∴所求的双曲线方程为x24-y212=1.(1)圆锥曲线的定义是标准方程和几何性质的根源,对于圆锥曲线的有关问题,要有运用圆锥曲线定义解题的意识,“回归定义”是一种重要的解题策略.(2)应用圆锥曲线的性质时,要注意与数形结合思想、方程思想结合起来.3.(2017·全国卷Ⅲ)已知双曲线C:x2a2-y2b2=1(a>0,b>0)的一条渐近线方程为y=52x,且与椭圆x212+y23=1有公共焦点,则C的方程为( )A.x 28-y 210=1 B.x 24-y 25=1C.x 25-y 24=1 D.x 24-y 23=1解析:根据双曲线C 的渐近线方程为y =52x ,可知b a =52.①又椭圆x 212+y 23=1的焦点坐标为(3,0)和(-3,0),所以a 2+b 2=9.②根据①②可知a 2=4,b 2=5, 所以C 的方程为x 24-y 25=1.答案:B4.抛物线y 2=2px (p >0)上有A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)三点,F 是它的焦点,若|AF |,|BF |,|CF |成等差数列,则( )A .x 1,x 2,x 3成等差数列B .y 1,y 2,y 3成等差数列C .x 1,x 3,x 2成等差数列D .y 1,y 3,y 2成等差数列 解析:由抛物线定义:|AF |=|AA ′|,|BF |=|BB ′|,|CF |=|CC ′|.∵2|BF |=|AF |+|CF |, ∴2|BB ′|=|AA ′|+|CC ′|.又∵|AA ′|=x 1+p 2,|BB ′|=x 2+p 2,|CC ′|=x 3+p2,∴2⎝⎛⎭⎪⎫x 2+p 2=x 1+p 2+x 3+p2⇒2x 2=x 1+x 3.答案:A直线与圆锥曲线的位置关系[例3] x 轴上,若右焦点到直线x -y +22=0的距离为3.(1)求椭圆的方程;(2)设椭圆与直线y =kx +m (k ≠0)相交于不同的两点M ,N ,当|AM |=|AN |时,求m 的取值范围.[解] (1)依题意可设椭圆方程为x 2a2+y 2=1(a >1),则右焦点F (a 2-1,0),由题设,知|a 2-1+22|2=3,解得a 2=3,故所求椭圆的方程为x 23+y 2=1.(2)设点P 为弦MN 的中点,由⎩⎪⎨⎪⎧y =kx +m ,x 23+y 2=1,得(3k 2+1)x 2+6mkx +3(m 2-1)=0,由于直线与椭圆有两个交点, 所以Δ>0,即m 2<3k 2+1, ① 所以x P =x M +x N2=-3mk 3k 2+1,从而y P =kx P +m =m3k 2+1,所以k AP =y P +1x P =-m +3k 2+13mk,又|AM |=|AN |,所以AP ⊥MN ,则-m +3k 2+13mk =-1k,即2m =3k 2+1, ②把②代入①得2m >m 2, 解得0<m <2,由②得k 2=2m -13>0,解得m >12,故所求m的取值范围是⎝ ⎛⎭⎪⎫12,2.讨论直线与圆锥曲线的位置关系,一般是将直线方程与圆锥曲线方程联立,组成方程组,消去一个未知数,转化为关于x (或y )的一元二次方程,由根与系数的关系求出x 1+x 2,x 1x 2(或y 1+y 2,y 1y 2)进而解决了与“距离”“中点”等有关的问题.5.设抛物线y 2=4x 截直线y =2x +k 所得弦长|AB |=3 5. (1)求k 的值;(2)以弦AB 为底边,x 轴上的P 点为顶点组成的三角形面积为39时,求点P 的坐标.解:(1)设A (x 1,y 1),B (x 2,y 2).由⎩⎪⎨⎪⎧y =2x +k ,y 2=4x ,得4x 2+4(k -1)x +k 2=0,Δ=16(k -1)2-16k 2>0,∴k <12.又由根与系数的关系有x 1+x 2=1-k ,x 1x 2=k 24,∴|AB |=x 1-x 22+y 1-y 22=1+22·x 1+x 22-4x 1x 2=5·1-2k , 即51-2k =35,∴k =-4.(2)设x 轴上点P (x,0),P 到AB 的距离为d , 则d =|2x -0-4|5=|2x -4|5,S △PAB =12·35·|2x -4|5=39,∴|2x -4|=26,∴x =15或x =-11. ∴P 点坐标为(15,0)或(-11,0).圆锥曲线中的定点、定值、最值问题[例4] (2017·全国卷Ⅲ)已知椭圆C :2a 2+2b2=1(a >b >0),四点P 1(1,1),P 2(0,1),P 3⎝ ⎛⎭⎪⎪⎫-1,32,P 4⎝ ⎛⎭⎪⎪⎫1,32中恰有三点在椭圆C 上.(1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.[解析] (1)由于P 3,P 4两点关于y 轴对称, 故由题设知椭圆C 经过P 3,P 4两点.又由1a 2+1b 2>1a 2+34b 2知,椭圆C 不经过点P 1,所以点P 2在椭圆C 上.因此⎩⎪⎨⎪⎧1b 2=1,1a 2+34b 2=1,解得⎩⎪⎨⎪⎧a 2=4,b 2=1.故椭圆C 的方程为x 24+y 2=1.(2)证明:设直线P 2A 与直线P 2B 的斜率分别为k 1,k 2.如果l 与x 轴垂直,设l :x =t ,由题设知t ≠0,且|t |<2,可得A ,B的坐标分别为⎝⎛⎭⎪⎪⎫t ,4-t 22,⎝ ⎛⎭⎪⎪⎫t ,-4-t 22. 则k 1+k 2=4-t 2-22t -4-t 2+22t =-1,得t =2,不符合题设.从而可设l :y =kx +m (m ≠1). 将y =kx +m 代入x 24+y 2=1得(4k 2+1)x 2+8kmx +4m 2-4=0. 由题设可知Δ=16(4k 2-m 2+1)>0. 设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1.而k 1+k 2=y 1-1x 1+y 2-1x 2=kx 1+m -1x 1+kx 2+m -1x 2=2kx 1x 2+m -1x 1+x 2x 1x 2.由题设k 1+k 2=-1,故(2k +1)x 1x 2+(m -1)(x 1+x 2)=0. 即(2k +1)·4m 2-44k 2+1+(m -1)·-8km4k 2+1=0.解得k =-m +12.当且仅当m >-1时,Δ>0,于是l :y =-m +12x +m ,即y +1=-m +12(x -2),所以l 过定点(2,-1).(1)圆锥曲线中的定点、定值问题往往与圆锥曲线中的“常数”有关,如椭圆的长轴、短轴,双曲线的虚轴、实轴,抛物线的焦点等,可以通过直接计算求解,也可用“特例法”和“相关系数法”.(2)圆锥曲线中的最值问题,通常有两类:一类是有关长度、面积等的最值问题;一类是圆锥曲线中有关几何元素的最值问题,这两类问题的解决往往要通过回归定义,结合几何知识,建立目标函数,利用函数的性质或不等式知识,以及数形结合、设参、转化代换等途径来解决.6.设椭圆x 29+y 24=1上的动点P (x ,y ),点A (a,0)(0<a <3).若|AP |的最小值为1,求a 的值.解:|AP |2=(x -a )2+y 2=(x -a )2+4⎝⎛⎭⎪⎫1-x 29=59⎝ ⎛⎭⎪⎫x -9a 52-4a 25+4.因为x 29=1-y 24,所以x 29≤1,0≤|x |≤3. (1)当0<9a 5≤3,即0<a ≤53时,x =9a 5,|AP |2取最小值4-4a 25=1.解得a =152.因为152>53,所以a 不存在.(2)当9a 5>3,即53<a <3时,x =3,|AP |2取最小值59⎝ ⎛⎭⎪⎫3-9a 52+4-4a25=1.解得a =2或a =4(舍).所以,当a =2时,|AP |的最小值为1.7.过抛物线y 2=2px (p >0)的焦点F 的直线交抛物线于A ,B 两点,点C 在抛物线的准线上,且BC ∥x 轴,证明:直线AC 经过原点O .证明:如图所示.∵抛物线y 2=2px (p >0)的焦点为F ⎝ ⎛⎭⎪⎫p 2,0, ∴经过点F 的直线AB 的方程可设为x =my +p2,代入抛物线方程得y 2-2pmy -p 2=0,设A (x 1,y 1),B (x 2,y 2),则y 1,y 2是该方程的两个根, ∴y 1y 2=-p 2,∵BC ∥x 轴,且点C 在准线x =-p2上,∴点C的坐标为⎝ ⎛⎭⎪⎫-p 2,y 2,故直线CO 的斜率k =y 2-p 2=-2y 2p =y 1x 1,即k 也是直线OA 的斜率, ∴直线AC 经过原点O .(时间120分钟,满分150分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2017·浙江高考)椭圆x 29+y 24=1的离心率是( )A.133B.53C.23D.59解析:根据题意知,a =3,b =2,则c =a 2-b 2=5,∴椭圆的离心率e =c a =53.答案:B2.如果方程x 2+ky 2=2表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( )A .(1,+∞)B .(1,2) C.⎝ ⎛⎭⎪⎫12,1 D .(0,1)解析:由x 2+ky 2=2,得x 22+y 22k=1,又∵椭圆的焦点在y 轴上, ∴2k>2,即0<k <1.答案:D3.若抛物线x 2=2ay 的焦点与椭圆x 23+y 24=1的下焦点重合,则a 的值为( )A .-2B .2C .-4D .4解析:椭圆x 23+y 24=1的下焦点为(0,-1),∴a2=-1,即a =-2. 答案:A4.θ是任意实数,则方程x 2+y 2sin θ=4的曲线不可能是( )A .椭圆B .双曲线C .抛物线D .圆解析:由于θ∈R ,对sin θ的值举例代入判断.sin θ可以等于1,这时曲线表示圆,sin θ可以小于0,这时曲线表示双曲线,sin θ可以大于0且小于1,这时曲线表示椭圆.答案:C5.已知椭圆E 的中心在坐标原点,离心率为12,E 的右焦点与抛物线C :y 2=8x 的焦点重合,A ,B 是C 的准线与E 的两个交点,则|AB |=( )A .3B .6C .9D .12解析:抛物线y 2=8x 的焦点为(2,0), ∴椭圆中c =2,又c a =12,∴a =4,b 2=a 2-c 2=12, 从而椭圆的方程为x 216+y 212=1.∵抛物线y 2=8x 的准线为x =-2, ∴x A =x B =-2,将x A =-2代入椭圆方程可得|y A |=3, 由图象可知|AB |=2|y A |=6.故选B. 答案:B6.设已知抛物线C 的顶点在坐标原点,焦点为F (1,0),过F 的直线l 与抛物线C 相交于A ,B 两点,若直线l 的倾斜角为45°,则弦AB 的中点坐标为( )A .(1,0)B .(2,2)C .(3,2)D .(2,4)解析:依题意得,抛物线C 的方程是y 2=4x ,直线l 的方程是y =x -1.由⎩⎪⎨⎪⎧y 2=4x ,y =x -1,消去y 得(x -1)2=4x ,即x 2-6x +1=0.因此线段AB 的中点的横坐标是62=3,纵坐标是y =3-1=2.所以线段AB 的中点坐标是(3,2).答案:C7.过双曲线x 2a 2-y 2b2=1(a >0,b >0)的左焦点F (-c,0)(c >0)作圆x 2+y 2=a 24的切线,切点为E ,延长FE 交双曲线右支于点P ,若OE―→=12(OF ―→+OP ―→),则双曲线的离心率为( ) A.102B.105C.10D.2解析:设双曲线右焦点为M ,∵OE ⊥PF ,∴在直角三角形OEF 中,|EF |=c 2-a 24.又OE ―→=12(OF ―→+OP ―→),∴E 是PF 的中点.∴|PF |=2c 2-a 24,|PM |=a .又|PF |-|PM |=2a ,∴2c 2-a 24-a =2a .∴离心率e =c a =102.答案:A8.已知|AB ―→|=3,A ,B 分别在y 轴和x 轴上运动,O 为原点,OP ―→=13OA ―→+23OB ―→,则动点P 的轨迹方程是( )A.x 24+y 2=1 B .x 2+y 24=1C.x 29+y 2=1 D .x 2+y 29=1解析:设P (x ,y ),A (0,y 0),B (x 0,0), 由已知得(x ,y )=13(0,y 0)+23(x 0,0),即x =23x 0,y =13y 0,所以x 0=32x ,y 0=3y .因为|AB ―→|=3,所以x 20+y 20=9,即⎝ ⎛⎭⎪⎫32x 2+(3y )2=9, 化简整理得动点P 的轨迹方程是x 24+y 2=1.答案:A9.已知双曲线x 29-y 216=1的左、右焦点分别是F 1,F 2,P 是双曲线上的一点,若|PF 1|=7,则△PF 1F 2最大内角的余弦值为( )A .-17B.17C.59117D.1113解析:由双曲线定义知|PF 2|=|PF 1|±2a . 所以|PF 2|=13或|PF 2|=1<c -a =2(舍去)又|F 1F 2|=10,所以△PF 1F 2的最大内角为∠PF 1F 2, cos ∠PF 1F 2=102+72-1322×10×7=-17.答案:A10.设双曲线C :x 2a2-y 2=1(a >0)与直线l :x +y =1相交于两个不同的点,则双曲线C 的离心率e 的取值范围为( )A.⎝⎛⎭⎪⎪⎫62,2 B .(2,+∞)C.⎝ ⎛⎭⎪⎪⎫62,+∞ D.⎝⎛⎭⎪⎪⎫62,2∪(2,+∞) 解析:由⎩⎪⎨⎪⎧x 2a 2-y 2=1,x +y =1消去y 并整理得(1-a 2)x 2+2a 2x -2a 2=0.由于直线与双曲线相交于两个不同的点,则1-a 2≠0⇒a 2≠1,且此时Δ=4a 2(2-a 2)>0⇒a 2<2,所以a 2∈(0,1)∪(1,2).另一方面e =1a 2+1,则a 2=1e 2-1,从而e ∈⎝⎛⎭⎪⎪⎫62,2∪(2,+∞).答案:D11.以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.已知|AB |=42,|DE |=25,则C 的焦点到准线的距离为( )A .2B .4C .6D .8解析:设抛物线的方程为y 2=2px (p >0),圆的方程为x 2+y 2=r 2.∵|AB |=42,|DE |=25, 抛物线的准线方程为x =-p2,∴不妨设A ⎝ ⎛⎭⎪⎫4p,22,D ⎝ ⎛⎭⎪⎫-p 2,5. ∵点A ⎝ ⎛⎭⎪⎫4p ,22,D ⎝ ⎛⎭⎪⎫-p 2,5在圆x 2+y 2=r 2上,∴⎩⎪⎨⎪⎧16p 2+8=r 2,p 24+5=r 2,∴16p 2+8=p24+5,∴p =4(负值舍去).∴C 的焦点到准线的距离为4. 答案:B12.已知O 为坐标原点,F 是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点,A ,B 分别为C 的左、右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )A.13 B.12 C.23D.34解析:如图所示,由题意得A (-a,0),B (a,0),F (-c,0). 设E (0,m ),由PF ∥OE ,得|MF ||OE |=|AF ||AO |,则|MF |=m a -ca.①又由OE ∥MF ,得12|OE ||MF |=|BO ||BF |,则|MF |=m a +c2a.②由①②得a -c =12(a +c ),即a =3c ,∴e =c a =13.答案:A二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.已知F 1,F 2为椭圆x 225+y 29=1的两个焦点,过F 1的直线交椭圆于A ,B 两点,若|F 2A |=|AB |=6,则|F 2B |=________.解析:由椭圆定义知|F 1A |+|F 2A |=|F 1B |+|F 2B |=2a =10,所以|F 1A |=10-|F 2A |=4,|F 1B |=|AB |-|F 1A |=2,故|F 2B |=10-|F 1B |=8.答案:814.已知点P 是抛物线y 2=2x 上的动点,点P 在y 轴上的射影是M ,点A的坐标是⎝ ⎛⎭⎪⎫72,4,则|PA |+|PM |的最小值是________.解析:设抛物线焦点为F ,则|PM |=|PF |-12,∴|PA |+|PM |=|PA |+|PF |-12.∴当且仅当A ,P ,F 共线时|PA |+|PF |取最小值为|AF |=5,∴|PA |+|PM |最小值为92.答案:9215.设F 1,F 2分别是椭圆x 225+y 216=1的左、右焦点,P 为椭圆上任一点,点M 的坐标为(6,4),则|PM |+|PF 1|的最大值为________.解析:由椭圆的定义知|PF 1|+|PF 2|=10,|PF 1|=10-|PF 2|,|PM |+|PF 1|=10+|PM |-|PF 2|,易知M 点在椭圆外,连接MF 2并延长交椭圆于点P ,此时|PM |-|PF 2|取最大值|MF 2|,故|PM |+|PF 1|的最大值为10+|MF 2|=10+6-32+42=15.答案:1516.已知动点P 与双曲线x 2-y 2=1的两个焦点F 1,F 2的距离之和为定值,且cos ∠F 1PF 2的最小值为-13,则动点P 的轨迹方程为____________.解析:∵x 2-y 2=1,∴c = 2.设|PF 1|+|PF 2|=2a (常数a >0),2a >2c =22, ∴a > 2. 由余弦定理有cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|=|PF 1|+|PF 2|2-2|PF 1||PF 2|-|F 1F 2|22|PF 1||PF 2|=2a 2-4|PF 1||PF 2|-1, ∵|PF 1||PF 2|≤⎝⎛⎭⎪⎫|PF 1|+|PF 2|22=a 2, ∴当且仅当|PF 1|=|PF 2|时, |PF 1||PF 2|取得最大值a 2.此时cos ∠F 1PF 2取得最小值2a 2-4a2-1.由题意2a 2-4a 2-1=-13,解得a 2=3,∴b 2=a 2-c 2=3-2=1.∴P 点的轨迹方程为x 23+y 2=1.答案:x 23+y 2=1三、解答题(本大题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)设F (1,0),M 点在x 轴上,P 点在y轴上,且MN ―→=2MP ―→,PM ―→⊥PF ―→,当点P 在y 轴上运动时,求N 点的轨迹C 的方程.解:∵MN ―→=2MP ―→,故P 为MN 中点.又∵PM ―→⊥PF ―→,P 在y 轴上,F 为(1,0), 故M 在x 轴的负方向上.设N (x ,y ),则M (-x,0),P ⎝ ⎛⎭⎪⎫0,y 2,(x >0).∴PM ―→=⎝ ⎛⎭⎪⎫-x ,-y 2,PF ―→=⎝⎛⎭⎪⎫1,-y 2.∵PM ―→⊥PF ―→,∴PM ―→·PF―→=0,即-x +y 24=0.∴y 2=4x (x >0)是轨迹C 的方程.18.(本小题满分12分)已知双曲线C 的两个焦点坐标分别为F 1(-2,0),F 2(2,0),双曲线C 上一点P 到F 1,F 2距离差的绝对值等于2.(1)求双曲线C 的标准方程;(2)经过点M (2,1)作直线l 交双曲线C 的右支于A ,B 两点,且M 为AB 的中点,求直线l 的方程.解:(1)依题意,得双曲线C 的实半轴长为a =1,焦半距为c =2,所以其虚半轴长b =c 2-a 2= 3.又其焦点在x 轴上,所以双曲线C 的标准方程为x 2-y 23=1.(2)设A ,B 的坐标分别为(x 1,y 1),(x 2,y 2),则⎩⎪⎨⎪⎧3x 21-y 21=3,3x 22-y 22=3,两式相减,得3(x 1-x 2)(x 1+x 2)-(y 1-y 2)(y 1+y 2)=0. 因为M (2,1)为AB 的中点,所以⎩⎪⎨⎪⎧x 1+x 2=4,y 1+y 2=2.所以12(x 1-x 2)-2(y 1-y 2)=0,即k AB =y 1-y 2x 1-x 2=6.故AB 所在直线l 的方程为y -1=6(x -2), 即6x -y -11=0.19.(本小题满分12分)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :y 2=2px (p >0)于点P ,M 关于点P 的对称点为N ,连接ON 并延长交C 于点H .(1)求|OH ||ON |;(2)除H 以外,直线MH 与C 是否有其他公共点?说明理由. 解:(1)如图,由已知得M (0,t ),P ⎝ ⎛⎭⎪⎫t 22p ,t . 又N 为M 关于点P 的对称点,故N ⎝ ⎛⎭⎪⎫t 2p ,t , 故直线ON 的方程为y =ptx ,将其代入y 2=2px 整理得px 2-2t 2x =0,解得x 1=0,x 2=2t2p.因此H ⎝⎛⎭⎪⎫2t 2p,2t .所以N 为OH 的中点,即|OH ||ON |=2.(2)直线MH 与C 除H 以外没有其他公共点. 理由如下:直线MH 的方程为y -t =p 2t x ,即x =2tp(y -t ).代入y 2=2px 得y 2-4ty +4t 2=0,解得y 1=y 2=2t , 即直线MH 与C 只有一个公共点,所以除H 以外,直线MH 与C 没有其他公共点.20.(本小题满分12分)设F 1,F 2分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,M 是C 上一点且MF 2与x 轴垂直.直线MF 1与C 的另一个交点为N .(1)若直线MN 的斜率为34,求C 的离心率;(2)若直线MN 在y 轴上的截距为2,且|MN |=5|F 1N |,求a ,b .解:(1)根据a 2-b 2=c 2及题设知M ⎝⎛⎭⎪⎫c ,b 2a ,b 2a 2c =34,得2b 2=3ac .将b 2=a 2-c 2代入2b 2=3ac ,解得c a =12,ca=-2(舍去).故C 的离心率为12.(2)设直线MN 与y 轴的交点为D ,由题意,原点O 为F 1F 2的中点,MF 2∥y 轴,所以直线MF 1与y 轴的交点D (0,2)是线段MF 1的中点,故b 2a=4,即b 2=4a .①由|MN |=5|F 1N |得|DF 1|=2|F 1N |. 设N (x 1,y 1),由题意知y 1<0,则⎩⎪⎨⎪⎧2-c -x 1=c ,-2y 1=2,即⎩⎪⎨⎪⎧x 1=-32c ,y 1=-1.代入C 的方程,得9c 24a 2+1b 2=1.②将①及a 2-b 2=c 2代入②得9a 2-4a 4a 2+14a=1. 解得a =7,b 2=4a =28, 故a =7,b =27.21.(本小题满分12分)已知抛物线C :y 2=2px (p >0)过点A (1,-2).(1)求抛物线C 的方程,并求其准线方程;(2)是否存在平行于OA (O 为坐标原点)的直线l ,使得直线l 与抛物线C 有公共点,且直线OA 与l 的距离等于55?若存在,求直线l 的方程;若不存在,说明理由.解:(1)将(1,-2)代入y 2=2px ,得(-2)2=2p ·1, 所以p =2.故所求抛物线C 的方程为y 2=4x , 其准线方程为x =-1.(2)假设存在符合题意的直线l , 设其方程为y =-2x +t ,由⎩⎪⎨⎪⎧y =-2x +t ,y 2=4x ,消去x ,得y 2+2y -2t =0.因为直线l 与抛物线C 有公共点, 所以Δ=4+8t ≥0,解得t ≥-12.由直线OA 与l 的距离d =55可得|t |5=15,解得t =±1.因为-1∉⎣⎢⎡⎭⎪⎫-12,+∞,1∈⎣⎢⎡⎭⎪⎫-12,+∞,所以符合题意的直线l 存在,其方程为2x +y -1=0.22.(2017·全国卷Ⅱ)设O 为坐标原点,动点M 在椭圆C :x 22+y 2=1上,过M 作x 轴的垂线,垂足为N ,点P 满足NP ―→= 2 NM―→.(1)求点P 的轨迹方程;(2)设点Q 在直线x =-3上,且OP ―→·P Q ―→=1.证明:过点P 且垂直于O Q 的直线l 过C 的左焦点F .解:(1)设P (x ,y ),M (x 0,y 0),则N (x 0,0),NP ―→=(x -x 0,y ),NM ―→=(0,y 0).由NP ―→= 2 NM ―→,得x 0=x ,y 0=22y .因为M (x 0,y 0)在椭圆C 上,所以x 22+y 22=1.因此点P 的轨迹方程为x 2+y 2=2.(2)证明:由题意知F (-1,0).设Q(-3,t ),P (m ,n ), 则O Q ―→=(-3,t ),PF ―→=(-1-m ,-n ),O Q ―→·PF―→=3+3m -tn , OP ―→=(m ,n ),P Q ―→=(-3-m ,t -n ). 由OP ―→·P Q ―→=1,得-3m -m 2+tn -n 2=1,又由(1)知m 2+n 2=2,故3+3m -tn =0. 所以O Q ―→·PF ―→=0,即O Q ―→⊥PF ―→. 又过点P 存在唯一直线垂直于O Q ,所以过点P 且垂直于O Q 的直线l 过C 的左焦点F .。

第二章圆锥曲线与方程-章末归纳总结-课件

第二章圆锥曲线与方程-章末归纳总结-课件

量a、b、c满足a2+b2=c2.
3.椭圆离心率 e∈(0,1) ,双曲线离心率 e∈(1,+ ∞ ) ,抛 物线离心率e=1.
第二章
圆锥曲线与方程
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 · 选修2-1
4. 求圆锥曲线的标准方程时, 一定要先区别焦点在哪个轴 上,选取合适的形式. 5.由标准方程判断椭圆、双曲线的焦点位置时,椭圆看分 母的大小,双曲线看 x2,y2 系数的符号. x2 y2 b 6.双曲线a2-b2=1(a>0,b>0)的渐近线方程为 y=± ax; y2 x2 a 双曲线a2-b2=1(a>0,b>0)的渐近线方程为 y=± bx. 7. 直线与双曲线、 直线与抛物线有一个公共点应有两种情 况:一是相切;二是直线与双曲线的渐近线平行、直线与抛物 线的对称轴平行.
第二章
圆锥曲线与方程
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 · 选修2-1
x2 y 2 [解析] (1)设椭圆方程为a2+b2=1,(a>0,b>0), c 1 ∵c=1,a=2, ∴a=2,b= 3, x2 y2 ∴所求椭圆方程为 4 + 3 =1.
第二章
圆锥曲线与方程
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 · 选修2-1
第二章
圆锥曲线与方程
成才之路 ·高中新课程 ·学习指导 ·人教A版 ·数学 · 选修2-1
8.(2014· 康杰中学、临汾一中、忻州一中、长治二中四校 联考)已知椭圆 C 的中心在原点,焦点在 x 轴上,焦距为 2,离 1 心率为2. (1)求椭圆 C 的方程; (2)设直线 l 经过点 M(0,1),且与椭圆 C 交于 A,B 两点, → → 若AM=2MB,求直线 l 的方程.

第二章圆锥曲线与方程 章末归纳整合 课件

第二章圆锥曲线与方程 章末归纳整合 课件

之间的关系式.
(3)定义法:如果所给几何条件正好符合圆、椭圆、双曲线、抛物线等曲线 的定义,则可直接利用这些已知曲线的方程写出动点的轨迹方程.
(4)参数法:当很难找到形成曲线的动点P(x,y)的坐标x,
y所满足的关系式时,借助第三个变量t,建立t和x,t和y的关 系式x=φ(t),y=φ(t),再通过一些条件消掉t就间接地找到了x 和y所满足的方程,从而求出动点P(x,y)所形成的曲线的普通 方程. (5)交轨法:有些情况下,所求的曲线是由两条动直线的 交点P(x,y)所形成的,既然是动直线,那么这两条直线的方程 就必然含有变动的参数,通过解两直线方程所组成的方程组,
就能将交点P(x,y)的坐标用这些参数表达出来,也就求出了动
点P(x,y)所形成的曲线的参数方程,消掉参数就得到了动点 P(x,y)所形成的曲线的普通方程.
专题三
求曲线的方程
求曲线方程是解析几何的基本问题之一,其基本方法有:
(1)直接法:建立适当的坐标系,设动点为(x,y),根据几何条件直接寻求x、 y之间的关系式. (2)代入法:利用所求曲线上的动点与某一已知曲线上的动点的关系,把所 求动点转换为已知动点.具体地说,就是用所求动点的坐标x、y来表示已知动 点的坐标并代入已知动点满足的曲线的方程,由此即可求得所求动点坐标x、y
【例 1】 如图所示,已知双曲线的焦点 在 x 轴上,离心率为 2,F1,F2 为左、右焦 点.P 为双曲线上一点,且∠F1PF2=60° , S PF1F2 =12 3,求双曲线的标准方程.
x2 y2 解:设双曲线的标准方程为a2-b2=1(a>0,b>0). c ∵ e=a=2,∴ c=2a. 由双曲线的定义有||PF1|-|PF2||=2a=c, 在△ PF1F2 中,由余弦定理,得|F1F2|2=|PF1|2+|PF2|2 -2|PF1||PF2|cos 60° =(|PF1|-|PF2|)2+2|PF1|· |PF2|· (1-cos 60° ), 即 4c2=c2+|PF1||PF2|.① 又 S PF1F2 =12 3 1 所以2|PF1||PF2|sin 60° =12 3,即|PF1||PF2|=48② 由①②得,c2=16,c=4,则 a=2,b2=c2-a2=12. x2 y2 所以所求的双曲线的标准方程为 4 -12=1.

高中数学 第二章 圆锥曲线与方程章末总结 新人教A版选

高中数学 第二章 圆锥曲线与方程章末总结 新人教A版选

第二章圆锥曲线与方程章末总结知识点一圆锥曲线的定义和性质对于圆锥曲线的有关问题,要有运用圆锥曲线定义解题的意识,“回归定义”是一种重要的解题策略;应用圆锥曲线的性质时,要注意与数形结合思想、方程思想结合起来.总之,圆锥曲线的定义、性质在解题中有重要作用,要注意灵活运用.例1已知双曲线的焦点在x轴上,离心率为2,F1,F2为左、右焦点,P为双曲线上一点,且∠F1PF2=60°,S△PF1F2=123,求双曲线的标准方程.知识点二直线与圆锥曲线的位置关系直线与圆锥曲线一般有三种位置关系:相交、相切、相离.在直线与双曲线、抛物线的位置关系中有一种情况,即直线与其交于一点和切于一点,二者在几何意义上是截然不同的,反映在代数方程上也是完全不同的,这在解题中既是一个难点也是一个十分容易被忽视的地方.圆锥曲线的切线是圆锥曲线的割线与圆锥曲线的两个交点无限靠近时的极限情况,反映在消元后的方程上,就是一元二次方程有两个相等的实数根,即判别式等于零;而与圆锥曲线有一个交点的直线,是一种特殊的情况(抛物线中与对称轴平行,双曲线中与渐近线平行),反映在消元后的方程上,该方程是一次的.例2如图所示,O为坐标原点,过点P(2,0)且斜率为k的直线l交抛物线y2=2x于M(x1,y1),N(x2,y2)两点.(1)求x1x2与y1y2的值;(2)求证:OM⊥ON.知识点三轨迹问题轨迹是解析几何的基本问题,求解的方法有以下几种:(1)直接法:建立适当的坐标系,设动点为(x,y),根据几何条件直接寻求x、y之间的关系式.(2)代入法:利用所求曲线上的动点与某一已知曲线上的动点的关系,把所求动点转换为已知动点.具体地说,就是用所求动点的坐标x、y来表示已知动点的坐标并代入已知动点满足的曲线的方程,由此即可求得所求动点坐标x、y之间的关系式.(3)定义法:如果所给几何条件正好符合圆、椭圆、双曲线、抛物线等曲线的定义,则可直接利用这些已知曲线的方程写出动点的轨迹方程.(4)参数法:当很难找到形成曲线的动点P(x,y)的坐标x,y所满足的关系式时,借助第三个变量t,建立t和x,t和y的关系式x=φ(t),y=Φ(t),再通过一些条件消掉t 就间接地找到了x和y所满足的方程,从而求出动点P(x,y)所形成的曲线的普通方程.例3设点A、B是抛物线y2=4px (p>0)上除原点O以外的两个动点,已知OA⊥OB,OM⊥AB,垂足为M,求点M的轨迹方程,并说明它表示什么曲线?知识点四圆锥曲线中的定点、定值问题圆锥曲线中的定点、定值问题是高考命题的一个热点,也是圆锥曲线问题中的一个难点,解决这个难点没有常规的方法,但解决这个难点的基本思想是明确的,定点、定值问题必然是在变化中所表现出来的不变的量,那么就可以用变化的量表示问题的直线方程、数量积、比例关系等,这些直线方程、数量积、比例关系不受变化的量所影响的某个点或值,就是要求的定点、定值.化解这类问题难点的关键就是引进变化的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量.例4若直线l :y =kx +m 与椭圆x 24+y 23=1相交于A 、B 两点(A 、B 不是左、右顶点),A 2为椭圆的右顶点且AA 2⊥BA 2,求证:直线l 过定点.知识点五 圆锥曲线中的最值、范围问题圆锥曲线中的最值、范围问题,是高考热点,主要有以下两种求解策略: (1)平面几何法平面几何法求最值问题,主要是运用圆锥曲线的定义和平面几何知识求解. (2)目标函数法建立目标函数解与圆锥曲线有关的最值问题,是常规方法,其关键是选取适当的变量建立目标函数,然后运用求函数最值的方法确定最值. 例5已知A(4,0),B(2,2)是椭圆x225+y29=1内的两定点,点M是椭圆上的动点,求|MA|+|MB|的最值.例6已知F 1、F 2为椭圆x 2+y 22=1的上、下两个焦点,AB 是过焦点F 1的一条动弦,求△ABF 2面积的最大值.章末总结 答案重点解读 例1 解如图所示,设双曲线方程为x 2a2-y 2b2=1 (a >0,b >0). ∵e =c a=2,∴c =2a .由双曲线的定义,得||PF 1|-|PF 2||=2a =c ,在△PF 1F 2中,由余弦定理,得:|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos 60°=(|PF 1|-|PF 2|)2+2|PF 1||PF 2|(1-cos 60°),即4c 2=c 2+|PF 1||PF 2|. ① 又S △PF 1F 2=123, ∴12|PF 1||PF 2|sin 60°=123, 即|PF 1||PF 2|=48. ②由①②,得c 2=16,c =4,则a =2,b 2=c 2-a 2=12, ∴所求的双曲线方程为x 24-y 212=1.例2 (1)解 过点P (2,0)且斜率为k 的直线方程为:y =k (x -2).把y =k (x -2)代入y 2=2x ,消去y 得k 2x 2-(4k 2+2)x +4k 2=0, 由于直线与抛物线交于不同两点,故k 2≠0且Δ=(4k 2+2)2-16k 4=16k 2+4>0,x 1x 2=4,x 1+x 2=4+2k2,∵M 、N 两点在抛物线上, ∴y 21·y 22=4x 1·x 2=16, 而y 1·y 2<0,∴y 1y 2=-4.(2)证明 ∵ OM →=(x 1,y 1),ON →=(x 2,y 2), OM →·ON →=x 1·x 2+y 1·y 2=4-4=0. OM →⊥ON →,即OM ⊥ON .例3 解 设直线OA 的方程为y =kx (k ≠±1,因为当k =±1时,直线AB 的斜率不存在),则直线OB 的方程为y =-x k,进而可求A ⎝⎛⎭⎪⎫4p k 2,4p k 、B (4pk 2,-4pk ). 于是直线AB 的斜率为k AB =k1-k2,从而k OM =k 2-1k,∴直线OM 的方程为y =k 2-1k x , ①直线AB 的方程为y +4pk =-k k 2-1(x -4pk 2). ②将①②相乘,得y 2+4pky =-x (x -4pk 2),即x 2+y 2=-4pky +4pk 2x =4p (k 2x -ky ), ③又k 2x -ky =x ,代入③式并化简,得(x -2p )2+y 2=4p 2.当k =±1时,易求得直线AB 的方程为x =4p .故此时点M 的坐标为(4p,0),也在(x -2p )2+y 2=4p 2(x ≠0)上.∴点M的轨迹方程为(x-2p)2+y2=4p2 (x≠0),∴其轨迹是以(2p,0)为圆心,半径为2p的圆,去掉坐标原点.例4证明设A(x1,y1),B (x 2,y 2), 联立⎩⎪⎨⎪⎧y =kx +m ,x 24+y23=1,得(3+4k 2)x 2+8mkx +4(m 2-3)=0,则⎩⎪⎨⎪⎧Δ=64m 2k 2-163+4k 2m 2-3>0,x 1+x 2=-8mk 3+4k 2,x 1x 2=4m 2-33+4k2.即⎩⎪⎨⎪⎧3+4k 2-m 2>0,x 1+x 2=-8mk 3+4k 2,x 1x 2=4m 2-33+4k2.又y 1y 2=(kx 1+m )(kx 2+m ) =k 2x 1x 2+mk (x 1+x 2)+m 2=3m 2-4k 23+4k2. ∵椭圆的右顶点为A 2(2,0),AA 2⊥BA 2, ∴(x 1-2)(x 2-2)+y 1y 2=0. ∴y 1y 2+x 1x 2-2(x 1+x 2)+4=0.∴3m 2-4k 23+4k 2+4m 2-33+4k 2+16mk 3+4k 2+4=0.∴7m 2+16km +4k 2=0,解得m 1=-2k ,m 2=-2k 7,且均满足3+4k 2-m 2>0.当m 1=-2k 时,l 的方程为y =k (x -2), 直线过定点(2,0),与已知矛盾.当m 2=-2k 7时,l 的方程为y =k ⎝ ⎛⎭⎪⎫x -27,直线过定点⎝ ⎛⎭⎪⎫27,0, ∴直线l 过定点.例5解因为A(4,0)是椭圆的右焦点,设A′为椭圆的左焦点,则A′(-4,0),由椭圆定义知|MA|+|MA′|=10.如图所示,则|MA|+|MB|=|MA|+|MA′|+|MB|-|MA′|=10+|MB|-|MA′|≤10+|A′B|.当点M在BA′的延长线上时取等号.所以当M为射线BA′与椭圆的交点时,(|MA|+|MB|)max=10+|A′B|=10+210.又如图所示,|MA|+|MB|=|MA|+|MA′|-|MA′|+|MB|=10-(|MA′|-|MB|)≥10-|A′B|,当M在A′B的延长线上时取等号.所以当M为射线A′B与椭圆的交点时,(|MA|+|MB|)min=10-|A′B|=10-210.例6解 由题意,|F 1F 2|=2.设直线AB 方程为y =kx +1,代入椭圆方程2x 2+y 2=2,得(k 2+2)x 2+2kx -1=0,则x A +x B =-2k k 2+2,x A ·x B =-1k 2+2,∴|x A -x B |=8k 2+1k 2+2.S △ABF 2=12|F 1F 2|·|x A -x B | =22×k 2+1k 2+2=22×1k 2+1+1k 2+1≤22×12= 2.当k 2+1=1k 2+1,即k =0时,S △ABF 2有最大面积为 2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

e决定开口大小
二、待定系数法求圆锥曲线的标准方程 (1)椭圆、双曲线的标准方程 求椭圆、双曲线的标准方程包括“定位”和“定量”两方 面,一般先确定焦点的位置,再确定参数,当焦点位置不确 定时,要分情况讨论,也可将方程设为一般形式:椭圆方程 1 1 为 Ax +By =1(A>0,B>0,A≠B),其中当A>B时,焦点在 x
y2=2px(p>0)
返回
椭圆 关系式 a2-b2=c2
双曲线 a2+b2=c2 无限延展,但 有渐近线
抛物线 无限延展,没 有渐近线 无对称中心 一条对称轴 一个 e=1 2p决定开口大 小 返回
图形
对称性 顶点 离心率 决定形状 的因素
封闭图形
对称中心为原点 两条对称轴 四个 e=,且0<e<1 e决定扁平程 度 两个 e=,且e>1
根的判别式、根与系数的关系、函数的单调性、不等式、 平面向量等知识综合,分析这类问题,往往利用“数形结 合”的思想方法,或“设而不求”的方法求解. 返回
点击下图进入“阶段质量检测”
返回
2 2 2 2
其他的参数,这是基本且常用的方法. (2)方程法: 建立参数 a 与 c 之间的齐次关系式, 从而求 出其离心率,这是求离心率的十分重要的思路及方法.
返回
(3)几何法:求与过焦点的三角形有关的离心率问题, 根据平面几何性质以及椭圆(双曲线)的定义、几何性质, 建立参数之间的关系.通过画出图形,观察线段之间的关 系,使问题更形象、直观.
2 2
1 轴上,当A<B时,焦点在 y 轴上;双曲线方程为 Ax2+By2= 1(AB<0),当 A<0 时,焦点在 y 轴上,当 B<0 时,焦点在 x 轴上.
返回
另外, 在求双曲线的标准方程的过程中,根据不同 的已知条件采取相应方法设方程,常常可以简化解题过 x2 y2 程,避免出错.如:与已知双曲线 2 - 2 =1(a>0,b>0)共 a b x2 y2 渐近线的双曲线方程可设为 2- 2=λ(λ≠0);已知所求双曲 a b 线为等轴双曲线,其方程可设为x2-y2=λ(λ≠0).
第 二 章 圆 锥 曲 线 与 方 程
章 末 小 结
核心要点归纳
阶段质量检测
返回
返回
一、椭圆、双曲线、抛物线的定义、标准方程、几何性质
椭圆 双曲线 抛物线 平面内与一个定 点 F 和一条定直 线 l(l 不经过点 F) 距离相等的点的 轨迹 平面内与两个 平面内与两个定 定点 F1,F2 的 点 F1, 2 的距离的 F 定义 距离之和等于 差的绝对值等于 常 数 ( 大 于 常数(小于|F1F2|且 |F1F2|)的点的轨 大 于零 )的 点的轨 迹 标准 方程 x2 y2 + = a2 b2 1(a>b>0) 迹 x2 y 2 - =1 a2 b2 (a>0,b>0)
返回
(2)抛物线的标准方程 求抛物线的标准方程时,先确定抛物线的方程类型, 再由条件求出参数p的大小.当焦点位置不确定时,要分情 况讨论,也可将焦点在x轴或y轴上的抛物线方程设为一般 形式y2=2px(p≠0)或x2=2py(p≠0),然后建立方程求出参数p 的值.
返回
三、求离心率的方法 (1)定义法:由椭圆(双曲线)的标准方程可知,不论椭圆 (双曲线)的焦点在 x 轴上还是 y 轴上都有关系式 a2-b2= c c (a +b =c )以及 e=a,已知其中的任意两个参数,可以求
返回
四、直线与圆锥曲线的位置关系
(1)直线与圆锥曲线问题,是高考对圆锥曲线考查的重
点和难点,也是历年考查的热点,是每年高考试卷上都会 出现的一个知识点.直线与圆锥曲线问题包括两大类:① 直线与圆锥曲线位置关系的判定;②直线与圆锥曲线相交 而产生的弦长问题、中点问题、范围问题、最值问题等.
(2)这类问题往往综合性强,注重与一元二次方程中的
相关文档
最新文档