金属材料力学性能检测
金属行业金属材料的力学性能测试方法
金属行业金属材料的力学性能测试方法金属材料的力学性能测试是金属行业中非常重要的一项工作,它可以用来评估金属材料的力学性能,帮助我们了解这些材料在实际应用中的表现和可靠性。
本文将介绍几种常用的金属材料力学性能测试方法,并对其原理和应用进行详细说明。
一、拉伸试验拉伸试验是测量金属材料在拉伸过程中的力学性能的一种常用方法。
它通过施加拉伸载荷并记录应力和应变的变化来评估材料的强度、延展性和韧性等指标。
在拉伸试验中,常用的测试参数包括屈服强度、断裂强度、断裂延伸率等。
二、硬度测试硬度测试是评估金属材料硬度的方法之一,它可以用来衡量金属材料抵抗形变和破坏的能力。
常见的硬度测试方法有洛氏硬度测试、巴氏硬度测试和维氏硬度测试等。
这些测试方法都通过施加一定压力并测量材料表面的印痕或弹痕来评估材料的硬度。
三、冲击试验冲击试验是评估金属材料在受冲击载荷下的抗冲击性能的方法之一。
常用的冲击试验方法包括冲击弯曲试验和冲击拉伸试验等。
这些试验通过施加冲击力并记录材料的断裂形态和断裂能量来评估材料的韧性和抗冲击能力。
四、压缩试验压缩试验是测量金属材料在受压载荷下的力学性能的方法之一。
它可以用来评估金属材料的强度、稳定性和抗压能力等指标。
在压缩试验中,常用的测试参数包括屈服强度、最大压缩应力和压缩模量等。
五、扭转试验扭转试验是测量金属材料在扭转载荷下的力学性能的一种常用方法。
它可以用来评估金属材料的刚度、强度和韧性等指标。
在扭转试验中,通过施加扭矩并记录应力和应变的变化来评估材料的扭转性能。
总结:金属行业中,对金属材料的力学性能进行测试是非常重要的工作。
本文介绍了几种常用的金属材料力学性能测试方法,包括拉伸试验、硬度测试、冲击试验、压缩试验和扭转试验等。
通过这些测试方法,我们可以全面了解金属材料的力学性能,为金属行业的生产和应用提供科学的依据。
在实际应用中,可以根据具体需求选择合适的测试方法,以确保金属材料的安全可靠性。
金属材料的力学性能与测试方法
金属材料的力学性能与测试方法导语:金属材料作为一种重要的结构材料,其力学性能对于工程设计和材料选择具有重要的影响。
本文将介绍金属材料的力学性能参数及其测试方法,以及测试过程中需要注意的问题。
一、金属材料的力学性能参数金属材料的力学性能参数主要包括强度、延展性、硬度、韧性、疲劳性和冷加工性等。
1. 强度强度是金属材料的抗拉、抗压、抗弯或剪切等力学性能的表征。
常见的强度参数有屈服强度、抗拉强度、抗压强度和抗弯强度等。
屈服强度指的是金属材料开始产生塑性变形时所经受的最大应力;抗拉强度指的是金属材料在拉伸断裂之前能承受的最大应力。
2. 延展性延展性是材料在拉伸过程中的塑性变形能力。
常见的延展性参数有延伸率和断面收缩率等。
延伸率是指金属样品在拉伸过程中断裂前的伸长程度;断面收缩率是指拉伸断裂后试样的横截面积缩小的比例。
3. 硬度硬度是金属材料抵抗表面压痕或穿刺的能力。
常见的硬度测试方法有布氏硬度、洛氏硬度和维氏硬度等。
4. 韧性韧性是金属材料在受到冲击或扭曲力作用下的能量吸收能力。
常见的韧性测试方法包括冲击试验和扭转试验。
5. 疲劳性疲劳性是金属材料在交变应力作用下的抗疲劳性能。
常见的疲劳测试方法有拉伸疲劳试验和弯曲疲劳试验等。
6. 冷加工性冷加工性是指金属材料在冷变形(如冷轧、冷拔等)过程中的变形能力。
冷加工性好的金属材料可以在变形过程中获得较高的强度和硬度。
二、金属材料的力学性能测试方法1. 拉伸试验拉伸试验是测量金属材料强度和延展性的常用方法。
该试验通过施加拉应力使金属样品产生塑性变形,测量应力和应变相关的参数以评估材料的机械性能。
2. 压缩试验压缩试验是测量金属材料抗压强度和压缩性能的方法。
该试验通过施加压应力使金属样本发生塑性变形,测量相应的应力和应变以评估材料的机械性能。
3. 弯曲试验弯曲试验是测量金属材料抗弯强度和韧性的常用方法。
该试验通过在金属样品上施加弯曲力,通过测量不同位置上的应变和应力来评估材料的机械性能。
金属材料的力学性能及其测试方法
金属材料的力学性能及其测试方法金属材料是广泛应用于各种机械、电子、汽车等领域中的材料。
其作为一种材料,具有许多优点,如高强度、高可塑性、热稳定性和化学稳定性等。
在应用中,金属材料的力学性能是十分重要的参数。
因此,本文主要介绍金属材料的力学性能及其测试方法,以期对相关领域的工作者有所帮助。
第一节:金属材料的力学性能金属材料的力学性能通常包括弹性模量、屈服强度、延伸率、断裂韧性和硬度等。
这里从简单到复杂介绍这些性能参数。
1. 弹性模量弹性模量是金属材料在弹性变形范围内受到应力作用时所表现的一种机械性质。
它的表达式为:E = σ / ε其中E为杨氏模量,单位为MPa;σ为所受应力,单位为MPa;ε为所受弹性应变,无量纲。
弹性模量是金属材料的一个重要指标,它可以衡量金属材料抵抗形变能力的大小。
对于不同的金属材料而言,其弹性模量不同。
2. 屈服强度屈服强度是金属材料在单向轴向拉伸状态下特定应变量时所表现出来的应力大小。
它是指材料能承受的最大应力,以使材料不发生塑性变形。
对于各种金属材料而言,其屈服强度不同。
3. 延伸率延伸率是一个指标,它可以衡量金属材料在受到拉伸应力时,其在一定程度内能够进行延伸的能力。
延伸率的计算公式如下:%EL = (L2 - L1) / L1 × 100%其中%EL表示材料的延伸率,L1和L2分别表示金属材料在断裂前和断裂后的长度,单位为毫米。
4. 断裂韧性断裂韧性是指金属材料在受到极限应力作用下未能抗下,而在断裂破裂时所表现出来的承受能力。
这个承受能力在物质的许多特性中是最为重要的指标之一。
金属材料的断裂韧性通常使用KIC值(裂纹扩展韧性指数)来表达。
5. 硬度硬度是材料抵抗硬物的能力。
一般来说,硬度越高的材料,则可以抵御更大的压力,并且更耐磨。
对于金属材料而言,其硬度主要有三种测试方法,分别是洛氏硬度试验、布氏硬度试验和维氏硬度试验。
第二节:金属材料的测试方法要测试金属材料的一些力学性能参数,需要运用不同的测试方法。
金属材料性能测试方法介绍
金属材料性能测试方法介绍一、金属材料性能测试方法概述金属材料性能测试方法是评估金属材料质量和性能的重要手段。
通过对金属材料进行性能测试,可以了解其力学性能、物理性能、化学性能等方面的表现,为金属材料的选材、加工和应用提供科学依据。
下面将介绍几种常用的金属材料性能测试方法。
二、金属材料力学性能测试1.拉伸试验:拉伸试验是评价金属材料抗拉强度、屈服强度、延伸率等力学性能的重要方法。
通过在拉伸试验机上施加拉力,可以得到金属材料的应力-应变曲线,进而分析金属材料的力学性能。
2.硬度测试:硬度测试是评价金属材料抗压、抗划伤等性能的方法。
常用的硬度测试方法有洛氏硬度测试、巴氏硬度测试、维氏硬度测试等,通过硬度测试可以了解金属材料的硬度大小及其均匀性。
三、金属材料物理性能测试1.热膨胀系数测试:热膨胀系数测试是评价金属材料热膨胀性能的方法。
通过在一定温度范围内对金属材料进行热膨胀系数测试,可以了解金属材料在温度变化下的膨胀情况。
2.电导率测试:电导率测试是评价金属材料导电性能的方法。
通过在一定条件下对金属材料进行电导率测试,可以了解金属材料的导电性能及其应用范围。
四、金属材料化学性能测试1.腐蚀试验:腐蚀试验是评价金属材料耐腐蚀性能的方法。
通过将金属材料置于不同腐蚀介质中,观察其腐蚀程度和速率,可以了解金属材料的耐腐蚀性能。
2.化学成分分析:化学成分分析是评价金属材料成分含量的方法。
通过对金属材料进行化学成分分析,可以了解其主要元素含量及杂质含量,为金属材料的质量控制提供依据。
五、结语金属材料性能测试方法是评价金属材料质量和性能的重要手段,对于保证金属材料的质量和安全具有重要意义。
通过了解和掌握金属材料性能测试方法,可以更好地选择和应用金属材料,提高金属材料的利用效率和经济效益。
希望本文介绍的金属材料性能测试方法对您有所帮助。
金属材料静态力学性能测试
金属材料静态力学性能测试一、实验目的和内容1、测定金属材料的拉伸、压缩和扭转时力学性能参数,如屈服极限,强度极限等;2、观察实验现象,并比较金属材料在拉伸、压缩和扭转时的变形及破坏形式。
3、比较金属材料在拉伸、压缩和扭转时的力学性能特点。
二、实验名称拉伸试验,压缩试验,扭转实验。
三、实验设备电子式万能材料试验机(WDW3100型) 电子扭转试验机 游标卡尺四、试件1、拉伸试验所采用的试件试件采用两种材料:低碳钢和铸铁。
低碳钢属 于塑性材料;铸铁属于脆性材料。
试件的外形如图 1所示。
本实验采用的试件是GB228-87规定的“标 准试件”中的一种。
试件的标距等截面测试部分长度mm l 1000=,直径mm d 100=。
2、压缩试验所采用的试件试件的形状如图2所示,本实验采用的试件是国际规定的“标准试件”中的一种。
图2 压缩试件3、扭转试验所采用的试件采用标准试件,类似拉伸试件。
五、实验原理拉伸实验原理:d 0压缩实验原理:扭转实验原理:六、实验方法及步骤(一)拉伸试验测定一种材料的力学性能,一般应用一组试件(3~6根)来进行,而且应该尽可能每一根试件都测出所要求的性能。
我们主要是学习试验方法,所以我们测定低碳钢σs、σb、δ、ψ的拉伸试验只用一根试件来进行。
其试验步骤如下:1、测量试件尺寸,主要是测量试件的直径和标距。
在标距部分取上、中、下三个截面,对每一个截面用游标卡尺(精度0.02mm)测量互相垂直方向的直径各一次,取其平均值最小截面处的平均直径作为试件的直径。
2、顺时针旋转钥匙打开试验机。
3、用远控盒调整上下夹头的位置,将试件装在实验机的夹具上。
4、打开实验软件,先点联机按钮,然后设置参数。
点击参数录入按钮,输入试验编号及试样参数等。
点击参数设置按钮,输入试验开始点、横梁速度及方向等。
5、选择试验编号和实验曲线,将负荷与位移清零。
6、点击“试验开始”按钮,开始式样,同时仔细观察试样在试验过程中的各种现象。
金属材料力学性能检测
K为常数,通常取5.65或11.3,k=5.65时也称为短试样,此时的原始标 距应不少于15mm;k=11.3试样称为长试样 对于圆形试样,标距长度为工作直径d的5倍时为短试样,为10倍时为长 试样。但在特殊情况有关标准有规定时,也用4d或8d的试样
2 拉伸试样分类
物理意义是在于它反映了最大均匀变形的抗力
抗拉强度 — 是脆性材料选材的依据。 屈服强度与抗拉强度的比值σS / σb称为屈强比。 屈强比小,工程构件的可靠性高,说明即使外载荷或某些 意外因素使金属变形,也不至于立即断裂。但若屈强比过 小,则材料强度的有效利用率太低。
3.刚度
材料在外力作用下抵抗弹性变形的能力称为刚度。
塑性:指金属发生塑性变形而不被 破坏的能力。
载荷
作用在机件上的外力——载荷
静载荷 动载荷
静载荷:逐渐而缓慢地作用在工作上的力 如机床床身的压力、钢索的拉力
动载荷:包括冲击及交变载荷 如空气锤杆所受的冲击力、齿轮、弹簧
静拉伸试验(所加载荷为静载荷)
是一种较简单的力学性能试验,能够清楚地反映出材料受力 后所发生的弹性、弹塑性与断裂三个变形阶段的基本特性。 经拉伸试验对所测试的力学性能指标的测量稳定可靠,而且 理论计算方便,因此各国及国际组织都制定了完善的拉伸试 验方法标准,将拉伸试验方法列为力学性能试验中最基本、 最重要的试验项目。
布
氏
表示方法:硬度值+HBS(HBW)+D+F+t
硬 度
120HBS10/1000/30
压 痕
表示直径为10mm的钢球在1000kgf
载荷作用下保持30s测得的布氏硬度
值为120。
论金属材料力学性能检测的重要性
论金属材料力学性能检测的重要性辽宁大连116600摘要:改革后,在我国发展的背景下,带动了科学技术水平的进步,推动了我国各行业领域的进步。
金属材料是生产生活中最常用的材料之一,在社会发展中起着举足轻重的作用。
为了满足不同条件下的使用需求,就需要了解不同金属材料的各项力学性能,而拉伸试验、冲击试验、硬度试验等则是获得这些性能的有效手段。
这些试验的检测结果,可能受取样方向和位置、试样加工工艺、受力方向、加载速度、温度高低等因素的影响。
现通过识别可能影响结果的各种因素,并对其成因、影响程度、解决方法进行分析,力图减小这些因素的影响,确保金属材料拉伸试验结果的准确性和可靠性。
关键词:金属材料;拉伸试验;检测结果;影响因素引言金属材料原有的力学性能,就是人们最为熟知的机械性能,是指金属材料在受到各种外力作用的影响下对于形变或者是破坏产生抵抗的一种能力,也是各种金属材料进行不同形状制造和设计的重要依据。
通常而言,最为常用的机械性能指标包括了强度、硬度、冲击、韧性、塑性等各个方面。
为了保障金属材料的力学性能指标符合相关标准的具体要求,并为各种产品的制造提供基础支持,检测技术也随着技术要求的提高在不断发展变化。
检测试样是指在目标检测金属材料对象中切取合理数量的材料,在经过机床加工又或者是尚未经过机床加工但具备合格尺寸且满足具体实验工作要求的各种样品的统称。
取样和制备工作是否能得到科学有效的落实将会对金属材料力学性能指标的检测结果产生明显影响。
本文通过研究、探讨金属材料力学性能指标检测过程中试样的取样、制备和验收等各个环节的操作要点,以便为今后金属材料的力学性能指标检测的试样取样、制备工作实施优化提供参考。
1金属材料力学性能研究的重要性各类金属材料的应用体现在生产生活的各方面,人们根据自身需求的不同去探索不同的金属材料特性,从而保证每一种金属材料都能够物尽其用,切实解决人们的各种需求。
金属材料力学性能的研究对人类生产生活来说非常重要,具体体现在军事国防、居民生活以及企业生产三个方面,具体如下。
金属材料的力学性能评估
金属材料的力学性能评估金属材料是日常生活中不可或缺的材料之一,其中钢铁、铜、铝等金属材料的应用十分广泛。
在这些金属材料被用于机械制造、电力、建筑、汽车等领域时,其力学性能评估显得尤为重要。
1. 材料的力学性能参数材料的力学性能参数包括弹性模量、屈服强度、抗拉强度、延伸率等。
这些参数为评估材料的力学性能提供了定量可比较的参照标准。
常用的一种评估方法是材料的应力-应变曲线。
将材料拉伸产生的应变与产生这种应变所需要的应力相对应,便可以绘制出应力-应变曲线。
该曲线一般包括弹性阶段、屈服点、塑性流逝阶段和断裂点等几个阶段。
2. 材料的评估方法(1) 弹性模量的评估弹性模量是材料弹性变形后,恢复初态的一种物理量,常用于描述金属材料的刚性。
在工业生产中,衡量金属材料的应变刚度和弹性恢复能力是非常重要的。
(2) 屈服强度的评估屈服强度是材料在受力过程中,发生一定程度的塑性变形后,仍能保持它的形状和尺寸的能力。
确定材料的屈服强度是材料力学性能评估的基础。
(3) 抗拉强度的评估抗拉强度是材料在不断加大外力的压迫下会破坏的阈值。
在工程设计中,通常把材料的抗拉强度作为设计考虑的因素之一。
(4) 延伸率的评估延伸率是材料在受力过程中,具有较强的韧性和弯曲性的一项重要指标。
延伸率越高,表明材料的可塑性越强,不易发生断裂。
3. 材料性能评估的重要性材料性能评估在工程设计和制造中有着重要的应用。
一方面,能够明确材料的性质对于材料的选用、配合和加工等环节都具有非常重要的意义;另一方面,能在设计阶段准确预测及评估材料的力学性能,也能够大大降低工业生产过程中的损耗和事故率。
通过材料性能评估,我们不仅能够更好地选择适合的材料,还可以预期材料在实际使用中的性能表现,提高工程设计的准确性和安全性。
4. 结语材料的力学性能评估是非常关键的工作,决定着材料的质量、安全和可靠性。
在实际生产中,需要从不同角度对材料的力学性能进行分析和评估,如此才能正确选用材料并预测其在使用中的性能表现。
金属材料力学性能测试规范
金属材料力学性能测试规范一、金属材料力学性能测试的重要性金属材料的力学性能是指材料在受到外力作用时所表现出的特性,包括强度、硬度、韧性、塑性等。
这些性能直接影响着材料在实际应用中的可靠性和安全性。
例如,在建筑领域,钢材的强度决定了建筑物的承载能力;在机械制造中,零部件的硬度和韧性关系到其使用寿命和运行稳定性。
因此,通过科学、规范的测试方法获取准确的力学性能数据,对于材料的选择、设计和质量控制具有重要意义。
二、常见的金属材料力学性能测试项目1、拉伸试验拉伸试验是评估金属材料强度和塑性的最基本方法。
通过对标准试样施加逐渐增加的轴向拉力,测量试样在拉伸过程中的变形和断裂特性。
主要测试指标包括屈服强度、抗拉强度、延伸率和断面收缩率等。
2、硬度试验硬度是衡量金属材料抵抗局部变形能力的指标。
常见的硬度测试方法有布氏硬度、洛氏硬度、维氏硬度等。
硬度测试可以快速、简便地评估材料的硬度分布和加工硬化程度。
3、冲击试验冲击试验用于测定金属材料在冲击载荷下的韧性。
通过使标准试样承受一定能量的冲击,观察试样断裂的情况,计算冲击吸收功,以评估材料的抗冲击性能。
4、疲劳试验疲劳试验模拟材料在交变载荷作用下的失效行为。
通过对试样进行多次循环加载,记录试样发生疲劳破坏的循环次数,从而评估材料的疲劳强度和寿命。
三、测试设备和仪器1、万能材料试验机万能材料试验机是进行拉伸、压缩、弯曲等力学性能测试的主要设备。
它能够精确控制加载速率和测量试样的变形。
2、硬度计根据不同的硬度测试方法,选择相应的硬度计,如布氏硬度计、洛氏硬度计、维氏硬度计等。
3、冲击试验机冲击试验机用于进行冲击试验,常见的有摆锤式冲击试验机和落锤式冲击试验机。
4、疲劳试验机疲劳试验机专门用于进行疲劳性能测试,包括旋转弯曲疲劳试验机、轴向疲劳试验机等。
四、试样制备试样的制备是保证测试结果准确性的关键环节。
试样的尺寸、形状和加工精度应符合相关标准的要求。
1、拉伸试样通常采用圆形或矩形截面的试样,其标距长度、直径或宽度等尺寸应根据材料的种类和测试标准进行确定。
金属材料力学性能测试及分析
金属材料力学性能测试及分析金属材料在现代制造业中起着不可替代的作用。
无论是汽车、飞机、船舶、建筑或机器设备,都离不开金属材料。
为了保证产品质量和安全性,金属材料的力学性能测试和分析显得十分重要。
一、金属材料力学性能测试在金属材料生产过程中,进行力学性能测试是必不可少的一步。
常见的金属材料力学性能测试项目包括拉伸、弯曲、压缩、硬度等。
拉伸试验是最常见的力学性能测试之一。
此测试可以从材料应变-应力曲线中获得许多关键参数,例如最大强度、屈服强度、延伸率和断裂强度等。
该测试需要将单根金属材料在两千斤以上的极限负荷下逐渐拉伸至断裂,测试设备一般为万能试验机。
弯曲试验主要是评估金属材料的弯曲能力。
弯曲测试要求金属材料在弯曲时不出现断裂或裂缝。
该试验主要用于评估金属材料的加工性和设计强度。
压缩试验通常用于评估金属材料在压缩方向上的性能表现。
测试设备为常见的万能试验机,将金属材料放在一个钢模具中,逐渐施加负载直至金属材料发生压缩。
硬度测试评估金属材料的抵抗变形能力。
硬度测试设备可以对金属材料进行加压、打击或穿刺测试,来评估金属在不同环境或应用中的抵抗性。
二、金属材料力学性能分析在完成力学性能测试后,接下来是进行力学性能分析。
为此,需要将之前得到的数据进行处理和分析。
拉伸试验的结果通过应力-应变曲线进行分析,得到金属材料的强度和延展性能。
其中,屈服强度代表材料开始变形的阈值,最大强度反映材料在加载末期阶段的性能,以及延伸性能表示在材料断裂前的延展能力。
弯曲试验的结果提供了材料的弯曲强度和弯曲刚度,可以用于评估材料在实际应用中的使用寿命。
压缩试验的结果反映了金属材料的压缩强度和塑性应变能力。
在这个测试中,金属材料具有最高应变和强度,因此其性能表现主要取决于材料的完整性和微观结构。
硬度测试可用于评估金属材料的耐磨性和耐切削性。
更硬的材料将具有更高的耐久性和更少的形变。
三、应用金属材料力学性能测试和分析在制造业中广泛应用。
金属力学性能测定实验报告
金属力学性能测定实验报告一、实验目的(1)了解硬度测定的基本原理及常用硬度试验法的应用范围。
(2)学会恰当采用硬度计。
二、实验设备(1)布氏硬度计(2)读数放大镜(3)洛氏硬度计(4)硬度试块若干(5)铁碳合金淬火试样若干(ф20×10mm的工业纯铁,20,45,60,t8,t12等)。
(6)ф20×10mm的 20,45,60,t8,t12钢退火态,正火态,淬火及回火态的试样。
三、实验内容1、概述硬度就是指材料抵抗另一较软的物体装入表面抵抗塑性变形的一种能力,就是关键的.力学性能指标之一。
与其它力学性能较之,硬度实验简单易行,又迪代工件,因此在工业生产中被广泛应用。
常用的硬度试验方法存有:布氏硬度试验――主要用于黑色、有色金属原材料检验,也可用于退火、正火钢铁零件的硬度测定。
洛氏硬度试验——主要用作金属材料热处理后产品性能检验。
维氏硬度试验——用于薄板材或金属表层的硬度测定,以及较精确的硬度测定。
显微硬度试验——主要用于测定金属材料的显微组织组分或相组分的硬度。
2、实验内容及方法指导(1)布氏硬度试验测定。
(2)洛氏硬度试验测量。
(3)试验方法指导。
3、实验注意事项(1)试样两端要平行,表面要平整,若有油污或氧化皮,可用砂纸打磨,以免影响测定。
(2)圆柱形试样应当放到具有“v”形槽的工作台上操作方式,以免试样翻转。
(3)加载时应细心操作,以免损坏压头。
(4)测完硬度值,刺破载荷后,必须并使压头全然返回试样后再摘下试样。
(5)金刚钻压头系贵重物品,资硬而脆,使用时要小心谨慎,严禁与试样或其它物件碰撞。
(6)应当根据硬度实验机的采用范围,按规定合理采用相同的载荷和压头,少于采用范围,将无法赢得精确的硬度值。
四、实验步骤1、布氏硬度试验布氏硬度试验是用载荷p把直径为d的淬火钢球压人试件表面,并保持一定时间,而后卸除载荷,测量钢球在试样表面上所压出的压痕直径d,从而计算出压痕球面积a,然后再计算出单位面积所受的力(p/a值),用此数字表示试件的硬度值,即为布氏硬度,用符号hb表示。
金属材料力学性能测定及其应用
金属材料力学性能测定及其应用一、引言金属材料在工业生产中具有广泛的应用,对金属材料的力学性能的测定是对其使用性能评价和加工质量控制的重要手段。
本文将着重介绍金属材料的力学性能测定方法及其应用。
二、金属材料的力学性能测定方法1. 拉伸试验拉伸试验是一种常见的金属材料力学性能测试方法,该方法适用于金属拉伸力学性能的测定。
在拉伸试验时,通过机械设备施加一定的拉伸载荷,测量被试样发生塑性变形的力和变形量,从而计算出试样的强度和韧性等力学性能指标。
2. 碳氢分析法碳氢分析法可以用于测量铁、钢等金属中碳含量的方法。
该方法首先通过化学反应将样品中的碳转化为一定量的二氧化碳,然后使用专门的仪器,量化检测样品中的二氧化碳含量,从而计算出样品中的碳含量。
3. 硬度试验硬度试验是一种简单易行的类比试验方法,适用于测定金属材料抗压、抗拉等力学性能。
硬度试验可分为维氏硬度试验、布氏硬度试验、洛氏硬度试验和肖氏硬度试验等几种类型,不同类型的硬度试验方法有不同的适用范围和测定参数,可以根据不同情况进行选择。
三、金属材料的力学性能应用1. 工程应用金属材料作为制造工程的常见材料,其力学性能测定对工程生产具有重要意义。
工程师可以通过测定金属材料的力学性能,选择合适的材料加工工艺,提高生产效率,降低制造成本,保障工程质量等。
2. 质量控制金属材料力学性能的差异往往与其质量有直接关系。
在工业生产过程中,金属材料的力学性能测定可以作为对其质量控制的重要手段。
通过测定金属材料力学性能,可以检测金属材料的质量是否合格,并准确识别渗透性、组织结构等方面的缺陷。
3. 产品应用金属材料的力学性能测定对其在产品应用中发挥全面性能至关重要。
例如,在汽车制造过程中,通过测定轮毂的材质、硬度等力学性能指标,可以保证汽车在高速行驶时的安全性能。
四、结论通过以上讨论,本文介绍了金属材料的力学性能测定方法及其应用。
在工业生产和应用方面,对金属材料的力学性能指标的了解和掌握极其重要,涉及到制造工艺选择、产品性能分析等诸多方面,对推进各个行业的技术升级和质量控制有着至关重要的作用。
金属材料力学性能试验方法分析
金属材料力学性能试验方法分析摘要:金属材料是工业生产中的常用材料,在日常生活中极为常见,使用金属材料时,一定要注意金属材料的力学性能。
本文介绍金属材料力学性能试验标准、试验方法以及仪器设备,在力学性能试验中,重点探究金属材料拉伸性能、压缩性能、扭转性能、硬度性能的试验方法,为金属材料试验提供参考。
关键词:金属材料;力学性能;试验方法前言:金属材料的力学性能会直接影响材料的使用状态和使用寿命,如果材料力学性能较差,有可能会使机器频繁发生故障,金属产品也无法发挥实际的功效,必须要加强力学性能检测,采用科学的力学性能试验方法,参考相关标准,对试验结果进行分析,综合分析金属材料的力学性能,不断强化金属材料的性能。
1金属材料力学性能试验标准分析金属材料力学性能试验需要以规范化的试验标准为参考依据,试验人员需要了解试验标准体制的具体规定,对最新修订的试验标准进行研究,按照科学的试验方法和规范的试验标准展开力学性能试验。
不同的试验方法有着不同的标准,如拉伸试验标准、压缩试验标准、扭转试验标准、硬度试验标准、弯曲试验标准、冲击试验标准、疲劳试验标准等,需要根据具体的试验内容和方法选择对应的试验标准,与力学性能试验结果进行比较,分析金属材料力学性能的实际情况[1]。
2金属材料力学性能试验方法研究2.1拉伸试验对金属材料的拉伸性能进行测试,需要采用拉伸测试方法,对拉伸试验结果进行分析,判断金属材料的极限拉伸范围,根据极限拉伸范围继续进行试验,对金属材料在试验中的变化情况进行记录和分析。
在拉伸试验中,为了保证数据的准确性和测试结果的可靠性,需要对各种影响因素进行控制,尽量避免拉伸试验过程受到其他因素的影响。
试验人员要仔细检查拉伸试验中的设备和仪器,确保设备仪器具有良好的性能,保证拉伸试验数据的精确性,避免试验结果受到设备仪器的影响。
以低碳钢材料为例,对该材料进行拉伸试验时,判断低碳钢的极限屈服荷载PS,当主动指针不再转动的时候,对低碳钢进行测量。
金属材料力学性能检测的不确定度分析
金属材料力学性能检测的不确定度分析摘要:通过将金属材料的力学性能测试工作加以落实,可以实现对测试量的合理分类,明确直接量和间接量的差异,针对测试量的数值根源展开科学的判断,对于直接量不确定度来源合理地区分出不同的部分。
间接量的所有不确定度分析应该建立在直接量所具有的不确定度分析基础上,在对间接量展开合理的获取时,明确相关影响因素产生的特殊情况,最终合成所有不确定度分量,求取间接不确定度。
关键词:金属材料;力学性能;检测试样;取样与制备一、金属材料力学性能测试不确定度的评定因素(一)金属材料的拉伸试验当前,我国力学性能检测中比较常见的方式就是拉伸试验,其中的各项拉伸性能指标就作为金属材料中较为重要的测试信息之一。
那么,金属材料力学性能检测中的拉伸试验就要对其中的塑性指标、各项强度等加以确定。
其实这就是体现金属材料力学性能的重要参考数据之一。
这样的试验方式就可以高效地应用万能试验机这类设备。
同时,金属材料拉伸试验在操作过程中往往不会过于复杂,能够在直观的视角下对材料的受力状态下的弹性阶段、塑性阶段以及断裂阶段中的变化进行研究。
此外,有关金属材料力学性能检测技术人员在实验中也发现并得出其中力学性能标准的可靠性,并以此为前提,真正地完成检测过程。
我国目前也对拉伸试验方法进行研究,规定了专业的标准和制度,最终有效地提高了金属材料拉伸试验的效率等。
(二)金属材料的扭转试验当前,我国金属材料力学性能检测人员在完成扭转试验方法的过程中,应当在保障扭转力作用良好的前提下对试验的受力、变形情况进行研究。
第一点,金属材料力学性能检测人员需要对材料具体的破损程度进行研究、观察,以此来确定材料中的各种指标等,并明确指标的极限值。
这时,金属材料试件在承受扭矩压力的过程中,就要材料等进行检查,更要使材料处于纯剪切应力状态下,并成为新的一种应力状态。
(三)冲击操作时的影响冲击操作测试是一种常用的手段,在特殊的领域较为常见,炮弹的爆炸以及子弹的冲击等,均能直接对金属材料产生明显的冲击效果。
金属材料力学性能检测
§ 1.1 金属材料拉伸试验
§ 1.1 金属材料拉伸试验
2、定标距试样
定标距试样的原始标距与横截面间无比例关
系,一般 L取0 100mm, 200m。m
3、取样与制样
• 通常从产品、压制坯或铸锭切取样坯经机加工 制成试样。但具有恒定横截面的产品(型材、 棒材、线材等)和铸造试样(铸铁和铸造非铁合 金)可以不经机加工而进行试验。
金属材料力学性能检测
▪§ 1.1 拉伸试验 ▪§ 1.2 金属扭转及弯曲试验 ▪§ 1.3 金属硬度试验 ▪§ 1.4 金属冲击韧性试验
§ 概述
金属材料在外力作用下所表现出的诸如强度、 塑性、弹性等等力学特性称为材料的力学性能, 而衡量金属材料力学性能的指标统称为力学(机 械)性能指标,这些指标是通过实验来确定的。 本章就依据国家标准来讨论这些指标的意义及测 定方法。
1)比例极限: p
p
Pp A0
2)弹性极限: e
e
Pe A0
3)屈服极限: s
4)强度极限: b
5)断裂强度: k
s
Ps A0
b
Pb A0
k
Pk A0
§ 1.1 金属材料拉伸试验
各应力指标的定义及测试方法:
1、 比例极限
p
定义:应力与应变成直线关系的最大应力值。
变的应力作为屈服强度,以 0.表2 示
测量方法与弹s 性极限相似。
§ 1.1 金属材料拉伸试验
4、强度极限(抗拉强度) b
定义:曲线上最大应力为强度极限。 标志:出现颈缩现象。
§ 1.1 金属材料拉伸试验
5、断裂强度 k
定义:试样拉断时的真实应力,表征材料对断裂 的抗力。
金属材料行业材料力学性能测试技术手册
金属材料行业材料力学性能测试技术手册一、引言金属材料的力学性能测试是评估材料质量和性能的重要手段。
本技术手册旨在介绍金属材料力学性能测试的基本原理、常用方法和操作流程,方便金属材料行业从业人员在工作中正确、准确地进行力学性能测试。
二、金属材料力学性能测试概述1. 测试目的金属材料力学性能测试旨在衡量材料在受载情况下的强度、刚度、韧性、延性等性能参数,以评估材料的可靠性和适用性。
2. 测试内容常见的金属材料力学性能测试内容包括拉伸试验、压缩试验、弯曲试验等,通过这些试验可以得到材料的应力-应变曲线、屈服强度、断裂强度、弹性模量等重要参数。
三、拉伸试验1. 试验设备和工具拉伸试验需要用到拉伸试验机、标准试样和相应的夹具。
拉伸试验机应具备精确控制试验速度、测量载荷和位移等功能。
2. 操作步骤(1)选择适当的试样尺寸和夹具。
(2)安装试样并调整夹具,确保试样正确固定。
(3)设置拉伸试验机的工作参数,如试验速度、载荷范围等。
(4)开始试验,记录载荷和位移数据。
(5)根据试验数据计算材料的应力-应变曲线和相关参数。
四、压缩试验1. 试验设备和工具压缩试验需要用到压缩试验机、标准试样和相应的夹具。
压缩试验机应具备精确控制试验速度、测量载荷和位移等功能。
2. 操作步骤(1)选择适当的试样尺寸和夹具。
(2)安装试样并调整夹具,确保试样正确固定。
(3)设置压缩试验机的工作参数,如试验速度、载荷范围等。
(4)开始试验,记录载荷和位移数据。
(5)根据试验数据计算材料的应力-应变曲线和相关参数。
五、弯曲试验1. 试验设备和工具弯曲试验需要用到弯曲试验机、标准试样和相应的夹具。
弯曲试验机应具备精确控制试验速度、测量载荷和位移等功能。
2. 操作步骤(1)选择适当的试样尺寸和夹具。
(2)安装试样并调整夹具,确保试样正确固定。
(3)设置弯曲试验机的工作参数,如试验速度、载荷范围等。
(4)开始试验,记录载荷和位移数据。
(5)根据试验数据计算材料的应力-应变曲线和相关参数。
金属材料的力学性能测试与分析
金属材料的力学性能测试与分析金属材料广泛应用于各个领域,具有优良的力学性能是其重要的特征之一。
为了保证金属材料的质量和可靠性,对其力学性能进行测试与分析是至关重要的。
本文将重点介绍金属材料力学性能测试方法及分析步骤。
一、金属材料的力学性能测试1. 强度测试强度是金属材料抵抗外力的能力,可以通过拉伸试验来进行测试。
该试验的原理是将金属试样放置在拉伸机上,施加逐渐增加的力,直到断裂为止。
在试验过程中,可以测量材料的屈服强度、抗拉强度、延伸率等指标。
这些参数对于评估金属材料的力学性能至关重要。
2. 硬度测试硬度是金属材料抵抗表面压力的能力。
硬度测试可通过使用洛氏硬度计或布氏硬度计进行。
试验时,试样表面受到一定压力,通过测量压印的深度来确定硬度指标。
硬度测试可以帮助判断金属材料的耐磨性和抗变形能力。
3. 韧性测试韧性是金属材料在承受外力时能够吸收能量并发生塑性变形的能力。
冲击试验是测试韧性的常用方法之一。
冲击试验中,将标准试样放置在冲击机上,施加特定冲击载荷,并记录试样失效前所吸收的能量。
韧性测试结果可以评估金属材料在低温环境下的可靠性。
二、金属材料力学性能分析1. 强度分析通过强度测试获得的数据,可以进行强度分析。
通常包括计算应力-应变曲线、屈服强度、抗拉强度、断裂延伸率等参数。
这些数据可用于比较不同金属材料的强度,评估材料的抗拉伸能力以及预测它们在实际应用中的行为。
强度分析对于材料的选择、设计和制造过程中的质量控制具有重要意义。
2. 硬度分析硬度测试结果的分析可用于比较不同金属材料之间的硬度差异。
通过硬度值,可以评估材料的耐磨性和抗变形能力。
硬度分析还可以为金属材料的工艺设计和材料选择提供重要参考。
3. 韧性分析韧性测试结果的分析有助于评估金属材料的抗冲击能力和低温性能。
韧性分析还可以用于指导金属材料的合金设计和淬火工艺的优化。
通过分析韧性参数,可以对材料的破坏机理进行理解,并提供改进金属材料韧性的方法。
金属材料理化检测内容
金属材料理化检测内容一、引言金属材料是现代工业中广泛应用的材料之一,对其进行理化检测可以确保其质量和性能符合要求。
本文将介绍金属材料理化检测的相关内容。
二、金属材料的成分分析金属材料的成分分析是金属理化检测的重要环节之一。
通过成分分析可以确定金属材料中各种元素的含量,从而判断其合格性。
常用的成分分析方法有光谱分析和化学分析两种。
光谱分析方法包括光电子能谱分析和光谱发射分析,化学分析方法包括湿法化学分析和干法化学分析。
三、金属材料的力学性能测试力学性能是评价金属材料质量的重要指标之一。
力学性能测试包括拉伸试验、冲击试验、硬度测试等。
拉伸试验可以测试金属材料的抗拉强度、屈服强度和延伸率等指标;冲击试验可以测试金属材料的韧性和抗冲击性能;硬度测试可以测试金属材料的硬度和耐磨性。
四、金属材料的热处理分析金属材料的热处理可以改变其组织结构和性能,常用的热处理方法有退火、淬火和回火等。
热处理分析可以通过金相显微镜观察金属材料的组织结构变化,并通过硬度测试等方法评价其热处理效果。
五、金属材料的化学腐蚀测试金属材料在使用过程中常常接触到各种腐蚀介质,因此进行化学腐蚀测试可以评估金属材料在不同环境下的耐腐蚀性能。
常用的化学腐蚀测试方法有盐雾试验、酸碱腐蚀试验和腐蚀电位扫描等。
六、金属材料的表面质量检测金属材料的表面质量直接影响其外观和耐久性。
表面质量检测包括表面粗糙度测试、表面缺陷检测和表面涂层检测等。
表面粗糙度测试可以评估金属材料表面的光洁度和平整度;表面缺陷检测可以检测金属材料表面的裂纹、气泡和夹杂物等缺陷;表面涂层检测可以评估金属材料表面的涂层附着力和均匀性。
七、金属材料的疲劳寿命测试金属材料在长期使用过程中会发生疲劳破坏,因此进行疲劳寿命测试可以评估金属材料的使用寿命。
疲劳寿命测试包括低周疲劳试验和高周疲劳试验两种。
低周疲劳试验可以测试金属材料在较低应力水平下的疲劳寿命;高周疲劳试验可以测试金属材料在较高应力水平下的疲劳寿命。
金属力学性能测试标准
金属力学性能测试标准金属材料作为工程领域中使用最广泛的材料之一,其力学性能的测试标准对于材料的质量控制和工程设计具有重要意义。
本文将从金属力学性能测试的目的、方法以及标准等方面进行详细介绍,以期为相关领域的研究人员和工程师提供参考。
一、目的。
金属力学性能测试的主要目的在于评估材料的力学性能,包括抗拉强度、屈服强度、延伸率、硬度等指标。
通过测试,可以了解材料在受力情况下的表现,为工程设计和材料选择提供依据。
同时,测试结果也可以用于质量控制和产品认证,确保产品符合相关标准和要求。
二、方法。
1. 抗拉强度测试。
抗拉强度是评价材料抗拉性能的重要指标。
测试时,将试样加在拉伸试验机上,施加逐渐增加的拉力,直到试样发生断裂。
根据试验过程中的拉力和变形量,可以计算出材料的抗拉强度。
2. 屈服强度测试。
屈服强度是材料在拉伸过程中发生塑性变形的临界点。
测试方法与抗拉强度测试类似,但需要额外考虑材料的流变行为,通过对应力-应变曲线的分析,确定材料的屈服强度。
3. 延伸率测试。
延伸率是评价材料延展性能的指标,通常通过拉伸试验来进行测试。
在试验中,可以观察试样的变形情况,计算出材料的延伸率,从而评估其延展性能。
4. 硬度测试。
硬度是材料抵抗外力的能力,通常用来评价材料的耐磨性和耐压性。
常见的硬度测试方法包括布氏硬度、洛氏硬度、维氏硬度等,通过在材料表面施加一定载荷,测量材料的硬度值。
三、标准。
金属力学性能测试的标准主要包括国际标准和行业标准两类。
国际标准由国际标准化组织(ISO)制定,通常适用于全球范围内的材料测试。
而行业标准则是由各个行业协会或组织制定,针对特定材料或产品的测试要求。
在进行金属力学性能测试时,应当严格遵守相关的测试标准,以确保测试结果的准确性和可比性。
同时,随着科学技术的发展,测试标准也会不断更新和完善,因此在进行测试时,应当关注最新的标准要求,以保证测试结果的有效性。
总结。
金属力学性能测试是评价材料质量和性能的重要手段,通过测试可以全面了解材料的力学性能,为工程设计和产品制造提供依据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.刚度
材料在外力作用下抵抗弹性变形的能力称为刚度。
在弹性阶段: F l
所以:
比例系数E 称为弹性模量,它反映材料对弹性变形 的抗力,代表材料的“刚度” 。
E
E
E
— 材料抵抗弹性变形的能力越大。
弹性模量的大小主要取决于材料的本性,随温度升高而 逐渐降低。
2. 塑性
2) 洛氏硬度
淬火钢球时C=100,金钢石时C=130
洛氏硬度用符号HR表示,HR=C-h/0.002 根据压头类型和主载荷不同,分为九个标尺,常用的标尺为 A、 B 、 C。
顶角 120° 金钢石 圆锥 或直径 1.588 mm的 淬火钢 球
压 头
洛 氏 硬 度 计
h1-h0
符号HR前面的数字为硬度值, 后面为使用的标尺。
k
4、s’b曲线:均匀塑性变形,出现加工 硬化。 5、b点出现缩颈现象,即试样局部 截面明显缩小试样承载能力降低, 拉伸力达到最大值,而后降低,但 变形量增大,K点时试样发生断裂。
o
力-伸长曲线
e — 弹性极限点 S — 屈服点 b — 极限载荷点 K — 断裂点
l
ε
F
S0
l
l0
表征材料强度的三个主要指标
l0
拉伸前
生的相对改变。
物体内部某处的线段在变 形后长度的改变值同线段 原长之比值称为“线应变”
dk
lk
拉伸后
l
l0
2.拉伸实验两种基本变形
(1)弹性变形: 材料受外力作用时产生变形,当外力去除后恢复其原来 形状,这种随外力消失而消失的变形,称为弹性变形。
F F F
(2)塑性变形:
材料在外力作用下产生永久的不可恢复的变形,称 为塑性变形。
HC500/780DP 加强件、防撞件 B340LA 结构件
低合金高强度冷连轧钢板及 钢带
1.6~﹤2.0 冷成型用热连轧钢板及钢带 SPHC 一般用 ≤0.15 ≤0.60 ≤0.035 ≤0.035 ≥0.010 ﹣ 270 29 汽车结构用热连轧钢板及钢 带 1.6~﹤2.0 SAPH440 结构件 ≤0.21 ≤1.50 ≤0.030 ≤0.025 ≥0.015 ≥305(<6.0mm) 440 29
≤0.025 ≤0.025 ≤0.020 ≤0.020 ≤0.025 ≤0.025 ≤0.025 ≤0.035 ≤0.030 ≤0.015 ≤0.030
≥0.015 ≥0.015 ≥0.015 ≥0.015 ≥0.015 ≥0.015 ≥0.015 ≥0.015 ≥0.020 ≥0.010 ≥0.015
金属材料力学性能检测
材料的性能 使用性能—材料在使用过程中所表现的性能 力学性能 物理性能 化学性能
工艺性能—在制造机械零件的过程中,材料适应各种冷、 热加工和热处理的性能。 铸造性能、锻造性能、焊接性能、冲压性能、 切削加工性能、热处理工艺性能 材料的力学性能
定义 :
金属材料的力学性能是指金属材料在 不同环境(温度、介质)下,承受各种外加 载荷(拉伸、压缩、弯曲、扭转、冲击、交 变应力等)时所表现出的力学特征。 弹性 、刚度、强度、塑性 、 硬度、冲 击韧性 、断裂韧度和疲劳强度等。 、断裂 韧度和疲劳强度等。
抗拉强度是材料在拉断前承受最大载荷时的应力。 σb =Fb/S0 (MPa) 它表征了材料在拉伸条件下所能承受的最大应力。 物理意义是在于它反映了最大均匀变形的抗力 抗拉强度 — 是脆性材料选材的依据。 屈服强度与抗拉强度的比值σS / σb称为屈强比。 屈强比小,工程构件的可靠性高,说明即使外载荷或某些 意外因素使金属变形,也不至于立即断裂。但若屈强比过 小,则材料强度的有效利用率太低。
2 拉伸试样分类 对于金属棒材,一般采用圆形截面的试样。其直径一般为3-25mm。 试样又分带夹头和不带夹头两种。
圆形截面
带夹头圆形式样图
单肩试样
双肩试样
圆形试样比例尺寸表
若相关产品标准无具体规定、优先采用R2、R4或R7试样尺寸 试样总长度取决于夹持方式,原则上L> Lc+4d
(2)矩形试样 对厚、薄板材,一般采用矩形试样(通常为0.10~25mm) 根据厚度,采用宽度为 10mm 、 12.5mm 、 15mm 、 20mm 、 25mm 、 30mm 的六种试样,比例试样尽可能采用 L0=5.65S01/2 的短比例 试样。 矩形试样也可分为带夹头和不带夹头的比例或定标距的两种
用于布氏硬度值在450以下的材料。 压头为硬质合金球时,用符号HBW表示,适用于布 氏硬度在650以下的材料。
表示方法:硬度值+HBS(HBW)+D+F+t
120HBS10/1000/30 表示直径为10mm的钢球在1000kgf 载荷作用下保持 30s测得的布氏硬度 值为120。
布 氏 硬 度 压 痕
DC01 DC03 冷连轧低碳钢板及钢带 DC04 DC05 B170P1 加磷高强度冷连轧钢板及钢 带 B210P1 B250P1 冷连轧碳素结构钢板及钢带 双相高强度冷连轧钢板及钢 带 B280VK B280/440DP
一般用 冲压用 深冲用 特深冲用 冲压用 一般用 一般用 结构件 结构件、加强件
≤0.10 ≤0.08 ≤0.08 ≤0.008 ≤0.006 ≤0.008 ≤0.008 ≤0.15 ≤0.15 ≤0.18 ≤0.12
≤0.50 ≤0.45 ≤0.40 ≤0.30 ≤1.00 ≤1.20 ≤1.20 ≤0.15 ≤1.80 ≤2.5 ≤1.0
≤0.035 ≤0.030 ≤0.025 ≤0.020 ≤0.08 ≤0.10 ≤0.12 ≤0.035 ≤0.035 ≤0.040 ≤0.030
拉伸实验设备-万能实验机
拉 伸 试 样 的 颈 缩 现 象
拉伸试验机
拉伸试样制备
金属拉伸试样总体可分为比例试样和定标距试样
比例试样:按下式计算而得的试样原始标距长度的试样
L0 k S0
L0——标距长度 S0——试样原始截面积
K为常数,通常取5.65或11.3,k=5.65时也称为短试样,此时的原始标 距应不少于15mm;k=11.3试样称为长试样 对于圆形试样,标距长度为工作直径d的5倍时为短试样,为10倍时为长 试样。但在特殊情况有关标准有规定时,也用4d或8d的试样
三层板焊接?
三层板公称 厚度?
1.三层以上焊接,板厚或材质不同时,试片尺寸,计算不同相 关部件材质的抗拉强度与板厚的积,取较小值的板材的板厚为 公称板厚。 2.板厚>3mm,或者两块以上的板厚比>1.4时,如图所示添加结 合板的试片。结合板是与试验材同样的板厚,重新以点焊等固 定在试片上。试验在室温时迚行。
布氏硬度的优点:测量误差小,数据稳定。 缺点:压痕大,不能用于太薄件、成品件及
比压头还硬的材料。 应用:适于测量退火、正火、调质钢, 铸铁 及有色金属的硬度。 材料的b与HB乊间的经验关系: 对于低碳钢: b(MPa)≈3.6HB 对于高碳钢:b(MPa)≈3.4HB 对于铸铁: b(MPa)≈1HB或 b(MPa)≈ 0.6(HB-40)
全截面管段拉伸式样图
管材尺寸表(mm)
管材纵向弧形比例试样及定标距试样图
管材纵向弧形试样尺寸表(mm)
材料的拉伸曲线
1、oe段:直线、弹性变形
F σ
Fb
b
2、es段:曲线、弹性变形+塑性变形
3、s s’段:水平线(略有波动) 明显的塑性变形屈服现象,作用 的力基本不变,试样连续伸长。
Fe
Fs
s s’ e
140~280 140~240 130~210 120~180 170~260 210~310 250~360 280~420 280~420 500~650 340~460
270 270 270 270 340 390 440 440 440 780 440
30 34 38 40 36 32 30 27 26 14 22
拉伸试验
F
d0
F
l0
L 拉伸前
dk
lk
拉伸后
1.拉伸实验常用术语
应力与应变
F F
F’
F
F = F’
F' F S S
(MPa)
σ= F’ /S
应力:物体内部任一截面单位面积上的相互作用力。 同截面垂直的称为“正应力”或“法向应力”,同 截面相切的称为“剪应力”或“切应力”。
F
d0
F 应变:物体形状尺寸所发
矩形带夹头拉伸试样尺寸(mm)
矩形带夹头拉伸试样图
若相关产品标准无具体规定,优先采用短试样式(比例系数k=5.65)的比例试样。若比例 标距小于15mm,建议采用非比例试样
矩形非比例试样尺寸(mm)
(3)管材试样 管材试样一般为自管材切取的全截面管段或从管材切取的全 壁厚纵向条状试样。 对于d小于等于50mm的无缝管及焊管,可切取全截面管段进行 试验。对于d大于等于50mm的管可切取纵向弧形试样,对于管 材壁厚大于等于8mm的,可制成纵向圆形试样。
指标 :
几个常见概念的定义
强度:指金属在静载荷下抵抗变形
和断裂的能力。是一般零件设计、 选材时的重要依据 。 硬度:它是衡量材料软硬的一个指 标,是 金属表面抵抗塑性变形和 破坏的能力。检查和控制金属零件 的热处理质量 塑性:指金属发生塑性变形而不被 破坏的能力。
载荷
作用在机件上的外力——载荷 静载荷 动载荷
材料在外力作用下,产生永久变形而不引起破坏的能力。
常用 δ 和 ψ 作为衡量塑性的指标。
lk l0 100% l0 s0 sk 断面收缩率: 100% s0