导数应用的题型与方法

合集下载

高考:导数题型归类,分类解题方法举例,如极值点偏移、隐零点运用

高考:导数题型归类,分类解题方法举例,如极值点偏移、隐零点运用

高考:导数题型归类,分类解题方法举例,如极值点偏移、隐零点运用高考压轴题:导数题型及解题方法一、切线问题题型1:求曲线y=f(x)在x=x处的切线方程。

方法:f'(x)为在x=x处的切线的斜率。

题型2:过点(a,b)的直线与曲线y=f(x)的相切问题。

方法:设曲线y=f(x)的切点(x,f(x)),由(x-a)f'(x)=f(x)-b求出x,进而解决相关问题。

注意:曲线在某点处的切线若有则只有一条,曲线过某点的切线往往不止一条。

例题:已知函数f(x)=x-3x。

1)求曲线y=f(x)在点x=2处的切线方程;(答案:9x-y-16=0)2)若过点A(1,m)(m≠-2)可作曲线y=f(x)的三条切线,求实数m的取值范围。

提示:设曲线y=f(x)上的切点(x,f(x)),建立x,f(x)的等式关系。

将问题转化为关于x,m的方程有三个不同实数根问题。

答案:m的范围是(-3,-2))练1:已知曲线y=x-3x。

1)求过点(1,-3)与曲线y=x-3x相切的直线方程。

(答案:3x+y=0或15x-4y-27=0)2)证明:过点(-2,5)与曲线y=x-3x相切的直线有三条。

题型3:求两个曲线y=f(x)、y=g(x)的公切线。

方法:设曲线y=f(x)、y=g(x)的切点分别为(x1,f(x1))、(x2,g(x2)),建立x1,x2的等式关系,(x2-x1)f'(x1)=g(x2)-f(x1),(x2-x1)f'(x2)=g(x2)-f(x1);求出x1,x2,进而求出切线方程。

解决问题的方法是设切点,用导数求斜率,建立等式关系。

例题:求曲线y=x与曲线y=2elnx的公切线方程。

(答案:2ex-y-e=0)练1:求曲线y=x与曲线y=-(x-1)的公切线方程。

(答案:2x-y-1=0或y=0)2.设函数f(x)=p(x-2)-2lnx,g(x)=x,直线l与函数f(x),g(x)的图象都相切,且与函数f(x)的图象相切于(1,0),求实数p的值。

导数知识点各种题型归纳方法总结

导数知识点各种题型归纳方法总结

导数知识点各种题型归纳方法总结导数知识点和题型总结一、导数的定义:1.函数y=f(x)在x=x处的导数为f'(x)=y'|x=x=lim(Δy/Δx),其中Δy=f(x+Δx)-f(x)。

2.求导数的步骤:①求函数的增量:Δy=f(x+Δx)-f(x);②求平均变化率:Δy/Δx;③取极限得导数:f'(x)=lim(Δy/Δx),其中Δx→0.二、导数的运算:1.基本初等函数的导数公式及常用导数运算公式:① C'=0(C为常数);② (xn)'=nxn-1;③ (1/x)'=-1/x^2;④ (ex)'=ex;⑤ (sinx)'=cosx;⑥ (cosx)'=-sinx;⑦ (ax)'=axlna(a>0,且a≠1);⑧ (lnx)'=1/x;⑨ (loga x)'=1/(xlna)(a>0,且a≠1)。

2.导数的运算法则:法则1:[f(x)±g(x)]'=f'(x)±g'(x)(和与差的导数等于导数的和与差);法则2:[f(x)g(x)]'=f'(x)g(x)+f(x)g'(x)(前导后不导相乘+后导前不导相乘);法则3:[f(x)/g(x)]'=[f'(x)g(x)-f(x)g'(x)]/[g(x)]^2(分母平方要记牢,上导下不导相乘,下导上不导相乘,中间是负号)。

3.复合函数y=f(g(x))的导数求法:①换元,令u=g(x),则y=f(u);②分别求导再相乘,y'=g'(x)·f'(u);③回代u=g(x)。

题型:1.已知f(x)=1/x,则lim(Δy/Δx),其中Δx→0,且x=2+Δx,f(2)=1/2.答案:C。

2.设f'(3)=4,则lim(f(3-h)-f(3))/h,其中h→0.答案:A。

导数题型总结(12种题型)

导数题型总结(12种题型)

导数题型总结1.导数的几何意义2.导数四则运算构造新函数3.利用导数研究函数单调性4.利用导数研究函数极值和最值5.①知零点个数求参数范围②含参数讨论零点个数6.函数极值点偏移问题7.导函数零点不可求问题8.双变量的处理策略9.不等式恒成立求参数范围10.不等式证明策略11.双量词的处理策略12.绝对值与导数结合问题导数专题一导数几何意义一.知识点睛导数的几何意义:函数y=f(x)在点x=x0 处的导数f’(x0)的几何意义是曲线在点x=x0 处切线的斜率。

二.方法点拨:1.求切线①若点是切点:(1)切点横坐标x0 代入曲线方程求出y0(2)求出导数f′(x),把x0代入导数求得函数y =f(x)在点x=x 0处的导数f ′(x 0)(3)根据直线点斜式方程,得切线方程:y -y 0=f ′(x 0)(x -x 0).②点(x 0,y 0)不是切点求切线:(1)设曲线上的切点为(x 1,y 1); (2)根据切点写出切线方程y -y 1=f ′(x 1)(x -x 1) (3)利用点(x 0,y 0)在切线上求出(x 1,y 1); (4)把(x 1,y 1)代入切线方程求得切线。

2.求参数,需要根据切线斜率,切线方程,切点的关系列方程:①切线斜率k=f ′(x 0) ②切点在曲线上③切点在切线上三.常考题型:(1)求切线(2)求切点(3)求参数⑷求曲线上的点到直线的最大距离或最小距离(5)利用切线放缩法证不等式 四.跟踪练习1.(2016全国卷Ⅲ)已知f(x)为偶函数,当x <0时,f(x)=f (-x )+3x ,则曲线y=f (x )在点(1,-3)处的切线方程是2.(2014新课标全国Ⅱ)设曲线y=ax-ln (x+1)在点(0,0)处的切线方程为y=2x ,则a= A. 0 B.1 C.2 D.33.(2016全国卷Ⅱ)若直线y=kx+b 是曲线y=lnx+2的切线,也是曲线y=ln (x+1)的切线,则b=4.(2014江西)若曲线y=e -x上点P 处的切线平行于直线2x+y+1=0,则点P 的坐标是5.(2014江苏)在平面直角坐标系中,若曲线y=ax 2+xb(a ,b 为常数)过点P (2,-5),且该曲线在点P 处的切线与直线7x+2y+3=0平行,则a+b= 6.(2012新课标全国)设点P 在曲线y=21e x上,点Q 在曲线y=ln (2x )上,则▕PQ ▏的最小值为 A.1-ln2 B.2(1-ln2) C.1+ln2 D.2(1+ln2)7.若存在过点(1,0)的直线与曲线y=x 3和y=ax 2+415x-9都相切,则a 等于 8.抛物线y=x 2上的点到直线x-y-2=0的最短距离为 A.2B.827C. 22D. 19.已知点P 在曲线y=14+x e 上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是 10.已知函数f (x )=2x 3-3x.(1)求f (x )在区间[-2,1]上的最大值;(2) 若过点P (1,t )存在3条直线与曲线y=f (x )相切,求t 的取值范围. 11. 已知函数f (x )=4x-x 4,x ∈R. (1) 求f (x )的单调区间(2) 设曲线y=f (x )与x 轴正半轴的交点为P ,曲线在点P 处的切线方程为y=g (x ),求证: 对于任意的实数x ,都有f (x )≤g (x )(3) 若方程f (x )=a (a 为实数)有两个实数根x 1,x 2,且x 1<x 2,求证:x 2-x 1≤-3a+431.导数专题二 利用导数四则运算构造新函数 一.知识点睛 导数四则运算法则:[f(x)±g (x )]’=f ′(x)±g ′(x) [f(x)·g (x )]’=f ′(x)·g(x) +f(x)·g ′(x)[ )()(x g x f ]′=2[g(x)](x)f(x)g'(x)g(x)f'- 二.方法点拨在解抽象不等式或比较大小时原函数的单调性对解题没有任何帮助,此时我们就要构造新函数,研究新函数的单调性来解抽象不等式或比较大小。

导数各类题型方法总结(含答案)

导数各类题型方法总结(含答案)

导数各类题型⽅法总结(含答案)导数各种题型⽅法总结⼀、基础题型:函数的单调区间、极值、最值;不等式恒成⽴; 1此类问题提倡按以下三个步骤进⾏解决:第⼀步:令f '(x)0得到两个根;第⼆步:画两图或列表;第三步:由图表可知;其中不等式恒成⽴问题的实质是函数的最值问题, 2、常见处理⽅法有三种:第⼀种:分离变量求最值 -----⽤分离变量时要特别注意是否需分类讨论( >0,=0,<0)第⼆种:变更主元 (即关于某字母的⼀次函数)-----(已知谁的范围就把谁作为主元);例1:设函数y f (x)在区间D 上的导数为f (x), f (x)在区间D 上的导数为g(x),若在区间D4…、 x3mx 3x 2f (x)126 2(1 )若y f (x)在区间0,3上为“凸函数”,求m 的取值范围;(2)若对满⾜ m 2的任何⼀个实数 m ,函数f (x)在区间a,b 上都为“凸函数”,求b值?4 3^23 2x mx 3xx mx o解:由函数f (x)得f (x)3x12 6 23 2g (x) x 2 mx 3(1) Q y f (x)在区间0,3上为“凸函数”,贝V g(x) x 2 mx 30在区间[0,3]上恒成⽴解法⼀:从⼆次函数的区间最值⼊⼿:等价于g max (x)2x x 3 0 2 1 x 12x x 3 0上,g(x) 0恒成⽴,则称函数y f (x)在区间D 上为“凸函数”,已知实数 m 是常数, a 的最⼤g(0) g(3)3 0 9 3m 3 0解法⼆:分离变量法:0 时,g(x)x 3时,g(x) x 2 3 2x2 x mx mx3 0恒成⽴, 0恒成⽴等价于m -—3x由 3门⽽ h(x) x ( 0 xm 23的最⼤值x(0x3 )恒成⽴, 3 )是增函数,贝 y h max (x) h(3) 2(2) v 当 m 2时f (x)在区间a,b 上都为“凸函数”则等价于当m 2时g(x)2x mx 3 0恒成⽴变更主元法2再等价于F(m) mx x 32恒成⽴ (视为关于 m 的⼀次函数最值问题)F( 2) 0 F(2)例2:设函数f(x) 〔x3 2ax2 3a2x b(0 a 1,b R)3(I)求函数f (x)的单调区间和极值;(⼆次函数区间最值的例⼦)g(x) x2 4ax 3a2在[a 1,a 2]上是增函数.g(x)max g(a 2) 2a 1.g(x)min g(a 1) 4a 4.于是,对任意x [a 1,a 2],不等式①恒成⽴,等价于a 1.4⼜0 a 1, a 1.5点评:重视⼆次函数区间最值求法:对称轴(重视单调区间)与定义域的关系第三种:构造函数求最值题型特征:f(x) g(x)恒成⽴h(x) f (x) g(x) 0恒成⽴;从⽽转化为第⼀、⼆种题型(n)若对任意的x [a 1,a 2],不等式f (x) a恒成⽴,求a的取值范围.x 3a x a3 3x=a 时,f(x)4b;由| f (x) |< a,得:对任意的[a 1,a 2], x2 4 ax 3a2 a恒成⽴①则等价于g(x)这个⼆次函数gmax(x) ag min(x) a2g(x) x24ax 3a的对称轴x 2a Q 0 a 1, a 1 2a (放缩法)g(x)这个⼆次函数的最值问题:单调增函数的最值问题。

导数大题20种主要题型总结及解题方法

导数大题20种主要题型总结及解题方法

导数大题20种主要题型总结及解题方法导数是微积分中的一个重要概念,用于描述函数在某一点处的变化率。

掌握导数的计算和应用方法对于解决各种实际问题具有重要意义。

下面将对导数的20种主要题型进行总结并给出解题方法。

1.求函数在某点的导数。

对于给定的函数,要求在某一点处的导数,可以使用导数的定义或者基本求导法则。

导数的定义是取极限,计算函数在这一点的变化率。

基本求导法则包括常数、幂函数、指数函数、对数函数、三角函数的求导法则。

2.求函数的导数表达式。

已知函数表达式,要求其导数表达式。

可以使用基本求导法则,并注意链式法则和乘积法则的应用。

3.求高阶导数。

如果已知函数的导数表达式,要求其高阶导数表达式。

可以反复应用求导法则,每次对函数求导一次得到导数表达式。

4.求导数的导函数。

导数的导函数是指对导数再进行求导的过程。

要求导函数时,可以反复应用求导法则,迭代求取导数的导数。

5.利用导数计算函数极值。

当函数的导数为0或不存在时,可能是函数的极值点。

可以利用导数求函数的极值。

6.利用导数判定函数的增减性。

根据函数的导数正负性可以判定函数的增减性。

如果导数大于0,则函数在该区间上递增;如果导数小于0,则函数在该区间上递减。

7.利用导数求函数的最大最小值。

当函数在某一区间内递增时,在区间的左端点处取得最小值;当函数在某一区间内递减时,在区间的右端点处取得最小值。

要求函数全局最大最小值时,可以使用导数判定。

当导数从正数变为负数时,可能是函数取得最大值的点。

8.利用导数求函数的拐点。

如果函数的导数在某一点发生变号,该点可能是函数的拐点。

可以使用导数的二阶导数判定。

9.利用导数求函数的弧长。

曲线的弧长可以通过积分求取,而曲线的弧长元素是由导数表示的。

通过导数求取弧长元素,并积累求和得到曲线的弧长。

10.利用导数求函数的曲率。

曲率表示曲线弯曲程度的大小,可以通过导数求取。

曲率的求取公式是曲线的二阶导数与一阶导数的比值。

11.利用导数求函数的速度和加速度。

导数题型总结

导数题型总结

导数题型总结导数题型总结导数及其应用题型总结题型一:切线问题①求曲线在点(xo,yo)处的切线方程②求过曲线外一点的切线方程③求已知斜率的切线方程④切线条数问题例题1:已知函数f(x)=x+x-16,求:(1)曲线y=f(x)在点(2,-6)处的切线方程(2)过原点的直线L是曲线y=f(x)的切线,求它的方程及切点坐标(3)如果曲线y=f(x)的某一切线与直线y=-(1/4)x+3垂直,求切线方程及切点坐标例题2:已知函数f(x)=ax+2bx+cx在xo处去的极小值-4.使其导数f”(x)>0的x的取值范围为(1,3),求:(1)f(x)的解析式;(2)若过点P (-1,m)的曲线y=f(x)有三条切线,求实数m的取值范围。

题型二:复合函数与导数的运算法则的综合问题例题3:求函数y=xcos (x+x-1)sin(x+x-1)的导数题型三:利用导数研究函数的单调区间①求函数的单调区间(定义域优先法则)②求已知单调性的含参函数的参数的取值范围③证明或判断函数的单调性例题4:设函数f(x)=x+bx+cx,已知g(x)=f(x)-f”(x)是奇函数,求y=g (x)的单调区间例题5:已知函数f(x)=x3-ax-1,(1)若f(x)在实数集R上单调递增,求实数a的取值范围(2)是否存在实数a,使f(x)在(-1,1)上单调递减?若存在,求出a的范围;若不存在,说明理由。

例题6:证明函数f(x)=lnx/x2在区间(0,2)上是减函数。

题型四:导数与函数图像问题例1:若函数y=f(x)的导函数在区间[a,b]上是增函数,则函数y=f(x)在[a,b]上的图象可能是y题型五:利用导数研究函数的极值和最值例题7:已知函数f(x)=-x3+ax2+bx在区间(-2,1)上x=-1时取得极小值,x=2/3时取得极yy32323oaoobxoabxbxabxaA.B.C.D.大值。

求(1)函数y=f(x)在x=-2时的对应点的切线方程(2)函数y=f(x)在[-2,1]上的最大值和最小值。

高考导数题型分析及解题方法

高考导数题型分析及解题方法

高考导数题型分析及解题方法一、考试内容导数的概念,导数的几何意义,几种常见函数的导数;两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值。

二、热点题型分析题型一:利用导数研究函数的极值、最值。

1. 32()32f x x x =-+在区间[]1,1-上的最大值是 2 2.已知函数2)()(2=-==x c x x x f y 在处有极大值,则常数c = 6 ; 3.函数331x x y -+=有极小值 -1 ,极大值 3 题型二:利用导数几何意义求切线方程1.曲线34y x x =-在点()1,3--处的切线方程是 2y x =-2.若曲线x x x f -=4)(在P 点处的切线平行于直线03=-y x ,则P 点的坐标为 (1,0) 3.若曲线4y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为 430x y --= 4.求下列直线的方程:(1)曲线123++=x x y 在P(-1,1)处的切线; (2)曲线2x y =过点P(3,5)的切线; 解:(1) 123|y k 23 1)1,1(1x /2/23===∴+=∴++=-=-上,在曲线点-x x y x x y P所以切线方程为02 11=+-+=-y x x y 即,(2)显然点P (3,5)不在曲线上,所以可设切点为),(00y x A ,则200x y =①又函数的导数为x y 2/=,所以过),(00y x A 点的切线的斜率为0/2|0x y k x x ===,又切线过),(00y x A 、P(3,5)点,所以有352000--=x y x ②,由①②联立方程组得,⎩⎨⎧⎩⎨⎧====255110000y x y x 或,即切点为(1,1)时,切线斜率为;2201==x k ;当切点为(5,25)时,切线斜率为10202==x k ;所以所求的切线有两条,方程分别为2510 12 )5(1025)1(21-=-=-=--=-x y x y x y x y 或即,或题型三:利用导数研究函数的单调性,极值、最值1.已知函数))1(,1()(,)(23f P x f y c bx ax x x f 上的点过曲线=+++=的切线方程为y=3x+1 (Ⅰ)若函数2)(-=x x f 在处有极值,求)(x f 的表达式; (Ⅱ)在(Ⅰ)的条件下,求函数)(x f y =在[-3,1]上的最大值; (Ⅲ)若函数)(x f y =在区间[-2,1]上单调递增,求实数b 的取值范围 解:(1)由.23)(,)(223b ax x x f c bx ax x x f ++='+++=求导数得过))1(,1()(f P x f y 上点=的切线方程为:).1)(23()1(),1)(1()1(-++=+++--'=-x b a c b a y x f f y 即而过.13)]1(,1[)(+==x y f P x f y 的切线方程为上故⎩⎨⎧-=-=+⎩⎨⎧-=-=++3023323c a b a c a b a 即 ∵124,0)2(,2)(-=+-∴=-'-==b a f x x f y 故时有极值在 ③ 由①②③得 a=2,b=-4,c=5 ∴.542)(23+-+=x x x x f (2)).2)(23(443)(2+-=-+='x x x x x f当;0)(,322;0)(,23<'<≤->'-<≤-x f x x f x 时当时13)2()(.0)(,132=-=∴>'≤<f x f x f x 极大时当 又)(,4)1(x f f ∴=在[-3,1]上最大值是13。

高中导数题所有题型及解题方法

高中导数题所有题型及解题方法

高中导数题所有题型及解题方法一、导数的概念1.1 导数的定义•导数的定义公式:f′(x)=limℎ→0f(x+ℎ)−f(x)ℎ•导数表示函数在某一点的变化率1.2 导数的几何意义•函数图象在某一点的切线斜率•函数图象在某一点的局部线性近似二、导数的基本运算法则2.1 基本导数公式•常数函数:d dx (C)=0•幂函数:d dx (x n)=nx n−1•指数函数:ddx(a x)=a x ln(a)2.2 函数和、差、积、商的导数•和的导数:(u+v)′=u′+v′•差的导数:(u−v)′=u′−v′•积的导数:(uv)′=u′v+uv′•商的导数:(uv)′=u′v−uv′v2,其中v≠02.3 复合函数的导数•复合函数的求导公式:如果y=f(u)及u=g(x), 则dy dx =dy dududx三、导数的应用3.1 函数的单调性•若f′(x)>0,则函数f(x)在该区间上单调递增•若f′(x)<0,则函数f(x)在该区间上单调递减3.2 函数的极值与最值•极大值:若f′(x0)=0,且f″(x0)<0,则f(x0)是函数f(x)在x0处的极大值•极小值:若f′(x0)=0,且f″(x0)>0,则f(x0)是函数f(x)在x0处的极小值3.3 函数的拐点•拐点:若f″(x0)=0,则f(x)在x0处的图像有拐点3.4 函数的图像•函数图象的基本性质–若f′(x)>0,则函数的图像上的点随x的增大而上升–若f′(x)<0,则函数的图像上的点随x的增大而下降–若f″(x)>0,则函数的图像在该区间上凹–若f″(x)<0,则函数的图像在该区间上凸四、基础导数题型4.1 求导数•题型1:求函数的导数y=f(x)•题型2:求函数的高阶导数y(n)=f(x)4.2 高阶导数应用•题型1:求函数的极值和拐点•题型2:求函数在某点的切线方程•题型3:求函数的图像4.3 求解极值问题•题型1:求一定范围内函数的极大值和极小值•题型2:求满足一定条件的函数极值4.4 函数的单调性•题型1:判断函数的单调区间•题型2:填空题,填写使函数单调递增或递减的区间五、综合题型5.1 数学建模•题型1:利用导数求解实际生活中的问题5.2 物理应用•题型1:利用导数求解物理问题,如速度、加速度等5.3 函数的变化率•题型1:求函数在某点的变化率•题型2:求函数在某段区间的平均变化率六、总结本篇文章主要介绍了高中阶段导数相关的内容,包括导数的基本定义、几何意义、基本运算法则,以及导数在函数的单调性、极值与最值、图像以及物理应用中的运用。

高中导数题所有题型及解题方法

高中导数题所有题型及解题方法

高中导数题所有题型及解题方法在高中数学中,导数是一个非常重要的概念。

导数是描述曲线在某一点处的切线斜率的指标。

在高中数学中,学生需要掌握不同类型的导数题。

以下是高中导数题中的所有题型及解题方法:1.求函数的导数:这是最基本的导数问题。

对于一个函数,需要求出它的导数函数。

为此,需要使用导数的定义公式,即极限。

例如,对于函数f(x) = x^2 + 2x + 1,其导数是f’(x) = 2x + 2。

2.求函数的导数在某一点处的值:这个类型的问题需要计算函数在一定点处的导数值。

为此,需要使用导数的定义公式,并将x的值代入到函数中计算。

例如,对于函数f(x) = x^2 + 2x + 1,在x = 2处的导数值为f’(2) = 6。

3.求函数的极值:极值是函数在某一点处的最大值或最小值,即导数为0的点。

为了找到函数的极值,需要计算函数的导数,并找到导数为0的点。

例如,对于函数f(x) = x^3 - 3x^2 + 2x + 1,其导数为f’(x) =3x^2 - 6x + 2。

为了找到函数的极值,需要找到导数为0的点。

计算可得,x = 1或x = 2是导数为0的点。

因此,函数的极值为f(1) = 1和f(2) = 3。

4.求函数的拐点:拐点是函数曲线从凸向上到凹向上或从凸向下到凹向下的点。

为了找到函数的拐点,需要计算函数的二阶导数,即导数的导数。

例如,对于函数f(x) = x^3 - 3x^2 + 2x + 1,其一阶导数为f’(x) = 3x^2 - 6x + 2,二阶导数为f’’(x) = 6x - 6。

为了找到函数的拐点,需要找到二阶导数为0的点。

计算可得,x = 1是二阶导数为0的点。

因此,函数在x = 1处有一个拐点。

5.求函数与直线的交点:这个类型的问题需要找出函数和直线的交点。

为此,需要先将直线方程代入到函数中,然后解方程。

例如,对于函数f(x) = x^2 + 2x + 1和直线y = 3x - 1,将直线方程代入到函数中可得x^2 + 2x + 1 = 3x - 1。

导数及其应用常见题型攻略

导数及其应用常见题型攻略

导数及其应用常见题型攻略1.导数定义(1)x y x f x 00lim)(x x f x x f x )()(lim 000hx f h x f h )()(lim000 (2)000)()(lim)(0x x x f x f x f x x 例1【2018考研】下列函数中在0 x 处不可导的是||sin ||)()(x x x f A ||sin ||)()(x x x f B ||cos )()(x x f C ||cos )()(x x f D 分析:直接用导数定义求导数解:)(A h f h f f h )0()0(lim)0(0h h h h ||sin ||lim 0 hh h sinhlim 0 0sinh lim 0 h ;)(B h f h f f h )0()0(lim)0(0hh h h ||sin ||lim 0 0||sin lim 0 h h ;)(C h f h f f h )0()0(lim )0(0 h h h 1||cos lim 0 021lim 20 hh h ;)(D h f h f f h )0()0(lim )0(0 h h h 1||cos lim 0 hh h ||21lim0 h h h ||lim 210 有21)0(f ,21)0( f ,故导数不存在。

答案D 。

例2【2011考研】已知)(x f 在0 x 处可导,且0)0( f ,则 3320)(2)(lim xx f x f x x )0(2)(f A )0()(f B )0()(f C 0)(D 分析:凑导数定义。

解:3320)(2)(lim x x f x f x x 3320)]0()([2)]0()([limx f x f f x f x x x f x f x )0()(lim 0 330)0()(lim 2x f x f x )0()0(2)0(f f f 。

答案B 。

例3设0)0( f ,则)(x f 在0 x 处可导的充要条件是cosh)1(1lim)(20 f h A h 存在)1(1lim)(0h h e f hB 存在sinh)(1lim)(20 h f h C h 存在)]()2([1lim )(0h f h f hD h 存在解:cosh)1(1lim)(20 f h A h 20cosh 1cosh 1)0(cosh)1(lim h f f h cosh1)0(cosh)1(lim 210 f f h 0 h 时, 0cosh 1,所以cosh)1(1lim)(20 f h A h 存在 右导数存在;)1(1lim )(0hh e f h B he ef e f h h h h 11)0()1(lim 0h h h e f e f 1)0()1(lim 00 h 时,01 h e ,所以)1(1lim)(0h h e f hB 存在 导数存在;sinh)(1lim)(20 h f h C h 20sinh sinh )0(sinh)(lim h h h f h f h 因为20sinh lim h h h hh 2cosh 1lim 0 h h h 221lim20 041lim 0 h h 。

导数在函数中的应用——题型总结

导数在函数中的应用——题型总结

导数在函数中的应用一.根底知识1.函数的导数与单调性在*个区间,假设()f x '>0,则函数)(x f y =在这个区间单调递增;假设()f x '<0, 则函数)(x f y =在这个区间单调递减.2.函数的导数与极值〔1〕极大值:如果在0x 附近的左侧()f x '>0,右侧()f x '<0,且()f x '=0,则0()f x 是极大值; 〔2〕极小值:如果在0x 附近的左侧()f x '<0,右侧()f x '>0,且()f x '=0,则0()f x 是极小值;3.函数的导数与最值(1)函数)(x f y =在区间[a,b]上有最值的条件:一般地,如果在区间[a,b]上,函数)(x f y =的图象是一条连续不断的曲线,则它必有最大值和最小值.(2) 求函数)(x f y =在区间[a, b]上最大值与最小值的步骤:①求函数)(x f y =在区间〔a,b 〕的极值;②将函数)(x f y =的各个极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值4.利用导数解决生活中的优化问题的一般步骤(1)分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系式y =f(*);(2)求函数的导数f′(*),解方程f′(*)=0;(3)比较函数在区间端点和f′(*)=0的点的函数值的大小,最大(小)者为最大(小)值;(4)回归实际问题作答.本卷须知1.直线与曲线有且只有一个公共点,直线不一定是曲线的切线;反之直线是曲线的切线,但直线不一定与曲线有且只有一个公共点.2.(1)f′(*)>0在(a ,b)上成立是f(*)在(a ,b)上单调递增的充分条件.(2)对于可导函数f(*),f′(*0)=0是函数f(*)在*=*0处有极值的必要不充分条件.3.求函数单调区间的步骤:(1)确定函数f(*)的定义域;(2)求导数f′(*);(3)由f′(*)>0(f′(*)<0)解出相应的*的围.当f′(*)>0时,f(*)在相应的区间上是增函数;当f′(*)<0时,f(*)在相应的区间上是减函数,还可以列表,写出函数的单调区间.4.(1)注意实际问题中函数定义域确实定.(2)在实际问题中,如果函数在区间只有一个极值点,则只要根据实际意义判定最大值还是最小值即可,不必再与端点的函数值比较.二.题型训练题型一 求曲线切线的方程例1.函数f (*)=*3-4*2+5*-4.(1)求曲线f (*)在*=2处的切线方程;(2)求经过点A (2,-2)的曲线f (*)的切线方程. 变式1.曲线y =*e *+1在点(0,1)处的切线方程是( )A .*-y +1=0B .2*-y +1=0C .*-y -1=0D .*-2y +2=02.直线y =k*+1与曲线y =*3+a*+b 相切于点A (1,3),则a -b 的值为( )A .-4B .-1C .3D .-2题型二.求函数的单调区间例2.函数f (*)=e *(a*+b )-*2-4*,曲线y =f (*)在点(0,f (0))处的切线方程为y =4*+4.(1)求a ,b 的值;(2)讨论f (*)的单调性,并求f (*)的极大值.练习:1. 设函数f (*)=*(e *-1)-12*2,则函数f (*)的单调增区间为________. 2.函数f(*)=13*3+a*2+b*(a ,b ∈R ).(1)当a =1时,求函数f(*)的单调区间;(2)假设f(1)=13,且函数f(*)在⎝ ⎛⎭⎪⎫0,12上不存在极值点,求a 的取值围.题型三.分类讨论求函数的单调区间例3.函数f (*)=*2+a*+b ln *(*>0,实数a ,b 为常数).(1)假设a =1,b =-1,求函数f (*)的极值;(2)假设a +b =-2,讨论函数f (*)的单调性.练习:1.函数f(*)=*2-(a +2)*+a ln *+2a +2,其中a≤2.(1)求函数f(*)的单调区间;(2)假设函数f(*)在(0,2]上有且只有一个零点,数a 的取值围.2.a ∈R ,函数3()42f x x ax a =-+〔1〕求()f x 的单调区间〔2〕证明:当0≤x ≤1时,()f x + 2a ->0.3. 设函数()x f x e ax 2=--(Ⅰ)求()f x 的单调区间(Ⅱ)假设a=1,k 为整数,且当*>0时,()()x k f x x 10'>-++,求k 的最大值小结:利用导数研究函数的单调性关注四点(1)利用导数研究函数的单调性,大多数情况下归结为对含有参数的不等式的解集的讨论.(2)在能够通过因式分解求出不等式对应方程的根时,依据根的大小进展分类讨论.(3)在不能通过因式分解求出根时,根据不等式对应方程的判别式进展分类讨论.(4)讨论函数的单调性是在函数的定义域进展的,千万不要无视了定义域的限制.题型四.单调性的逆用例4.函数f (*)=*3-a*2-3*.(1)假设f (*)在[1,+∞)上是增函数,数a 的取值围;(2)假设*=3是f (*)的极值点,求f (*)的单调区间.练习:1.函数f (*)=(*+a )2-7b ln *+1,其中a ,b 是常数且a ≠0.(1)假设b =1时,f (*)在区间(1,+∞)上单调递增,求a 的取值围;(2)当b =47a 2时,讨论f (*)的单调性. 2.假设函数f (*)=*2+a*+1*在⎝ ⎛⎭⎪⎫12,+∞上是增函数,则a 的取值围是( ) A .[-1,0] B .[-1,+∞)C.[0,3] D .[3,+∞)3.函数f (*)=13*3-*2+a*-5在区间[-1,2]上不单调,则实数a 的围是________.4. 函数f 〔*〕=3213x x ax b -++的图像在点P 〔0,f(0)〕处的切线方程为y=3*-2 (Ⅰ)数a,b 的值;(Ⅱ)设g 〔*〕=f(*)+1m x -是[2,+∞]上的增函数,数m 的最大。

导数的大题题型及解题技巧

导数的大题题型及解题技巧

导数的大题题型及解题技巧
导数的大题题型包括函数的基本求导、复合函数的求导、参数方程的求导、隐函数的求导等。

下面介绍一些解题技巧。

1. 函数的基本求导:首先找到函数的导数定义,然后应用求导公式,根据函数的具体形式进行求导。

常见的函数有多项式函数、指数函数、对数函数、三角函数等。

2. 复合函数的求导:根据链式法则,将复合函数分解成内函数和外函数,然后分别求导并乘起来。

注意求导的顺序和方法。

3. 参数方程的求导:对于参数方程,将每个变量用一个参数表示,然后对参数求导得到相应的导数。

常见的参数方程有直角坐标系和极坐标系。

4. 隐函数的求导:对于隐函数,首先根据给定的条件,利用导数的定义将自变量和因变量相互关联表示。

然后利用求导公式进行计算,最后求得导数。

5. 利用性质简化计算:对于一些特殊函数或特殊的情况,可以利用导数的性质来简化计算。

例如,奇偶性、周期性、对称性等。

6. 运用变速度思想:对于一些几何意义明确的问题,可以将导数理解为运动的速度,利用变速度思想进行求导。

例如,物体的位移、速度和加速度。

以上是导数的一些大题题型及解题技巧,希望对你有所帮助!。

导数常见题型与解题方法总结

导数常见题型与解题方法总结

导数常见题型与解题方法总结导数题型总结:1.分离变量:在使用分离变量时,需要特别注意是否需要分类讨论(大于0,等于0,小于0)。

2.变更主元:已知谁的范围就把谁作为主元。

3.根分布。

4.判别式法:结合图像分析。

5.二次函数区间最值求法:(1)对称轴(重视单调区间)与定义域的关系;(2)端点处和顶点是最值所在。

基础题型:此类问题提倡按以下三个步骤进行解决:1.令f'(x)=0,得到两个根。

2.画两图或列表。

3.由图表可知。

另外,变更主元(即关于某字母的一次函数)时,已知谁的范围就把谁作为主元。

例1:设函数y=f(x)在区间D上的导数为f'(x),f'(x)在区间D上的导数为g(x),若在区间D上,g(x)<___成立,则称函数y=f(x)在区间D上为“凸函数”。

已知实数m是常数,f(x)=(-x^4+mx^3+3x^2)/62.1.若y=f(x)在区间[0,3]上为“凸函数”,求m的取值范围。

解法一:从二次函数的区间最值入手,等价于g(x)<0在[0,3]上恒成立,即g(0)<0且g(3)<0.因此,得到不等式组-3<m<2.解法二:分离变量法。

当x=0或x=3时,g(x)=-3<0.因此,对于0≤x≤3,g(x)<___成立。

根据分离变量法,得到不等式组-3<m<2.2.若对满足m≤2的任何一个实数m,函数f(x)在区间(a,b)上都为“凸函数”,求b-a的最大值。

由f(x)=(-x^4+mx^3+3x^2)/62得到f'(x)=(-4x^3+3mx^2+6x)/62,f''(x)=(-12x^2+6mx+6)/62.因为f(x)在区间(a,b)上为“凸函数”,所以f''(x)>0在(a,b)___成立。

因此,得到不等式组a≤x≤b和-12a^2+6ma+6>0,即a≤x≤b且m≤2或a≤x≤b且m≥1/2.由于m≤2,所以a≤x≤b且m≤2.根据变更主元法,将F(m)=mx-x^2+3视为关于m的一次函数最值问题,得到不等式组F(-2)>0和F(2)>0,即-2x-x^2+3>0且2x-x^2+3>0.解得-1<x<1.因此,b-a=2.Ⅲ)由题意可得,对任意x∈[1,4],有f(x)≤g(x)代入g(x)得:x3+(t-6)x2-(t+1)x+3≥x3+(t-6)x2/2化___:x2(t-7/2)-x(t+1/2)+3≥0由于对于任意x∈[1,4],不等式都成立,所以判别式≤0:t+1/2)2-4×3×(t-7/2)≤0化___:t2-10t+19≤0解得:1≤___≤9综上所述,a=-3,b=1/2,f(x)的值域为[-4,16],t的取值范围为1≤t≤9.单调增区间为:$(-\infty,-1),(a-1,+\infty)$和$(-1,a-1)$。

高中导数七大题型解题技巧

高中导数七大题型解题技巧

高中导数七大题型解题技巧高中导数七大题型解题技巧1. 导数的定义与计算•理解导数的定义:导数表示函数在某一点的变化率,可以通过极限的方法求得。

•使用导数的基本计算公式:对于常见的函数,可以根据函数的性质和导数的定义来计算导数。

2. 函数的求导法则•使用求导法则简化求导过程:如常数法则、幂函数法则、指数函数法则、对数函数法则、三角函数法则等。

•注意链式法则的应用:当函数由多个复合函数组成时,可以使用链式法则简化求导过程。

3. 高阶导数的计算•理解高阶导数的概念:高阶导数表示导数的导数,可以通过多次求导得到。

•使用链式法则和求导法则计算高阶导数:根据函数的性质和导数的法则,可以计算出高阶导数。

4. 函数的极值与单调性•寻找函数的极值点:通过判断导数的正负来确定函数的增减性和极值点。

•判断函数的单调性:根据导数的正负判断函数的单调递增和单调递减区间。

5. 函数的凹凸性与拐点•判断函数的凹凸性:通过求导数的二阶导数和符号判断函数的凹凸性。

•寻找函数的拐点:通过判断导数的二阶导数的变化来确定函数的拐点。

6. 函数的渐近线与极限•理解函数的渐近线:渐近线是函数在无穷远点或某一点趋近于无穷时的极限情况。

•计算函数的极限:根据导数和高阶导数的性质计算函数在某一点的极限。

7. 应用题的解题方法•理解应用题的背景和要求:应用题通常涉及到实际问题,需要将问题转化为数学模型进行求解。

•使用导数解决应用题:根据问题的要求,建立函数模型并使用导数来解决问题。

以上是高中导数七大题型解题的一些基本技巧和方法,希望可以帮助到你在学习导数时的理解和应用。

导数及其应用常见题型

导数及其应用常见题型

导数及其应用题型一利用导数研究函数的单调性设函数y=Hx)在某个区间内有导数,如果在这个区间内f,M>0,那么函数y=F(x)为在这个区间内的函数;如果在这个区间内F'G)V0,那么函数尸F(X)为在这个区间内的函数.设函数尸f(x)在某个区间内有导数,如果y=f(x)在这个区间内为增函数,那么在该区间内有;如果尸f(x)在这个区间内为减函数,那么在该区间内有;用导数求函数单调区间的步骤:(1)求函数f(x)的(2)函数F(X)的导数/'(X).(3)令/*)>0解不等式,得函数的区间;令(")Vo解不等式,得函数的区间3例1.1、函数y=∕(x)在定义域(一-,3)内可导,其图象如下图,那么不等式/(x)W0的解集为3变式1.1、函数、=/(外在定义域(一耳,3)内可导,其图象如上图所示(同例1),记y=∕(x)的导函数为y=∕<χ),那么不等式/'(X)WO的解集为例1.2、函数/(x)在R上可导,其导函数为/'*),且函数y=(l-x)∕'(x)的图像如下图,那么f(x)的极大值点为,极小值点为例L3、设f(x),g(x)均是定义在R上的奇函数,当x<0时,f,Mg(x)+f(x)g'(x)>0,且/(-2)=O,那么不等式/(x)∙^(x)<O的解集是练习1.1函数/(制的定义域是开区间(4,b),导函数∕∙'(x)在(〃力)内的图象如下图,那么函数/(X)在开区间内极小值点有个,极大值点有个。

/\练习1.2f(x)=—(a+I)X2+4x+∖(a∈R)(1)讨论函数的单调增区间。

(3)是否存在负实数。

,使x∈[-l,θ],函数有最小值一3?题型二利用导数研究函数的极值和最值求可导函数Fa)的极值的步骤:(1)确定函数的定义域,求导数(2)求方程/"(X)=O的根.(3)用函数的导数为0的点,顺次将函数的定义区间分成假设干小开区间,并列成表格.如果左正右负,那么F(X)在这个根处取得极值;如果左负右正,那么F(X)在这个根处取得极值;如果左右不改变符号,那么F(X)在这个根处无极值.例2.1假设函数〃制二/一3"+36在(0,1)内有极小值,那么b的取值范围为。

导数专题的题型总结

导数专题的题型总结

导数专题的题型总结一、导数的概念与运算题型1. 求函数的导数- 题目:求函数y = x^3+2x - 1的导数。

- 解析:- 根据求导公式(x^n)^′=nx^n - 1,对于y = x^3+2x - 1。

- 对于y = x^3,其导数y^′=(x^3)^′ = 3x^2;对于y = 2x,其导数y^′=(2x)^′=2;对于y=-1,因为常数的导数为0,所以y^′ = 0。

- 综上,函数y = x^3+2x - 1的导数y^′=3x^2+2。

2. 复合函数求导- 题目:求函数y=(2x + 1)^5的导数。

- 解析:- 设u = 2x+1,则y = u^5。

- 根据复合函数求导公式y^′_x=y^′_u· u^′_x。

- 先对y = u^5求导,y^′_u = 5u^4;再对u = 2x + 1求导,u^′_x=2。

- 所以y^′ = 5u^4·2=10(2x + 1)^4。

二、导数的几何意义题型1. 求切线方程- 题目:求曲线y = x^2在点(1,1)处的切线方程。

- 解析:- 对y = x^2求导,根据求导公式(x^n)^′=nx^n - 1,可得y^′ = 2x。

- 把x = 1代入导数y^′中,得到切线的斜率k = 2×1=2。

- 由点斜式方程y - y_0=k(x - x_0)(其中(x_0,y_0)=(1,1),k = 2),可得切线方程为y - 1=2(x - 1),即y = 2x-1。

2. 已知切线方程求参数- 题目:已知曲线y = ax^2+3x - 1在点(1,a + 2)处的切线方程为y = 7x + b,求a和b的值。

- 解析:- 先对y = ax^2+3x - 1求导,y^′=2ax + 3。

- 把x = 1代入导数y^′中,得到切线的斜率k = 2a+3。

- 因为切线方程为y = 7x + b,所以切线斜率为7,即2a + 3=7,解得a = 2。

第三章,导数的应用

第三章,导数的应用

那么至少存在一个 a,b, 使得
(5)泰勒中值定理
f (b) f a f g b g a g .
设 f (x) 在区间I上n+1阶可导,x0 I,那么 xI ,至少存在一个 使
f (x)=f
x0
f x0 (x x0 )
f
x0
2!
(
x
x0
)2
f
(
n) x0
n!
(x
x0
)n
f (n1)
n
1!
(
x
x0
)n1
其中 介于 x0与x 之间.
2、极值与最值 (1)函数的极值 1)极值的概念
函数的极大值与极小值统 称为函数的极值 使函数取 得极值的点称为极值点
设函数 f (x) 在区间(a,b)内有定义 x0 (a,b) 如果在 x0 的某一去心邻域内 有 f (x) f (x0) 则称 f (x0 ) 是函数 f (x) 的一个极大值 如果在 x0 的某一 去心邻域内有 f (x) f (x0 ),则称 f (x0 )是函数 f (x)的一个极大值.
(2)函数的最值 求函数在 [a,b]上的最值的步骤如下: 计算函数 f (x) 在一切可能极值点 x1 , x2 , , xm的函数值,并将它们与 f (a), f (b)相比较,这些值中最大的就是最大值,最小的就是最小值;即
M max f (x1), f (x2), , f (xm), f (a), f (b) m min f (x1), f (x2), , f (xm), f (a), f (b)
特别:当 f (x) 在[a,b] 上单调时最值必在端点处达到.
3、曲线的凹凸性与拐点
(1)曲线的凹凸性

导数题型及解题方法归纳

导数题型及解题方法归纳

导数题型及解题方法归纳一、导数的定义1. 导数的概念在微积分中,导数是用来描述函数变化率的量。

给定函数f(x),其导数可以看作是函数在某一点x 处的瞬时变化率。

导数的定义可以用以下式子表示:f′(x )=lim Δx→0f (x +Δx )−f (x )Δx2. 函数可导性一个函数在某一点可导的条件是该点邻近的间断点和极限不存在,且函数曲线经过该点处的切线存在。

二、导数的求解方法1. 基本导数公式可以通过基本导数公式来求常见函数的导数。

一些常用的基本导数公式包括: - 常数函数的导数为0:(c )′=0,其中c 为常数。

- 幂函数的导数:(x n )′=nx n−1,其中n 为常数。

- 指数函数的导数:(e x )′=e x 。

- 对数函数的导数:(lnx )′=1x 。

- 三角函数的导数: - (sinx )′=cosx - (cosx )′=−sinx - (tanx )′=sec 2x - (cotx )′=−csc 2x2. 求导法则为了更方便地求导,可以使用一些求导法则。

一些常用的求导法则包括: - 和差法则:(u ±v )′=u′±v′ - 乘法法则:(uv )′=u′v +uv′ - 商法则:(u v )′=u′v−uv′v 2,其中v 不等于0。

- 复合函数求导法则:若y = f(g(x)),则dy dx =dy du ⋅du dx ,其中u = g(x)。

3. 高阶导数高阶导数表示对函数进行多次求导得到的导数。

高阶导数可以通过多次使用导数公式和求导法则求解。

4. 隐函数求导有些函数可以通过隐函数形式表示,这时可以使用隐函数求导方法来求导。

隐函数求导的关键是利用导数的定义和求导法则,将相关变量分离并进行求导。

三、导数题型及解题方法1. 常函数的导数对于常函数f(x) = c,其导数为0,即f′(x)=0。

2. 幂函数的导数对于幂函数f(x) = x^n,其中n为常数,其导数为(x n)′=nx n−1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
文科培优资料
作者:谢立荣
导数应用的题型与方法
一、考试内容
撰写人:谢立荣
导数的概念,导数的几何意义,几种常见函数的导数;
两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和
最小值。
二、考试要求
⑴了解导数概念的某些实际背景(如瞬时速度、加速度、光滑曲线切线的斜率等),掌握函
数在一点处的导数的定义和导数的几何意义,理解导函数的概念。
函数 f (x) 的极大值是 f (1) 0 ,极小值是 f (1) 4 .
(3) 函数 g(x) 的图象是由 f (x) 的图象向右平移 m 个单位,向上平移 4 m 个单位得到的,
所以,函数 f (x) 在区间[3, n m] 上的值域为[4 4m, 16 4m] ( m 0 ).
而 f (3) 20 ,∴ 4 4m 20 ,即 m 4 .
3
益阳市箴言中学
4(共 15 页)
文科培优资料
作者:谢立荣
当2 3
x
1时,
f
( x)
0.
f
( x) 极大
f (2)
13
又 f (1) 4, f (x) 在[-3,1]上最大值是
13。
(3)y=f(x)在[-2,1]上单调递增,又 f (x) 3x 2 2ax b, 由①知 2a+b=0。
h0
2h
h0
2h
lim f (a 3h) f (a) lim f (a) f (a h)
h0
2h
h0
2h
3 lim f (a 3h) f (a) 1 lim f (a h) f (a)
2 h0
3h
2 h0
h
3 f '(a) 1 f '(a) 2b
2
2
(2) lim h0
P(x0 , y0 ) 为曲线上一点,过 P(x0 , y0 ) 点的切线方程为: y y0 f (x0 )(x x0 )
4.瞬时速度
用物体在一段时间运动的平均速度的极限来定义瞬时速度,
v lim y S(t t) S(t)
t0 t
t
5.导数的定义
对导数的定义,我们应注意以下三点:
(1)△x 是自变量 x 在 x0 处的增量(或改变量). y
又 y1 x12 y2 (x2 2)2 x12 y1
k
y2 x2
y1 x1
2y1 (2 x1)
x1
2x12 2 2x1
x12 x1 1
2x1
x1 0或 x1 2, k 0或k 4 l 的方程为: y 0 或 y4 4(x2)。
题型三:利用导数研究函数的单调性、极值、最值。
例 3 已知函数 f (x) x3 ax2 bx c,过曲线y f (x)上的点P(1, f (1)) 的切线方程为
8、已知 y f (x) x [a , b] (1)若 f (x) 0 恒成立 ∴ y f (x) 为 (a , b) 上 ∴ 对任意 x (a , b) 不等式 f (a) f (x) f (b) 恒成立 (2)若 f (x) 0 恒成立 ∴ y f (x) 在 (a , b) 上 ∴ 对任意 x (a , b) 不等式 f (a) f (x) f (b) 恒成立
① ②
∵ y f (x)在x 2时有极值,故f (2) 0, 4a b 12 ③
由①②③得 a=2,b=-4,c=5
∴ f (x) x3 2x2 4x 5.
(2) f (x) 3x2 4x 4 (3x 2)(x 2). 当 3 x 2时, f (x) 0;当 2 x 2 时, f (x) 0;
y=3x+1
(Ⅰ)若函数 f (x)在x 2 处有极值,求 f (x) 的表达式;
(Ⅱ)在(Ⅰ)的条件下,求函数 y f (x) 在[-3,1]上的最大值;
(Ⅲ)若函数 y f (x) 在区间[-2,1]上单调递增,求实数 b 的取值范围
解:(1)由 f (x) x3 ax2 bx c,求导数得f (x) 3x2 2ax b.
据切线定义,可得切线方程为 x x0
7、 导数与函数的单调性的关系
㈠ f (x) 0 与 f (x) 为增函数的关系。
f (x) 0 能推出 f (x) 为增函数,但反之不一定。如函数 f (x) x3 在 (,) 上单调递 增,但 f (x) 0 ,∴ f (x) 0 是 f (x) 为增函数的充分不必要条件。 ㈡ f (x) 0 时, f (x) 0 与 f (x) 为增函数的关系。 若将 f (x) 0 的根作为分界点,因为规定 f (x) 0 ,即抠去了分界点,此时 f (x) 为增函 数,就一定有 f (x) 0 。∴当 f (x) 0 时, f (x) 0 是 f (x) 为增函数的充分必要条件。 ㈢ f (x) 0 与 f (x) 为增函数的关系。 f (x) 为增函数,一定可以推出 f (x) 0 ,但反之不一定,因为 f (x) 0 ,即为 f (x) 0 或 f (x) 0 。当函数在某个区间内恒有 f (x) 0 ,则 f (x) 为常数,函数不具有单调性。∴ f (x) 0 是 f (x) 为增函数的必要不充分条件。
于是,函数 f (x) 在区间[3, n 4] 上的值域为[20, 0] .
令 f (x) 0 得 x 1 或 x 2 .由 f (x) 的单调性知, 1„ n 4 „ 2 ,即 3 „ n „ 6 .
综上所述, m 、 n 应满足的条件是: m 4 ,且 3 „ n „ 6 .
函数的单调性是函数一条重要性质,也是高中阶段研究的重点,我们一定要把握好以上三
个关系,用导数判断好函数的单调性。因此新教材为解决单调区间的端点问题,都一律用
开区间作为单调区间,避免讨论以上问题,也简化了问题。但在实际应用中还会遇到端点
的讨论问题,要谨慎处理。
㈣单调区间的求解过程,已知 y f (x) (1)分析 y f (x) 的定义域; (2)求导数 y f (x) (3)解不等式 f (x) 0 ,解集在定义域内的部分为增区间 (4)解不等式 f (x) 0 ,解集在定义域内的部分为减区间
(1)求出函数 y=f(x)在点 x0 处的导数,即曲线 y=f(x)在点 P(x0 , f (x0 )) 处的切线的斜率; (2)在已知切点坐标和切线斜率的条件下,求得切线方程为 y y0 f '(x0 )(x x0 ) 特别地,如果曲线 y=f(x)在点 P(x0 , f (x0 )) 处的切线平行于 y 轴,这时导数不存在,根
四、热点题型分析
题型一:利用导数定义求极限 例 1.已知 f(x)在 x=a 处可导,且 f′(a)=b,求下列极限:
f (a 3h) f (a h)
f (a h2 ) f (a)
(1) lim
; (2) lim
h0
2h
h0
h 3h) f (a) f (a) f (a h)
㈤函数单调区间的合并
函数单调区间的合并主要依据是函数 f (x) 在 (a, b) 单调递增,在 (b, c) 单调递增,又知函数
益阳市箴言中学
2(共 15 页)
文科培优资料
作者:谢立荣
在 f (x) b 处连续,因此 f (x) 在 (a, c) 单调递增。同理减区间的合并也是如此,即相邻区
间的单调性相同,且在公共点处函数连续,则二区间就可以合并为一个区间。
(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于 n 次多项式
的导数问题属于较难类型。 2.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一
个方向,应引起注意。 3.曲线的切线 用割线的极限位置来定义了曲线的切线.切线方程由曲线上的切点坐标确定,设
12b b2 12
0,则0 b
6.
综上所述,参数 b 的取值范围是[0,)
例 4:已知三次函数 f (x) x3 ax2 bx c 在 x 1 和 x 1 时取极值,且 f (2) 4 .
(1) 求函数 y f (x) 的表达式;
(2) 求函数 y f (x) 的单调区间和极值;
y
(b)求平均变化率
f (x0 x)
f (x0 ) ;
x
x
(c)取极限,得导数
f
'(x0
)
lim
x0
y x

6.导数的几何意义
函数 y=f(x)在点 x0 处的导数,就是曲线 y=(x)在点 P(x0 , f (x0 )) 处的切线的斜率.由此,
可以利用导数求曲线的切线方程.具体求法分两步:
当 1 x 1 时, f (x) 0 ;当 x 1 时, f (x) 0 ;
当 x 1 时, f (x) 0 .∴函数 f (x) 在区间 (, 1] 上是增函数;
在区间[1,、 ] 上是减函数;在区间[1, ) 上是增函数.
益阳市箴言中学
5(共 15 页)
文科培优资料
作者:谢立荣
依题意 f (x) 在[-2,1]上恒有 f (x) ≥0,即 3x 2 bx b 0.
①当 x
b 6
1时,
f (x)min
f (1) 3 b b 0,b 6 ;
②当 x
b 6
2时,
f (x)min
f (2) 12 2b b 0,b ;
③当 2
6 b
1时,
f
( x) min
⑵熟记基本导数公式(c,x m (m 为有理数),的导数)。掌握两个函数四则运算的求导法则会
求某些简单函数的导数。 ⑶了解可导函数的单调性与其导数的关系,了解可导函数在某点取得极值的必要条件和充 分条件(导数要极值点两侧异号),会求一些实际问题(一般指单峰函数)的最大值和最小 值。 三、双基透视 导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。在高中阶段对于导数 的学习,主要是以下几个方面: 1.导数的常规问题: (1)刻画函数(比初等方法精确细微); (2)同几何中切线联系(导数方法可用于研究平面曲线的切线);
相关文档
最新文档