空调水管水力计算书
中央空调水系统力计算书
北区水管立管水力计算书
1.计算依据
本计算方法理论依据是陆耀庆编著的《供暖通风设计手册》和电子工业部第十设计研究院主编的《空气调节设计手册》。
2.计算公式
a.计算摩擦阻力系数的公式采用的是柯列勃洛克-怀特公式。
b.管段损失 = 沿程损失+局部损失 即:Pg = ΣPl + ΣPd。
c.Pdn = Pd1+ Σ(Pm×L+ Pz)。
3.计算结果(异程系统)
南区水管立管水力计算书
1.计算依据
本计算方法理论依据是陆耀庆编著的《供暖通风设计手册》和电子工业部第十设计研究院主编的《空气调节设计手册》。
2.计算公式
a.计算摩擦阻力系数的公式采用的是柯列勃洛克-怀特公式。
b.管段损失 = 沿程损失+局部损失 即:Pg = ΣPl + ΣPd。
c.Pdn = Pd1+ Σ(Pm×L+ Pz)。
3.计算结果(异程系统)。
空调水系统水力计算方法与步骤详解
5 并联管路阻力平衡计算
6 系统总阻力计算 7 水泵的流量与扬程计算
空调冷冻水系统的水力计算
2. 空调冷冻水循环水泵的选择
当空调冷冻水系统为二次泵系统时,泵的选择: (1)一次泵
选泵时, 水泵的流 (2)二次泵 量与扬程 泵的流量按分区夏季最大计算冷负荷确定。 均要乘以 泵的扬程应能克服所管分区的二次最不利环路的总阻力。 安全系数
泵的流量等于冷水机组蒸发器的额定流量。 泵的扬程为克服一次环路的总阻力损失。 一次泵台数与冷水机组相同
8.5 空调水系统的水力计算
空调冷冻水系统的水力计算
【例题】如下图所示的空调冷冻水二次泵循环系统(一级循环略去),此系统计 算冷负荷为48.8kW,冷冻水供水温度为7 ℃ ,回水温度为12 ℃ ,空调机组 表冷器水侧阻力为50kPa,各管段的长度见表3-20,求各管段的管径及二次
水泵的流量和扬程。
空调冷冻水系统一般一般为闭式系统,泵的流量按空调系统夏季最大计算冷负 荷确定,即Biblioteka qm c t
8.5 空调水系统的水力计算
空调冷冻水系统的水力计算
2. 空调冷冻水循环水泵的选择
泵的扬程应能克服冷冻水系统最不利环路的总阻力(包括用冷设备、产冷设备、 管道、阀门等阻力)
沿程
8.5 空调水系统的水力计算
8.5 空调水系统的水力计算
空调冷冻水系统的水力计算
1. 管径的确定
空调水系统的管内流速按下表9-6推荐值采用,或依据表9-7根据流量确定管径。
8.5 空调水系统的水力计算
空调冷冻水系统的水力计算
8-8
1. 管径的确定
8.5 空调水系统的水力计算
空调管道水力计算
2.3.1.4 并联管路旳阻力平衡
为了确保各管路到达预期旳风量,使并联支管 旳计算阻力相等,称为并联管路阻力平衡。对
一般旳通风系统,两支管旳计算阻力差应不超 出15%;含尘风管应不超出10%。若过上述要 求,采用下述措施进行阻力平衡。
(1)调整支管管径
这种措施经过变化支管管径来调整支管阻力, 到达阻力平衡。调整后旳管径按下式计算:
上述公式表白,管网中任一管段旳有关参数变
化,都会引起整个管网特征曲线旳变化,从
而变化管网总流量和管段旳流量分配,这决
定了管网调整旳复杂性。进一步从理论上能
够证明,
管网设计时不作好阻力平衡,完全依托阀门
调整流量旳作法难以奏效,尤其是并联管路 较多旳管网。
取得管网特征曲线后即可结合动力设备(风 机)旳性能曲线匹配动力设备,详细匹配措 施在第7章简介。
Rm Kt Rm0
Pa/m
(2-3-8)
Kt KV 0.25
Kt—管壁粗糙度修正系数; K---管壁粗糙度,mm。 V---管内空气流速,m/s。
(2-3-9)
矩形风管摩阻按当量直径计算单位长度摩擦
阻力。分流速当量直径和流量当量直径两种。
1)流速当量直径
假设某一圆形风管中旳空气与矩形风管中旳 空气流速相等,而且两者旳单位长度摩阻力 也相等,则该圆管旳 直径就称为流速当量直 径,以DV表达。据此定义可推得为:
2.3.1.3 风管局部阻力计算
首先拟定局部阻力系数 和它相应旳特征速 度V ,然后代入(2-2-3)式计算局部阻力。
各种局部阻力系数 通常查设计手册等拟定。 各种设备旳局部阻力或局部阻力系数,由设 备生产厂提供。
各管段摩擦阻力和局部阻力之和即为该管段 旳阻力。各管段阻力计算完毕后,应进行并 联管路旳阻力平衡,以保证明际流量分配满 足要求。
空调管道水力平衡计算表2#立管
2.70
0.5
39.1
2.70
3.3
46.0
2.70
0.5
53.4
2.70
3.6
61.4 3.50
0.5
70.0 3.50
3.6
79.1 3.50
0.5
90.7 21.40
2.4
169.6 20.70
37
169.6 22.40 8.35
169.6 24.40 14.01
39.3 3.50
3.3
55.6 4.50
15.2 DN80
96330 1
96330 5
16.6 DN100
104475 1
104475 5
18.0 DN100
114225 1
114225 5
19.6 DN100
122370 1
122370 5
21.0 DN100
132120 1
132120 5
22.7 DN100
140265 1
140265 5
199658 1
199658 5
34.3 DN100
199658 1
199658 5
34.3 DN100
199658 1
199658 5
34.3 DN100
199658 1
199658 5
34.3 DN125
199658 1
199658 5
34.3 DN150
199658 1
199658 5
34.3 DN200
24.1 DN100
150015 1
150015 5
25.8 DN100
158160 1
158160 5
空调冷热水和冷却水管道水力计算
1 电算表编制说明
1.1 空调冷水和冷却水系统管道沿程阻力采用海澄-威廉公式:
Pm 105 Ch
1.85
dj
4.87
qg
1.85
L (1.1.1)
式中 △Pm——计算管段的沿程水头损失(kPa) ; dj——钢管计算内径(m) ,按本院技术措施表 A.1.1-2 编制取值; 3 qg——流量(m /s),根据冷热量和供回水温差计算确定; L——计算管段的长度(m) ; Ch——海澄-威廉系数,闭式系统取 Ch=120,开式系统取 Ch=100。 1.2 四管制空调热水的沿程损失采用以下计算公式:
Pm L
v2
dj 2
(1.2.1)
式中 △Pm ——计算管段的沿程水头损失(Pa) ; L ——计算管段长度(m) ; λ ——管段的摩擦阻力系数; dj ——水管计算内径(m) ,按本院技术措施表 A.1.1-2~A.1.1-9 编制取值; 3 ρ ——流体的密度(kg/m ),水的密度按本院技术措施表 A.2.3 编制取值; 。 v ——流体在管内的流速,根据水量、管径计算确定(m/s) 1.3 管道摩擦阻力系数λ 采用钢管的空调热水管道摩擦阻力系数λ 采用以下计算公式: 1) 层流区(Re≤2000)
3
表1
冷却塔类型 H2(MPa)
冷却塔布水管处所需自由水头 H2
喷射式冷却塔 0.1~0.2 横流式冷却塔 ≤0.05 0.1
配置旋转布水器的逆流式冷却塔
2 各工作表适用范围 2.1 表 1 适用于采用钢管的闭式或开式空调冷冻水系统(闭式、开式系统对应的海澄-威廉系数 Ch 值分别为 120,100) ,下列系统也可参考采用: 1) 冷热水合用的空调双管系统,按表 1 进行夏季冷水水力计算并确定管径,冬季热水总 阻力可按表 4-4 进行估算。 2) 水环热泵水系统按夏季冷水工况采用表 1 计算。 2.2 表 2 适用于采用钢管的开式或闭式冷却水系统, (闭式、开式系统对应的海澄-威廉系数 Ch 值 分别为 120,100) ,租户冷却水系统的二次水等,也可采用表 2 计算,由设计人对计算表格式进行 必要的增删。 2.3 表 3 适用于四管制的闭式空调热水系统。 2.4 表 4 适用于空调冷冻水系统、空调热水系统、空调冷却水系统水泵扬程的计算,计算方法及公 式详“0.1 设备专业常用计算内容和方法汇总”6.5 节。 2.5 表 5 适用于冷凝水管径计算。 3 电算表使用说明 3.1 表中蓝底填充单元格内为必须输入的已知数据; 字体为蓝色的格表示其中数据使用者可以根据实际情况修改,其中管道局部阻力系数或当量 长度根据院技术措施填写,计算人可自行增加局部阻力种类,需修改“阻力系数和”或“当量长 度和”项计算公式。 字体为粉色的单元格为中间计算结果,一般情况下使用者不必改动; 红色斜体字为最终计算结果。 3.2 计算、参数宏表为计算使用的参数或编制的计算函数,如无特殊需要一般不要改动。 3.3 表中空调末端和自控阀等阻力应根据生产厂提供的数据输入。 3.4 表 1~3 管道阻力计算仅计算到分集水器,水泵扬程计算在表 4,冷水机组蒸发器、冷凝器、热 交换器、冷却塔等设备的阻力应根据生产厂提供的数据输入,估算时可参考“参数”工作表中的 设备压力损失参考值。 3.5 实际工程中管道分支情况与示例计算表不同时,计算人应修改各并联环路“不平衡率”项计 算公式。
空调水系统水力计算方法与步骤
8.5 空调水系统的水力计算
空调冷冻水系统的水力计算方法与步骤: 通常按推荐的流速或比摩阻确定管径 计算最不利环路阻力损失 然后进行并联环路的阻力平衡 确定系统总阻力 结合水泵特性曲线选择水泵型号 由于空调冷冻水系统供回水温差小,末端换热盘管阻力大,在计算系统总循环阻力时,可以不计供回水密度引起的作用压力;在并联环路平衡时,一般也可忽略不计。
8.5 空调水系统的水力计算
空调冷冻水系统的水力计算
1 计算冷冻水流量 2 选定最不利环路,结合表8-5、 8-6、 8-7、 8-8依据各管段的流量,确定各管段的流速与管径,用线性插值法确定比摩阻。 3 查表8-9,8-10确定管段的局部阻力系数,计算各管段的局部阻力 4 计算个管段的总阻力 5 并联管路阻力平衡计算 6 系统总阻力计算 7 水泵的流量与扬程计算
2. 空调冷冻水循环水泵的选择
选泵时,水泵的流量与扬程均要乘以安全系数
8.5 空调水系统的水力计算
空调冷冻水系统的水力计算 【例题】如下图所示的空调冷冻水二次泵循环系统(一级循环略去),此系统计算冷负荷为48.8kW,冷冻水供水温度为7 ℃ ,回水温度为12 ℃ ,空调机组表冷器水侧阻力为50kPa,各管段的长度见表3-20,求各管段的管径及二次水泵的流量和扬程。 A B 旁通管(平衡管)
【例题】解题步骤
注意:计算结果要用表格的形式!!
8.5 空调水系统的水力计算
空调冷冻水系统的水力计算
泵的扬程应能克服冷冻水系统最不利环路的总阻力(包括用冷设备、产冷设备、管道、阀门等阻力)
空调冷冻水循环水泵的选择
沿程
8.5 空调水系统的水力计算
空调冷冻水系统的水力计算
当空调冷冻水系统为二次泵系统时,泵的选择: (1)一次泵 泵的流量等于冷水机组蒸发器的额定流量。 泵的扬程为克服一次环路的总阻力损失。 一次泵台数与冷水机组相同 (2)二次泵 泵的流量按分区夏季最大计算冷负荷确定。 泵的扬程应能克服所管分区的二次最不利环路的总阻力。
空调水管水力计算书 精品
174.787
524.361
1000.318
1个合流三通ξ=3
31
8.1003
1.417
DN20
1
1.11
1091.89
1091.89
10
605.548
6055.483
7147.373
1个截止阀ξ=10
32
8.1003
1.417
DN20
1
1.11
1091.89
1091.89
10
605.548
6055.483
3
1455.784
4367.352
6527.105
1个分流三通ξ=3
4
87.2283
15.259
DN70
1
1.167
263.977
263.977
3
669.671
2009.012
2272.989
1个分流三通ξ=3
5
79.128
13.842
DN70
1.8
1.059
217.876
392.177
3
551.07
12
5.1906
0.908
DN20
5
0.711
456.037
2280.184
12
248.646
2983.747
5263.931
1个弯头ξ=1,1个截止阀ξ=11
13
10.3755
1.815
DN40
3
0.382
57.359
172.077
3
71.691
215.072
387.149
1个合流三通ξ=3
自-空调管道的水力计算
管道的阻力计算流体在管内流动时,由于其黏性剪切力及涡流的存在,不可避免的会消耗一定的机械能,这种机械能的消耗不仅包括了流体流经直管段的沿程阻力,还包括了因流体运动方向改变而引起的局部阻力。
一、阻力的基本知识(一)沿程阻力流体流经一定管径的直管时,由于流体内摩擦力而产生的阻力,阻力的大小与路程长度成正比的叫做沿程阻力。
流体在水平等径管中稳定流动时,阻力损失表现为压力降低,即h f=p1−P2ρg =∆pγ(1-1)式中λ——摩擦系数,它与流体的性质、流速、流态以及管道的粗糙度有关。
与雷诺数Re和管壁粗糙度ε有关,可实验测定,也可计算得出。
影响阻力损失的因素很多,比如流体的密度ρ及黏度μ;管径d,管长l,管壁粗糙度ε;流体的流速u 等。
利用公式可表示为:∆p=f(d,l,μ,ρ,u,ε)(1-2)利用这些因素之间的关系,可以将公式(1-1)变成:h f=∆pγ=λldu,2g(1-3)该公式的特点是将求阻力损失问题转化为求无量纲阻力系数问题,比较方便。
同时将沿程损失表达为流速水头的倍数形式比较恰当。
因此,该公式适用于计算各种流态下的管道沿程阻力。
流体为层流时,λ=64/Re;湍流时λ是Re及相对粗糙度的函数,由实验或查表得到。
但对于湍流流体而言,目前尚无完善的理论方法对其进行求解,需采用一定的实验研究其规律。
(二)局部阻力局部阻力流体的边界在局部地区发生急剧变化时,迫使主流脱离管道边壁而形成漩涡,流体质点间产生剧烈的碰撞,由于实际流体粘性作用,碰撞中的部分能量会不断地变为热能而逸散在流体之中,从而使流体的机械能减小。
局部阻力损失产生于某些局部地方,比如管径的改变(突扩、突缩、渐扩、渐缩等),方向的改变(弯管),再者装置了某些配件(阀门、量水表等)。
局部阻力通常有两种表示方法,即当量长度法和阻力系数法。
1当量长度法流体流过某管件或阀门时,因局部阻力造成的损失,相当于流体流过与其具有相当管径长度的直管阻力损失,这个直管长度称为当量长度,用符号d e 表示。
空调风系统水力计算书范本
空调风系统水力计算书一、 计算依据《实用供热空调设计手册》第二版 风系统基本参数:气温(℃): 20 ; 大气压力(Pa): 843.8 ; 管材:薄钢板; 绝对粗糙度(mm):0.16;干管推荐流速上限(m/s):10. 干管推荐流速下限(m/s):4..;支管推荐流速上限(m/s):6.; 支管推荐流速下限(m/s):2.;运动粘度(m^2/s):1.57E-05二、 计算公式1. 沿程阻力(Pa)22v d l P m ρλ⋅⋅=∆2. 局部阻力(Pa)22v P j ρζ⋅=∆三、 计算结果1、 PFY.B3(1)-1排风系统1.1 根据地下室空调风管平面图,该风系统最不利环路的水力计算如下:负二层排风管(PFY .B2(4)-1)水力计算表1.2 风系统阻力计算对于地下负二层排风管(PFY.B2(4)-1):P=沿程阻力+局部阻力+末端风口阻力+消声器阻力=64.7+180.1+30+50=324.8Pa风机压头校核:324.8*1.1=357Pa<400Pa,风机选型满足要求。
2、XF.(2)C1-1新风系统2.1根据空调风管平面图,该风系统最不利环路的水力计算如下:商业C新风管(XF.(2)C1-1)水力计算表2.2风系统阻力计算商业C新风管(XF.(2)C1-1):P=沿程阻力+局部阻力+消声器阻力=19.7+202+50=272Pa风机压头校核:272*1.1=299Pa<300Pa,风机选型满足要求。
3、风机单位风量耗功率计算(1)计算公式W S=P/(3600×ηCD×ηF)式中:W S—风道系统单位风量耗功率[W/(m³/h)];P—空调机组的余压或通风系统风机的风压(Pa); ηCD—电机及传动效率(%),ηCD取0.855;ηF—风机效率(%),按设计图中标注的效率选择。
(2)计算结果选取PFY.B3(1)-1系统为例,则W S=P/(3600η)=500/(3600*0.855*0.75)=0.22。
空调水系统水力计算方法与步骤
8.5 空调水系统的水力计算
空调冷冻水系统的水力计算
1. 管径的确定
空调水系统的管内流速按下表9-6推荐值采用,或依据表9-7根据流量确定管径。
8.5 空调水系统的水力计算
空调冷冻水系统的水力计算
8-8
1. 管径的确定
8.5 空调水系统的水力计算
空调冷冻水系统的水力计算
2. 空调冷冻水循环水泵的选择
8.5 空调水系统的水力计算
空调冷冻水系统的水力计算
空通常按推荐的流速或比摩阻确定管径 计算最不利环路阻力损失 然后进行并联环路的阻力平衡 确定系统总阻力 结合水泵特性曲线选择水泵型号
由于空调冷冻水系统供回水温差小,末端换热盘管阻力大,在计算系统总循 环阻力时,可以不计供回水密度引起的作用压力;在并联环路平衡时,一般 也可忽略不计。
空调冷冻水系统的水力计算
2. 空调冷冻水循环水泵的选择
当空调冷冻水系统为二次泵系统时,泵的选择: (1)一次泵
选泵时, 水泵的流 (2)二次泵 量与扬程 泵的流量按分区夏季最大计算冷负荷确定。 均要乘以 泵的扬程应能克服所管分区的二次最不利环路的总阻力。 安全系数
泵的流量等于冷水机组蒸发器的额定流量。 泵的扬程为克服一次环路的总阻力损失。 一次泵台数与冷水机组相同
空调冷冻水系统一般一般为闭式系统,泵的流量按空调系统夏季最大计算冷负 荷确定,即
qm
c t
8.5 空调水系统的水力计算
空调冷冻水系统的水力计算
2. 空调冷冻水循环水泵的选择
泵的扬程应能克服冷冻水系统最不利环路的总阻力(包括用冷设备、产冷设备、 管道、阀门等阻力)
沿程
8.5 空调水系统的水力计算
空调风系统水力计算书范本
空调风系统水力计算书一、 计算依据《实用供热空调设计手册》第二版 风系统基本参数:气温(℃): 20 ; 大气压力(Pa): 843.8 ; 管材:薄钢板; 绝对粗糙度(米米):0.16;干管推荐流速上限(米/s):10. 干管推荐流速下限(米/s):4..;支管推荐流速上限(米/s):6.; 支管推荐流速下限(米/s):2.;运动粘度(米^2/s):1.57E-05二、 计算公式1. 沿程阻力(Pa)22v d l P m ρλ⋅⋅=∆2. 局部阻力(Pa)22v P j ρζ⋅=∆三、 计算结果1、 PFY.B3(1)-1排风系统1.1 根据地下室空调风管平面图,该风系统最不利环路的水力计算如下:负二层排风管(PFY.B2(4)-1)水力计算表1.2 风系统阻力计算对于地下负二层排风管(PFY.B2(4)-1):P=沿程阻力+局部阻力+末端风口阻力+消声器阻力=64.7+180.1+30+50=324.8Pa风机压头校核:324.8*1.1=357Pa<400Pa,风机选型满足要求.2、XF.(2)C1-1新风系统2.1根据空调风管平面图,该风系统最不利环路的水力计算如下:商业C新风管(XF.(2)C1-1)水力计算表2.2风系统阻力计算商业C新风管(XF.(2)C1-1):P=沿程阻力+局部阻力+消声器阻力=19.7+202+50=272Pa风机压头校核:272*1.1=299Pa<300Pa,风机选型满足要求.3、风机单位风量耗功率计算(1)计算公式W S=P/(3600×ηCD×ηF)式中:W S—风道系统单位风量耗功率[W/(米³/h)]; P—空调机组的余压或通风系统风机的风压(Pa); ηCD—电机及传动效率(%),ηCD取0.855;ηF—风机效率(%),按设计图中标注的效率选择.(2)计算结果选取PFY.B3(1)-1系统为例,则W S=P/(3600η)=500/(3600*0.855*0.75)=0.22附件:工程施工现场应急预案及安全保证措施一、编制原则1、以人为本,安全第一原则。
空调水系统水力计算方法与步骤
空调冷冻水系统的水力计算
2. 空调冷冻水循环水泵的选择
空调冷冻水系统一般一般为闭式系统,泵的流量按空调系统夏季最大计算冷负 荷确定,即
qm
c
t
精选2021版课件
4
8.5 空调水系统的水力计算
空调冷冻水系统的水力计算
2. 空调冷冻水循环水泵的选择
泵的扬程应能克服冷冻水系统最不利环路的总阻力(包括用冷设备、产冷设备、 管道、阀门等阻力)
8.5 空调水系统的水力计算
空调冷冻水系统的水力计算
空调冷冻水系统的水力计算方法与步骤:
✓ 通常按推荐的流速或比摩阻确定管径 ✓ 计算最不利环路阻力损失 ✓ 然后进行并联环路的阻力平衡 ✓ 确定系统总阻力 ✓ 结合水泵特性曲线选择水泵型号
由于空调冷冻水系统供回水温差小,末端换热盘管阻力大,在计算系统总循 环阻力时,可以不计供回水密度引起的作用压力;在并联环路平衡时,一般 也可忽略不计。
沿程
精选2021版课件
5
8.5 空调2. 空调冷冻水循环水泵的选择
当空调冷冻水系统为二次泵系统时,泵的选择:
(1)一次泵
✓ 泵的流量等于冷水机组蒸发器的额定流量。
✓ 泵的扬程为克服一次环路的总阻力损失。
✓ 一次泵台数与冷水机组相同
选泵时,
(2)二次泵
空调风管水力计算表
20.22 0 0 0
简略法(见
陆耀庆《实 风管压力损失ΔP=Pm*L*(1+k) Pa;Pm-比摩阻 Pa/m; k-局部压力损失与摩擦压力损失比值;L-管长
Pm
L
(pa/m) (m)
k
ΔP (pa)
系数
高效
ΔP (pa)
1.40 76.0 4.50
##### #### 350 935.20
环路编号 AHU3-1
24.15 0 1 0
13-14 8665 800 500 615 3.8
0.400 0.62 6.02
22.99 0 1 0
14-15 11842 800 630 705 16.2
0.504 0.61 6.53
27.05 0 1 1
15-16 21700 800 1000 889 8.0
0.800 0.60 7.53
0.504 0.73 7.14
32.37 0 0 0
7-8
17098 1000 630 773 25.8
0.630 0.72 7.54
回风管最不 利管段56m
9-10
960 320 200 246 7.7 0.0 ###### 0.064 0.99 4.17
36.09 0 0 2 11.02 0 1 2
Pm
L
(pa/m) (m)
k
ΔP (pa)
系数
高效
ΔP (pa)
1.50 50.0 5.00
##### #### 350 800.00
800
环路编号 AHU1-2
管段 流量
矩型 矩型 直径
风管
风管
或当 量直 管长L
尺寸a 尺寸b 径D
空调水系统水力计算方法与步骤 ppt课件
4
8.5 空调水系统的水力计算
空调冷冻水系统的水力计算
1. 管径的确定
空调水系统的管内流速按下表9-6推荐值采用,或依据表9-7根据流量确定管径。
5
8.5 空调水系统的水力计算
空调冷冻水系统的水力计算
8-8
1. 管径的确定
6
8.5 空调水系统的水力计算
空调冷冻水系统的水力计算
2. 空调冷冻水循环水泵的选择
2
精品资料
• 你怎么称呼老师? • 如果老师最后没有总结一节课的重点的难点,你
是否会认为老师的教学方法需要改进? • 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭 • “不怕太阳晒,也不怕那风雨狂,只怕先生骂我
笨,没有学问无颜见爹娘 ……” • “太阳当空照,花儿对我笑,小鸟说早早早……”
空调冷冻水系统一般一般为闭式系统,泵的流量按空调系统夏季最大计算冷负 荷确定,即
qm
c t
7
8.5 空调水系统的水力计算
空调冷冻水系统的水力计算
2. 空调冷冻水循环水泵的选择
泵的扬程应能克服冷冻水系统最不利环路的总阻力(包括用冷设备、产冷设备、 管道、阀门等阻力)
空调系统水力计算书
空调系统水力计算书空调器一送风管路最不利管路水力计算表空调器一送风管路水力计算平面图123410 9 8 7 6 5空调器二送风最不利环路管路水力计算表编号风量管长矩形风管尺寸当量直径流速度单位长度摩擦面力摩擦阻力动压局部阻力系数局部阻力管段总阻力(m^3/h)L(mm)a*b(mm) D(mm) (m/s) Rm(Pa/m) △Pm(Pa)(Pa) ζZ △P(Pa)1--2625 2134 250*200 222 3.47 0.7 1.49 7.22 7 50.57 52.07 2--31250 5840 320*320 320 3.39 0.42 2.45 6.9 7.2 49.65 52.1 3--2500 7970 400*320 355 5.43 0.9 7.17 17.66 9.8 173.05 180.23空调器二送风管路水力计算平面图16 5 4 3 2712 11 10 9 8空调器三送风最不利环路管路水力计算表-9987 5642 13空调器三送风管路水力计算平面图空调器四送风最不利环路水力计算表编号风量管长矩形风管尺寸当量直径流速度单位长度摩擦面力摩擦阻力动压局部阻力系数局部阻力管段总阻力1239 8 7 6 5 4 空调器四送风管路水力计算平面图。
空调水管水力计算
一、空调水系统的设计原则:1、力求水力平衡;2、防止大流量小温差;3、水输送符合规范要求;4、变流量系统宜采用变频调节;5、要处理好水系统的膨胀与排气;6、解决好水处理与水过滤;7、切勿忽视管网的保冷与保温效果。
二、冷冻水、冷却水管的计算1、压力式水管道管径计算D=103πνL4(mm )公式中 L------水流量(m 3/s )v-------计算流速(m/s )一般水管系统的管内水流速可参考表13-12的推荐值取用表13-13选择。
2、直线管段的阻力计算Δh=d l λ×22v ρ=R ×l 式中Δh---长度为l (m )的直管段的摩擦阻力(Pa )λ---水与管内壁间的摩擦阻力系数;l----直管段的长度(m );d----管内径(m );ρ----水的密度(kg/m 3),当4℃时为1000kg/m 3R-----长度为1m 直管段的摩擦阻力(Pa/m )三、空调设备流量计算由Q=CM ΔT 可得出:M=Q/C*ΔT (Kg/S )Q-----空调制冷或制热量(Kw )C-----水的比热容,4.2KJ/Kg*℃ΔT---进出空调设备的供回水温差,ΔT =T G -T H四、风机盘管选择1、计算室内空调冷负荷Q (W ),简单依单位面积指标及经验估算。
2、考虑机组的盘管用后积垢积尘对传热的影响,对空调冷负荷要进行修正,冷负荷应乘以系数a仅冷却使用 a=1.10作为加热、冷却两用 a=1.20仅作为加热用 a=1.153、依据空调冷负荷选择风机盘,一般按中档运行能力选择。
4、校核风量:L=)(3600s n h h Q -ρ L-----风机盘管名义风量(m 3/h )Q-----室内空调冷负荷(KW)h n-----室内空气计算温度下空气焓值(KJ/Kg)h s------室内空气送风温度下空气焓值(KJ/Kg)ρ-----空气密度,取标态下1.2Kg/m3五、送风温差1、一般舒适性空调送风温差:送风高度≤5m 送风温差Δt s≤10℃送风高度>5m 送风温差Δt s≤15℃2、工艺性空调的送风温差:六、集水器的选择:1、通常用到集水器及分水器时水系统至少要分为三个子系统以上才会考虑用之!集水器与分水器的管径,接其中水的流速大致控制在通常情况下0.5~0.8m/s,并应大于最大接管开口直径的二倍。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1455.784
1455.784
6570.988
1个弯头ξ=1
2
128.6101
22.498
DN70
3.5
1.721
568.356
1989.246
2
1455.784
2911.568
4900.814
2个弯头ξ=2×1=2
3
128.6101
22.498
DN70
3.8
1.721
568.356
2159.753
3
1455.784
4367.352
6527.105
1个分流三通ξ=3
4
87.2283
15.259
DN70
1
1.167
263.977
263.977
3
669.671
2009.012
2272.989
1个分流三通ξ=3
5
79.128
13.842
DN70
1.8
1.059
217.876
392.177
3
551.07
1个分流三通ξ=3
8
31.7667
5.557
DN40
2.5
1.169
508.934
1272.335
3
672.032
2016.097
3288.432
1个分流三通ξ=3
9
15.5661
2.723
DN40
1
0.573
125.811
125.811
4
161.363
645.453
771.264
1个分流三通ξ=3,1个弯头ξ=1
DN70
9
1.721
568.356
5115.204
1
1455.784
1455.784
6570.988
1个弯头ξ=1
23
5.1906
0.908
DN20
2
0.711
456.037
912.074
10
248.646
ቤተ መጻሕፍቲ ባይዱ2486.456
3398.53
1个截止阀ξ=10
24
5.1906
0.908
DN20
2
0.711
10
31.7667
5.557
DN40
3
1.169
508.934
1526.802
3
672.032
2016.097
3542.899
1个分流三通ξ=3
11
5.1906
0.908
DN20
5
0.711
456.037
2280.184
12
248.646
2983.747
5263.931
1个弯头ξ=1,1个截止阀ξ=11
系统总阻力△P= 12.17mH2O,水泵扬程为17.8m,满足要求。
空调水管水力计算表
序号
负荷(kW)
流量(m^3/h)
管径
管长(m)
ν(m/s)
R(Pa/m)
△Py(Pa)
ξ
动压(Pa)
△Pj(Pa)
△Py+△Pj(Pa)
备注
1
128.6101
22.498
DN70
9
1.721
568.356
5115.204
3.8
1.721
568.356
2159.753
3
1455.784
4367.352
6527.105
1个合流三通ξ=3
21
128.6101
22.498
DN70
3.5
1.721
568.356
1989.246
2
1455.784
2911.568
4900.814
2个弯头ξ=2×1=2
22
128.6101
22.498
3
174.787
7266.579
13817.917
1个弯头ξ=1,1个截止阀ξ=11
29
8.1003
1.417
DN20
6
1.11
1091.89
6551.338
12
605.548
7266.579
13817.917
1个弯头ξ=1,1个截止阀ξ=11
30
16.2006
2.834
DN40
3.5
0.596
135.988
475.957
12
5.1906
0.908
DN20
5
0.711
456.037
2280.184
12
248.646
2983.747
5263.931
1个弯头ξ=1,1个截止阀ξ=11
13
10.3755
1.815
DN40
3
0.382
57.359
172.077
3
71.691
215.072
387.149
1个合流三通ξ=3
14
15.5661
DN50
1.8
1.743
802.863
1445.153
3
1493.272
4479.817
5924.97
1个合流三通ξ=3
19
87.2283
15.259
DN70
1
1.167
263.977
263.977
3
669.671
2009.012
2272.989
1个合流三通ξ=3
20
128.6101
22.498
DN70
6.249
DN50
1.8
0.787
167.57
301.626
3
304.342
913.027
1214.653
1个合流三通ξ=3
17
48.4074
8.468
DN40
1
1.782
1169.628
1169.628
3
1560.526
4681.579
5851.207
1个合流三通ξ=3
18
79.128
13.842
附录2 空调水管水力计算书
空调水系统水力计算
空调水系统图如下所示:
1.选择最不利环路。由图中可见,最不利环路为1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20-21-22-1。
2.各管段计算结果见水管水力计算表。
3.最不利环路阻力
△P=Σ△P1~22+△P末端风机盘管+△P风冷热泵冷热水机组=81.7+10+30=91.7kPa=121. 7mH2O
2.723
DN40
1
0.573
125.811
125.811
4
161.363
645.453
771.264
1个合流三通ξ=3,1个弯头ξ=1
15
31.7667
5.557
DN40
2.5
1.169
508.934
1272.335
3
672.032
2016.097
3288.432
1个合流三通ξ=3
16
35.7225
1653.21
2045.387
1个分流三通ξ=3
6
48.4074
8.468
DN50
2
1.066
304.312
608.624
3
558.86
1676.58
2285.204
1个分流三通ξ=3
7
35.7225
6.249
DN50
1.8
0.787
167.57
301.626
3
304.342
913.027
1214.653
10
248.646
2486.456
3398.53
1个截止阀ξ=10
27
16.2006
2.834
DN40
3.5
0.596
135.988
475.957
3
174.787
524.361
1000.318
1个分流三通ξ=3
28
8.1003
1.417
DN20
6
1.11
1091.89
6551.338
12
605.548
456.037
912.074
10
248.646
2486.456
3398.53
1个截止阀ξ=10
25
5.1906
0.908
DN20
2
0.711
456.037
912.074
10
248.646
2486.456
3398.53
1个截止阀ξ=10
26
5.1906
0.908
DN20
2
0.711
456.037
912.074