(整理)钢的表面热处理.ppt
合集下载
钢的热处理ppt课件
的频率,与材料的淬透性无关。
其它表面淬火方法
1.火焰加热表面淬火
淬硬深度:2~6mm。 特点:方便,成本低,但效果
差
2.激光加热表面淬火
特点: 淬硬深度:0.3~0.5mm。 特点:不需要冷却液,可对深
孔,盲空,沟槽进行淬火。
3.太阳能加热表面淬火
同激光,但受自然条件限制
钢的化学热处理
为什么亚共析钢要进行完全淬火
完全淬火—— 得到完全马 氏体。
不完全淬 火——马氏体 组织中有铁 素体出现。
为什么过共析钢只能进行不完全
淬火
完全淬火:马氏体 含碳量过高,易开 裂和形成大量残余 奥氏体;
不完全淬火:有细 小弥散渗碳体残余, 奥氏体含碳量低, 因而淬火时不易开 裂,且残余渗碳体 量少。
适用材料:低碳钢。 常用工艺:
气体渗碳 固体渗碳 特点:温度高,周期长, 渗碳后必须进行淬火。
渗碳件的淬火
直接淬火
优点:工艺简单, 降低成本
缺点:工件晶粒 粗大,易开裂。
一次淬火
优点:晶粒细化, 不易开裂
缺点:增加成本。
钢的气体氮化
原理:以氨气分解产生活性氮原子,渗入钢
表面后形成高硬度的弥散分布的氮化物。 优点:由于渗氮温度只有550~570℃,且渗后
目的:满足工件不 同部位的性能要求。
冷处理
目的:消除残余 奥氏体。
工艺:先进行普 通淬火,然后将 工件淬入低温溶 液中
常用冷处理液
冰水; 干冰+酒精; 液氮。
钢的淬透性
基本概念
淬透性:钢获得马 氏体的能力。
淬硬性:钢的硬化 能力
淬透层深度:从淬 火件表面至半马氏 体区的距离
时间/s 图2-68 T10钢过冷A等温转变曲线
其它表面淬火方法
1.火焰加热表面淬火
淬硬深度:2~6mm。 特点:方便,成本低,但效果
差
2.激光加热表面淬火
特点: 淬硬深度:0.3~0.5mm。 特点:不需要冷却液,可对深
孔,盲空,沟槽进行淬火。
3.太阳能加热表面淬火
同激光,但受自然条件限制
钢的化学热处理
为什么亚共析钢要进行完全淬火
完全淬火—— 得到完全马 氏体。
不完全淬 火——马氏体 组织中有铁 素体出现。
为什么过共析钢只能进行不完全
淬火
完全淬火:马氏体 含碳量过高,易开 裂和形成大量残余 奥氏体;
不完全淬火:有细 小弥散渗碳体残余, 奥氏体含碳量低, 因而淬火时不易开 裂,且残余渗碳体 量少。
适用材料:低碳钢。 常用工艺:
气体渗碳 固体渗碳 特点:温度高,周期长, 渗碳后必须进行淬火。
渗碳件的淬火
直接淬火
优点:工艺简单, 降低成本
缺点:工件晶粒 粗大,易开裂。
一次淬火
优点:晶粒细化, 不易开裂
缺点:增加成本。
钢的气体氮化
原理:以氨气分解产生活性氮原子,渗入钢
表面后形成高硬度的弥散分布的氮化物。 优点:由于渗氮温度只有550~570℃,且渗后
目的:满足工件不 同部位的性能要求。
冷处理
目的:消除残余 奥氏体。
工艺:先进行普 通淬火,然后将 工件淬入低温溶 液中
常用冷处理液
冰水; 干冰+酒精; 液氮。
钢的淬透性
基本概念
淬透性:钢获得马 氏体的能力。
淬硬性:钢的硬化 能力
淬透层深度:从淬 火件表面至半马氏 体区的距离
时间/s 图2-68 T10钢过冷A等温转变曲线
钢的热处理及表面处理技术
转变特点 马氏体的组织类型 马氏体性能
• M体转变特点:
• ①无扩散型转变 • ②降温形成:连续冷却完成 • ③瞬时性 • ④转变的不完全性
Fe-1.8CF,e-1冷.8至C,-10冷0℃至-60℃
M形成时体积↑,造成很大 内应力。
• 冷处理:P42
1)无扩散 Fe 和 C 原子都不进展扩散,M是C过饱 和的体心立方的F体,固溶强化显著。
↓ • 总结:A体晶粒越粗大,那么晶界越少,
形核几率越小,那么A体越稳定,C曲线 右移。淬透性越好
• 三、钢的淬透性
• 〔三〕淬透性的测 定
四、钢的回火〔P127〕
1.概念(Conception)
将淬火后的钢加热到Ac1以下某一温度, 保温后冷却下来的一种热处理工艺。
2.目的(purpose) 〔1〕稳定工件组织、性能和尺寸 〔2〕减小或消除剩余应力,防止工件的 变形和开裂 〔3〕降低工件的强度、硬度,提高其塑 性和韧性,以满足不同工件的性能要求
C %↑→ M 硬度↑, 片状M 硬度高,塑韧性差。板条M 强度高,塑韧性较好
二、共析钢过冷奥氏体的连续冷却转变
共
析
碳
钢
连
续
冷
却
水淬
无
M+AR
B
体
转变终止线
P 退火
T
S 正火
T+ 油淬 M
亚共析钢连续冷却转变 过共析钢连续冷却转变
炉冷→ F + P 空冷→ F(少量) + S 油冷→ T + M+AR 水冷→ M +AR
(三〕淬透性的测定
〔一〕钢的淬透性与淬硬性的概念
• 淬透性:钢在淬火时能够获得M体的能力,它是 钢材本身固有的属性,主要取决于M体的临界冷 却速度
• M体转变特点:
• ①无扩散型转变 • ②降温形成:连续冷却完成 • ③瞬时性 • ④转变的不完全性
Fe-1.8CF,e-1冷.8至C,-10冷0℃至-60℃
M形成时体积↑,造成很大 内应力。
• 冷处理:P42
1)无扩散 Fe 和 C 原子都不进展扩散,M是C过饱 和的体心立方的F体,固溶强化显著。
↓ • 总结:A体晶粒越粗大,那么晶界越少,
形核几率越小,那么A体越稳定,C曲线 右移。淬透性越好
• 三、钢的淬透性
• 〔三〕淬透性的测 定
四、钢的回火〔P127〕
1.概念(Conception)
将淬火后的钢加热到Ac1以下某一温度, 保温后冷却下来的一种热处理工艺。
2.目的(purpose) 〔1〕稳定工件组织、性能和尺寸 〔2〕减小或消除剩余应力,防止工件的 变形和开裂 〔3〕降低工件的强度、硬度,提高其塑 性和韧性,以满足不同工件的性能要求
C %↑→ M 硬度↑, 片状M 硬度高,塑韧性差。板条M 强度高,塑韧性较好
二、共析钢过冷奥氏体的连续冷却转变
共
析
碳
钢
连
续
冷
却
水淬
无
M+AR
B
体
转变终止线
P 退火
T
S 正火
T+ 油淬 M
亚共析钢连续冷却转变 过共析钢连续冷却转变
炉冷→ F + P 空冷→ F(少量) + S 油冷→ T + M+AR 水冷→ M +AR
(三〕淬透性的测定
〔一〕钢的淬透性与淬硬性的概念
• 淬透性:钢在淬火时能够获得M体的能力,它是 钢材本身固有的属性,主要取决于M体的临界冷 却速度
机械基础课件:钢的热处理
连续冷却: 使奥氏体化后的钢在温度连续下降的过程中发生 组织转变,包括水冷、 油冷、炉冷、空冷等。
等温冷却:将奥氏体化后的钢迅速冷却到临界点A1以下 某一温度,恒温停留一段时间,在这段保温时间内发生组织
钢的热处理
1. 过冷奥氏体的等温转变曲线 以共析钢为例: 由于过冷温度和等温时间不同,过冷奥氏体的等温转变 过程及转变产物也不相同,表示过冷奥氏体不同的等温冷却 温度、等温时间与转变过程及产物之间关系的曲线叫做过冷 奥氏体的等温转变曲线,也称为C 1) C · 共析钢奥氏体的等温转变曲线是通过一系列不同过冷
3. (1) 从切削加工性考虑:钢件适宜的切削加工硬度为 170~230 HBS。因此,低碳钢、低碳合金钢应选用正火为预 备热处理。中碳钢也可选正火,含碳量超过0.5%的钢应选用
(2) 从零件的形状考虑:对于形状复杂的零件或大型铸 件,正火可能会因内应力过大而造成零件开裂,故应选用退
(3) 从经济性考虑:因正火比退火的操作简便,生产周 期短,成本低,在能满足使用要求的情况下,应尽量选用正
· 通过实验测出不同的过冷奥氏体在恒温下开始转变和 转变终了的时间,画到温度-时间坐标系中,然后把开始时间 和转变终了时间分别连接起来,即得到图3-4所示的共析钢C
钢的热处理
图3-4 共析钢C曲线
钢的热处理
2) 共析钢过冷奥氏体等温转变产物的组织和性能 (1) 珠光体类型(高温转变产物): 共析钢A过冷到723~550℃之间,A等温转变产物属于P
钢的热处理
2. (1) (2) (3) 材料:中碳钢(45)、合金调质钢(40Cr) (4) 技术条件:表面50~55 HRC (5) 感应表面淬火方法如图3-6
钢的热处理
图3-6 钢的感应表面淬火
等温冷却:将奥氏体化后的钢迅速冷却到临界点A1以下 某一温度,恒温停留一段时间,在这段保温时间内发生组织
钢的热处理
1. 过冷奥氏体的等温转变曲线 以共析钢为例: 由于过冷温度和等温时间不同,过冷奥氏体的等温转变 过程及转变产物也不相同,表示过冷奥氏体不同的等温冷却 温度、等温时间与转变过程及产物之间关系的曲线叫做过冷 奥氏体的等温转变曲线,也称为C 1) C · 共析钢奥氏体的等温转变曲线是通过一系列不同过冷
3. (1) 从切削加工性考虑:钢件适宜的切削加工硬度为 170~230 HBS。因此,低碳钢、低碳合金钢应选用正火为预 备热处理。中碳钢也可选正火,含碳量超过0.5%的钢应选用
(2) 从零件的形状考虑:对于形状复杂的零件或大型铸 件,正火可能会因内应力过大而造成零件开裂,故应选用退
(3) 从经济性考虑:因正火比退火的操作简便,生产周 期短,成本低,在能满足使用要求的情况下,应尽量选用正
· 通过实验测出不同的过冷奥氏体在恒温下开始转变和 转变终了的时间,画到温度-时间坐标系中,然后把开始时间 和转变终了时间分别连接起来,即得到图3-4所示的共析钢C
钢的热处理
图3-4 共析钢C曲线
钢的热处理
2) 共析钢过冷奥氏体等温转变产物的组织和性能 (1) 珠光体类型(高温转变产物): 共析钢A过冷到723~550℃之间,A等温转变产物属于P
钢的热处理
2. (1) (2) (3) 材料:中碳钢(45)、合金调质钢(40Cr) (4) 技术条件:表面50~55 HRC (5) 感应表面淬火方法如图3-6
钢的热处理
图3-6 钢的感应表面淬火
热处理(PPT)
表面热处理
电接触加热等 化学热处理—渗碳、氮化、碳氮
共渗、渗其他元素等
控制气氛热处理
其他热处理
真空热处理 形变热处理
激光热处理
2.2钢的热处理基础知识
物质由液态转变为固态的 过程称为凝固。
物质由液态转变为晶态的 过程称为结晶。
物质由一个相转变为另一 个相的过程称为相变。因 而结晶过程是相变过程。
3、晶核的长大方式 晶核的长大方式有两种,即均匀
长大和树枝状长大。
均匀长 大
树枝状长大
2.2.1金属的结晶
在正温度梯度下,晶体生长以平面状态向前推进。
正温度梯度
2.2.1金属的结晶
实际金属结晶主要以树枝状长大. 这是由于存在负温度梯度,且晶核
棱角处的散热条件好,生长快,先 形成一次轴,一次轴又会产生二次 轴…,树枝间最后被填充。
Fe
Fe3C Fe2C
FeC
C
C%(at%) →
2.2.2铁碳合金相图
铁碳合金的组元和相 ⒈ 组元:Fe、 Fe3C ⒉相
⑴ 铁素体:
铁素体
碳在-Fe中的固溶体称铁素体, 用F 或 表示。
碳在δ-Fe中的固溶体称δ -铁素体,用δ 表示。
都是体心立方间隙固溶体。铁素体的溶碳能力很低,在 727℃时最大为0.0218%,室温下仅为0.0008%。
固态相变的晶界形核
2.2.1金属的结晶
合金的结晶 合金的结晶过程比纯金属复杂,常用相图进行分析. 相图是用来表示合金系中各合金在缓冷条件下结晶过程
的简明图解。又称状态图或平衡图。
2.2.2铁碳合金相图
铁碳合金相图 是研究铁碳
合金最基本的工 具,是研究碳钢 和铸铁的成分、 温度、组织及性 能之间关系的理 论基础,是制定热 加工、热处理、 冶炼和铸造等工 艺依据.
《钢的热处理》PPT课件
231形成当a过冷到a1线以下时a产生了变化在晶界处产生了fe3c晶核长大使侧a的含量下降当fe3c长大时使到原有的a的c含量达到f时fe3c两侧形成的晶核当f长大时cmax0006向周围的a排出多原子增加了两侧a的c含量促进了fe3c片的形成如此反复24形成f与fe3c层片相间的混合组织与此同时在晶界其他部位又可能产生新的晶核fe3c小片并不断交替生核长大直到各种不同取向的p晶团群彼此相遇a全部转变为p
三) 转变产物的组织与性能
1.珠光体型 ( P ) 转变 ( A1~550℃ ) : A1~650℃ : P ; 5~25HRC; 片间距为0.6~0.7μm ( 500× )。
650~600℃ : 细片状P---索氏体(S); 片间距为0.2~0.4μm (1000×); 25~36HRC。
600~550℃:极细片状P---屈氏体(T); 片间距为<0.2μm ( 电镜 ); 35~40HRC。
珠光体形貌像
光镜下形貌
电镜下形貌
索 氏 体 形 貌 像
光镜形貌
电镜形貌
屈 氏 体 形 貌 像
光镜形貌
电镜形貌
三) 转变产物的组织与性能
2.贝氏体型 ( B ) 转变 ( 550~230℃ ) :
形成,F 与 Fe3C 层片相间的混合组 织,与此同时,在晶界其他部位又可能 产生新的晶核( Fe3C 小片),并不断 交替生核长大,直到各种不同取向的P晶 团(群)彼此相遇,A全部转变为P。 由此可见,P的形成,包含两个不 同的过程: 通过C的扩散而使成分产生改变,即 由含C量0.8%(0.77%)的A 含 C量极高的Fe3C和含C量极低的F转变;
( % ) 50 40 30 20 10 0 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Wc 100
三) 转变产物的组织与性能
1.珠光体型 ( P ) 转变 ( A1~550℃ ) : A1~650℃ : P ; 5~25HRC; 片间距为0.6~0.7μm ( 500× )。
650~600℃ : 细片状P---索氏体(S); 片间距为0.2~0.4μm (1000×); 25~36HRC。
600~550℃:极细片状P---屈氏体(T); 片间距为<0.2μm ( 电镜 ); 35~40HRC。
珠光体形貌像
光镜下形貌
电镜下形貌
索 氏 体 形 貌 像
光镜形貌
电镜形貌
屈 氏 体 形 貌 像
光镜形貌
电镜形貌
三) 转变产物的组织与性能
2.贝氏体型 ( B ) 转变 ( 550~230℃ ) :
形成,F 与 Fe3C 层片相间的混合组 织,与此同时,在晶界其他部位又可能 产生新的晶核( Fe3C 小片),并不断 交替生核长大,直到各种不同取向的P晶 团(群)彼此相遇,A全部转变为P。 由此可见,P的形成,包含两个不 同的过程: 通过C的扩散而使成分产生改变,即 由含C量0.8%(0.77%)的A 含 C量极高的Fe3C和含C量极低的F转变;
( % ) 50 40 30 20 10 0 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7 Wc 100
钢的热处理 PPT课件
组织:球化珠光体(球粒状渗碳体 +铁素体)。
球 化 退 火
目的:消除应力,使钢的渗碳体球状化, 以降低硬度,改善切削加工性,并为以后 的热处理工序作好组织准备。 应用:主要用于共析碳钢、过共析碳钢 和合金工具钢。
加热温度:再结晶温度以上(一般为650 ~700℃
再 结 晶 退 火
目的:消除加工硬化,恢复塑性。
热处理 ቤተ መጻሕፍቲ ባይዱ类
整体热处理:退火、正火、淬火、回火 感应加热 表面淬火 火焰加热 电接触加热 激光加热 表面热处理 渗碳 渗氮 化学热处理 碳氮共渗 渗金属等
热处理工艺曲线
热处理的基本过程都是由加热、保温和冷却三个 阶段组成的,其工艺过程用温度-时间坐标系中的 曲线图表示,这种曲线称为热处理工艺曲线。
应用:主要用于经冷塑性加工,如冷轧、 冷冲、冷拔而发生加工硬化的钢件。
去 应 力 退 火
加热温度:Ac1以下某一温度(一般为 500~650℃)
目的:消除由于塑性变形、焊接、切 削加工、铸造等形成的残余应力。
工艺方法:将工件加热到高温(1050~ 1150℃),并长时间保温,然后缓慢冷却 的退火工艺。
第 3章
一、概述
钢的热处理
二、钢在加热时的组织 三、钢在冷却时的组织 四、钢的退火与正火 五、钢的淬火 六、钢的回火
七、钢的表面热处理
八、热处理工艺的应用
概述
热处理的概念 将固态金属采用适当的方式进行加热、保温 和冷却以获得所需组织与性能的工艺。 热处理的目的
(1)提高钢的力学性能;
(2)改善钢的工艺性能。 热处理的理论依据:铁碳合金相图
温 度 加热 保 温 冷却
0
热处理工艺曲线
时间
一、钢在加热时的组织转变
球 化 退 火
目的:消除应力,使钢的渗碳体球状化, 以降低硬度,改善切削加工性,并为以后 的热处理工序作好组织准备。 应用:主要用于共析碳钢、过共析碳钢 和合金工具钢。
加热温度:再结晶温度以上(一般为650 ~700℃
再 结 晶 退 火
目的:消除加工硬化,恢复塑性。
热处理 ቤተ መጻሕፍቲ ባይዱ类
整体热处理:退火、正火、淬火、回火 感应加热 表面淬火 火焰加热 电接触加热 激光加热 表面热处理 渗碳 渗氮 化学热处理 碳氮共渗 渗金属等
热处理工艺曲线
热处理的基本过程都是由加热、保温和冷却三个 阶段组成的,其工艺过程用温度-时间坐标系中的 曲线图表示,这种曲线称为热处理工艺曲线。
应用:主要用于经冷塑性加工,如冷轧、 冷冲、冷拔而发生加工硬化的钢件。
去 应 力 退 火
加热温度:Ac1以下某一温度(一般为 500~650℃)
目的:消除由于塑性变形、焊接、切 削加工、铸造等形成的残余应力。
工艺方法:将工件加热到高温(1050~ 1150℃),并长时间保温,然后缓慢冷却 的退火工艺。
第 3章
一、概述
钢的热处理
二、钢在加热时的组织 三、钢在冷却时的组织 四、钢的退火与正火 五、钢的淬火 六、钢的回火
七、钢的表面热处理
八、热处理工艺的应用
概述
热处理的概念 将固态金属采用适当的方式进行加热、保温 和冷却以获得所需组织与性能的工艺。 热处理的目的
(1)提高钢的力学性能;
(2)改善钢的工艺性能。 热处理的理论依据:铁碳合金相图
温 度 加热 保 温 冷却
0
热处理工艺曲线
时间
一、钢在加热时的组织转变
钢的表面热处理ppt课件
• 碳素工具钢、渗碳钢、轴承钢、高速工具钢、铸铁、硬质合 金等材料均可进行气相沉积。
完整编辑ppt
19
(2)物理气相沉积(PVD)
• 通过蒸发或辉光放电、弧光放电、溅射等物理方法提供原 子、离子,使之在工件表面沉积形成薄膜的工艺。
• 方法:蒸镀、溅射沉积、磁控溅射、离子束沉积等。
完整编辑ppt
20
• 渗氮前零件须经调质处理,获得回火索氏体组织,以提高 心部的性能。渗氮后不需再热处理。
• 渗氮用于耐磨性和精度要求高的精密零件或承受交变载荷 以及要求耐热、耐蚀、耐磨的零件的重要零件。
完整编辑ppt
15
(3)碳氮共渗技术
• 两种方法:一种是以渗碳为主碳氮共渗,另一种是以渗氮为 主的软氮化。
1)以渗碳为主的碳氮共渗 • 目的:提高工件表面的硬度和耐磨性。 • 碳氮共渗后要进行淬火、低温回火。共渗层表面组织为回火
马氏体、粒状碳氮化合物。渗层深度0.3~0.8 mm。
完整编辑ppt
16
碳氮共渗用钢:低碳或中碳钢、低合金钢及合金钢。
• 特点:具有温度低、时间短、变形小、硬度高、耐磨性好 、生产率高等优点。用于机床和汽车上的各种齿轮、蜗轮 、蜗杆和轴类等零件。
完整编辑ppt
17
(4)渗铝、渗铬、渗硼化学热处理
热处理工艺的应用
热处理技术条件是指对零件采用的热处理方法以及所应达到的
性能要求的技术性的文件。具体应根据零件性能要求,在零件 图样上标出,内容包括最终热处理方法(如调质、淬火、回火、 渗碳等)以及应达到的力学性能判据等,作为热处理生产及检 验时的依据。力学性能通常只标出硬度值,且有一定误差范围, 如弹簧淬火回火硬度45~50HRC。
• 不仅改变了钢表面的组织,而且表面层的化学成分也发生 了变化,因而能更有效地改变零件表层的性能。
完整编辑ppt
19
(2)物理气相沉积(PVD)
• 通过蒸发或辉光放电、弧光放电、溅射等物理方法提供原 子、离子,使之在工件表面沉积形成薄膜的工艺。
• 方法:蒸镀、溅射沉积、磁控溅射、离子束沉积等。
完整编辑ppt
20
• 渗氮前零件须经调质处理,获得回火索氏体组织,以提高 心部的性能。渗氮后不需再热处理。
• 渗氮用于耐磨性和精度要求高的精密零件或承受交变载荷 以及要求耐热、耐蚀、耐磨的零件的重要零件。
完整编辑ppt
15
(3)碳氮共渗技术
• 两种方法:一种是以渗碳为主碳氮共渗,另一种是以渗氮为 主的软氮化。
1)以渗碳为主的碳氮共渗 • 目的:提高工件表面的硬度和耐磨性。 • 碳氮共渗后要进行淬火、低温回火。共渗层表面组织为回火
马氏体、粒状碳氮化合物。渗层深度0.3~0.8 mm。
完整编辑ppt
16
碳氮共渗用钢:低碳或中碳钢、低合金钢及合金钢。
• 特点:具有温度低、时间短、变形小、硬度高、耐磨性好 、生产率高等优点。用于机床和汽车上的各种齿轮、蜗轮 、蜗杆和轴类等零件。
完整编辑ppt
17
(4)渗铝、渗铬、渗硼化学热处理
热处理工艺的应用
热处理技术条件是指对零件采用的热处理方法以及所应达到的
性能要求的技术性的文件。具体应根据零件性能要求,在零件 图样上标出,内容包括最终热处理方法(如调质、淬火、回火、 渗碳等)以及应达到的力学性能判据等,作为热处理生产及检 验时的依据。力学性能通常只标出硬度值,且有一定误差范围, 如弹簧淬火回火硬度45~50HRC。
• 不仅改变了钢表面的组织,而且表面层的化学成分也发生 了变化,因而能更有效地改变零件表层的性能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 目的:提高钢件表层的含碳量,淬火与回火后表面硬、心 部韧。
• 材料:低碳钢、低碳合金钢。 • 渗碳后处理:淬火及低温回火。 • 工艺路线:
锻造→正火→机械加工→渗碳→淬火+低温回火。 • 渗碳方法:固体渗碳法、液体渗碳法和气体渗碳法三种。
.,
8
★ 渗碳后的组织及热处理
• 低碳钢件渗碳后表层含碳量0.85%~1.05%为最佳。表层 为过共析组织(珠光体和网状二次渗碳体),与其相邻为共 析组织(珠光体),再向里为亚共析组织的过渡层(珠光体 和铁素体),心部为原低碳钢组织(铁素体和少量珠光体)
2)一次淬火 • 第一次淬火是为了改善心部组织和消除表面网状二次渗碳体
,加热温度为Ac3以上30~50℃。
.,
11
3)二次淬火
• 第二次淬火是为细化工件表层组织,获得细马氏体和均匀分 布的粒状二次渗碳体,加热温度为Ac1以上30~50℃,二次 淬火法工艺复杂,生产周期长,成本高,变形大,只适用于 表面耐磨性和心部韧性要求高的零件。
.,
2
• 适用:中碳钢、中碳合金钢。
• 方法:火焰加热表面淬火、感应加热表面淬、电接触加热表 面淬火、激光加热表面淬火。
.,
3
(1)感应加热表面淬火
1)感应加热基本原理 • 利用感应电流通过工件所产生的热效应,使工件表面受到
局部加热,并进行快速冷却的淬火工艺。 • 特点: ①加热速度快。 ②淬火质量好。 ③淬硬层深度易于控制,易实现机械化
• 工件的渗碳层深度取决于工件尺寸和工作条件,一般为0.5 ~2.5 mm。
• 为使工件表面具有高硬度、高耐磨性,必须对渗碳工件进行 淬火和低温回火。
.,
9
★渗碳后常用的淬火方法
1)直接淬火 • 工件从渗碳温度预冷到略高于心部Ar3的某一温度,立即放入
水或油中。预冷是为了减少淬火应力和变形。
.,
10
和自动化,适用于大批量生产。
.,
4
2)感应加热表面淬火类型
①高频感应加热表面淬火 • 常用频率为200~300 kHz,淬硬层深度为0.5~2 mm。 • 用于淬硬层较薄的中、小模数齿轮和中、小尺寸轴类零件
等。
.,
5
②中频感应加热表面淬火 • 常用频率为2500~8000 Hz,淬硬层深度为2~10 mm。 • 主要用于大、中模数齿轮和较大直径轴类零件等。
反应气(低温下可汽化的金属盐),使其在炉内发生分解或 化学反应,并在工件上沉积成一层所要求的金属或金属化合 物薄膜的方法。 • 碳素工具钢、渗碳钢、轴承钢、高速工具钢、铸铁、硬质合 金等材料均可进行气相沉积。
③工频感应加热表面淬火 • 电流频率为50Hz,淬硬层深度为lO~20 mm。 • 用于大直径零件(如轧辊、火车车轮等)的表面淬火和大
直径钢件的穿透加热。
.,
6
二、表面化学热处理
• 化学热处理——将工件置于一定温度的活性介质中保温,使 一种或几种元素渗入它的表层,以改变其化学成分、组织和 性能的热处理工艺。
• 渗氮前零件须经调质处理,获得回火索氏体组织,以提高 心部的性能。渗氮后不需再热处理。
• 渗氮用于耐磨性和精度要求高的精密零件或承受交变载荷 以及要求耐热、耐蚀、耐磨的零件的重要零件。., Nhomakorabea15
(3)碳氮共渗技术
• 两种方法:一种是以渗碳为主碳氮共渗,另一种是以渗氮为 主的软氮化。
1)以渗碳为主的碳氮共渗 • 目的:提高工件表面的硬度和耐磨性。 • 碳氮共渗后要进行淬火、低温回火。共渗层表面组织为回火
• 不仅改变了钢表面的组织,而且表面层的化学成分也发生了 变化,因而能更有效地改变零件表层的性能。
• 根据渗入元素分类:渗碳、渗氮、碳氮共渗、渗硼、渗金属 等。
• 化学热处理的基本过程
分解
吸收
扩散
.,
7
(1)钢的渗碳及其应用
• 渗碳——将钢件置于渗碳介质中加热并保温,使碳原子渗 入工件表层的化学热处理工艺。
马氏体、粒状碳氮化合物。渗层深度0.3~0.8 mm。
.,
16
碳氮共渗用钢:低碳或中碳钢、低合金钢及合金钢。
• 特点:具有温度低、时间短、变形小、硬度高、耐磨性好 、生产率高等优点。用于机床和汽车上的各种齿轮、蜗轮 、蜗杆和轴类等零件。
.,
17
(4)渗铝、渗铬、渗硼化学热处理
1)渗铝:向工件表面渗入铝原子的过程。适用于石油、化工 、冶金等方面的管道和容器。
2)渗铬:向工件表面渗入铬原子的过程。渗铬工件具有耐蚀 、抗氧化、耐磨和较好的抗疲劳性能,兼有渗碳、渗氮、渗 铝的优点。
3)渗硼:向工件表面渗入硼原子的过程。渗硼工件具有高硬度 、高耐磨性和好的热硬性(可达800℃)。
.,
18
三.表面气相沉积
• 分为化学气相沉积(CVD)和物理气相沉积(PVD)两类 (1)化学气相沉积(CVD) • 化学气相沉积:将工件置于炉内加热到高温后,向炉内通人
.,
13
2)常用渗氮方法
① 气体渗氮:在有活性氮原子的气体中进行渗氮。 ② 离子渗氮:在低于1×105Pa的渗氮气氛中,利用工件(阴极) 和阳极之间产生的辉光放电进行渗氮的工艺。
.,
14
3)渗氮和渗碳相比有何特点?
• 氮原子的渗入使渗氮层内形成残留压应力,可提高疲劳强 度(25%~35%);渗氮层表面由致密的、连续的氮化物 组成,使工件具有很高的耐蚀性;渗氮温度低,工件变形 小;渗氮层很薄(<0.6~0.70mm),渗氮后只能精磨、 研磨或抛光。渗氮层较脆,不能承受冲击力,生产周期长 (例如0.3~0.5mm的渗层,需要30~50h),成本高。
钢的表面热处理
常用表面热处理的方法有表面淬火和化学热处理两大类。
.,
1
一、表面淬火
• 表面淬火:仅对工件表层进行淬火的热处理工艺。
• 原理:通过快速加热,使钢的表层奥氏体化,在热量尚未充 分传到零件中心时就立即予以冷却淬火,得到马氏体组织。
• 目的:使工件表面获得高硬度和高耐磨性,而心部保持较好 的塑性和韧性,以提高其在扭转、弯曲、循环应力或在摩擦 、冲击、接触应力等工作条件下的使用寿命。
.,
12
(2)钢的渗氮(氮化)
渗氮:在一定温度,一定介质中使氮原子渗入工件表层的化学热 处理工艺。
• 目的:提高工件表面硬度、耐磨性、疲劳强度和耐蚀性。 l)渗氮用钢 • 渗氮用钢一般是含有Al、Cr、Mo、Ti、V等合金元素的钢,这
些元素能与N形成颗粒细小、分布均匀、硬度高的各种氮化物 (CrN、MoN、AlN),渗氮后工件表面有很高的硬度(1000 ~1200HV,相当于72HRC)和耐磨性,因此渗氮后不需再 进行淬火。
• 材料:低碳钢、低碳合金钢。 • 渗碳后处理:淬火及低温回火。 • 工艺路线:
锻造→正火→机械加工→渗碳→淬火+低温回火。 • 渗碳方法:固体渗碳法、液体渗碳法和气体渗碳法三种。
.,
8
★ 渗碳后的组织及热处理
• 低碳钢件渗碳后表层含碳量0.85%~1.05%为最佳。表层 为过共析组织(珠光体和网状二次渗碳体),与其相邻为共 析组织(珠光体),再向里为亚共析组织的过渡层(珠光体 和铁素体),心部为原低碳钢组织(铁素体和少量珠光体)
2)一次淬火 • 第一次淬火是为了改善心部组织和消除表面网状二次渗碳体
,加热温度为Ac3以上30~50℃。
.,
11
3)二次淬火
• 第二次淬火是为细化工件表层组织,获得细马氏体和均匀分 布的粒状二次渗碳体,加热温度为Ac1以上30~50℃,二次 淬火法工艺复杂,生产周期长,成本高,变形大,只适用于 表面耐磨性和心部韧性要求高的零件。
.,
2
• 适用:中碳钢、中碳合金钢。
• 方法:火焰加热表面淬火、感应加热表面淬、电接触加热表 面淬火、激光加热表面淬火。
.,
3
(1)感应加热表面淬火
1)感应加热基本原理 • 利用感应电流通过工件所产生的热效应,使工件表面受到
局部加热,并进行快速冷却的淬火工艺。 • 特点: ①加热速度快。 ②淬火质量好。 ③淬硬层深度易于控制,易实现机械化
• 工件的渗碳层深度取决于工件尺寸和工作条件,一般为0.5 ~2.5 mm。
• 为使工件表面具有高硬度、高耐磨性,必须对渗碳工件进行 淬火和低温回火。
.,
9
★渗碳后常用的淬火方法
1)直接淬火 • 工件从渗碳温度预冷到略高于心部Ar3的某一温度,立即放入
水或油中。预冷是为了减少淬火应力和变形。
.,
10
和自动化,适用于大批量生产。
.,
4
2)感应加热表面淬火类型
①高频感应加热表面淬火 • 常用频率为200~300 kHz,淬硬层深度为0.5~2 mm。 • 用于淬硬层较薄的中、小模数齿轮和中、小尺寸轴类零件
等。
.,
5
②中频感应加热表面淬火 • 常用频率为2500~8000 Hz,淬硬层深度为2~10 mm。 • 主要用于大、中模数齿轮和较大直径轴类零件等。
反应气(低温下可汽化的金属盐),使其在炉内发生分解或 化学反应,并在工件上沉积成一层所要求的金属或金属化合 物薄膜的方法。 • 碳素工具钢、渗碳钢、轴承钢、高速工具钢、铸铁、硬质合 金等材料均可进行气相沉积。
③工频感应加热表面淬火 • 电流频率为50Hz,淬硬层深度为lO~20 mm。 • 用于大直径零件(如轧辊、火车车轮等)的表面淬火和大
直径钢件的穿透加热。
.,
6
二、表面化学热处理
• 化学热处理——将工件置于一定温度的活性介质中保温,使 一种或几种元素渗入它的表层,以改变其化学成分、组织和 性能的热处理工艺。
• 渗氮前零件须经调质处理,获得回火索氏体组织,以提高 心部的性能。渗氮后不需再热处理。
• 渗氮用于耐磨性和精度要求高的精密零件或承受交变载荷 以及要求耐热、耐蚀、耐磨的零件的重要零件。., Nhomakorabea15
(3)碳氮共渗技术
• 两种方法:一种是以渗碳为主碳氮共渗,另一种是以渗氮为 主的软氮化。
1)以渗碳为主的碳氮共渗 • 目的:提高工件表面的硬度和耐磨性。 • 碳氮共渗后要进行淬火、低温回火。共渗层表面组织为回火
• 不仅改变了钢表面的组织,而且表面层的化学成分也发生了 变化,因而能更有效地改变零件表层的性能。
• 根据渗入元素分类:渗碳、渗氮、碳氮共渗、渗硼、渗金属 等。
• 化学热处理的基本过程
分解
吸收
扩散
.,
7
(1)钢的渗碳及其应用
• 渗碳——将钢件置于渗碳介质中加热并保温,使碳原子渗 入工件表层的化学热处理工艺。
马氏体、粒状碳氮化合物。渗层深度0.3~0.8 mm。
.,
16
碳氮共渗用钢:低碳或中碳钢、低合金钢及合金钢。
• 特点:具有温度低、时间短、变形小、硬度高、耐磨性好 、生产率高等优点。用于机床和汽车上的各种齿轮、蜗轮 、蜗杆和轴类等零件。
.,
17
(4)渗铝、渗铬、渗硼化学热处理
1)渗铝:向工件表面渗入铝原子的过程。适用于石油、化工 、冶金等方面的管道和容器。
2)渗铬:向工件表面渗入铬原子的过程。渗铬工件具有耐蚀 、抗氧化、耐磨和较好的抗疲劳性能,兼有渗碳、渗氮、渗 铝的优点。
3)渗硼:向工件表面渗入硼原子的过程。渗硼工件具有高硬度 、高耐磨性和好的热硬性(可达800℃)。
.,
18
三.表面气相沉积
• 分为化学气相沉积(CVD)和物理气相沉积(PVD)两类 (1)化学气相沉积(CVD) • 化学气相沉积:将工件置于炉内加热到高温后,向炉内通人
.,
13
2)常用渗氮方法
① 气体渗氮:在有活性氮原子的气体中进行渗氮。 ② 离子渗氮:在低于1×105Pa的渗氮气氛中,利用工件(阴极) 和阳极之间产生的辉光放电进行渗氮的工艺。
.,
14
3)渗氮和渗碳相比有何特点?
• 氮原子的渗入使渗氮层内形成残留压应力,可提高疲劳强 度(25%~35%);渗氮层表面由致密的、连续的氮化物 组成,使工件具有很高的耐蚀性;渗氮温度低,工件变形 小;渗氮层很薄(<0.6~0.70mm),渗氮后只能精磨、 研磨或抛光。渗氮层较脆,不能承受冲击力,生产周期长 (例如0.3~0.5mm的渗层,需要30~50h),成本高。
钢的表面热处理
常用表面热处理的方法有表面淬火和化学热处理两大类。
.,
1
一、表面淬火
• 表面淬火:仅对工件表层进行淬火的热处理工艺。
• 原理:通过快速加热,使钢的表层奥氏体化,在热量尚未充 分传到零件中心时就立即予以冷却淬火,得到马氏体组织。
• 目的:使工件表面获得高硬度和高耐磨性,而心部保持较好 的塑性和韧性,以提高其在扭转、弯曲、循环应力或在摩擦 、冲击、接触应力等工作条件下的使用寿命。
.,
12
(2)钢的渗氮(氮化)
渗氮:在一定温度,一定介质中使氮原子渗入工件表层的化学热 处理工艺。
• 目的:提高工件表面硬度、耐磨性、疲劳强度和耐蚀性。 l)渗氮用钢 • 渗氮用钢一般是含有Al、Cr、Mo、Ti、V等合金元素的钢,这
些元素能与N形成颗粒细小、分布均匀、硬度高的各种氮化物 (CrN、MoN、AlN),渗氮后工件表面有很高的硬度(1000 ~1200HV,相当于72HRC)和耐磨性,因此渗氮后不需再 进行淬火。