最新高中数学线性规划各类习题精选

合集下载

高中数学线性规划(精品)

高中数学线性规划(精品)

线性规划一、选择题1.设直线l 的方程为:01=-+y x ,则下列说法不.正确的是( )A .点集{01|),(=-+y x y x }的图形与x 轴、y 轴围成的三角形的面积是定值B .点集{01|),(>-+y x y x }的图形是l 右上方的平面区域C .点集{01|),(<+--y x y x }的图形是l 左下方的平面区域D .点集{)(,0|),(R m m y x y x ∈=-+}的图形与x 轴、y 轴围成的三角形的面积有最小值2.已知x , y 满足约束条件,11⎪⎩⎪⎨⎧-≥≤+≤y y x x y y x z +=2则的最大值为( )A .3B .-3C .1D .23 3.如果函数a bx ax y ++=2的图象与x 轴有两上交点,则点(a ,b )在a Ob 平面上的区 域(不包含边界)为 ( )A .B .C .D . 4.图中的平面区域(阴影部分包括边界)可用不等式组表示为) A .20≤≤x B .⎩⎨⎧≤≤≤≤1020y xC .⎪⎩⎪⎨⎧>≤-+yx y x 022D .⎪⎩⎪⎨⎧≥≥≤-+00022y x y x 5.不等式组⎪⎩⎪⎨⎧-≥≤+<31y y x xy ,表示的区域为D ,点P 1(0,-2),P 2(0,0),则( )A .D P D P ∉∉21且B .D P D P ∈∉21且C .D P D P ∉∈21且D .D P D P ∈∈21且6.已知点P (x 0,y 0)和点A (1,2)在直线0823:=-+y x l 的异侧,则( )A .02300>+y xB .<+0023y x 0C .82300<+y xD .82300>+y x7.已知点P (0,0),Q (1,0),R (2,0),S (3,0),则在不等式063≥-+y x 表示的平面区域内的点是( )A .P 、QB .Q 、RC .R 、SD .S 、P8.在约束条件⎪⎩⎪⎨⎧≥≤+≤--0101x y x y x 下,则目标函数y x z+=10的最优解是( ) A .(0,1),(1,0) B .(0,1),(0,-1) C .(0,-1),(0,0) D .(0,-1),(1,0) 9.不在 3x + 2y < 6 表示的平面区域内的一个点是 ( ) A .(0,0)B .(1,1)C .(0,2)D .(2,0)10.已知点(3 , 1)和点(-4 , 6)在直线 3x –2y + m = 0 的两侧,则 ( )A .m <-7或m >24B .-7<m <24C .m =-7或m =24D .-7≤m ≤ 2411.若⎩⎨⎧≥+≤≤2,22y x y x ,则目标函数 z = x + 2 y 的取值范围是 ( )A .[2 ,6]B . [2,5]C . [3,6]D . [3,5] 12.不等式⎩⎨⎧≤≤≥++-300))(5(x y x y x 表示的平面区域是一个( )A .三角形B .直角三角形C .梯形D .矩形13.在△ABC 中,三顶点坐标为A (2 ,4),B (-1,2),C (1 ,0 ), 点P (x ,y )在△ABC 内部及边界运动,则 z= x –y 的最大值和最小值分别是()A .3,1B .-1,-3C .1,-3D .3,-114.在直角坐标系中,满足不等式 x 2-y 2≥0 的点(x ,y )的集合(用阴影部分来表示)的是 ( )A B C D15.已知平面区域如右图所示,)0(>+=m y mx z ( )A .207B .207-C .21D .不存在二、填空题1.表示以A (0,0),B (2,2),C (2,0)为顶点的三角形区域(含边界)的不等式组是2.已知点P (1,-2)及其关于原点的对称点均在不等式012>+-by x 表示的平面区域内,则b 的取值范围是 . 3.已知点(x ,y )在不等式组⎪⎩⎪⎨⎧≥+≤≤222y x y x 表示的平面区域内,则y x+的取值范围为.4.不等式1≤+y x 所表示的平面区域的面积是5.已知x ,y满足约束条件 35≤≥+≥+-x y x y x ,则y x z -=4的最小值为______________.6.已知约束条件2828,x y x y x N y N +++≤⎧⎪+≤⎨⎪∈∈⎩,目标函数z=3x+y ,某学生求得x =38, y=38时,z max =323, 这显然不合要求,正确答案应为x = ; y= ; z max = .三、解答题1.画出不等式组⎪⎩⎪⎨⎧≥+≤≥+-02042x y x y x 所表示的平面区域.(12分)2. 求由约束条件⎪⎩⎪⎨⎧≥≥≤+≤+0,0625y x y x y x 确定的平面区域的面积阴影部分S 和周长阴影部分C .(12分)3.求目标函数y x z 1510+=的最大值及对应的最优解,约束条件是⎪⎪⎩⎪⎪⎨⎧≥≤≤≥+≤+01001232122y x y x y x .(12分)4.设y x z +=2,式中变量y x ,满足条件⎪⎪⎩⎪⎪⎨⎧≤+≥+≥≥66311y x y x y x ,求z 的最小值和最大值.(12分) 5.由12+≤≤≤x y x y 及围成的几何图形的面积是多少?(12分)6.已知),2,0(∈a 当a 为何值时,直线422:422:2221+=+-=-a y a x l a y ax l 与及坐标轴围成的平面区域的面积最小?7.设422+-=x y z ,式中变量y x ,满足条件⎪⎩⎪⎨⎧≥-≤≤≤≤122010x y y x ,求z 的最小值和最大值.(12分)参考答案一.选择题二.填空题1.⎪⎩⎪⎨⎧≥≤≥-020y x y x 2.)21,23(-- 3.[2,4] 4. 2 5.5.12- 6.3,2,11三、解答题1.(12分)2.(12分)[解析]:由约束条件作出其所确定的平面区域(阴影部分),其四个顶点为O (0,0A (0,5),P (1,4).过P 点作y 轴的垂线,垂足为C . 则AC=|5-4|=1,PC=|1-0|=1OB=3,AP=2,PB=52)31()04(22=-+-得PC AC S ACP⋅=∆21=21,8)(21=⋅+=OC OB CP S COBP 梯形 所以阴影部分S =ACPS ∆+COBPS 梯形=217,阴影部分C =OA+AP+PB+OB=8+2+523.(12分)[解析]:作出其可行域如图所示,约束条件所确定的平面区域的五个顶点为(0,4),(0,6),(6,0)(10,0),(10,1),作直线l 0:10 x +15 y =0,再作与直线l 0平行的直线l :10 x +15 y =z , 由图象可知,当l 经过点(10,1)时使y x z 1510+=取得最大值, 显然1151151010max =⨯+⨯=z ,此时最优解为(10,1). 4.(12分)[解析]:作出其可行域如图所示,约束条件所确定的平面区域的四个顶点为(1,35),(1,5),(3,1),(5,1),作直线l 0:2 x + y =0,再作与直线l 0平行的直线l :2 x + y =z , 由图象可知,当l 经过点(1,35)时使y x z +=2取得最小值, 31135112min =⨯+⨯=z 当l 经过点(5,1)时使y x z +=2取得最大值,111152max =⨯+⨯=zl01=`5.(12分)[解析]:如下图由12+≤≤≤x y x y 及围成的几何图形就是其阴影部分,且312212421=⋅⋅-⋅⋅=S .6.(),2,2(1A l 恒过)2,0(),0,42,a C aB y x --(轴分别为交 ),2,2()2(22:222A l x a y l 恒过∴--=-42,0(),0,2,22aC aD y x ++(轴分别为交, 02,04220>-<-∴<<a aa ,由题意知21l l 与及坐标轴围成的平面区域为ACOD , ,41521(42)4(2142)(2(2122222+-=+-=⋅+-++=-=∴∆∆a a a a a aa S S S EC A EOD AC OD 415)(21min ==∴AC OD S a 时,当. 7.(12分)[解析]: 作出满足不等式⎪⎩⎪⎨⎧≥-≤≤≤≤122010x y y x .作直线,22:1t x y l =-.840222)2,0(max =+⨯-⨯=z A l 时,经过当 .441212)1,1(min =+⨯-⨯=z B l 时,经过当。

高中数学线性规划各类习题精选5

高中数学线性规划各类习题精选5

2.已知点 P( x , y) 在不等式组 ⎨ y - 1 ≤ 0 表示的平面区域内运动,则 z = x - y 的最大 ⎪ x + 2 y - 2 ≥ 0 3.若实数 x, y 满足 ⎨ x + y ≥ 0,则 z = 3x +2 y 的最大值是()5.设变量 x, y 满足约束条件 ⎨ y ≥ 3x ,若目标函数 z = x + y 的最大值为 14,则 a 值⎪x + ay ≤ 7 A .1B . 1 6.已知实数 x, y 满足 ⎨ x - y ≤ 0 ,则 2 x - y 的最大值为()1高中数学线性规划各类习题精选 5学校:___________姓名:___________班级:___________考号:___________一、单选题1.设 , 满足约束条件,若目标函数 的最大值为 12,则A .B .的最小值为( )C .D .4⎧ x - 2 ≤ 0 ⎪ ⎩值是()A . -1B . -2C .2D .3⎧ x - y + 1 ≥ 0⎪ ⎪ ⎩x ≤ 0A .13B .9C .1D .34.已知实数 , 满足,如果目标函数 的最小值为 ,则实数 等于()A .6B .5C .4D .3⎧x ≥ 0 ⎪⎩为()1 1 1 或C .D .2 32 3⎧ x + y - 1 ≤ 0 ⎪⎪ ⎩ x ≥ 01⎪ y ≥ 09.若实数 x, y 满足条件 ⎨ y - x ≤ 2 ,则 z = x - 2 y 的最小值为( ) ⎪ y ≥ 0 A .-1 B .-2 C . - 5 12.已知 a > 0 , x, y 满足约束条件 { x + y ≤ 3 ,若 z = 2 x + y 的最大值为 ,y ≥ a (x - 2) A . 113.已知 x 、y 满足约束条件 ⎨ x - y ≤ 0 则 z = x + 2 y 的最大值为( )14.已知 x, y 满足 ⎨ x + y ≤ 4记目标函数 z = 2 x + y 最大值为 a ,最小值为 b ,则⎪x - y - 2 ≤ 0⎧ x - y ≥ 0 ⎪2 x + y ≤ 27.若不等式组 ⎨ ,表示的平面区域是一个三角形,则 a 的取值范围是( )⎪⎩ x + y ≤ a4 4 4A .a≥B .0<a≤1C .1 ≤a≤D .0<a≤1 或 a≥3338.设 x ,y 满足约束条件,则 z=2x-3y 的最小值是( )A .-7B .-6C .-5D .-3⎧ y + x ≤ 1 ⎪⎩7D . -2 2⎧ x ≤ 0 ⎪ y ≥ 010.已知由不等式 ⎨ 确定的平面区域 Ω 的面积为 7,则 k 的值()⎪ y - kx ≤ 2 ⎪⎩ y - x - 4 ≤ 0A . -2B . -1C . -3D . 211.如果实数 x 、y 满足关系,则 的取值范围是( )A .[3,4]B .[2,3]C .D .x ≥ 1112则 a = ( )1 B .C .1D .242⎧ x + y - 1 ≤ 0 ⎪⎪ ⎩x ≥ 0A 、﹣2B 、﹣1C 、1D 、2⎧ x ≥ 1⎪⎪⎩ y ≤ 2 217.若 x, y 满足约束条件 ⎨ y ≥ 0 ,则目标函数 z = 2 x + 3 y 的最大值为________ . ⎪2x + y ≤ 2 18.若实数 x , y 满足 ⎨ x + y ≥ 0 ,则目标函数 z = x + 2 y 的取值范围是_______. ⎪ x ≤ 0 19.实数 x, y 满足 ⎨ x - y ≥ 1 ,则目标函数 z = x + y - 3 的最小值是______.⎪ x - 2 y ≤ 2 21.已知变量 x, y 满足 ⎨ x + y - 4 ≤ 0 ,则点 (x, y )对应的区域面积是 __________, ⎪ x ≥ 1 ( ya +b =A .1B .2C .7D .8⎧ x + y - 2 2 ≥ 0 ⎪⎪15.已知不等式组 ⎨ x ≤ 2 2 表示平面区域 Ω ,过区域 Ω 中的任意一个点 P ,⎪作圆 x 2 + y 2 = 1的两条切线且切点分别为 A ,B ,当 ∆PAB 的面积最小时,cos ∠APB的值为( )A . 7 1 3B .C .D .8 2 43 2二、填空题16.2011•宝坻区一模)设 x , 满足约束条件 则 z=2x+y 的最大值为 .⎧ x ≥ 0 ⎪⎩⎧ x - y + 1 ≥ 0 ⎪⎩⎧2x + y ≤ 4 ⎪⎩20.在直角坐标系中,△的三个顶点坐标分别为 , , ,动点△是内的点(包括边界).若目标函数的最大值为 2,且此时的最优解所确定的点是线段上的所有点,则目标函数 的最小值为.⎧ x - 4 y + 3 ≤ 0⎪⎩x 2 + y 2 u = 的取值范围为__________.xy22.若实数 x ,y 满足 ⎨x > 0,则 的取值范围是_________ .⎪ y ≤ 224.已知实数 x, y 满足 ⎨ y ≥ x ,则 z =x - y2 的最大值为 .⎪2 x + y - 6 ≥ 0 y 1 ⎪ 26.设 x , y 满足约束条件: ⎨ y ≥x 的可行域为 M ,若存在正实数 a ,使函数 2y = 2a sin( + )cos( + ) 的图象经过区域 M 中的点,则这时 a 的取值范围M (a, b )在由不等式 ⎨ y ≥ 0 确定的平面区域内,则点 N (a - b , a + b )所 ⎪x + y ≤ 2 ⎨ x ≤ 2 ⎪ x + y - 1 ≥ 0 29.设 z = x + y ,其中实数 x, y 满足 ⎨ x - y ≤ 0 ,若 z 的最大值为12 ,则 z 的最小值⎪0 ≤ y ≤ k⎧x - y + 1 ≤ 0 ⎪y x ⎩x + y ≤ 723.已知点 P (x, y ) 满足{ y ≥ x,过点 P 的直线与圆 x 2 + y 2 = 50 相交于 A , B 两 x ≥ 2点,则 AB 的最小值为.⎧ x ≥ 0 ⎪⎩25.设 x , 满足约束条件,向量, ,且,则m 的最小值为_____.⎧ x ≥ 1⎪⎪⎪⎩2 x + y ≤ 10x π x π2 4 2 4是.27.已知点⎧ x ≥ 0 ⎪⎩在的平面区域面积是.⎧ x - 2 y + 1 ≥ 0 ⎪28.已知不等式组⎩ 表示的平面区域为 D ,若函数 y =| x - 1| +m 的图像上存在区域 D 上的点,则实数 m 的取值范围是________.⎧ x + 2 y ≥ 0⎪⎩为.30.已知实数 x , y 满足约束条件 ⎨ y ≤ x,时,所表示的平面区域为 D ,则 ⎪2x + y - 9 ≤ 0⎧x ≥ 0, ⎪⎩z = x + 3 y 的最大值等于,若直线 y = a( x + 1) 与区域 D 有公共点,则 a 的取值范围是.试题分析:画出不等式组 ⎨ y - 1 ≤ 0 表示的可行域如图, z = x - y 即 y= x-Z ⎪ x + 2 y - 2 ≥ 0 参考答案1.A【解析】试题分析:作出 , 满足约束条件下平面区域,如图所示,由图知当目标函数经过点取得最大值 12,即,亦即,所以=,当且仅当,即时等号成立,故选 A .考点:1、简单的线性规划问题;2、基本不等式.【方法点睛】运用线性规划求解最值时,关键是要搞清楚目标函数所表示的直线的斜率与可行域便捷直线的斜率之间的大小关系,以好确定在哪个端点,目标函数取得最大值,在哪个端点,目标函数取得最小值;已知 ﹙ ﹚求的最小值,通常转化为= ( ),展开后利用基本不等式求解.2.C【解析】⎧ x - 2 ≤ 0 ⎪ ⎩即 t 增大,由图象得,当直线 y = - x + 过点 A(0,1) 时, t 取得最大值 2 ,即 z = 3x +2 y 的Z 的几何意义是直线 y= x-Z 在 y 轴上的截距的相反数,画直线 y= x ,平移直线 y= x ,当过点 B (2,0)时 z 有最大值 2.故选:C .考点:简单的线性规划及利用几何意义求最值.【名师点睛】本题考查线性规划解题的基本方法,本题属于基础题,要求依据二元一次不等式组准确画出可行域,利用线性目标函数中直线的纵截距的几何意义,令 z= 0 ,画出直线 y = x ,在可行域内平移该直线,确定何时z 取得最大值,找出此时相应的最优解,依据线性目标函数求出最值,这是最基础的线性规划问题.3.B【解析】试题分析:设 t = x + 2 y ,将 t = x + 2 y 化成 y = - 1 tx + ,作出可行域与目标函数基准线2 21 1 t y = - x (如图所示)当直线 y = - x +2 2 2 t向右上方平移时,直线在 y 轴上的截距 增大,21 t2 2最大值是 32 = 9 ;故选 B .考点:1.简单的线性规划;2.指数运算..( (【易错点睛】本题考查简单的线性规划问题以及指数运算,属于中档题;利用简单的线性规划知识求有关线性目标函数的最值时,一般是先画出可行域,再结合目标函数的几何意义进行求解,容易忽视的是不能准确目标函数直线与可行域边界的倾斜程度(通过比较目标函数直线的斜率和某条边界的斜率的大小),导致寻找最优解出错.4.B【解析】试题分析:由下图可得 在 处取得最大值,由,故选 B.考点:线性规划.【方法点晴】本题考查线性规划问题,灵活性较强,属于较难题型 考生应注总结解决线性规划问题的一般步骤: 1)在直角坐标系中画出对应的平面区域,即可行域; 2)将目标函数变形为;(3)作平行线:将直线 平移,使直线与可行域有交点,且观察在可行域中使 最大(或最小)时所经过的点,求出该点的坐标; 4)求出最优解:将(3)中求出的坐标代入目标函数,从而求出 的最大(小)值.5.C【解析】试题分析:首先根据已知约束条件画出其所表示的平面区域,如下图所示,然后由目标函数z = x + y 的最大值为 14,此时目标函数经过点 A(0, 7 ) ,所以14 = 0 + a 7 1,所以 a = ,故应选 C .a 2试题分析:作出不等式组 ⎨2x + y ≤ 2 表示的平面区域,如图 ∆OAB (内部含边界),再作 ⎪ y ≥ 0 B考点:1、简单的线性规划问题.6.A【解析】试题分析:在坐标系内作出可行域,由图可知当目标函数z = 2 x - y 经过可行域内的点1 1 1 1 1A( , ) 时有最大值 z = 2 ⨯ - = ,故选 A .2 2 2 2 2BAO考点:线性规划.7.D【解析】⎧ x - y ≥ 0 ⎪⎩直线 l : x + y = 0 ,过 A , 作与 l 平行的直线 l , l ,由图可知当直线 x + y = a 夹在直线 l 与 l1 21之间或在直线 l 上方时,题设不等式组表示的区域是三角形,计算得0 < a ≤ 1 或 a ≥ 2选 D .4 3.故考点:二元一次不等式组表示的平面区域.8.B【解析】试题分析:由么时候纵截距所求.得,作出可行域如图,平移直线,看什最大,即最小,所以由图可知,过点C时,所得值即为考点:线性规划问题.9.D【解析】试题分析:作出可行域,如图所示.⎪⎪ ⎧ y = x + 2 z = x - 2 y 取得最小值,由 ⎨ 得: ⎨ ,所以点 A 的坐标为 - , ⎪ ,所 ⎪ y = 3 - 3 = - 试题分析:作出不等式组 ⎨ y ≥ 0所表示的平面区域,如图所示,可知其围成的区域 ⎪ y - x - 4 ≤ 0 ⎧ y - kx = 2 2 4k - 2 1 2作直线 l : x - 2 y = 0 ,再作一组平行于 l 的直线 l : z = x - 2 y ,当直线 l 经过点 A 时,0 0⎧1 x =-2 ⎛ 13 ⎫ ⎩ y = - x + 1⎝ 2 2 ⎭ ⎪⎩ 2以 z 1 7min = - 2 2 ,故选 D .考点:线性规划.10.B【解析】⎧ x ≤ 0 ⎪⎩是等腰直角三角形且面积为 8 .由于直线 y = kx + 2 恒过点 B(0, 2) ,且原点的坐标恒满足y - kx ≤ 2 ,当 k = 0 时,y ≤ 2 ,此时平面区域 Ω 的面积为 6 ,由于 6 < 7 ,由此可得 k < 0 .由⎨可得 D( , ) ,依题意应有 ⨯ 2⨯ | |= 1 ,解得 k = -1 或 k = 3 ⎩ y - x - 4 = 0k - 1 k - 1 2 k - 1 (舍去),故选 B .考点:简单的线性规划问题.11.D【解析】试题分析:由题意得,画出不等式组表示的可行域(如图所示),又范围,其中,当取点大值.,此时可看出可行域内点与点时,目标函数取得最小值;当取点之间的连线的斜率的取值时,目标函数取得最考点:二元一次不等式组表示的平面区域及其应用.【思路点晴】本题主要考查了二元一次不等式组表示的平面区域及其应用求最值,属于基础题,解答的关键是把目标函数化简为,转化为可行域内点和点12.C之间的连线的斜率的取值,其中认真计算是题目的一个易错点.目标函数z=2x+y经过点A ⎛2a+3a⎫,⎝a+1a+1⎭2⨯2a+3+=,解得a=1,故选C.【解析】试题分析:根据题意作出x,y满足约束条件下的平面区域,如图所示,由图知,当a11 a+1a+12⎪11时取得最大值,所以2考点:简单的线性规划问题.13.D【解析】试题分析:根据约束条件可作出可行域如图,作出直线y=-1x,经过平移得当直线过点2A(0,1)时,z取到最大值2.考点:线性规划.14.D【解析】(⎪⎩y≤2212+12=2,OA=1,OA⊥AP,所以∠APO=30︒,∠APB=2∠APO=60︒,试题分析:不等式组表示的平面区域如图所示,由图易得目标函数z=2x+y在A(3,1)处取得最大值7,在B1,-1)处取得最小值1,则a+b=8,故答案为D.考点:线性规划的应用.15.B【解析】⎧x+y-22≥0⎪⎪试题分析:不等式⎨x≤22表示平面区域Ω为下图所示的∆DEF边界及内部的点,⎪由图可知,当点P在线段DE上,且OP⊥DE时,∆P AB的面积最小,这时OP=-22所以cos∠APB=12,故选B.y DB OPAFE x考点:1.线性规划;2.直线与圆的位置关系.【方法点睛】本题主要考查的是线性规划以及直线与圆的位置关系,属中档题.线性规划类问题的解题关键是先正确画出不等式组所表示的平面区域,然后确定目标函数的几何意义,通过数形结合确定目标函数何时取得最值.解题时要看清楚是求“最大值”还是求“最小值”,否则很容易出现错误;画不等式组所表示的平面区域时要通过特殊点验证,防止出现错误.16.2【解析】试题分析:先画出对应的可行域,结合图象求出目标函数取最大值时对应的点,代入即可求出其最值.解:约束条件对应的可行域如图:由图得,当z=2x+y位于点B(1,0)时,z=2x+y取最大值,此时:Z=2×1+0=2.故答案为:2.(考点:简单线性规划.17.6【解析】试题分析:如图画出可行域,目标函数 z = 2 x + 3 y 平移到 (0, 2)处有最大值 0 + 3⨯ 2 = 6 .考点:1、可行域的画法;2、最优解的求法.【方法点晴】本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”: 1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最有解);(3)将最优解坐标代入目标函数求出最值.18. [0,2]【解析】试题分析:线性约束条件对应的可行域为直线 x - y + 1 = 0, x + y = 0, x = 0 围成的三角形及其内部,顶点为 (0,0 ), (0,1), - 1 , 1 ⎫,当 z = x + 2 y 过点 (0,0 )时取得最小值 0,过点 (0,1)(0, -1), (2,0 ), ⎛ 5 , 2 ⎫⎪ ,当 z = x + y - 3 过点 (0, -1) 时取得最小值 -4⎢⎣2, 3 ⎥⎦⎝ 2 2 ⎭时取得最大值 2,所以其范围是[0,2]考点:19. -4【解析】试题分析:线性约束条件对应的可行域为直线2 x + y = 4, x - y = 1, x - 2 y = 2,顶点为⎝ 3 3 ⎭考点:线性规划问题20.【解析】试题分析:先根据约束条件画出可行域,设 z=ax+by ,将最大值转化为 y 轴上的截距,当直线 ax+by=z 与可行域内的边 BC 平行时,z=ax+by 取最大值时的最优解有无数个,将 等价为斜率, 数形结合,得,且 a×1+b×0=2,∴a=2,b=1,z=2x+y当直线 z=2x+y 过点 B 时,z 取最小值,最小值为-2考点:简单线性规划的应用21.8⎡ 10 ⎤ 5【解析】A B x y y x x 13 x t 13试题分析:不等式组表示的可行域是如图所示的三角形 ABC 边界及其内部,(1,3),(1,1),C (13 7 5, 5 1 13 8 y ) 故所求面积为 ⨯ (3 - 1)⨯ ( - 1) = , u = + ,其中 表示可行域上任2 5 5 x一点与原点连线的斜率, 函数性质得 u ∈ [2, 10]3y 7 y 1 7∈ [k , k ] = [ ,3] , t = , u = t + , t ∈ [ ,3] 故根据对勾 OC O A考点:线性规划,对勾函数.22. [2, +∞)【解析】试题分析:作出实数 x ,y 满足的平面区域,如图所示,由图知,斜率 y的取值范围是[2, +∞) .x考点:简单的线性规划问题.【方法点睛】运用线性规划求解最值时,关键是要搞清楚目标函数所表示的直线的斜率与可行域便捷直线的斜率之间的大小关系,以便确定在哪个端点处,目标函数取得最大值;在哪个端点处,目标函数取得最小值.23. 2 21【解析】试题分析:作出约束条件 ⎨ y ≥ x表示的可行域如图阴影部分(含边界), ⎪2 x + y - 6 ≥ 0 联立 ⎨,解得 A (2,2), 2 x + y - 6 = 0-x + y ≤ 7试题分析:不等式组{ y ≥ x 所表示的平面区域为如下图所示的 ∆DEF ,且 ∆DEF 在圆x ≥ 2x 2 + y 2 = 50 的内部,在 ∆DEF 区域内,其中点 D 到圆心 O 的距离最远,所以过点 D 且垂直于 OD 的弦 AB 最短,考点:1.线性规划;2.直线和圆的位置关系.【名师点睛】本题主要考查的是线性规划,属于容易题.线性规划类问题的解题关键是先正确画出不等式组所表示的平面区域,然后确定目标函数的几何意义,通过数形结合确定目标函数何时取得最值.解题时要看清楚是求“最大值”还是求“最小值”,否则很容易出现错误.24.-2【解析】⎧ x ≥ 0 ⎪⎩⎧ y = x⎩ 化目标函数 z = x - 2 y 为 y = x z,2 2由图可知,当直线y=x z-过A时,直线在y轴上的截距最小,z有最大值为2﹣2×2=﹣222.考点:简单的线性规划问题.25.-6【解析】试题分析:先根据平面向量共线(平行)的坐标表示,得m=2x-y,根据约束条件画出可行域,再利用m的几何意义求最值,只需求出直线m=2x-y过可行域内的点A时,从而得到m值即可.由向量向量,,且,得,根据约束条件画出可行域,设,将m最小值转化为y轴上的截距,当直线经过点(,)时,m最小,最小值是:2×1-8=-6.故答案为:-6.考点:平面向量共线的坐标表示;简单的线性规划26.[1,+∞).2cos1【解析】试题分析:如下图所示,画出不等式组所表示的区域,即可行域,而xπxπy=2a sin(+)cos(+)=2424π1a sin(x+)=a cos x,故可知问题等价于点(1,)不在函数y=a cos x的上方,即22111a cos1≥⇒a≥,+∞).22cos12cos1,∴正实数a的取值范围是[试题分析: M (a, b )在由不等式 ⎨ y ≥ 0 确定的平面区域内, ⎪x + y ≤ 2 ⎧a ≥ 0 ⎪⎪ 2 ∴ ⎨b ≥ 0 ,设 x = a - b , y = a + b ,则 ⎨ ⎪a + b ≤ 2 ⎪b = y - x ⎪⎩ 2 ⎩ ≥ 0 ,即 ⎨ y - x ≥ 0 ⎪ y ≤ 2 作出不等式组对应的平面区域如图:则对应区域为等腰直角三角形 AOB ,则 ⎨,y = 2 同理 B (- 2,2),则 ∆AOB 的面积为 S = ⨯ 4 ⨯ 2 = 4 .⎧考点:1.三角函数的图象和性质;2.线性规划的运用.27.4【解析】⎧ x ≥ 0 ⎪ ⎩⎪ ⎩⎧ y - x = 0⎩ 得 ⎨ x = 2 ⎩ y = 21 2考点:简单的线性规划.28.[-2,1].【解析】试题分析:如下图所示,画出不等式组所表示的平面区域,考虑极端情况,函数图象经过点(2,-1),此时m=-2,函数图象经过点(1,1),此时m=1,∴实数m的取值范围是[-2,1].考点:线性规划的运用.29.-6【解析】试题分析:可行域如图:⎧ ∴由 ⎨ x - y ≤ 0 得 A (k, k ) ,目标函数 z = x + y 在 x = k. y = k 时取最大值,即直线 z = x + y ⎩ y = k在 y 轴上的截距 z 最大,此时,12 = k + k , k= 6 ∴得 B (-12,6 ),目标函数 z = x + y 在x = -12, k = 6 时取最小值,此时, z 的最小值为 z = -12 + 6 = -6考点:简单的线性规划3 30.12 , (-∞, ] . 4【解析】试题分析:如下图所示,画出不等式组所表示的可行域,作直线 l : x + 3 y = 0 ,平移 l ,即可知,当 x = y = 3 时,z 3 的取值范围是 (-∞, ] . 4 max = 3 + 9 = 12 ,直线 y = a( x + 1) 恒过点 (-1,0) ,∴可知实数 a考点:线性规划的运用.。

(完整版)线性规划高考题及答案

(完整版)线性规划高考题及答案

一、已知线性约束条件,探求线性目标关系最值问题例1、设变量x 、y 满足约束条件⎪⎩⎪⎨⎧≥+-≥-≤-1122y x y x y x ,则y x z 32+=的最大值为 。

二、已知线性约束条件,探求非线性目标关系最值问题例2、已知1,10,220x x y x y ≥⎧⎪-+≤⎨⎪--≤⎩则22x y +的最小值是 .三、约束条件设计参数形式,考查目标函数最值范围问题。

例3、在约束条件024x y y x s y x ≥⎧⎪≥⎪⎨+≤⎪⎪+≤⎩下,当35s ≤≤时,目标函数32z x y =+的最大值的变化范围是()A.[6,15]B. [7,15]C. [6,8]D. [7,8]四、已知平面区域,逆向考查约束条件。

例4、已知双曲线224x y -=的两条渐近线与直线3x =围成一个三角形区域,表示该区域的不等式组是()(A)0003x y x y x -≥⎧⎪+≥⎨⎪≤≤⎩ (B)0003x y x y x -≥⎧⎪+≤⎨⎪≤≤⎩ (C)003x y x y x -≤⎧⎪+≤⎨⎪≤≤⎩ (D) 0003x y x y x -≤⎧⎪+≥⎨⎪≤≤⎩五、已知最优解成立条件,探求目标函数参数范围问题。

例5已知变量x ,y 满足约束条件1422x y x y ≤+≤⎧⎨-≤-≤⎩。

若目标函数z ax y =+(其中0a >)仅在点(3,1)处取得最大值,则a 的取值范围为 。

六、设计线性规划,探求平面区域的面积问题例6在平面直角坐标系中,不等式组20200x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩表示的平面区域的面积是()(A)(B)4 (C) (D)2七、研究线性规划中的整点最优解问题例7、某公司招收男职员x 名,女职员y 名,x 和y 须满足约束条件⎪⎩⎪⎨⎧≤≥+-≥-.112,932,22115x y x y x 则1010z x y =+的最大值是(A)80(B) 85 (C) 90 (D)95• • • • • •C• 八、设不等式组所表示的平面区域为,记内的格点(格点即横坐标和纵坐标均为整数的点)个数为(1)求的值及的表达式;(2)记,试比较的大小;若对于一切的正整数,总有成立,求实数的取值范围;(3)设为数列的前项的和,其中,问是否存在正整数,使成立?若存在,求出正整数;若不存在,说明理由。

高中数学线性规划各类习题精选100题

高中数学线性规划各类习题精选100题

高中数学线性规划各类习题精选7学校:___________姓名:___________班级:___________考号:___________一、单选题1.设x y ,满足约束条件04312x y x x y ≥⎧⎪≥⎨⎪+≤⎩,则2x y -的最小值是( )A .-4B .127C .0D .6 2.定义,m a x {,},a a ba b b a b≥⎧=⎨<⎩,设实数x ,y 满足约束条件22x y ⎧≤⎪⎨≤⎪⎩,则m a x {4,3z x y x y=+-的取值范围是( ) A .[7,10]- B .[8,10]- C .[6,8]- D .[7,8]-3.若x y ,满足约束条件221{21x y x y x y +≥≥-≤且向量()3,2a =, ()b x y =,,则•a b 的取值范围是( )A .5,44⎡⎤⎢⎥⎣⎦B .7,52⎡⎤⎢⎥⎣⎦C .7,42⎡⎤⎢⎥⎣⎦D .5,54⎡⎤⎢⎥⎣⎦4.实数x ,y 满足2x a y x x y ≥⎧⎪≥⎨⎪+≤⎩(1a <),且2z x y =+的最大值是最小值的4倍,则a的值是( ) A .211 B .14 C .12 D .1125.已知变量x ,y 满足约束条件,则 的最大值为( )A .B .C .1D .26.设,x y 满足约束条件220840x y x y x y -+≥⎧⎪--≤⎪⎨≥⎪⎪≥⎩,若目标函数11(0,0)z x y a b a b =+>>的最大值为2,则a b +的最小值为( )A .92B .14C .29D .47.设y x ,满足不等式组⎪⎩⎪⎨⎧≥--≤--≤-+02301206y x y x y x ,若y ax z +=的最大值为42+a ,最小值为1+a ,则实数a 的取值范围为( )A .]2,1[-B .]1,2[-C .]2,3[--D .]1,3[-8.已知x ,y 满足,则使目标函数z=y ﹣x 取得最小值﹣4的最优解为( )A .(2,﹣2)B .(﹣4,0)C .(4,0)D .(7,3)9.已知变量y x ,满足以下条件:,,11y xx y R x y y ≤⎧⎪∈+≤⎨⎪≥-⎩,z ax y =+,若z 的最大值为3,则实数a 的值为( )A .2或5B .-4或2C .2D .5 10.不等式表示的平面区域(用阴影表示)是( )A .B .C .D .11.已知 是不等式组的表示的平面区域内的一点, ,为坐标原点,则的最大值( )A .2B .3C .5D .612.已知实数x ,y 满足条件若目标函数的最小值为5,其最大值为( )A .10B .12C .14D .1513.已知(),P x y 为区域22400y x x a -≤⎧≤≤⎨⎩内的任意一点,当该区域的面积为2时,2z x y=+的最大值是( )A .5B .0C .2D .14.若A 为不等式组表示的平面区域,则当从连续变化到时,动直线扫过A 中的那部分区域的面积为( )A .34 B .1 C .74D .2 15.过平面区域内一点 作圆 的两条切线,切点分别为,记 ,则当 最小时 的值为( ) A .B .C .D .16.若变量满足约束条件且的最大值为,最小值为,则的值是( ) (A )(B )(C )(D )17.设变量x ,y 满足约束条件则目标函数z =3x -y 的最大值为( )A .-4B .0C .D .418.已知实数m , n 满足不等式组,则关于x 的方程()23260x m n x mn -++=的两根之和的最大值和最小值分别是( )A .7, 4-B .8, 8-C .4, 7-D .6, 6-19.实数x ,y 满足不等式组则的取值范围是( )A .B .C .D .20.已知变量满足: 的最大值为( )A .B .C .2D .421.若y x ,满足⎪⎩⎪⎨⎧≥≤+≤-010x y x y x 则y x z 2+=的最大值为( )A .0B .1C .23D .2 22.若实数,x y 满足不等式组⎪⎩⎪⎨⎧≥+-≤--≥-+,01,032,033my x y x y x 且x y +的最大值为9,则实数m =( )A .1B .-1C .2D .-2 23.若两个正数b a ,满足24a b +<,则222-+=a b z 的取值范围是( )A .{}|11z z -≤≤B .{}|11z z -≥≥或z C .{}|11z z -<< D .{}|11z z ->>或z24.(题文)已知实数满足,若目标函数的最大值为,最小值为,则实数的取值范围是( )A .B .C .D .25.如果实数x ,y 满足约束条件⎪⎩⎪⎨⎧≤++≥+≥+-010101y x y y x ,则y x -2的最大值为( )A .1B .2C .2-D .3-26.如果实数,满足约束条件,则的最大值为( )A .B .C .D .27.设 , 满足约束条件 ,若目标函数( )的最大值为 ,则的图象向右平移后的表达式为( )A .B .C .D .28.在平面直角坐标系中,不等式组20200x y x y y +-≤⎧⎪-+≥⎨⎪≥⎩,表示的平面区域的面积是( )A..4 C..229.已知正数,x y 满足20350x y x y -≤⎧⎨-+≥⎩,则2z x y =--的最小值为( )A .2B .0C .-2D .-430.已知实数x 、y 满足,如果目标函数的最小值为-1,则实数m =( ). A .6B .5C .4D .331.设,x y 满足约束条件()0,230,,,230.x x y a y m x x y ≥⎧⎪+-≥=+⎨⎪+-≤⎩()1,2b =,且a ∥b ,则m 的最小值为( ) A 、1 B 、2 C 、12 D 、1332.已知实数,x y 满足约束条件00220y x y x y ≥⎧⎪-≥⎨⎪--≥⎩,则11y z x -=+的取值范围是( )A .11,3⎡⎤-⎢⎥⎣⎦B .11,23⎡⎤-⎢⎥⎣⎦C .1,2⎡⎫-+∞⎪⎢⎣⎭D .1,12⎡⎫-⎪⎢⎣⎭33.设变量,x y 满足约束条件211y x x y y ≤⎧⎪+≤⎨⎪≥-⎩,则2x y +的最大值为( )A .95 B .25- C .0 D .5334.若实数x ,y 满足不等式024010x y x y x y +≥⎧⎪+-≤⎨⎪--≤⎩,且x y +的最大值为( )A .1B .2C .3D .435.已知实数满足:,,则的取值范围是A .B .C .D .36.若实数x ,y 满足不等式024010x y x y x my +≥⎧⎪+-≤⎨⎪--≤⎩,且x y +的最大值为3,则实数m =( )A .-1B .12C .1D .2 37.若点),(y x P 满足线性约束条件⎪⎩⎪⎨⎧≥≥+-≤-002303y y x y x ,点)3,3(A ,O 为坐标原点,则⋅的最大值为( )A .0B .3C .-6D .638.设变量,x y 满足约束条件⎪⎩⎪⎨⎧≤--≥-≥+3213y x y x y x ,则目标函数23z x y =+的最小值为( )A .6B .7C .8D .9 39.如果直线12:220,:840l x y l x y -+=--=与x 轴正半轴,y 轴正半轴围成的四边形封闭区域(含边界)中的点,使函数()0,0z abx y a b =+>>的最大值为8, 求a b +的最小值( )A 、4B 、3C 、2D 、040.设变量,x y 满足约束条件:3123x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,则目标函数1ax y z x ++=的取值范围是[3,5],则a =( )A .4B .3C .2D .141.已知不等式组210210x y x x y -+≥⎧⎪≤⎨⎪+-≥⎩表示的平面区域为D ,若函数|1|y x m =-+的图象上存在区域D 上的点,则实数m 的取值范围是( ) A .1[0,]2 B .1[2,]2- C .3[1,]2- D .[2,1]- 42.已知点集}0222|),{(22≤---+=y x y x y x M ,}022|),{(22≥+--=y x y x y x N ,则N M 所构成平面区域的面积为( )A .πB .π2C .π3D .π443.若实数x ,y 满足不等式组024010x y x y x my +≥⎧⎪+-≤⎨⎪--≤⎩,且x+y 的最大值为3,则实数m=( )A .-1B .12C .1D .2 44.若实数x ,y 满足不等式组,且x+y 的最大值为( )A .1B .2C .3D .445.设x ,y 满足约束条件⎪⎩⎪⎨⎧≥≥≥+-≤--0,002063y x y x y x ,若目标函数)0,0(>>+=b a by ax z 的值是最大值为12,则ba 32+的最小值为( ) A .38 B .625 C .311 D .446.设O 是坐标原点,点A (-1,1),若点M (,x y )为平面区域⎪⎩⎪⎨⎧≤≤≥+212y x y x 上的一个动点,则OA OM ⋅的取值范围为 ( )A .[]0,1-B .[]1,0C .[]2,0D .[]2,1-47.已知变量y x ,满足约束条件⎪⎩⎪⎨⎧≤-≥+≤112y x y x y ,则y x z +=3的最大值为( )A .12B .11C .3D .-1 48.在直角坐标系内,满足不等式的点的集合(用阴影表示)正确的是( )A .B .C .D .49.设x ,y 满足10x y y x y +≤⎧⎪≤⎨⎪≥⎩,则4z x y =+的最大值是( )A .3B .4C .5D .650. 若,x y 满足约束条件5315153x y y x x y +⎧⎪+⎨⎪-⎩≤≤≤,则35x y +的取值范围是( )A .[13,15]-B .[13,17]-C .[11,15]-D .[11,17]-51.设的最大值为( )A .80B .C .25D .52.已知0a >,不等式组00(2)x y y a x ≥⎧⎪≤⎨⎪≥-⎩表示的平面区域的面积为1,则a 的值为( )A .14 B .12C .1D .2 53.不等式2350x y --≥表示的平面区域是( )A .B .C .D .54.设x ,y 满足约束条件 ,若目标函数(0,0)z ax by a b =+>>的最大值为12,则的最小值为 ( ). A .4 B . C . D .55.已知实数,x y 满足1000x y x y x +-≤⎧⎪-≤⎨⎪≥⎩,则2x y -的最大值为(A )12-(B )0 (C )1 (D )1256.若实数y x ,满足不等式组⎪⎩⎪⎨⎧≥-+≤-≤-020102y x y x ,则目标函数y x t 2-=的最大值为( )A . 1-B .0C .1D .257.若实数x ,y 满足4024020+-⎧⎪--⎨⎪-+⎩x y x y x y ………,则目标函数23=+z x y 的最大值为( )A .11B .24C .36D .49⎪⎩⎪⎨⎧≥≥≥+-≤--0,002063y x y x y x 23a b +3831162558.已知 , 满足约束条件则目标函数 的最大值为( )A .1B .3C .D .59.已知实数,x y 满足不等式组2010220x y x y -≤⎧⎪-≤⎨⎪+-≥⎩,,,则z x y =+的取值范围为( )A .[]1,2-B .[]13,C .[]1,3-D .[]2,460.设变量x ,y 满足约束条件00220x x y x y ≥⎧⎪-≥⎨⎪--≤⎩则z =3x -2y 的最大值为A .4B .2C .0D .661.已知实数x 、y 满足约束条件1,1,2 2.x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩则目标函数25y z x +-=的最大值为A .3B .4C .3-D .-1262.不在不等式623<+y x 所表示的平面区域内的点是( ) A .)0,0( B .)1,1( C .)2,0( D .)0,2(二、填空题63.设不等式组2000x y x y +-≤⎧⎪≥⎨⎪≥⎩表示的平面区域为D ,在区域D 内随机取一点P ,则点P 落在圆221x y +=内的概率为 .64.已知,x y 满足14210x x y x y ≥⎧⎪+≤⎨⎪--≤⎩,则2z x y =+的最大值为 .65.已知方程220x ax b ++=(,)a R b R ∈∈,其一根在区间(0,1)内,另一根在区间(1,2)内,则31b a --的取值范围为 . 66.设x ,y 满足, ,若 ,则m 的最大值为 .67.设x ,y 满足约束条件则z =x +4y 的最大值为________.68.直线01-22=-+a y ax 与不等式组2040220x y x y x y -+-≤⎧⎪+-≤⎨⎪-+≤⎩表示的区域没有..公共点,则a 的取值范围是 .69.已知变量x ,y 满足⎪⎩⎪⎨⎧≥≤-+≤+-104034x y x y x , xy y x 22+的取值范围为 .70.设变量x ,y 满足则x +2y的最大值为 71.已知变量x 、y 满足约束条件 则的取值范围是 .72.已知实数对(x ,y )满足210x y x y ≤⎧⎪≥⎨⎪-≥⎩,则2x y +的最小值是 .73.设变量y x ,满足约束条件⎪⎩⎪⎨⎧≤≥+≤-,2,2,1y y x y x 则目标函数22y x z +=的取值范围是 .74.已知实数y x ,则 22222)(y x y y x +++的取值范围为 . 75.若实数满足则的取值范围是 .76.已知0m >,实数,x y 满足⎪⎩⎪⎨⎧≤+≥≥,,0,0m y x y x 若2z x y =+的最大值为2,则实数m =______.77.设2z x y =-+,实数,x y 满足2,{1, 2.x x y x y k ≤-≥-+≥若z 的最大值是0,则实数k =_______, z 的最小值是_______.78.给出平面区域如图所示,其中若使目标函数仅在点处取得最大值,则的取值范围是________.79.设实数x ,y 满足约束条件202x y y x -≥⎧⎪⎨≥-⎪⎩,则2z x y =+的最大值为 . 80.设,x y 满足约束条件1{10 1x y x x y +≤+≥-≤,则目标函数2y z x =-的取值范围为___________. 81.设实数,x y 满足,102,1,x y y x x ≤⎧⎪≤-⎨⎪≥⎩向量2,x y m =-()a ,1,1=-()b .若// a b ,则实数m 的最大值为 .82.已知实数x ,y 满足220,220,130,x y x y x y --≥⎧⎪-+≤⎨⎪+-≤⎩则z xy =的最大值为 .83.已知变量,x y 满足240{2 20x y x x y -+≥≤+-≥,则32x y x +++的取值范围是 . 84.设x ,y 满足约束条件1210,0≤+⎧⎪≥-⎨⎪≥≥⎩y x y x x y ,若目标函数()0,0z abx y a b =+>>的最大值为35, 则a b +的最小值为 .85.若x y ,满足约束条件1020,220,x y x y x y -+≥⎧⎪-≤⎨⎪+-≤⎩,,则2z x y =+的最大值为____________.86.若,x y 满足约束条件:1020,220,x y x y x y -+≥⎧⎪-≤⎨⎪+-≤⎩,,则3x y +的最大值为___ ____.87.已知x 、y 满足,则 的最大值是___________ .88.已知变量,x y 满足约束条件13,1,x y y x y +≥⎧⎪≤⎨⎪-≤⎩,若z kx y =+的最大值为5,且k 为负整数,则k =____________.89.已知不等式表示的平面区域为 ,若直线 与平面区域 有公共点,则 的范围是_________90.已知实数y x ,满足⎪⎩⎪⎨⎧≤≥+≥+-1002x y x y x 则y x z +=2的最小值为__________.91.若点(2,1)和(4,3)在直线230x y a -+= 的两侧,则a 的取值范围是____________.92.设变量x ,y 满足约束条件3{ 1 1x y x y y +≤-≥-≥,则2z x y =-的最小值为93.设变量y x ,满足约束条件22024010x y x y x +-≥⎧⎪-+≥⎨⎪-≤⎩,则y x z 23+-=的最大值为 .94.已知实数 满足,则的取值范围是__________.95.已知变量x ,y 满足约束条件22,24,41,x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩则目标函数33z x y =-+的最大值是 .96.已知实数x ,y 满足约束条件则 的最大值等于______.97.设1,m >在约束条件1y x y mx x y ≥⎧⎪≤⎨⎪+≤⎩下,目标函数5z x y =+的最大值为4,则m 的值为 ,目标函数y x z -=2的最小值为________.三、解答题98.画出不等式组⎪⎩⎪⎨⎧≤≥+≥+-3005x y x y x 表示的平面区域99.(本小题12分)已知⎪⎩⎪⎨⎧≤--≥-+≥+-0520402y x y x y x , 求(Ⅰ)12++=x y z 的取值范围; (Ⅱ)251022+-+=y y x z 的最小值.100.(本小题12分)已知y x ,满足不等式组⎪⎩⎪⎨⎧≤--≥-+≥+-0520402y x y x y x ,求(1)y x z 2+=的最大值;(2)251022+-+=y y x z 的最小值.参考答案1.A【解析】试题分析:作出x y ,满足约束条件下的平面区域,如图所示,由图当目标函数2z x y =-经过点(0,4)A 时取得最小值,且min 044z =-=-,故选A .考点:简单的线性规划问题.2.A .【解析】试题分析:若4320x y x y x y +≥-⇒+≥:4z x y =+,如下图所示,画出不等式组所表示的可行域,∴当2x y ==时,m a x 10z =,当2x =-,1y =时,m i n 7z =-;若432x y x y x y+<-⇒+<: 3z x y =-,画出不等式所表示的可行域,∴当2x =,2y =-时,max 8z =,当2x =-,1y =时,min 7z =-,综上,z 的取值范围是[7,10]-,故选A .考点:线性规划的运用.3.D【解析】试题分析:∵向量()3,2a =, ()b x y =,,∴·32a b x y =+,设z=3x+2y , 作出不等式组对于的平面区域如图:由z=3x+2y ,则322z y x =-+,平移直线322z y x =-+,由图象可知当直线322z y x =-+, 经过点B 时,直线322z y x =-+的截距最大,此时z 最大,由{ 21x yx y =-=,解得1{ 1x y ==,即B (1,1),此时zmax=3×1+2×1=5, 经过点A 时,直线322z y x =-+的截距最小,此时z 最小, 由{ 221x y x y =+=,解得14{ 14x y ==,即A 11,44⎛⎫ ⎪⎝⎭,此时zmin=3×14+2×14=54,则54≤z≤5 考点:简单线性规划4.B【解析】试题分析:在直角坐标系中作出可行域如下图所示,当目标函数y x z +=2经过可行域中的点)1,1(B 时有最大值3,当目标函数y x z +=2经过可行域中的点),(a a A 时有最小值a 3,由a 343⨯=得41=a ,故选B .考点:线性规划.5.C【解析】试题分析:画出可行域如下图所示,由图可知,目标函数在点 取得最大值为 .考点:线性规划.6.A【解析】试题分析:作出可行域如图, ()2201,4840x y A x y -+=⎧⇒⎨--=⎩,当目标函数11(0,0)z x y a b a b=+>>过点()1,4A 时纵截距最大,此时z 最大.即()142,0,0a b a b+=>>.()1141419552222a b a b a b a b b a ⎛⎫⎛⎫⎛⎫∴+=++=++≥= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当且仅当4b a a b =,即322a b ==时取''''=.故选A . 考点:1线性规划;2基本不等式.7.B【解析】试题分析:由z ax y =+得,y ax z =-+,直线y ax z =-+是斜率为,a y -轴上的截距为z 的直线,作出不等式组对应的平面区域如图:则()()1,1,2,4,A B z ax y =+的最大值为24a +,最小值为1a +∴直线z ax y =+过点B 时,取得最大值为24a +,经过点A 时取得最小值为1a +,若0a =,则y z =此时满足条件,若0a >则目标函数斜率0k a =-<,要使目标函数在A 处取得最小值,在B 处取得最大值,则目标函数的斜率满足1BC a k -≥=-,即01a <≤,若0a <,则目标函数斜率0k a =->要使目标函数在A 处取得最小值,在B 处取得最大值,则目标函数的斜率满足2AC a k -≤=,即20a -≤<,综上21a -≤≤;故选B .考点:简单的线性规划8.C【解析】试题分析:由题意作出其平面区域将z=y-x 化为y=x+z ,z 相当于直线y=x+z 的纵截距,则由平面区域可知,使目标函数z=y-x 取得最小值-4的最优解为(4,0);考点:简单线性规划问题9.B【解析】试题解析:当直线y ax z +=平移到点()1,1--B 时有最大值,此时应满足431-=⇒=--a a ;当直线y ax z +=平移到点()1,2-B 时有最大值,此时应满足2312=⇒=-a a .考点:线性规划的应用.10.B【解析】试题分析:可用特殊值法.代入点可知满足不等式,故点所在区域即为所求.考点:二元一次不等式表示平面区域.11.D【解析】试题分析:由题意可知,,令目标函数 ,作出不等式组表示的平面区域,如图所示,由图知,当目标函数 经过点 时取得最大值,最大值为 ,故选D .考点:简单的线性规划问题.12.A【解析】试题分析:依题意知,不等式表示的平面区域如图所示的三角型ABC 及其内部且A (2,2)、C (2,4-c ).目标函数可看作是直线在y 轴上的截距,显然当直线过点C 时,截距最小及z 最小,所以解得,此时B (3,1),且直线过点B 时截距最大,即z 最大,最大值为.故选A .考点:线性规划求最值.【方法点睛】线性规划求最值和值域问题的步骤:(1)先作出不等式组表示的平面区域;(2)将线性目标函数看作是动直线在y 轴上的截距;(3)结合图形看出截距的可能范围即目标函数z 的值域;(4)总结结果.另外,常考非线性目标函数的最值和值域问题,仍然是考查几何意义,利用数形结合求解.例如目标函数为可看作是可行域内的点(x ,y )与点(0,0)两点间的距离的平方;可看作是可行域内的点(x ,y )与原点(0,0)连线的斜率等等. 13.A 【解析】试题分析:由约束条件作出可行域,求出使可行域面积为2的a 值,化目标函数为直线方程的斜截式,数形结合可得最优解,求出最优解的坐标,代入目标函数得答案.2240{0y x x a-≤≤≤作出可行域如图, 由图可得22A a a B a a -(,),(,),1421122OAB S a a a B ∆=⨯⨯=∴=∴,,(,),目标函数可化为122z y x =-+,∴当122zy x =-+,过A 点时,z 最大,z=1+2×2=5,故选A .考点:简单的线性规划14.C【解析】试题分析:如图,不等式组表示的平面区域是△AOB,动直线x+y=a(即y=-x+a)在y轴上的截距从-2变化到1.知△ADC是斜边为3的等腰直角三角形,△EOC是直角边为1等腰直角三角形,所以区域的面积13173112224 ADC EOCS S S∆∆=-=⨯⨯-⨯⨯=考点:二元一次不等式(组)与平面区域视频15.C【解析】试题分析:因为,所以在中,,因为,而函数在上是减函数,所以当最小时最大,因为为增函数则此时最大。

高中线性规划试题及答案

高中线性规划试题及答案

高中线性规划试题及答案一、选择题1. 线性规划问题中,目标函数的最优解一定在可行域的()。

A. 边界上B. 内部C. 边界上或内部D. 边界上和内部答案:A2. 线性规划问题中,如果一个线性规划问题有最优解,则其最优解一定在()。

A. 可行域的边界上B. 可行域的内部C. 可行域的边界上或内部D. 可行域的边界上和内部答案:A3. 线性规划问题中,如果一个线性规划问题有多个最优解,则其最优解一定在()。

A. 可行域的边界上B. 可行域的内部C. 可行域的边界上或内部D. 可行域的边界上和内部答案:A4. 线性规划问题中,如果一个线性规划问题无最优解,则其可行域一定()。

A. 是空集B. 不是空集C. 是空集或不是空集D. 不能确定答案:A5. 线性规划问题中,如果一个线性规划问题有无穷多个解,则其可行域一定()。

A. 是空集B. 不是空集C. 是空集或不是空集D. 不能确定答案:B二、填空题1. 线性规划问题中,目标函数的最优解一定在可行域的____上。

答案:边界2. 线性规划问题中,如果一个线性规划问题有最优解,则其最优解一定在可行域的____上。

答案:边界3. 线性规划问题中,如果一个线性规划问题有多个最优解,则其最优解一定在可行域的____上。

答案:边界4. 线性规划问题中,如果一个线性规划问题无最优解,则其可行域一定____。

答案:是空集5. 线性规划问题中,如果一个线性规划问题有无穷多个解,则其可行域一定____。

答案:不是空集三、解答题1. 某工厂生产两种产品A和B,生产1单位产品A需要3小时的机器时间和2小时的人工时间,生产1单位产品B需要2小时的机器时间和3小时的人工时间。

工厂每天有18小时的机器时间和24小时的人工时间。

每单位产品A的利润是100元,每单位产品B的利润是120元。

如何安排生产计划以最大化利润?答案:设生产产品A的数量为x,生产产品B的数量为y。

则有以下线性规划问题:目标函数:最大化 Z = 100x + 120y约束条件:3x + 2y ≤ 18 (机器时间)2x + 3y ≤ 24 (人工时间)x ≥ 0y ≥ 0通过求解该线性规划问题,可以得到最优解为x=6,y=4,此时最大利润为Z=100*6+120*4=1200元。

高中数学线性规划各类习题精选

高中数学线性规划各类习题精选

线性规划基础知识:一、知识梳理1. 目标函数: P =2x+y是一个含有两个变 量 x 和y 的 函数,称为目标函数.2.可行域:约束条件所表示的平面区域称为可行域.3. 整点:坐标为整数的点叫做整点.4.线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值的问题,通常称为线性规划问题.只含有两个变量的简单线性规划问题可用图解法来解决.5. 整数线性规划:要求量取整数的线性规划称为整数线性规划. 二:积储知识:一. 1.点P(x 0,y 0)在直线Ax+By+C=0上,则点P 坐标适合方程,即Ax 0+By 0+C=02. 点P(x 0,y 0)在直线Ax+By+C=0上方(左上或右上),则当B>0时,Ax 0+By 0+C>0;当B<0时,Ax 0+By 0+C<03. 点P(x 0,y 0)在直线Ax+By+C=0下方(左下或右下),当B>0时,Ax 0+By 0+C<0;当B<0时,Ax 0+By 0+C>0 注意:(1)在直线Ax+By+C=0同一侧的所有点,把它的坐标(x,y)代入Ax+By+C,所得实数的符号都相同,(2)在直线Ax+By+C=0的两侧的两点,把它的坐标代入Ax+By+C,所得到实数的符号相反, 即:1.点P(x 1,y 1)和点Q(x 2,y 2)在直线 Ax+By+C=0的同侧,则有(Ax 1+By 1+C )( Ax 2+By 2+C)>02.点P(x 1,y 1)和点Q(x 2,y 2)在直线 Ax+By+C=0的两侧,则有(Ax 1+By 1+C )( Ax 2+By 2+C)<0 二.二元一次不等式表示平面区域: ①二元一次不等式Ax+By+C>0(或<0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域. 不.包括边界;②二元一次不等式Ax+By+C ≥0(或≤0)在平面直角坐标系中表示直线Ax+By+C=0某一侧所有点组成的平面区域且包括边界;注意:作图时,不包括边界画成虚线;包括边界画成实线. 三、判断二元一次不等式表示哪一侧平面区域的方法:取特殊点检验; “直线定界、特殊点定域原因:由于对在直线Ax+By+C=0的同一侧的所有点(x,y),把它的坐标(x,y)代入Ax+By+C,所得到的实数的符号都相同,所以只需在此直线的某一侧取一个特殊点(x 0,y 0),从Ax 0+By 0+C 的正负即可判断Ax+By+C>0表示直线哪一侧的平面区域.特殊地,当C ≠0时,常把原点作为特殊点,当C=0时,可用(0,1)或(1,0)当特殊点,若点坐标代入适合不等式则此点所在的区域为需画的区域,否则是另一侧区域为需画区域。

高中数学线性规划练习题

高中数学线性规划练习题

高中数学线性规划练习题一、选择题 1.不在x+y A. A.m<-7或m>24 B. B.-7<m<24C. C.m=-7或m=24D.D.-7≤m≤42.已知点和点在直线x–2y + m = 0 的两侧,则3.若?x?2,则目标函数 z = x + y 的取值范围是y?2,x?y?2??A.[,6]B. [2,5]C. [3,6]D. [3,5] D.矩形D.3,-14.不等式???0表示的平面区域是一个0?x?3?B.直角三角形C.梯形A.三角形5.在△ABC中,三顶点坐标为A,B,C,点P在△ABC 内部及边界运动,则 z= x – y 的最大值和最小值分别是A.3,1B.-1,-32C.1,-36.在直角坐标系中,满足不等式 x-y2≥0 的点的集合的是AB CD.不等式x?y?3表示的平面区域内的整点个数为.不等式|2x?A.?2A. 13个 B. 10个 C. 14个D. 17个y?m|?3表示的平面区域包含点和点,则m的取值范围是 B.0?m??m?C.?3?m?D.0?m?39.已知平面区域如右图所示,z?mx?y1 A.B.?C. D.不存在2202010.如图所示,表示阴影部分的二元一次不等式组是y??2y??2??y??2y??2????A.? B.3x?2y?6?0 C.? D.3x?2y?6?0 ???3x?2y?6?0?3x?2y?6?0????x?0x?0x?0x?0????二、填空题x?y?5?011.已知x,yx?y?0,则z?4x?y的最小值为______________.x?312.某电脑用户计划用不超过500元的资金购买单价分别为60元,70元的单片软件和盒装磁盘,根据需要软件至少买3件,磁盘至少买2盒,则不同的选购方式共有______________种. 1?x?2y?8813.已知约束条件?,目标函数z=3x+y,某学生求得x=8, y=时,zmax=32,这显然不合要求,正2x?y?8?333?x?N?,y?N??确答案应为x=; y= ; zmax. 14.已知x,y满足??x?2y?5?0,则?x?1,y?0?x?2y?3?0?y的最大值为___________,最小值为____________. x三、解答题15.由y?2及x?y?x?1围成的几何图形的面积是多少? 16.已知a?,当a为何值时,直线l1:ax?2y?2a?4与l2:2x?a2y?2a2?4及坐标轴围成的平面区域的面积最小?17.有两种农作物,可用轮船和飞机两种方式运输,每天每艘轮船和每架飞机运输效果如下:在一天内如何安排才能合理完成运输2000吨小麦和1500吨大米的任务??0?x?118.设z?2y?2x?4,式中变量x,y满足条件? ?0?y?2,求z的最小值和最大值.?2y?x?1?19.某家俱公司生产甲、乙两种型号的组合柜,每种柜的制造白坯时间、油漆时间及有关数据如下:问该公司如何安排甲、乙二种柜的日产量可获最大利润,并且最大利润是多少?20.某运输公司接受了向抗洪抢险地区每天至少送180t支援物资的任务.该公司有8辆载重为6t的A型卡车与4辆载重为10t的B型卡车,有10名驾驶员;每辆卡车每天往返的次数为A型卡车4次,B型卡车3次;每辆卡车每天往返的成本费A型车为320元,B型车为504元.请你们为该公司安排一下应该如何调配车辆,才能使公司所花的成本费最低?若只调配A型或B型卡车,所花的成本费分别是多少?2参考答案一.选择题二.填空题11. ?12.512. 13.3,2,11 14.,0 三、解答题 15.[解析]:如下图由y?2及x?y?x?1围成的几何图形就是其阴影部分,且S?16.[解析]:设轮船为x艘、飞机为y架,则可得?5x?2y?30,目标函数z=x+y,作出可行域,利用?x,y?0,x,y?N8?图解法可得点A可使目标函数z=x+y最小,但它不是整点,调整为B.3答:在一天内可派轮船7艘,不派飞机能完成运输任务. 18.?0?x?1[解析]:作出满足不等式?0?y?2??2y?x?1?31?0`作直线l1:2y?2x?t,当l经过A时,zmax?2?2?2?0?4?8. 当l经过B时,zmin?2?1?2?1?4?4.19.[解析]:设x,y分别为甲、乙二种柜的日产量,可将此题归纳为求如下线性目标函数Z=20x+24y的最大值.其中 6x?12y?120线性约束条件为x?4y?64,由图及下表x?0,y?0Z=27 答:该公司安排甲、乙二种柜的日产量分别为4台和8台可获最大利润272元.0司所花的成本为z元,则?0?x?8,x?N?0?y?4,y?N?目标函数z=320x+504y,?x?y?10??6?4x?10?3y?180??x,y?N?作出可行域,作L:320x+504y=0, 可行域内的点E点可使Z最小,但不是整数点,最近的整点是即只调配A型卡车,所花最低成本费z=320×8=2560;若只调配B型卡车,则y无允许值,即无法调配车辆.4高中数学线性规划题库满分:班级:_________ 姓名:_________ 考号:_________一、单选题1.已知变量x,y满足约束条件则z=3x+y的最大值为A.1 B.11 C. D.-12.若满足则的最大值为A. B.- C.1 D.-13.设变量x, y满足约束条件A. B.则目标函数z=3x-y的取值范围是C.[-1,6]D.则2x+3y的最大值为.设变量x, y满足A.20B.35C.D.555.已知变量A.满足约束条件,则的最大值为 B. C. D. 6.设变量x,y满足的最大值为A.B. C. D.7.已知满足约束条件,则目标函数的最大值是A.9B.10 C.1 D.208.若变量x, y满足约束条件则z=2x+y的最大值和最小值分别为 A.4和B.4和 C.3和 D.2和09.已知函数的取值范围是A. B.为常数), 当时取得极大值, 当时取极小值,则 C. D.10.设变量x,y满足约束条件,则目标函数的最小值为 A.- B.- C.- D.311.设x, y满足约束条件则z=2x-3y的最小值是A.- B.- C.- D.-312.设,满足约束条件大值为,若目标函数的最小值为2,则的最A.1 B. C. D.13.设x,y满足的约束条件,则的最大值为A. B. C. D.114.设变量,满足约束条件则目标函数的最小值为A. B. C. D.515.若满足且的最小值为-4,则的值为A. B. C. D.且的最小值为7,则 16.设,满足约束条件A.- B. C.-5或 D.5或-317.A.满足约束条件,若的值为 B. C.2或1 D. 18.若变量M-m=满足约束条件的最大值和学科网最小值分别为M和m,则A. B. C. D.519.设变量满足约束条件则目标函数的最小值为A. B. C. D.520.设x,y满足A.有最小值2,最大值 B.有最小值2,无最大值C.有最大值3,无最小值 D.既无最小值,也无最大值21.若x、y满足约束条件的取值范围是,目标函数z=ax+2y仅在点处取得最小值,则aA. B. C.22.在平面直角坐标系中,若不等式组2,则的值为A.为常数)所表示的平面区域的面积等于 B.1 C. D.3所表示的平面区域的面积等于3.不等式组A. B. C. D.24.若不等式组值是所表示的平面区域被直线分为面积相等的两部分,则的A. B. C. D.25.已知是坐标原点,点的取值范围是A.若点为平面区域上的一个动点,则 B. C. D. 26.设,在约束条件下,目标函数z=x+my的最大值小2,则m的取值范围为A. B. C. D.二、填空题27.设满足约束条件,则目标函数最大值为_________.28.若实数满足则目标函数的最小值为_______________.29.设x,y满足约束条件为.,向量,且//,则m 的最小值30.不等式组取值范围是______. 对应的平面区域为D,直线y=k 与区域D有公共点,则k的31.设变量x,y满足约束条件则目标函数z=的最大值为_______。

高中数学线性规划练习题及讲解

高中数学线性规划练习题及讲解

高中数学线性规划练习题及讲解线性规划是高中数学中的一个重要概念,它涉及到资源的最优分配问题。

以下是一些线性规划的练习题,以及对这些题目的简要讲解。

### 练习题1:资源分配问题某工厂生产两种产品A和B,每生产一件产品A需要3小时的机器时间和2小时的人工时间,每生产一件产品B需要2小时的机器时间和4小时的人工时间。

工厂每天有机器时间100小时和人工时间80小时。

如果产品A的利润是每件50元,产品B的利润是每件80元,工厂应该如何安排生产以获得最大利润?### 解题思路:1. 首先,确定目标函数,即利润最大化。

设生产产品A的数量为x,产品B的数量为y。

2. 目标函数为:\( P = 50x + 80y \)。

3. 根据资源限制,列出约束条件:- 机器时间:\( 3x + 2y \leq 100 \)- 人工时间:\( 2x + 4y \leq 80 \)- 非负条件:\( x \geq 0, y \geq 0 \)4. 画出可行域,找到可行域的顶点。

5. 计算每个顶点的目标函数值,选择最大的一个。

### 练习题2:成本最小化问题一家公司需要生产两种产品,产品1和产品2。

产品1的原材料成本是每单位10元,产品2的原材料成本是每单位15元。

公司每月有原材料预算3000元。

如果公司希望生产的产品总价值达到最大,应该如何分配生产?### 解题思路:1. 设产品1生产x单位,产品2生产y单位。

2. 目标函数为产品总价值最大化,但题目要求成本最小化,所以实际上是求成本最小化条件下的产品组合。

3. 约束条件为原材料成本:\( 10x + 15y \leq 3000 \)4. 非负条件:\( x \geq 0, y \geq 0 \)5. 画出可行域,找到顶点。

6. 根据实际情况,可能需要考虑产品1和产品2的市场价格,以确定最大价值。

### 练习题3:运输问题一个农场有三种作物A、B和C,需要运输到三个市场X、Y和Z。

(完整)高中数学含参数的线性规划题目及答案.doc

(完整)高中数学含参数的线性规划题目及答案.doc

线性含参经典小题x 1,2x y 的最小值为 1,则 a1.已知 a 0 , x, y 满足约束条件,x y 3, 若 z ()ya x 3 .A.1B.1C.1D.242x 2 y 3 0,2.已知变量 x, y 满足约束条件, x 3y3 0, 若目标函数 z yax 仅在点 3,0 处取得最y 10.大值,则实数 a 的取值范围为( ) A. (3 ,5)B.( 1 ,)C.(-1,2)D.( 1 ,23 1 )x y 1,ax 2 y 仅在点(1,0)处取得最小值,则 a 的取值范围是( )3.若 x, y 满足 x y1, 且 z2xy 2.A. (-1,2)B.(-2,4)C.(-4,0)D.( -4,2)若直线 y 2x 上存在 x, y 满足约束条件 x y 3 0,)x 2 y 3 0, 则实数 m 的最大值为(4.x m.A.-1B.1C.3 D.22x y 05.若不等式组 2x y 2 表示的平面区域是一个三角形,则 a 的取值范围是( )y 0x y a4B. 0 a 14 4 A. aC.1 aD. 0 a 1或 a333x 2 0,2 y 的最大值为 2,则实数 a若实数x, y 满足不等式组,y 1 0, 目标函数 t x 6.x 2y a 0.的值是( ) A.-2B.0C.1D.2y x设 m 1,在约束条件 ymx 下,目标函数 z x my 的最大值小于 2,则 m 的取值 7.x y 1范围为()A. 1,1 2B. 12,C.(1,3)D. 3,8.已知 x, y 满足约束条件x y 1 0,当目标函数 zax by(a 0, b0) 在该约束条件下2x y 3 0,取到最小值 2 5 时, a 2 b 2 的最小值为( )A 、5B 、4C 、 5D 、2x y2 09. x, y 满足约束条件 x 2 y 2 0 ,若 z y ax 取得最大值的最优解不唯一, 则实数 a 的2x y 2 0值为A, 1或 1B. 2或1C.2 或 1D. 2或 122x 2 y 40,10、当实数 x , y 满足 x y 1 0, 时, 1 ax y 4 恒成立,则实数 a 的取值范围是x 1.________.11.已知 a>0,x,y 满足约束条件 错误 !未找到引用源。

高中数学线性规划练习题(含详细解答)

高中数学线性规划练习题(含详细解答)

x0 7.若 x, y 满足约束条件: x 2 y 3 ;则 x y 的取值范围为 _____ . 2 x y 3
8.约束条件
2 x y 4 ,则目标函数 z=3x-y 的取值范围是 4 x y 1 3 ,6] 2
B.[
A. [
第 5 页 共 11 页
X 2Y 12 2 X Y 12 由已知, 得 Z=300X+400Y, 且 , 画可行域如图所示, X 0 Y 0 3 z 目标函数 Z=300X+400Y 可变形为 Y= x 4 400
这是随 Z 变化的一族平行直线,解方程组
2 2
C
6
D
4 4
( )
12.若实数 x、y 满足 A.(0,1)
x y 1 0 y , 则 的取值范围是 x x0
B. 0,1 C.(1,+ )
D. 1,
c ln b ≥ a c ln c ,则 b, c 满足: 5c 3a ≤ b ≤ 4c a , 13. 已知正数 a ,
A.20 B.35 C.45 D.55
x y 1 0 3.若 x, y 满足约束条件 x y 3 0 ,则 z 3x y 的最小值为 x 3y 3 0
4. 设函数 f ( x )

ln x, x 0 , D 是由 x 轴和曲线 y f ( x ) 及该曲线在点 (1, 0) 处的切线所围成的封 2 x 1, x 0
x y 50, 1.2 x 0.9 y 54, 线性约束条件为 x 0, y 0.
x y 50, 4 x 3 y 180, 即 x 0, y 0.

高中数学精品资料 线性规划课后习题 (带答案)

高中数学精品资料 线性规划课后习题 (带答案)

线性规划课后习题11的三角形,则实数k 的值为A .-1 BD .12取值范围是 ( ) A3.若实数x ,y)A .BC4.设R 且满足,则的最小值等于 ( )A. B. C.D.5.若实数x ,y 满足条件0,30,03,x y x y x +≥⎧⎪-+≥⎨⎪≤≤⎩则2x y -的最大值为( )(A )9 (B )3(C )0 (D )3- 6.设变量x ,yz=2x+6y 的最小值为2A .1B .2C .3 D .47取最小值的最优解有无穷多个, 则实数a 的取值是 ( )A .1C .2D .无法确定8.已知点集{}22(,)48160A x y x y x y =+--+≤,{}(,)4,B x y y x m m 是常数=≥-+,点集A 所表示的平面区域与点集B 所表示的平面区域的边界的交点为,M N .若点(,4)D m 在点集A 所表示的平面区域内(不在边界上),则△DMN 的面积的最大值是A. 1B. 2C. 22D. 49.在平面直角坐标系中,若不等式组(为常数)所表示的平面区域内的面积等于2,则的值为( )A . -5B .1C . 2D . 3 10.已知方程:,其一根在区间内,另一根在区间内,则的取值范围为A.B.C.D.11.( )A .[1,4]B .[2,8]C .[2,10]D .[3,9]12.若变量x,y 满足约束条件 则z=2x+y 的最大值为(A )1 (B)2 (C)3 (D)413.在集合}4,1,1|),{(≤+≥≥=y x y x y x A 中,y x 2+的最大值是 A 、5 B 、6 C 、7 D 、8. 14.设集合是三角形的三边长},则A 所表示的平面区域(不含边界的阴影部分)是( )AB .C .D .15.目标函数,变量满足,则有( )A. B.C.无最大值D.16..设m为实数,m的最大值是()A B C D17最大值为7,最小值为1)A.2 B C.-2 D.-118()A.[1,4]B.[2,8]C.[2,10]D.[3,9]19.已知变量x,yA.16 C.4 D.220.设x,y为3,A.3B.1C.2D.4参考答案:1.【答案】B【解析】略作出不等式组表示的可行域如右图所示阴影部分,1,所以当直线y=kx+1过点A(2,0),B(0,1故选B。

精编30题:高考数学根据线性规划求最值或范围专题集训含答案

精编30题:高考数学根据线性规划求最值或范围专题集训含答案

精编高考数学30题根据线性规划求最值或范围专题集训含答案例题详解若x ,y 满足约束条件⎪⎩⎪⎨⎧≥≤-+≥-0020y y x y x 则z=3x-4y 的最小值为________。

解:由题,画出可行域如图目标函数为z=3x-4y ,则直线443z x y -=纵截距越大,值越小 由图可知:在A(1,1)处取最小值,故z min =3×4-4×1=-1巩固练习1、(2023全国乙卷)若x ,y 满足约束条件⎪⎩⎪⎨⎧≥+≤+-≤-739213y x y x y x ,则z=2x-y 的最大值为______。

答案:82、(2023全国甲卷)若x ,y 满足约束条件⎪⎩⎪⎨⎧≤-≤+-≥+3233321y x y x y x ,设z=3x+2y 的最大值为_________。

答案:153、(2022全国乙卷)若x ,y 满足约束条件⎪⎩⎪⎨⎧≥≤+≥+0422y y x y x ,则z=2x-y 的最大值是______。

答案:84、(2022浙江)若实数x ,y 满足约束条件⎪⎩⎪⎨⎧≤--≤-+≥-0207202y x y x x ,则z=3x+4y 的最大值是_____。

答案:185、(2021浙江)若实数x ,y 满足约束条件⎪⎩⎪⎨⎧≤--≤-≥+0132001y x y x x ,则z=x-21y 的最小值是______。

答案:23-6、(2020全国Ⅰ卷)若x ,y 满足约束条件⎪⎩⎪⎨⎧≥+≥--≤-+0101022y y x y x ,则z=x+7y 的最大值为________。

答案:17、(2020新课标Ⅱ)若x ,y 满足约束条件⎪⎩⎪⎨⎧≤--≥--≥+1211y x y x y x ,则z=x+2y 的最大值是______。

答案:88、(2020新课标Ⅲ)若x ,y 满足约束条件⎪⎩⎪⎨⎧≤≥-≥+1020x y x y x ,则z=3x+2y 的最大值为________。

高二数学线性规划练习题

高二数学线性规划练习题

高二数学线性规划练习题一、选择题1. 下列关于线性规划的说法,正确的是()A. 线性规划的目标函数只能是最大值B. 线性规划的约束条件必须是等式C. 线性规划问题的解可以是整数D. 线性规划问题至少有一个可行解A. 目标函数为线性函数B. 约束条件为线性不等式C. 变量非负D. 约束条件中含有绝对值3. 设线性规划问题为最大化 $ z = 2x + 3y $,约束条件为 $ x + y \leq 4 $,$ x \geq 0 $,$ y \geq 0 $,则该问题的最优解为()A. $ x = 0, y = 4 $B. $ x = 2, y = 2 $C. $ x = 4, y = 0 $D. $ x = 3, y = 1 $二、填空题1. 线性规划问题中,目标函数和约束条件都是________的。

2. 若线性规划问题的目标函数为 $ z = 3x 2y $,约束条件为$ 2x + y \leq 6 $,$ x + 2y \leq 8 $,$ x \geq 0 $,$ y \geq 0 $,则该问题的可行域是________。

3. 在线性规划问题中,若约束条件为 $ x + 2y \leq 4 $,$ 2x + y \leq 5 $,$ x \geq 0 $,$ y \geq 0 $,则目标函数 $ z = 3x + 2y $ 的最大值为________。

三、解答题1. 某工厂生产甲、乙两种产品,每生产一件甲产品需耗电3千瓦时,每生产一件乙产品需耗电2千瓦时。

工厂每天最多耗电30千瓦时,甲、乙产品的单件利润分别为4元和3元。

问该工厂每天应如何安排生产计划,才能使总利润最大?2. 设线性规划问题为最大化 $ z = x + 2y $,约束条件为 $ x+ 2y \leq 6 $,$ 2x + y \leq 8 $,$ x \geq 0 $,$ y \geq 0 $。

求该问题的最优解。

3. 某企业生产A、B两种产品,每生产一件A产品需耗用原材料2千克,每生产一件B产品需耗用原材料3千克。

高考数学复习简单的线性规划问题专题训练(含答案)题型归纳

高考数学复习简单的线性规划问题专题训练(含答案)题型归纳

高考数学复习简单的线性规划问题专题训练(含答案)题型归纳线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支。

以下是整理的简单的线性规划问题专题训练,请考生练习。

一、填空题1.(____广东高考改编)若变量_,y满足约束条件,则z=2_+y的最大值等于________.[解析] 作出约束条件下的可行域如图(阴影部分),当直线y=-2_+z经过点A(4,2)时,z取最大值为10.[答案] 102.(____扬州调研)已知_,y满足约束条件则z=3_+4y的最小值是________.[解析] 可行区域如图所示.在P处取到最小值-17.5.[答案] -17.53.已知实数_,y满足若z=y-a_取得最大值时的最优解(_,y)有无数个,则a=________.[解析] 依题意,在坐标平面内画出题中的不等式组表示的平面区域,如图所示.要使z=y-a_取得最大值时的最优解(_,y)有无数个,则直线z=y-a_必平行于直线y-_+1=0,于是有a=1.[答案] 14.(____山东高考改编)在平面直角坐标系_Oy中,M为不等式组所表示的区域上一动点,则直线OM斜率的最小值为________.[解析] 线性约束条件表示的平面区域如图所示(阴影部分).由得A(3,-1).当M点与A重合时,OM的斜率最小,kOM=-.[答案] -5.(____陕西高考改编)若点(_,y)位于曲线y=|_|与y=2所围成的封闭区域内,则2_-y的最小值是________.[解析] 曲线y=|_|与y=2所围成的封闭区域如图阴影部分所示.当直线l:y=2_向左平移时,(2_-y)的值在逐渐变小,当l通过点A(-2,2)时,(2_-y)min=-6.[答案] -66.已知点P(_,y)满足定点为A(2,0),则||sinAOP(O为坐标原点)的最大值为________.[解析] 可行域如图阴影部分所示,A(2,0)在_正半轴上,所以||sinAOP即为P 点纵坐标.当P位于点B时,其纵坐标取得最大值.[答案]7.(____兴化安丰中学检测)已知不等式组表示的平面区域S的面积为4,若点P(_,y)S,则z=2_+y的最大值为________.[解析] 由约束条件可作图如下,得S=a2a=a2,则a2=4,a=2,故图中点C(2,2),平移直线得当过点C(2,2)时zma_=22+2=6.[答案] 68.(____江西高考)_,yR,若|_|+|y|+|_-1|+|y-1|2,则_+y的取值范围为________.[解析] 由绝对值的几何意义知,|_|+|_-1|是数轴上的点_到原点和点1的距离之和,所以|_|+|_-1|1,当且仅当_[0,1]时取=.同理|y|+|y-1|1,当且仅当y[0,1]时取=.|_|+|y|+|_-1|+|y-1|2.而|_|+|y|+|_-1|+|y-1|2,|_|+|y|+|_-1|+|y-1|=2,此时,_[0,1],y[0,1],(_+y)[0,2].[答案] [0,2]二、解答题9.(____四川高考改编)某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A原料1千克,B原料2千克;生产乙产品1桶需耗A原料2千克,B原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A、B原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,试求公司共可获得的最大利润.[解] 设生产甲产品_桶,乙产品y桶,每天利润为z元,则且z=300_+400y.作出可行域,如图阴影部分所示.作直线300_+400y=0,向右上平移,过点A时,z=300_+400y取最大值,由得A(4,4),zma_=3004+4004=2 800.故公司共可获得的最大利润为2 800元.10.(____安徽高考改编)已知实数_,y满足约束条件(1)求z=_-y的最小值和最大值;(2)若z=,求z的取值范围.[解] 作约束条件满足的可行域,如图所示为ABC及其内部.联立得A(1,1).解方程组得点B(0,3).(1)由z=_-y,得y=_-z.平移直线_-y=0,则当其过点B(0,3)时,截距-z最大,即z最小;当过点A(1,1)时,截距-z最小,即z最大.zmin=0-3=-3;zma_=1-1=0.(2)过O(0,0)作直线_+2y=3的垂线l交于点N.观察可行域知,可行域内的点B、N到原点的距离分别达到最大与最小.又|ON|==,|OB|=3.z的取值范围是.简单的线性规划问题专题训练及答案的所有内容就是这些,希望对考生复习数学有帮助。

高中线性规划例题,训练,高考

高中线性规划例题,训练,高考

专题简单的线性规划例1 已知x,y满足280440x yx yx+-≤⎧⎪-+≤⎨⎪≥⎩,求z=3x+y的最大值与最小值________例2 不等式组(5)()003x y x yx-++≥⎧⎨≤≤⎩,所表示的平面区域的面积是_________例3 设变量x,y满足约束条件23033010x yx yy+-≤⎧⎪+-≥⎨⎪-≤⎩,若目标函数z=ax+y(a>0)仅在点(3,0)处取得最大值,则a的取值范围是_____________ 例4 线性规划中的几何问题1、如果点P在平面区域2203x yx yy+≥⎧⎪-≤⎨⎪≤≤⎩上,点Q在曲线22(2)1x y++=上,那么PQ的最小值为。

2、以原点为圆心的圆完全落在区域36020x yx y-+≥⎧⎨+-≤⎩内,则圆的面积的最大值为是。

3、已知,x y满足143034230xx yx y≥⎧⎪-+≤⎨⎪+-≤⎩(1)求yzx=的取值范围。

(2)求22z x y=+的最大、最小值。

针对训练1.设变量x ,y 满足约束条件0121x y x y x y -≥⎧⎪+≤⎨⎪+≥⎩,则目标函数z =5x+y 的最大值是( )A .2B .3C .4D .52.设变量x , y 满足3010350x y x y x y +-≥⎧⎪-+≥⎨⎪--≤⎩,设y=kx ,则k 的取值范围是( )A .14,33⎡⎤⎢⎥⎣⎦B .4,23⎡⎤⎢⎥⎣⎦C .1,22⎡⎤⎢⎥⎣⎦D .1,2⎡⎫+∞⎪⎢⎣⎭ 3.如果实数x ,y 满足条件101010x y y x y -+≥⎧⎪+≥⎨⎪++≤⎩,那么z=2x -y 的最大值为( )A .2B .1C .-2D .-34.在平面直角坐标系中,不等式组20202x y x y x +-≥⎧⎪-+≥⎨⎪≤⎩表示的平面区域的面积是( )A.B .4 C.D .25.若不等式组5002x y y a x -+≥⎧⎪≥⎨⎪≤≤⎩,表示的平面区域是一个三角形,则a 的取值范围( )A .a <5B .a ≥7C .5≤a <7D .a <5或a ≥76.若x ,y 满足约束条件03003x y x y x +≥⎧⎪-+≥⎨⎪≤≤⎩,则z=2x -y 的最大值为__________7.已知点P (x ,y )的坐标满足条件41x y y x x +≤⎧⎪≥⎨⎪≥⎩,点O 为坐标原点,那么|PO |的最小值等于___,最大值等于___8.已知1102(1)x x y y x ≥⎧⎪-+≤⎨⎪≥-⎩,则x 2+y 2的最小值是___________高考链接1(09北京理)若实数,x y 满足2045x y x y +-≥⎧⎪≤⎨⎪≤⎩则s y x =-的最小值为__________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性规划1基础知识:2一、知识梳理31. 目标函数: P=2x+y是一个含有两个变量x和y的函数,称为4目标函数.52.可行域:约束条件所表示的平面区域称为可行域.63. 整点:坐标为整数的点叫做整点.74.线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值的问8题,通常称为线性规划问题.只含有两个变量的简单线性规划问题可用图解法9来解决.105. 整数线性规划:要求量取整数的线性规划称为整数线性规划.11二:积储知识:12一. 1.点P(x0,y)在直线Ax+By+C=0上,则点P坐标适合方程,即Ax+By+C=0132. 点P(x0,y)在直线Ax+By+C=0上方(左上或右上),则当B>0时,Ax+By+C>0;14当B<0时,Ax0+By+C<0153. 点P(x0,y)在直线Ax+By+C=0下方(左下或右下),当B>0时,Ax+By+C<0;16当B<0时,Ax0+By+C>017注意:(1)在直线Ax+By+C=0同一侧的所有点,把它的坐标(x,y)代入Ax+By+C, 18所得实数的符号都相同,19(2)在直线Ax+By+C=0的两侧的两点,把它的坐标代入Ax+By+C,所得到实数20的符号相反,21即:1.点P(x1,y1)和点Q(x2,y2)在直线 Ax+By+C=0的同侧,则有(Ax1+By1+C)22( Ax 2+By 2+C)>023 2.点P(x 1,y 1)和点Q(x 2,y 2)在直线 Ax+By+C=0的两侧,则有(Ax 1+By 1+C )24 ( Ax 2+By 2+C)<025 二.二元一次不等式表示平面区域:26 ①二元一次不等式Ax+By+C>0(或<0)在平面直角坐标系中表示直线27 Ax+By+C=0某一侧所有点组成的平面区域. 不.包括边界; 28 ②二元一次不等式Ax+By+C ≥0(或≤0)在平面直角坐标系中表示直线29 Ax+By+C=0某一侧所有点组成的平面区域且包括边界; 30 注意:作图时,不包括边界画成虚线;包括边界画成实线. 31 三、判断二元一次不等式表示哪一侧平面区域的方法:32 取特殊点检验; “直线定界、特殊点定域33 原因:由于对在直线Ax+By+C=0的同一侧的所有点(x,y),把它的坐标(x,y)34 代入Ax+By+C,所得到的实数的符号都相同,所以只需在此直线的某一侧取一35 个特殊点(x 0,y 0),从Ax 0+By 0+C 的正负即可判断Ax+By+C>0表示直线哪一侧的36 平面区域.特殊地, 当C ≠0时,常把原点作为特殊点,当C=0时,可用(0,37 1)或(1,0)当特殊点,若点坐标代入适合不等式则此点所在的区域为需38 画的区域,否则是另一侧区域为需画区域。

39 40 例题:41 1. 如图1所示,已知ABC ∆中的三顶点(2,4),(1,2),(1,0)A B C -,点(,)P x y 42在ABC ∆内部及边界运动,请你探究并讨论以下问题:若目标函数是z =43 或231y z x +=+,你知道其几何意义吗?你能否借助其几何意义求得min z 44 和max z ?45 2. 如图1所示,已知ABC ∆中的三顶点(2,4),(1,2),(1,0)A B C -,46点(,)P x y 在ABC ∆内部及边界运动,请你探究并讨论以下问题: 47 ①z x y =+在 处有最大值 ,在 处有最小值 ; 48 ②z x y =-在 处有最大值 ,在 处有最小值493. 若x 、y 满足条件⎪⎩⎪⎨⎧≤+-≥+-≤-+.0104010230122y x y x y x ,,求y x z 2+=的最大值和最小值 504. 设实数x y ,满足20240230x y x y y --⎧⎪+-⎨⎪-⎩≤,≥,≤,,则yz x =的最大值是__________. 515. 已知05≥-+y x ,010≤-+y x .求22y x +的最大、最小值526. 已知2040250x y x y x y -+⎧⎪+-⎨⎪--⎩,,,≥≥≤求221025z x y y =+-+的最小值537. 给出平面区域如右图所示,若使目标函数z=ax+y (a > 0 )54 取得最大值的最优解有无穷多个,则a 的值为( ) 55 A.41 B.53 C.4 D.35568.已知变量,x y 满足约束条件241y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则3z x y =+的最大值57 为( )58()A 12 ()B 11 ()C 3 ()D -159 9.设变量,x y 满足-100+20015x y x y y ≤⎧⎪≤≤⎨⎪≤≤⎩,则2+3x y 的最大值为60A.20 B.35 C.45 D.55 6110.若,x y满足约束条件1030330x yx yx y-+≥⎧⎪⎪+-≤⎨⎪+-≥⎪⎩,则3z x y=-的最小值62为。

6311.设函数ln,0()21,0x xf xx x>⎧=⎨--≤⎩,D是由x轴和曲线()y f x=及该曲线在点64(1,0)处的切线所围成的封闭区域,则2z x y=-在D上的最大值为.6512.某公司生产甲、乙两种桶装产品. 已知生产甲产品1桶需耗A原料1千克、66B原料2千克;生产乙产品1桶需耗A原料2千克,B原料1千克. 每桶甲产67品的利润是300元,每桶乙产品的利润是400元. 公司在生产这两种产品的计68划中,要求每天消耗A、B原料都不超过12千克. 通过合理安排生产计划,从69每天生产的甲、乙两种产品中,公司共可获得的最大利润是()70A、1800元B、2400元C、2800元D、310071元7213.若,x y满足约束条件:2323xx yx y≥⎧⎪+≥⎨⎪+≤⎩;则x y-的取值范围为_____.7314.设,x y满足约束条件:,013x yx yx y≥⎧⎪-≥-⎨⎪+≤⎩;则2z x y=-的取值范围为 .7415.设不等式组x1x-2y+30y x≥⎧⎪≥⎨⎪≥⎩所表示的平面区域是1Ω,平面区域是2Ω与1Ω关于75直线3490x y --=对称,对于1Ω中的任意一点A 与2Ω中的任意一点B, ||AB 的76 最小值等于( )77A.285B.4C. 125 D.27816. 设不等式组⎩⎨⎧≤≤≤≤20,20y x ,表示平面区域为D ,在区域D 内随机取一个点,79 则此点到坐标原点的距离大于2的概率是80A 4πB 22π-C 6πD 44π-81 17.若实数x 、y 满足10,0x y x -+≤⎧⎨>⎩则y x 的取值范围是 ( )82 A.(0,1) B.(]0,1C.(1,+∞)D.[)1,+∞8318.已知正数a b c ,,满足:4ln 53ln b c a a c c c a c b -+-≤≤≥,,则ba 的取值范围84 是 .8519.设平面点集{}221(,)()()0,(,)(1)(1)1A x y y x yB x y x y x ⎧⎫=--≥=-+-≤⎨⎬⎩⎭,则86 A B 所表示的平面图形的面积为87A 34πB 35πC 47πD 2π8820.在平面直角坐标系xOy ,已知平面区域{(,)|1,A x y x y =+≤89且0,0}x y ≥≥,则平面区域{(,)|(,)}B x y x y x y A =+-∈的面积为 ( )90A .2B .1C .12D .149121.若A 为不等式组002x y y x ≤⎧⎪≥⎨⎪-≤⎩表示的平面区域,则当a 从-2连续变化到1时,92 动直线x y a +=扫过A 中的那部分区域的面积为 .9322.若不等式组3434x x y x y ≥⎧⎪+≥⎨⎪+≤⎩所表示的平面区域被直线43y kx =+分为面积94 相等的两部分,则k 的值是95(A )73 (B ) 37 (C )43 (D ) 34高969723.若0,0≥≥b a ,且当⎪⎩⎪⎨⎧≤+≥≥1,0,0y x y x 时,恒有1≤+by ax ,则以a ,b 为坐标点98 (,)P a b 所形成的平面区域的面积等于__________.9924.在平面直角坐标系中,若不等式组101010x y x ax y +-≥⎧⎪-≤⎨⎪-+≥⎩(α为常数)所表示的平100 面区域内的面积等于2,则a 的值为101 A. -5 B. 1 C. 2 D. 310225.若直线xy 2=上存在点),(y x 满足约束条件⎪⎩⎪⎨⎧≥≤--≤-+m x y x y x 03203,则实数m 的最103 大值为( )104A .21B .1C .23D .210510626.设二元一次不等式组2190802140x y x y x y ⎧+-⎪-+⎨⎪+-⎩,,≥≥≤所表示的平面区域为M ,使函数107 (01)x y a a a =>≠,的图象过区域M 的a 的取值范围是( )108A .[1,3]B .[2,10]C .[2,9]D .[10,9]10911027.设不等式组 110330530x y x y x y 9+-≥⎧⎪-+≥⎨⎪-+≤⎩ 表示的平面区域为D ,若指数函数y=xa 的图111 像上存在区域D 上的点,则a 的取值范围是112 A (1,3] B [2,3] C (1,2] D [ 3, +∞]11328.设m 为实数,若{250(,)300x y x y x mx y -+≥⎧⎪-≥⎨⎪+≥⎩}22{(,)|25}x y x y ⊆+≤,则m 的取值114 范围是___________.11529.若实数x ,y 满足不等式组330,230,10,x y x y x my +-≥⎧⎪--≤⎨⎪-+≥⎩且x y +的最大值为9,则实数m =116 ( )117 A 2- B 1- C 1 D 211830.若x ,y 满足约束条件1122x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,目标函数2z ax y =+仅在点(1,0)处119 取得最小值,则a 的取值范围是 ( )120A .(1-,2)B .(4-,2)C .(4,0]-D . (2,4)-12131.设m >1,在约束条件下,⎪⎩⎪⎨⎧≤+≤≥1y x mx y xy 目标函数z=x+my 的最大值小于2,122 则m 的取值范围为123A .)21,1(+B .),21(+∞+C .(1,3)D .),3(+∞12432.设x ,y 满足约束条件⎪⎩⎪⎨⎧≥≥≥+-≤--0,002063y x y x y x ,若目标函数(0,0)z ax by a b =+>> 的125值是最大值为12,则23a b +的最小值为( ) 126A. 625B. 38C. 311D. 412733.设,x y 满足约束条件2208400 , 0x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩,若目标函数()0,0z abx y a b =+>> 的128 最大值为8,则a b +的最小值为________. 129130 131 132 133 134 135136137 138 139 140 141 142 143 144 145 146 147 148 149 150 1. 略151 2. ①点A,6,边界BC,1 152 ②点C,1,点B ,-3 153 3.2154 4. 321555. 最大、最小值分别是50和225 156 6.29 157 7.B 158 8.B 159 9.D 160 10.-1 161 11.216212.C16313.[3,0]-16414.[-3,3] 16515.B16616.D16717.C16818.[] 7e,16919.D17020.B17121.7 417222.A 17323.1 17424.D 17525.B 17626.C 17727.A 17828.4 [0,]317929.C 18030.B18118231.A18332.A18433.418518618711。

相关文档
最新文档