随钻测井
随钻测井介绍-图文

随钻测井介绍-图文2022-9-1摘要:随钻测井由于是实时测量,地层暴露时间短,其测量的信息比电缆测井更接近原始条件下的地层,不但可以为钻井提供精确的地质导向功能,而且可以避免电缆测井在油气识别中受钻井液侵入影响的错误,获取正确的储层地球物理参数和准确的孔隙度、饱和度等评价参数,在油气层评价中有非常独特的作用。
通过随钻测井实例,对随钻测井与电缆测井在碎屑岩中的测井效果进行了对比评价,指出前者受钻井液侵入和井眼变化的影响小,对油气层的描述更加准确,反映出来的地质信患更加丰富。
通过对几个代表性实例的分析,对随钻测井在油气勘探中的作用提出了新认识。
主题词:随钻测井;钻井;钻井液;侵入深度;技术一、引言LWD随钻记录的中子—密度(μN-ρb)与电缆测井值存在一定的系统误差(不同厂商的仪器均存在差别)。
但LWD的ρb测井值由于少受扩径的影响,其岩性值域区间远比后者清晰(图1-b、c,图2)。
三、实例分析LWD随钻测量的电阻率是在钻头破岩后1~2h开始测量(中等硬度的碎屑岩),此时的井壁破损率和钻井液径向侵入都非常小,所以,基本是“原状”地层的测井值。
1.实例一D井是一口直井(图3),为欠平衡钻井,CWR的测量点距钻头5.1in,钻速4m/h,钻头破岩后1.25h就可以记录到地层的电阻率,图中实时记录的所有4条电阻率曲线,不同岩性参数处均为重合状,说明地层几乎未被钻井液侵入。
起钻时,又进行重复测量(破岩42h之后),除泥岩段外,所有砂质岩层都受到了增阻侵入的影响。
但R55A并未发生变化,据计算,此时侵入深度达55in。
2.实例二B井是一口定向井的导眼段(近似直井,图2),该段使用了LWD,上部的砂岩段中实时记录的电阻率基本为水层特征(负差异或重合),泥岩段4条曲线则完全重合。
但顶部某740.5~某742.0m电阻率呈正差异(R55A>R25A),R55A=1.3Ω2m,为油层特征。
该井完井后,此段地层已浸泡了24d,这时又进行了电缆测井(双感应、中子、密度、自然伽马、井径等)。
随钻测量

第七章随钻测量随钻测量(Measurement While Drilling)简称MWD,是定向钻进中一种先进的技术手段,可以不间断定向钻进而测量近钻头孔底某些信息,并将信息即刻传送到地表的过程。
随着技术的进步,现代随钻测量已发展为随钻测井(Logging While Drilling),简称LWD,不仅可以监控定向钻进,还可以进行综合测井,获取信息的种类有:(1)定向数据(井斜角,方位角,工具面角);(2)地层特性(伽马射线,电阻率测井记录);(3)钻井参数(井底钻压,扭矩,每分钟转数)。
传感器是装在作为下部钻具组合整体的一部分的特殊井下仪器中。
井下仪器中还有一个发射器,通过某种遥测信道将信号发送到地面。
目前使用的最普通的遥测信道是钻柱内的钻井液柱。
信号在地面上被检测到后,经过译码和处理,就按方便和可用的方式提供所需的信息。
图7-1示出了MWD系统的主要部分。
MWD的最大优点是它使司钻和地质工作者实时地“看”到井下正在发生的情况,从井底测量参数到地面接收到数据只延误几分钟,所以可以改善决策过程。
图7-1 MWD系统概况尽管MWD的概念不是新的,但只是在近几年钻井技术的进步才使之成为现实。
30年代出现的电测技术对鉴别和评价地层起了很大作用。
但是,它的主要缺点是必须在起出钻柱后才能使用电缆下井。
等到实际测井时,由于钻井液浸入的影响,妨碍了地层真实特性的测量。
当钻头钻穿不同地层时,由于没有确定的方法辨别出岩性的变化,—些重要的层位可能没有检测到。
有时,后来的电测显示出错过了油层段顶部的取心点,或是钻头钻得过深钻到了产油层下部的水层中。
钻井液测井和监测钻速虽可指供一些井底情况,但由于要等到岩屑循环到地面的时间延误使这一过程效率太低。
所以,需要一种能够在钻井时瞬时而连续地监测地层的系统。
对这一系统有如下要求:(1)坚固可靠的传感器,可在钻进动态条件下在钻头处或钻头附近测量需要的数据;(2)将资料传送到地面的方法简单有效;(3)可以方便地在任何钻机上安装并操作的系统,对正常钻进作业影响不大;(4)成本合理,并能给作业者带来效益。
随钻测井 LWD

geoVISION 侧向电阻 率
▪ 适用于高导电性泥浆环境 ▪ 提供钻头,环形电极以及三个方位聚焦纽扣电极的电阻率 ▪ 高分辨率侧向测井减小了邻层的影响 ▪ 钻头电阻率提供实时下套管和取心点的选择 ▪ 三个方位纽扣电极提供三种深度的微电阻率随钻成像,可解
– 随钻测井技术和工具: • 岩性,工具测量曲线
• 工程应用软件和电脑技术
– 可视化的井眼轨迹位置和超前预测的工程应用软件 – 可实现基于网络的井下数据处理和存取 – 远程服
务
• 人员和作业程序
– 地质导向师进行实时导向服务 – 客户地质师 – 钻井工程师和定向井工程师
随钻测井技术和工具
斯伦贝谢随钻测井技术—Vision系列
井斜 well deflection, well deviation
• 井斜角就是井眼方向线与重力线之间的夹 角
井眼方向线与重力线都是有方向 的。井斜角表示了井眼轨迹在某 点处倾斜的大小。
斜度与分类
• 1.低斜度定向井:井斜小于15度
• 2.中斜度定向井:井斜在15-45度之间
• 3.大斜度定向井:井斜在46-85度之间
随钻测井
定义
• 随钻测井LWD :一般是指在钻井的过程中 测量地层岩石物理参数,并用数据遥测系 统将测量结果实时送到地面进行处理。由 于目前数据传输技术的限制,大量的数据 存储在井下存储器中,起钻后回放
• 随钻测量MWD: 一般是指钻井工程参数 测量,如井斜、方位和工具面等的测量。 有时,MWD泛指钻井时所有的井下测量。
随钻测井

以下是地质导向钻井中使用的典型的井底组合和钻 柱组合:钻头 + 地质导向系统(测传马达,近钻头 电阻率,咖玛和井斜,发射至接受端节)+ 地质导 向工具接受端节(用于接受来自导向系统的据, LWD测井质量,电阻率和咖玛数据)+ MWD测斜仪 (测量的心脏,供电测斜和数据传输)+ 无磁钻铤 (是为把MWD的位误差减至最小或安装LWD的中 子空隙度仪器)+ 钻杆。
正脉冲原理
随钻测井优势
1、井况复杂情况下完成测井资料采集任务; 2、更及时、更真实的测井,降低测井资料受泥浆侵入和井 壁破坏的影响,更能反映原状地层特性,有利油气发现;
3、精确地质导向,提高油气采收率,同时提高水平井钻井
效率,降低费用; 4、多次推移测井,有利识别油气层和渗透率分析; 5、实时监测、分析井内异常,避免井控事故,降低损失; 6、安全可靠性更强,适应各种恶劣作业环境。
谢谢!
不足之处望领导批评指正!
水平井成功钻进的基础是LWD数据和MWD方向数据。 LWD工具提供能评价井眼所钻地层的信息。这些数据 决定如何改井眼的方向使之达到所希望的目标。这种 方法就是所说的“地质导向”(geosteering)。 地质导向技术包括可靠的导向系统(MWD)、改进 的新型地层物理测量、测井数据模型,近钻头传感器 和测传马达,以及具有三维地震方法处理的详细的构 造图。
一、随钻技术简介
二、MWD介绍
三、其他
一、随钻技术简介 MWD 无线随钻测斜仪是在有线随钻测斜仪的基础 上发展起来的一种新型的随钻测量仪器。它与有线 随钻测斜仪的主要区别在于井下测量数据以无线方 式传输。无线MWD按传输通道分为泥浆脉冲、电 磁波、声波和光纤四种方式。其中泥浆脉冲和电磁 波方式已经应用到生产实践中,以泥浆脉冲式使用 最为广泛。
随钻测井发展历程

随钻测井发展历程
随钻测井(Logging While Drilling,简称LWD)是一种在钻
井过程中进行地质测井的技术。
随钻测井的发展历程可以追溯到20世纪70年代。
起初,随钻测井技术仅限于测量钻井液的物理性质,例如密度和粘度等。
然而,随着技术的不断发展,越来越多的参数开始被测量和记录。
这些参数包括地层电阻率、自然伽马射线、声波速度、放射性测量等。
到了1980年代,随钻测井技术的应用范围得到了进一步的扩展。
开发出了可以测量地层电阻率和自然伽马射线的测井工具。
这使得随钻测井可以提供更详细的地质信息,进一步帮助油田开发和生产。
20世纪90年代,随钻测井技术取得了重大突破。
引入了三维
成像技术和声波测量技术。
通过这些技术,可以获取到更准确的地层图像和更精确的井壁测量数据。
进入21世纪,随钻测井技术又取得了新的进展。
利用高性能
计算机和互联网技术,可以实时传输测井数据,并进行实时解释和分析。
这使得随钻测井成为了一个非常重要的勘探工具,为油气勘探和生产提供了更准确、更及时的地质信息。
此外,近年来还涌现出了一些新兴的随钻测井技术,例如电磁测量、核磁共振测量等。
这些新技术的应用进一步拓宽了随钻测井的应用领域,并提供了更全面的地质信息。
总的来说,随钻测井技术作为一种在钻井过程中进行地质测井的技术,经过了几十年的发展,从最初仅能测量钻井液的物理性质,到现在可以提供详细的地质信息。
随钻测井技术的不断创新和发展,为油气勘探和生产提供了更准确、更及时的地质数据支持。
随钻测井及地质导向钻井技术

泥浆
立管压力
叶片连续转动,波形连续变化
时间
二、随钻测量技术
随钻测井及地质导向钻井技术
报告提纲
一、地质导向钻井技术概述 二、随钻测量技术 三、LWD地质导向仪器 四、地质导向技术应用实例 五、结论与认识
一、地质导向钻井技术概述
按照预先设计的井眼轨道钻井。
任务是对钻井设计井眼轨道负责,使
实钻轨迹尽量靠近设计轨道,以保证
现
几何导向
井眼准确钻入设计靶区。(由于地质
(2)井口设备:进行随钻测量时, 必须要用电缆把探管送至井下, 并通 过电缆给井下仪器供电, 同时把井下探管测量到的那些数据信息输送到地面 计算机。另外, 随钻测量时井下采用动力钻具, 循环泥浆。因此, 井口设备 完成两个功能: I.电缆密封;Ⅱ.保证泥浆正常循环。
二、随钻测量技术
2、MWD技术
MWD(Measurement While Drilling)无线随钻测量仪,是对 定向井、水平井井眼轨迹随钻监测并指导完成井眼轨迹控制的测量 仪器。 MWD无线随钻测量仪器在油田勘探开发各个阶段中,为高难 度定向井、水平井、大位移井、分支井提供高精度导向测量。同时 由于实时无电缆传输的优势,满足了滑动钻井和旋转钻井的要求, 为各种井型提供高效率的井下工程及地质数据传输,从而大幅度地 提高钻井效率和降低整体钻井成本。并为后续多地质参数的测量提 供了挂接条件和数据结构平台,使随钻测井进而实现地质导向成为 可能。
二、随钻测量技术
1、有线随钻测量技术
探管工作原理
探管坐标系及参数定义 井斜角(INC):井眼轴线上任一点的井眼切线方向线,与通过该点的重 力线之间的夹角。
G2 INCarctg X
GY2
GZ
随钻测井数据传输技术应用现状及展望

随钻测井数据传输技术应用现状及展望一、本文概述随钻测井(Logging-While-Drilling, LWD)技术作为现代石油勘探领域的重要技术之一,对于提高钻井效率和油气藏评价准确性起到了关键作用。
在随钻测井过程中,数据传输技术的应用更是关乎到实时数据采集、处理与解释的准确性和时效性。
本文旨在探讨随钻测井数据传输技术的现状,包括其发展历程、主要技术特点、应用领域以及存在的问题。
本文还将对随钻测井数据传输技术的未来发展进行展望,分析可能的技术革新和行业趋势,以期为该领域的研究与实践提供有益的参考。
二、随钻测井数据传输技术现状随钻测井数据传输技术作为现代石油勘探领域的关键技术之一,其发展现状直接反映了石油工业的科技进步水平。
目前,随钻测井数据传输技术主要依赖于有线和无线两种传输方式。
有线传输技术方面,主要依赖于电缆或光纤等物理介质,将测井数据实时传输至地面。
这种传输方式具有传输速度快、稳定性高等优点,但受限于物理介质的长度和强度,对于超深井或复杂地质环境的应用存在一定的挑战。
有线传输方式还需要考虑钻杆旋转和井眼环境对数据传输的影响。
无线传输技术则以其灵活性和便捷性成为近年来的研究热点。
无线传输技术主要包括声波传输、电磁波传输以及泥浆脉冲传输等。
声波传输利用井筒中的声波作为载体,通过声波信号的调制和解调实现数据传输。
电磁波传输则利用电磁波在井筒中的传播特性进行数据传输,但其受限于井筒环境和电磁波衰减的问题。
泥浆脉冲传输则是一种通过改变泥浆流量或压力来产生脉冲信号,进而实现数据传输的方式。
这种方式虽然传输速度较慢,但适应性强,能在复杂地质环境中稳定工作。
总体来看,随钻测井数据传输技术在有线和无线传输方面均取得了一定的进展,但仍面临着传输速度、稳定性、适应性和成本等多方面的挑战。
随着石油勘探的深入和地质环境的日益复杂,对随钻测井数据传输技术的要求也越来越高。
未来随钻测井数据传输技术的发展将更加注重技术的创新和融合,以提高数据传输的效率和稳定性,适应更复杂的地质环境和勘探需求。
随钻中子测井数据校正分析

随钻中子测井数据校正分析随钻中子测井是一种常用的地质测井方法,它可以获取地层的中子密度信息,并用于地层的物性分析、岩性划分、油气藏评价等领域。
随钻中子测井数据在实际应用中往往会受到多种因素的影响,需要进行数据校正和分析,以确保数据的准确性和可靠性。
本文将针对随钻中子测井数据的校正分析进行详细探讨。
一、随钻中子测井原理随钻中子测井技术是利用中子射线在地层中的散射和吸收特性,测定地层的中子密度,并由此推算地层的孔隙度、含水量和饱和度等信息的方法。
测井工具在井眼中下放至感兴趣地层,通过向地层发射中子射线,并测定地层中子散射和吸收反应的强度,由此得到地层的中子密度信息。
1. 温度校正在实际应用中,井下地面温度和地层温度可能存在一定差异,而中子测井数据会受到温度的影响。
需要对测得的中子密度数据进行温度校正,以消除温度带来的影响。
一般而言,温度校正可以采用测得的地层温度与标定温度的差值进行修正,以得到精确的中子密度数据。
2. 地层参数校正地层参数校正是针对地层岩石成分和孔隙结构的校正分析。
由于地层的岩石成分和孔隙结构可能存在多样性,导致中子密度数据的变化。
在进行中子密度数据解释时,需要对地层参数进行校正,以确保数据的准确性。
地层参数校正可以通过岩心分析、地震资料解释等手段进行,以获取地层的真实物性参数。
3. 仪器响应校正随钻中子测井仪器的不同型号和品牌,其响应特性可能存在一定的差异,需要进行仪器响应的校正分析。
通过对不同型号仪器的标定和比对,可以获得仪器的响应曲线,并校正实际测得的中子密度数据,以消除仪器带来的误差。
地层环境的变化也可能会影响中子测井数据的准确性,例如地层水含量、钻井液性质、孔隙流体等因素都会对中子密度数据造成影响。
需要对地层环境因素进行校正分析,以确保中子密度数据的准确性。
5. 数据融合校正数据融合校正是指将不同测井方法获取的地层信息进行融合校正,以提高数据的可靠性和精度。
可以将中子密度数据与声波测井、电阻率测井等数据进行对比分析,通过数据融合的方式,获得更为准确的地层信息。
LWD技术简介

2.2 LWD技术简介随钻测井(LWD——Logging While Drilling)是在随钻测量(MWD——Measurement While Drilling)基础上发展起来的、用于解决水平井和多分枝井地层评价及钻井地质导向而发展起来的一项新兴的测井综合应用技术。
随钻测井和随钻测量都是在钻井过程中同步进行的测量活动,实施随钻测井和随钻测量时都必须将测量工具装在接近钻柱底部的钻铤内,。
不同的是随钻测量主要测量井斜、井斜方位、井下扭矩、钻头承重等钻井工程参数,辅以测量自然伽马、电阻率等地球物理信息,用以导向钻井;而随钻测井则以测量钻过地层的地球物理信息为主,可以在钻井的同时获得电阻率、密度、中子、声波时差、井径、自然伽马等电缆测井所能提供的测井资料。
与MWD相比,LWD能提供更多、更丰富的地层信息。
2.2.1 L WD系统组成及工作方式随钻测井系统一般由井下仪器和井场信息处理系统两大部分组成。
前导模拟软件是井场信息处理系统的核心;井下仪器提供实时测量数据。
前导模拟软件完成大斜度井和水平井钻井设计、实时解释和现场决策,指导钻井施工。
随钻测井系统有实时数据传输方式和井下数据存储方式两种工作方式。
1)实时数据传输方式:将随钻测井仪在钻进时测量得到的信息实时传至驱动器,驱动器驱动脉冲发生器将这些信息采用特定的方式编码后传至地表压力传感器,地面信息处理与解码系统再将其转化为软件界面上可供显示或打印的数字化、图形化格式,为客户提供最终产品。
2)井下数据存储方式:将随钻测井仪器起下钻或钻进时采集到的信息存储于仪器的存储器内,待仪器的数据下载接口起至转盘面上约1.5米处,通过数据下载线将其传输到地表计算机内供处理、显示,一般可以在30min内提交处理好的数据磁盘并打印成图。
2.2.2 L WD主要功能及优点主要功能:测量井斜、方位、工具面等井眼几何参数。
随钻地质测井:采用实时和记忆方式同时进行地层参数的测量-- 电阻率、伽马、岩石密度、中子孔隙度。
随钻测井资料解释方法研究及应用

随钻测井资料解释方法研究及应用一、本文概述本文旨在探讨随钻测井资料解释方法的研究与应用。
随钻测井技术作为现代石油勘探领域的重要技术手段,对于提高钻井效率、优化油气藏开发策略具有重要意义。
本文将首先介绍随钻测井技术的基本原理及其在石油勘探中的应用背景,阐述其相较于传统测井技术的优势。
随后,文章将重点分析随钻测井资料解释方法的现状与挑战,包括数据处理、信号提取、地层识别等方面的难点问题。
在此基础上,本文将深入探讨随钻测井资料解释方法的研究进展与创新点,包括新型算法的开发、多源信息融合技术的应用以及技术在资料解释中的潜力。
本文将通过具体案例分析,展示随钻测井资料解释方法在实际应用中的效果与价值,为相关领域的科研工作者和工程技术人员提供参考与借鉴。
二、随钻测井资料解释方法基础随钻测井(Logging While Drilling,LWD)是石油勘探领域中的一种重要技术,它通过在钻井过程中实时测量地下岩石的物理性质,为地质评价和油气藏描述提供关键数据。
随钻测井资料解释方法的基础主要建立在对测量数据的准确理解、合理的解释模型以及先进的处理技术上。
随钻测井资料解释需要深入理解各种测井信号的物理含义和影响因素。
例如,电阻率、声波速度、自然伽马等测井参数,它们分别反映了地下岩石的导电性、弹性和放射性等特性。
这些参数的变化不仅与岩石的矿物成分、孔隙度、含油饱和度等地质因素有关,还受到井眼环境、仪器性能等多种因素的影响。
因此,在解释随钻测井资料时,需要充分考虑这些因素,以确保解释的准确性和可靠性。
随钻测井资料解释需要建立合理的解释模型。
这些模型通常基于地质学、地球物理学和石油工程等领域的专业知识,用于将测井数据转化为地质参数和油气藏特征。
例如,通过电阻率测井数据可以推断地层的含油饱和度,通过声波速度测井数据可以估算地层的孔隙度等。
这些模型的建立需要充分考虑地质条件和实际情况,以确保解释的准确性和实用性。
随钻测井资料解释还需要借助先进的处理技术。
随钻测井技术介绍

电磁波传播电阻率测井 仪器结构与测量信号
A 20lg V2 V1
1
2
Rad
R ps
单发双收三线圈系
随钻电阻率测井仪器
低端仪器 ➢ “短电位”或“环状电极” 电阻率 — 限于水基泥浆中应用 ➢ 单间距、单频传播电阻率
— 未补偿 –NL EWR, Teleco DPR — 补偿 – Schlumberger公司 CDR & 专利许可的仪器 — 从相位差和衰减测量得到最多2 种探测深度
❖ 通常意义的MWD仪器系统,主要限于对工程参数(井斜、方 位和工具面等)的测量,它只是一种测量仪器,无直接导向钻 进的功能。
经典随钻测井(LWD)概念
❖ 随钻测井(Logging While Drilling)是在随钻测量(MWD)基础 上发展起来的一种功能更齐全、结构更复杂的随钻测量系统,主要 是在常规MWD基础上增加电阻率、中子、密度和声波等测量短节, 用以获取测井信息;
电测井基本原理
[ (x)U (x)] (x)
2
E(
x)
k
2
E(
x)
i
JT
(
x)
k 2 i ( i ) :波数 : 电导率 : 介电常数 : 磁导率
地层电 性参数
电法测井测量方程
直流电测井 感应测井
Ra
K
U I
aR
VR K
aX
VX K
Geolink公司已经开发出低频(20kHz)随钻 感应测井仪器;
在测井行业,应用LWD说法似乎更多一些; 在钻井领域,应用MWD说法似乎更多一些。
“LWD”的来源
LWD 发展时间表
MWD/LWD发展简史 – 早期
• 1927: Schlumberger 兄弟在法国得到第一条电缆测井曲线 • 1929: Jokosky 申请第一个泥浆脉冲传送专利 • 1950: Arp 发明正向泥浆脉冲系统 • 1960:利用正向泥浆脉冲的机械测斜仪出现,并应用至今 • 1971: Mobil R&D 第一次成功实验泥浆警笛 • 1978: 定向MWD的商用传输系统 • 1980: Schlumberger / Anadrill 引入多探头MWD
随钻测井技术

有非常独特的作用。
东北石油大学
随钻测井技术
随钻测井的优点
与电缆测井相比,随钻测井具有准确性、实时性和适用性广等优势。具体表现为: a) LWD是在钻头破岩后不久、泥浆侵入较浅、井眼平滑与尚未明显垮塌的条件下测量的,测 井曲线受泥浆侵入影响比常规测井小得多,更能反映原状地层的电性、物性和孔隙流体性质。 其不同测量方式获得的时间推移测井资料,也易于识别油气层和分析储层渗透性; b) 人们可根据实时记录测量的近钻头的地质参数,判释易于造成井涌的高压层、造成井漏的裂 缝、破碎带(断层)以及地层岩性和油气水界面,结合井眼几何参数,确定钻头在地层中的空 间位置并做出迅速反应,采取适当的工程措施,引导钻头沿着设计的井眼轨迹或实际地质目 标层(油气藏中)钻进,提高钻井效率; c) 复杂条件下不能进行电缆测井时,利用LWD可采集井眼和地层物理信息。与钻杆传输测井 (PCL一WL)相比,LWD更为安全可靠,它适合在各种恶劣的井下环境中作业,在大斜度井、 水平井和小井眼中测量更是见其特长。
东北石油大学
随钻测井技术
随钻声波测井
现场服役的随钻声波测井仪器使用的声源有单极子、偶极子和四极子,如 贝克休斯INTEQ公司的APX既使用单极子也使用四极子声源,斯伦贝谢公司的 SonicVision使用单极子声源,哈里伯Sperry公司的BAT是偶极子仪器。这些仪 器可测量软/硬地层纵/横波速度和幅度,测量数据一般保存在井下存储器内, 起钻后回放使用。随钻声波测井数据可用于岩性识别、孔隙度计算、岩石力 学参数计算、井眼稳定性预测、泥浆比重优化、下套管位置选择等。
过泥浆编码脉冲实时传输到地面,传输率很低,目前最大传输率仅为巧15bps。Sperry-Sun
井下存储器可以记录8MB数据量,若为随钻全波测井,则可记录256MB,但这种数据须 等到起钻后才能获得。 c) 测井环境响应不同 LWD探测深度较饯,受井眼和侵入影响小,但由于钻杆本身重量特别大,大多是在偏心 条件下采集数据的,尤其是中子密度测井受仪器偏心影响较大。此外,在大斜度井或水平井 中,随钻电阻率测井不再象直井那样测量水平电阻率,其测量值介于水平电阻率和垂直电阻
国外随钻测井发展历程

国外随钻测井发展历程随着石油工业的发展,钻井技术的进步和应用成为石油勘探与开发的重要环节之一、随钻测井作为一种利用测井工具在钻杆内进行测井的技术,广泛应用于国外石油勘探与开发中。
下面将从技术发展历程的角度,介绍国外随钻测井的发展情况。
20世纪50年代初,法国教授Marcel Schlumberger首次提出了随钻测井的概念。
在此之后,美国石油公司Schlumberger公司开始了随钻测井的研究与应用。
1951年,Schlumberger公司成功地在拉丁美洲一口井中使用了自家研制的ΣΔ倾斜度测井仪器进行了随钻测井。
这标志着随钻测井技术进入了实用化阶段。
随钻测井的技术进展主要包括三个方面:测量原理的改进、测井工具的发展和数据处理技术的改进。
在测量原理方面,随钻测井技术的发展主要由电阻率测井向多参数测井的发展过渡。
在电阻率测井中,引入了侧向电阻率测井、十字偶极子测井等新的测量方法。
此外,还发展了自摆翻面射孔测井、核磁共振测井等新的测井原理。
在测井工具的发展方面,随钻测井工具的结构和性能得到了很大的改善。
随钻测井仪器从原来的大型、笨重、功率不足的情况发展成了体积小、功能强大、功率大的现代化测井工具。
此外,还有一些新型的测量工具被开发出来,如新一代的声波测井工具、半导体测井工具、高分辨率测井工具等。
在数据处理技术方面,随钻测井的数据处理和解释技术也得到了很大的改进。
由于随钻测井的数据量大、数据复杂、数据更新速度快的特点,传统的数据处理方法已经无法满足需求。
因此,一些新的数据处理方法和技术被应用到随钻测井中,如神经网络技术、模糊逻辑技术、图像处理技术等。
总结起来,国外随钻测井的发展历程主要包括测量原理的改进、测井工具的发展和数据处理技术的改进。
随钻测井技术的发展使得石油勘探与开发更加高效、准确,并且为油田开发提供了重要的技术支持。
随钻测量随钻测井技术现状及研究

随钻测量随钻测井技术现状及研究随钻测量(measure while drilling,MWD)技术可以在钻进的同时监测一系列的工程参数以控制井眼轨迹,提高钻井效率。
随钻测井(logging while drilling,LWD)技术可以不中断钻进监测一系列的地质参数以指导钻井作业,提高油气层的钻遇率[1-5]。
近年来,油气田地层状况越来越复杂,钻探难度越来越大。
在大斜度井、大位移井和水平井的钻进中,MWD/LWD是监控井眼轨迹的一项关键技术[6-8],是评价油气田地层的重要手段[9],是唯一可用的测井技术[3],而常规的电缆测井无法作业[10]。
国外的MWD/LWD技术日趋完善,而国内起步较晚,技术水平相对落后,国际知识产权核心专利较少[9],与国外的相关技术有一段差距。
本文介绍国内外MWD/LWD相关产品的技术特点和市场应用等情况,分析国内技术落后的原因以及应对措施。
1 国外MWD/LWD技术现状20世纪60年代前,国外MWD的尝试都未能成功。
60年代发明了在钻井液柱中产生压力脉冲的方法来传输测量信息。
1978年Teleco公司开发出第一套商业化的定向MWD系统,1979年Gearhart Owen公司推出NPT定向/自然伽马井下仪器[10]。
80年代初商用的钻井液脉冲传输LWD 才产生,例如:1980年斯伦贝谢推出业内第一支随钻测量工具M1,但仅能提供井斜、方位和工具面的测量,应用比较受限,不能满足复杂地质条件下的钻井需求[11]。
1996年后,MWD/LWD技术得到了快速的发展。
国际公认的三大油服公司:斯伦贝谢、哈里伯顿、贝克休斯,其MWD/LWD技术实力雄厚,其仪器耐高温耐高压性能好、测量精度高、数据传输速率高,几乎能满足所有油气田的钻采,在全球油气田均有应用。
斯伦贝谢经过长期的技术及经验积累,其技术特点为高、精、尖、专,业内处于绝对的领先地位[12-15],是全球500强企业。
LWD的技术主要体现在智能性、高效性、安全性[10]。
lwd随钻测井的工作原理

lwd随钻测井的工作原理
LWD(Logging While Drilling)随钻测井是一种在钻井过程中
进行地层测井的方法。
其工作原理包括以下几个步骤:
1. LWD传感器安装在钻头或钻杆上,随着钻井进程下入井内。
2. 当钻头或钻杆传感器接触到地层时,LWD系统开始测量地
层的物理参数。
3. 传感器通常包括测量电阻率、自然伽马射线、声波速度等参数的装置。
4. 传感器采集到的数据通过电缆传输到地面设备进行处理和分析。
数据可以通过实时传输技术实时显示在钻井现场工作站上。
5. 地面设备使用各种算法和方法对数据进行处理和解释,以获取有关地层的信息,例如地层的类型、含油、含气、水层等等。
6. 通过分析和解释得到的数据,钻井操作者可以及时调整钻井工艺,优化钻井方案,提高钻井效率和成功率。
总的来说,LWD随钻测井利用在钻井过程中安装的传感器获
取地层信息,并将数据实时传输至地面进行处理和解释,以指导钻井作业。
这种测井方法可以节省时间和成本,并提供实时的地层信息,提高钻井效率和成功率。
随钻测井仪器介绍

contents
目录
• 随钻测井仪器概述 • 随钻测井仪器分类 • 随钻测井仪器技术参数 • 随钻测井仪器优缺点分析 • 随钻测井仪器发展趋势与展望
01
随钻测井仪器概述
定义与特点
定义
随钻测井仪器是一种在钻井过程中实时监测和测量井下地质参数的仪器。
特点
随钻测井仪器具有实时性、可靠性、高精度和多功能等特点,能够提供准确的 地质信息,帮助钻井工程师更好地了解地下情况,优化钻井方案,提高钻井效 率。
02
随钻测井仪器分类
电阻率随钻测井仪器
总结词
电阻率随钻测井仪器是用于测量地层电阻率的仪器,通过测量地层导电性能来评 估地层含油气性。
详细描述
电阻率随钻测井仪器利用地层导电性能的差异来识别地层岩性、含油气性等信息 。通过向地层发射电流,测量地层电阻率,进而判断地层含油气性。该仪器具有 实时、准确、不受钻井液影响等优点。
定。
03
随钻测井仪器技术参数
测量范围
电阻率
0-10000Ωm
自然电位
0-100mV
声波速度
0-10000m/s
钻井液电阻率
0-10000%
02
自然电位:±0.2mV
03
声波速度:±1%
04
钻井液电阻率:±2%
工作温度范围
• 40℃ to +85℃
尺寸与重量
长度
380mm
传感器集成化
将多种传感器集成于一体,提高测量精度和稳 定性,降低仪器复杂度。
人工智能与机器学习技术
应用于随钻测井数据分析,自动识别地层特征,提高解释精度。
应用领域拓展
非常规能源勘探
01
随钻中子测井数据校正分析

随钻中子测井数据校正分析随钻中子测井是一种用于测量井内地层中子辐射强度的技术。
中子测井数据对于地层的分析和评价具有重要的意义,但是在测井数据处理中,由于某些原因可能存在一定的误差。
进行中子测井数据的校正分析十分必要。
以下将就随钻中子测井数据校正分析的方法和重要性进行详细介绍。
一、误差来源及影响分析1. 自然伽马辐射的干扰在中子测井中,自然伽马辐射是一个潜在的干扰因素。
地层中存在的天然放射性元素(如钍和钾)会产生伽马辐射,并且与中子源产生的中子辐射混合在一起,造成中子探测器接收到的混合辐射信号。
这种干扰可能导致中子测井数据的偏差。
2. 仪器本身误差随钻中子测井仪器本身存在一定的测量误差,可能会影响到中子测井数据的准确性。
3. 地层含水量变化地层中的水含量变化也会影响到中子测井数据的准确性。
特别是在水含量较高的地层中,中子测井数据的解释需要进行相应的校正。
误差来源及其影响分析可以帮助我们更好地理解中子测井数据的准确性和局限性,有助于进一步进行数据的校正分析。
二、随钻中子测井数据校正方法1. 自然伽马辐射的校正为了排除自然伽马辐射的干扰,可以采用反演方法进行校正。
通过对中子和伽马辐射进行分离,得到纯的中子辐射信号,从而减少自然辐射的影响。
也可以通过专门的校正曲线进行自然伽马辐射的校正。
2. 仪器误差的校正针对仪器本身的误差,可以通过定期的校准和调试来保证测量的准确性。
对于已有的中子测井数据,也可以采用仪器响应函数的纠正方法来进行数据校正。
3. 地层含水量的校正针对地层含水量变化所引起的影响,可以采用地层声波测井等方法来获取地层的含水量信息,然后对中子测井数据进行相应的校正。
也可以通过实验室测试获取地层样品,对中子测井数据进行验证和校正。
三、中子测井数据校正分析的重要性1. 优化地层解释中子测井数据校正分析可以帮助我们排除干扰因素,使得我们能够更准确地获取地层的有关信息。
通过有效的校正分析,可以优化地层解释,更好地进行储层评价和地质分析。
《随钻测井》PPT课件

④既在钻头钻进过程中实时测井, 也可在起、下钻的过程中多次测井 (钻后LWD),取得多次的LWD 时间推移测井,对识别油气层和分 析储层渗透性很有利。
16
⑤由于随钻测井的实时性,地质分析人员和钻井人员
能够根据测井信息预测易于造成井涌的高压层;
--识别易于造成井漏的裂缝及破碎带;
--识别断层、地层不整合及储层等的顶底界面;
•在泥浆侵入地层的初期测量,其测井响应比 常规测井更能反映原状地层的电性、声学和孔隙 流体性质,更易于发现油气层。
14
③提高水平井的钻井效率,降低钻井费用。L WD可在水平井和大斜度井条件下,实时测量自 然伽马、电阻率和近钻头井斜等和井眼几何参数。 地面的地质和钻井人员在分析这些数据的基础上, 高时效、低成本地进行地质导向,即首先确定井 底钻具在相关地层中的位置,然后引导钻头至设 计的地质目标或保持在设计的油气藏中钻进。
7
2. 测井环境的特点
8
随钻测井是在地层刚刚被打开,井眼尚未明显垮塌, 泥浆对地层的侵入很浅甚至可以忽略的条件下测量的。
它一般探测深度较浅。由于钻杆本身的重量特别大, 大多数随钻测井是在偏心的条件下采集数据的。在大斜 度井或水平井中,井轴不与地层界面垂直或以高角度相 交,而是以较低角度相交甚至平行,电阻率测井结果不 再如直井那样测量水平电阻率,其测量数值介于水平电 阻率和垂直电阻率之间;此外这种测量结果明显受围岩 和地层各向异性的影响。
2. PCL测井
分辨率较高。可利用多条不同探测深度电阻率
曲线的差异,定性评价地层的相对渗透性,并定
量评价地层水饱和度以及侵入带大小。
32
受井斜角等因素
的影响,油层段L
WD深电阻率(ATR) 大大低于浅电阻率 (PSR)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
随钻测井一、随钻测井的引入在油气田勘探、开发过程中,钻井之后必须进行测井,以便了解地层的含油气情况。
一般来说,测井资料的获取总是在钻井完工之后,再用电缆将仪器放入井中进行测量. 遇到的问题:1、某些情况下,如井的斜度超过65 度的大斜度井甚至水平井,用电缆很难将仪器放下去2、井壁状况不好易发生坍塌或堵塞3、钻完之后再测井,地层的各种参数与刚钻开地层时有所差别.(由于钻井过程中要用钻井液循环,带出钻碎的岩屑,钻井液滤液总要侵入地层二、随钻测井的概念随钻测井(因为它不用电缆传输井下信息,所以也称为无电缆测井):是在钻开地层的同时, 对所钻地层的地质和岩石物理参数进行测量和评价的一种测井技术.首先,随钻测井在钻井的同时完成测井作业,减少了井场钻机占用的时间,从钻井—测井一体化服务的整体上又节省了成本。
其次,随钻测井资料是在泥浆侵入地层之前或侵入很浅时测得的,更真实地反映了原状地层的地质特征,可提高地层评价的准确性.而且,某些大斜度井或特殊地质环境(如膨胀粘土或高压地层)钻井时,电缆测井困难或风险加大以致于不能作业时,随钻测井是唯一可用的测井技术。
另外,近二十年来海洋定向钻井大量增加。
采用随钻定向测井,可以知道钻头在井底的航向,指导司钻操作;可以预测预报井底地层压力异常,防止井喷;可以提高钻井效、钻井速度和精度,降低成本,达到钻井最优化(现代随钻测井技术大致可分为三代)●20 世纪80 年代后期以前属于第一代可提供基本的方位测量和地层评价测量在水平井和大斜度井用作“保险”测井数据,但其主要应用是在井眼附近进行地层和构造相关对比以及地层评价;随钻测井确保能采集到在确定产能和经济性、减少钻井风险时所需要的测井数据。
●20 世纪90 年代初至90 年代中期属于第二代过地质导向精确地确定井眼轨迹;司钻能用实时方位测量,并结合井眼成像、地层倾角和密度数据发现目标位臵。
这些进展导致了多种类型的井尤其是大斜度井、超长井和水平井的钻井取得很高的成功率。
●20 世纪90 年代中期到目前属于第三代称为钻井测井(Logging for Drilling) ,提供界定地质环境、钻井过程、采集实时信息时所要求的数据。
三、随钻测井的原理⒈随钻测井仪包括井下仪器、信号通道和地面仪器三个主要部分。
⑴井下仪器装在井底钻头附近,由传感器、电子线路、电源及信号发送器组成。
被测参数成二进制数码后,由信号发生器经信号通道送到地面。
⑵信号通道可以是泥浆流、钻杆或大地。
在井口有信号接收传感器,将接收到的信号送入地面数据处理装臵。
⑶地面仪器可以显示井下被测参数的瞬时值,也可以把它们随时间变化过程记录下来。
⒉随钻测井作业及仪器的安装用随钻测井系统作业比电缆测井作业简单,首先在地面把各种随钻测井仪器刻度好,然后把他们对接起来进行整体检验,再把随钻测井仪接在钻杆的底部,最后接上底部钻具总成和钻头,就可以进行钻井和随钻测井作业了。
随钻测井中的井下仪器安装与常规测井仪器基本相同,不同的是各仪器单元均安装在钻铤中,这些钻铤必须能够适应正常的泥浆循环。
⒊随钻测井的关键问题—信号通道现在美国流行四种信号通道,如表1 所示表中列出的四种信号通道各有优越点,但其中泥浆压力脉冲信号通道占领先地位,故这里仅研究泥浆压力脉冲随钻信号通道泥浆压力脉冲随钻测井信号通道是随钻测井中最理想的信号通道。
简单地说,是将被测参数转变成钻井液压力脉冲,随着钻井液循环传送到地面。
具体来讲,是在钻杆的泥浆通道上设臵一个阀门机构,造成钻杆内泥浆流动压力的瞬时变化,从而产生一个压力脉冲。
此压力脉冲以一定速度传到地面,被装在泥浆立管上的压力传感器接受。
常见的泥浆发生器有正脉冲发生器(图8)、负脉冲发生器(图9)、连续脉冲发生器(图10)以正脉冲(阀门的动作使钻杆内你将压力瞬时升高)发生器为例,反之可推出负脉冲发生器的定义及原理。
工作原理:被测参数经数字化编码后,变成高“1” 、低“0”电信号,由它控制钻井液脉冲发生器的蘑菇头,当编码为“1”时,蘑菇头上移,使流经锥形口的钻井液阻力增加,产生附加压力。
当编码为“0”时,蘑菇头向下回到原位,压力降至正常。
图10 所示,在钻杆内的泥浆通道上有上下两个带槽的固定圆盘,下盘可有电机带动。
通常泥浆流的冲力可使下盘旋转,转速约为12rad/s, 在地面上便可接收到近12 千赫的正弦信号。
当需要发射信号时,只要给电机施加电信号,使之带动圆盘反向旋转。
各种泥浆压力脉冲发生器都有暴露于泥浆流内的可动部件,要保证它们在井下工作中灵活可靠又防震耐磨。
(制作的保密工作很强)各公司研制的随钻测井仪虽然具体线路不同,但功能大致一样。
四、随钻测井的类型1、随钻电阻率测井随钻电阻率测井是随钻测量技术的核心之一,是及时评价油层的关键技术。
最新随钻电阻率测量技术是对地层的传导性进行响应,而不是对地层电阻率特征响应。
技术核心是在钻杆内设臵电磁波及自然伽马能谱仪器。
最新的电阻率随钻测MPR(Multiple propagation resistivity) 技术属于补偿式电磁波传播电阻率仪器,它有两组补偿发射天线,接收器采用接收上下对称发射器信号的方式进行补偿测量。
MPR 测量原理图MPR 技术井下仪器MPR 技术的主要特点:1)精度高,探测范围大;2)入剖面多参数测量;3)井眼影响小;4)降低了油基泥浆不良影响的敏感性;5)改进了薄层电阻率响应;6)提高了水平井中层边界划分能力。
2、随钻声波测井20 世纪90 年代后期,在随钻声波测井技术问世后不久,有作业者使用随钻声波测井技术在几个大型作业区进行了实验,旨在提高钻井效率。
声波特性参数测量技术APX(Acoustic Proper ties explorer) 是贝克阿特拉斯公司最近推出的声波参数随钻测井新技术。
APX 仪器结构如右图所示。
宽频声源在远离钻头方向,24 个接收器组成阵列数据采集系统(6 组,每组4 个) 。
系统配有井下组合模块式数据采集系统及数据实时处理系统。
发射器以适当的频率向地层发射声能,阵列接收器接收沿井壁传播的波形能量。
声波传感器采用圆柱形压电器件。
多接收器组合及长短源距组合可以得到高质量的地层信号。
适当的滤波技术可以减小钻机噪声、钻头跳动及泥浆流动的影响。
先进的隔音技术消除了仪器体波的干扰。
声波速度直接受井壁附近地层的影响,所以利用这项技术可以得到准确的地层声波时差。
所测量信息除实时传到地面外还存储在井下高速存储器中。
APX 井下仪器随钻声波测量信息(APX) 主要用于:①一般孔隙度及碳酸盐岩裂缝性孔隙度计算;②地震资料时深转换及合成地震记录;③岩石机械特性分析及钻井事故预测;④纵横波能量、频率分析;⑤裂缝性地层研究;⑥与常规测井资料做相关分析对比。
3、随钻核磁共振测井核磁共振(NMR)随钻测井(LWD)代表了地质导向和地层评价技术的重大进步,将电缆NMR 的优势带入了实时钻井作业中。
现在,在钻井过程中可以得到渗透率和产能估算等关键的岩石物理参数,这些将帮助地质学家和钻井人员优化储层内井眼轨迹的部署。
随钻NMR 测井的关键技术:1:磁体尺寸严格受限随钻NMR 测井仪器挂接在钻铤中,钻铤骨架需占用较多空间承受破碎岩石过程中得机械运动;仪器中心还必须有钻井液循环的通道,磁体体积受到严格限制。
因此,设计适合挂接在标准钻铤中管状钻头,采用相应的材料和合理优化的探头结构是解决这一问题的主要对策。
2:复杂运动中测量(1)轴向转动是指钻头转动切割、破碎岩石,是最主要的钻井方式。
在旋转状态下测量,随钻NMR测井仪的共振敏感区域在井周方位上不能存在盲区,敏感区域内的磁化量和磁化方向不能随磁体旋转而改变。
(2)纵向钻井是测进过程中不断有地层进入和离开敏感区域。
较高的测速要求是电缆NMR测井需要解决的重要问题。
相对较慢的钻进速度(ROP)对随钻NMR测井有利,可设计纵向稍短的敏感区域提高纵向分辨率;较低的测速允许更多的据累加提高信噪比,也为耗时、但对径向振动不敏感的T1 测量创造了条件。
(3)径向振动。
NMR测量为具有频率选择性的切片定位观测,敏感区域在径向上的位臵由射频脉冲频率和质子的拉莫尔频率匹配决定。
在仪器径向振动时进行测量,敏感区域将在不同径向深度的地层中摆动,使地层中的氢核时刻处于不同强度的静磁场中。
这种运动会使自旋发生散相,形成额外的回波幅度衰减。
衰减的速率受静磁场变化程度控制,与磁场梯度、振动速度、回波间隔和回波个数有关。
严重的径向振动使敏感区域完全脱离上一次回波采集时的位臵,导致测量失败。
这一问题的对策在于:①降低静磁场梯度和增加射频脉冲带宽,增大共振敏感区域厚度,降低变化的敏感区对总信号的贡献;②降低磁场梯度,减小相同径向位移情况下的磁场变化引起的散相;③缩短回波间隔,以缩短相邻回波采集时的敏感区位移;④优化采集模式,控制回波个数,回波个数越多,后续回波采集时静磁场变化越复杂,长T2组分受到的影响越明显;⑤选用居中稳定器缩短仪器外壁与井壁间的距离,限制径向振动幅度。
随钻NMR测井仪探头结构3:仪器功率的要求随钻NMR测井仪发射射频脉冲所需的功耗很大,随钻NMR测井没有地面的直接电力供应,常用大容量电池组和井下涡轮发电机供电。
要实现长时间的作业,需要在满足信噪比的条件下尽量降低功耗。
降低频率、减少切片个数和减小探测深度是解决这一问题的主要对策。
4、随钻放射性测井随钻放射性仪器主要有补偿中子仪和方位密度中子仪器两种在井眼状况良好时,能保证密度探头与地层的良好接触,得到可靠的测量值。
但在扩径的情况下,密度探头和地层之间不可避免出现空隙,当空隙达到一定程度时,密度测量值就失真。
因此,中子探测仪的设计都是居中设臵。
另外,由于随钻中子比随钻密度受井眼的影响小,所以随钻中子测井质量更稳定。
五、随钻测井的优势1、当发生意外时,如遇到超压层钻井,使用LWD,不致于失去所钻井的信息;2、在地层被钻井液侵入前测井,有助于确定地层真电阻率;3、提高水平钻井的效率。
在水平井和大斜度井中,采用LWD 作为“地质向导”,即在钻井过程中,实时测量地质和油层参数,引导钻进沿着特定的地层界面进行,比用常规测井更节省钻时;4、可进行时间推移测井,比较这些多次测井曲线,可获得区别油、水层的信息。
六、随钻测井的应用1、随钻测井技术在钻井工程中的应用随钻测井技术在地质导向上的应用使定向钻井技术又上了一个台阶。
用于定向钻井的随钻测井系统包括井下仪器和地面信息系统。
前导模拟软件是地面信息系统的核心。
井下仪器提供实时测量的数据, 前导模拟软件完成数据分析及现场决策、实时指导钻井施工、完成地质导向钻井。
2、随钻测井技术用于地层对比评价随钻测井可以在发生泥浆侵入之前获得地层的真实信息, 这是非常重要的。
由于一般的测井仪器探测深度都比较浅, 特别是高分辨率及成像类的测井仪器, 其测量参数受泥浆滤液侵入的影响严重, 给各种用电测井参数评价油气层真电阻率的方法带来困扰, 随钻测井解决了这些问题。