难加工结构与难加工材料

合集下载

机械行业难加工材料与结构的加工技术(ppt 80页)

机械行业难加工材料与结构的加工技术(ppt 80页)
难加工结构一般可分为外型面难加工结构和内型面难 加工结构。
外型面难加工结构件主要有:薄壁件、叶片、涡轮盘 、微小微细零件外型面及其它特殊复杂的型面。
内型面难加工结构主要有:蜂窝结构、阵列孔、有特 殊要求的小孔、窄缝及其它特殊复杂的形腔结构。
南京航空航天大学机电学院052系
难加工材料的加工技术
南京航空航天大学机电学院052系
难加工材料与结构概述-分类
(4)低温性能好 钛合金在低温和超低温下能保 持力学性能。
(5)化学活性大 钛的化学活性大,与大气中的 O2、N2、H2、CO、CO2、水蒸气、氨气等均产 生剧烈的化学反应。
(6)导热性差 钛的导热系数低,约为Ni的1/4, Fe的1/5,Al的1/14
(1)钛合金具有密度小、强度高、能耐各种酸、碱、 海水、大气等介质的腐蚀等一系列优良的力学、物理 性能,因此在航空、航天、核能、船舶、化工、冶金 、医疗器械等工业中得到了越来越广泛的应用。
南京航空航天大学机电学院052系
难加工材料与结构概述-应用
1.钛合金
记忆钛合金镜架
钛合金刀具
南京航空航天大学机电学院052系
2.主要内容:
1)难加工材料

1)难加工材料的分类

2)难加工材料的应用
2) 难加工结构
南京航空航天大学机电学院052系
难加工材料与结构概述-分类
1.钛合金 2.高温合金 3.不锈钢 4.高强度钢与超高强度钢 5.复合材料 6.硬脆性材料
南京航空航天大学机电学院052系
难加工材料与结构概述-应用
2.高温合金
低膨胀、恒弹性、高弹 性高温合金
精密合金高温合金不锈钢棒
南京航空航天大学机电学院052系

难加工材料的主要种类及应用领域

难加工材料的主要种类及应用领域

难加工材料的主要种类及应用领域难加工材料是指具有较高硬度、强度和耐磨性的材料,其加工性和可塑性较差。

这些材料通常需要使用特殊的加工工艺和设备来进行加工和形成。

主要的难加工材料包括高速钢、高铬铸铁、硬质合金、陶瓷材料、航空铝合金和钛合金等。

以下将对每种材料的性质和应用领域进行详细介绍。

高速钢:高速钢是一种含有大量合金元素(如钨、钼、钴等)的高温刚性材料。

其具有耐高温、耐磨和耐热腐蚀的特点,硬度较高,加工性较差。

高速钢广泛应用于切削工具、模具零件和刀具等领域,如数控机床刀具、高硬度切削刀具等。

高铬铸铁:高铬铸铁是一种具有较高强度和硬度的铸造材料。

其含有较高的铬含量,能够增加材料的耐磨性和耐蚀性。

高铬铸铁被广泛应用于矿山机械、冶金工程、水处理设备和石化设备等领域,如磨矿机、破碎机、球磨机等。

硬质合金:硬质合金是一种由硬质颗粒(如碳化钨、碳化钼等)和金属结合剂(如钴或镍)组成的复合材料。

硬质合金具有较高的硬度和耐磨性,广泛应用于切削和研磨工具、矿山工具、粉末冶金等领域,如车削刀片、铣削刀片、刨刀等。

陶瓷材料:陶瓷材料是由金属元素和非金属元素形成的非金属材料。

其具有较高的硬度、耐磨性和耐腐蚀性。

陶瓷材料广泛应用于高温炉具、电子器件、医疗器械和化学工业等领域,如陶瓷刀具、瓷砖、陶瓷零件等。

航空铝合金:航空铝合金是一种具有良好强度和轻质的金属材料。

其具有较高的硬度和耐磨性,加工难度较大。

航空铝合金广泛应用于航空航天工业和汽车工业的结构部件,如飞机主机壳、发动机部件、汽车车身等。

钛合金:钛合金是一种具有较高强度和轻质的金属材料。

其具有较高的硬度、耐腐蚀性和耐高温性,加工性较差。

钛合金被广泛应用于航空航天工业、化工设备和医疗器械等领域,如航空发动机零部件、化工反应容器、人工关节等。

综上所述,难加工材料主要包括高速钢、高铬铸铁、硬质合金、陶瓷材料、航空铝合金和钛合金等。

这些材料具有较高的硬度、强度和耐磨性,但加工性较差。

增材制造技术在机械加工行业的应用

增材制造技术在机械加工行业的应用

增材制造技术在机械加工行业的应用增材制造技术(Additive Manufacturing,AM)是一种通过逐层堆叠材料的方式制造零件和构件的先进制造技术。

随着技术的不断发展和成熟,增材制造技术在机械加工行业的应用也逐渐增多。

本文将探讨增材制造技术在机械加工行业的应用现状和发展趋势。

增材制造技术是一种革命性的制造方法,它打破了传统制造技术对于材料和工艺的限制,可以实现复杂几何形状的零件制造。

相对于传统的机械加工技术,增材制造技术具有以下优势:1. 设计自由度高:增材制造技术可以实现复杂形状的零件制造,因此设计师可以更加灵活地设计零件的结构和形态,从而实现更高的性能和功能。

2. 节约材料:传统的机械加工技术通常需要从原材料中削减出零件的形状,这样会产生大量的废料。

而增材制造技术可以精确地控制材料的使用,减少废料的产生,从而节约材料。

3. 灵活性强:增材制造技术可以灵活地调整生产过程,适应不同的生产需求。

可以根据需求随时修改设计,并实现快速制造。

4. 生产效率高:增材制造技术可以实现快速的零件制造,缩短生产周期,提高生产效率。

基于以上优势,增材制造技术在机械加工行业的应用受到了越来越多的关注。

在机械制造领域,增材制造技术主要应用于以下几个方面:1. 快速成型技术:增材制造技术可以实现复杂形状零件的快速成型,可以应用于制造模具、样件、小批量定制产品等。

通过增材制造技术,制造商可以更加快速地响应市场需求,缩短产品的开发周期。

2. 复杂结构零件制造:传统加工方法难以加工的复杂结构零件,通过增材制造技术可以轻松实现,例如镂空结构、内部通道等。

3. 零部件修复和再制造:利用增材制造技术可以对受损的零部件进行修复或再制造,延长零部件的使用寿命,减少资源浪费。

4. 定制化生产:增材制造技术可以根据客户需求实现零部件的个性化定制,满足不同客户的特定需求。

目前,增材制造技术在机械加工行业的应用已经取得了一定的进展,但仍存在一些挑战和问题:1. 材料性能和质量控制:增材制造技术需要特定的金属或塑料材料作为原材料,要求原材料具有一定的性能和质量。

特种加工的概念

特种加工的概念

特种加工的概念特种加工是指使用特殊的加工方法和工艺,对特殊材料进行加工处理的一种加工方式。

特种加工一般需要根据具体材料的性质和要求,采用特殊的加工设备和工作流程,以达到特定的加工效果和要求。

特种加工广泛应用于工业生产中,例如制造航空航天器件、核工程设备、精密仪器仪表等。

对于这些特殊材料和零部件,传统的加工方法和技术已经不能满足其加工要求,因此需要采用特种加工方法进行加工处理。

特种加工具有以下几个特点:1. 高精度加工:特种加工常涉及到高精度的加工要求,通过特殊的加工设备和工艺,可以实现对材料的微观结构和尺寸的精确控制。

例如,采用激光加工技术可以实现微米级的加工精度,满足高精度零部件的加工要求。

2. 难加工材料的加工:有些材料具有较高的硬度、脆性或热导性等特殊性质,传统的加工方法难以对其进行有效加工。

特种加工可以克服这些困难,通过特殊的工艺和设备,对难加工材料进行切削、热处理、电火花等加工方式,以实现对其精密加工。

3. 特种材料的加工:特种加工主要应用于特种材料的加工,例如高温合金、超硬材料、复合材料等。

这些特种材料具有很高的性能,但同时也具有较高的困难度和成本。

特种加工可以通过特殊的加工方法和设备,充分发挥特种材料的性能,实现其高效加工和利用。

4. 创新加工技术的应用:特种加工是工业技术创新的重要方向之一,通过引入创新的加工技术和设备,可以提高加工效率和加工质量。

例如,激光切割、电子束熔化、激光焊接等特种加工技术的应用,使得加工过程更加灵活、高效和精确。

5. 环保节能加工:特种加工在加工过程中注重节能减排和环保问题。

传统加工方法常常伴随着大量的废料和有害气体的排放,对环境造成较大的污染。

而特种加工通过改进加工工艺和设备,实现精准加工,减少废料产生,降低能源消耗和环境污染。

总之,特种加工是一种对特殊材料进行精密、高效、环保加工的技术和方法。

它不仅可以满足各种特殊材料的加工需求,而且对工业技术创新和工业发展起到重要推动作用。

为什么钛合金是一种难加工材料?

为什么钛合金是一种难加工材料?

钛合金难加工原因钛合金热传导率低、加工硬化严重、与刀具的亲和性高、塑性变形小等4个特点是造成钛合金难以加工的本质原因。

其被切削指数只相当于易削钢的20%。

热传导率低钛合金热传导率大约只有45#钢的16%左右,加工中热量不能及时传导出去,造成切刃局部高温(加工中的刀尖温度是45#钢的1倍以上),容易引发刀具扩散磨损。

加工硬化严重钛合金加工硬化现象明显,表面硬化层相比不锈钢要严重,会给后续加工造成一定的困难,比如,刀具边界损伤增大。

与刀具的亲和性高与含钛的硬质合金粘结严重。

塑性变形小约为45钢的弹性模量的1/2,故弹性恢复大,摩擦严重。

同时,工件也容易发生装夹变形。

加工钛合金的工艺诀窍在理解钛合金加工机理的基础上,加上以往的经验,加工钛合金的主要工艺诀窍如下:(1)采用正角型几何形状的刀片,以减少切削力、切削热和工件的变形。

(2)保持恒定的进给以避免工件的硬化,在切削过程中刀具要始终处于进给状态,铣削时径向吃刀量ae应为半径的30%。

(3)采用高压大流量切削液,以保证加工过程的热稳定性,防止因温度过高导致工件表面变性和刀具损坏。

(4)保持刀片刃口锋利,钝的刀具是热集结和磨损的原因,容易导致刀具失效。

(5)尽可能在钛合金最软的状态加工,因为淬硬后材料变得更难加工,热处理提高了材料的强度并增加刀片的磨损。

(6)使用大的刀尖圆弧半径或倒角切入,尽可能把更多的刀刃进入切削。

这可以减少每一点的切削力和热量,防止局部破损。

在铣削钛合金时,各切削参数中切削速度对刀具寿命的影响最大,径向吃刀量(铣削深度)次之。

从刀片入手解决钛加工难题钛合金加工时出现的刀片沟槽磨损是后面和前面在沿切削深度方向上的局部磨损,它往往是由于前期加工留下的硬化层所造成的。

刀具与工件材料在加工温度超过800℃的化学反应和扩散,也是形成沟槽磨损的原因之一。

因为在加工过程中,工件的钛分子在刀片的前面积聚,在高压高温下“焊接”到刀刃上,形成积屑瘤。

难加工材料

难加工材料

难加工材料材料加工是指对原料进行加工改造,使其达到设计要求的一系列工艺。

在材料加工中,有些材料由于其特殊的性质,使得加工变得困难,需要采取一些特殊的加工方法。

下面就为大家介绍几种难加工材料及其加工方法。

首先,难加工材料之一是高温合金。

高温合金由于其高熔点和高硬度,使得加工变得困难。

在加工高温合金时,常用的加工方法包括电火花加工、激光加工和超音波加工等。

电火花加工是利用电火花放电腐蚀工件表面,使其形成所需轮廓的一种加工方法。

激光加工则是利用激光束将工件表面的材料熔融并挥发,从而获得所需形状。

超音波加工是利用超音波振动工具切割工件表面的一种加工方法。

其次,还有难加工材料是复合材料。

复合材料由于其由不同性质的材料组合而成,使得加工变得困难。

在加工复合材料时,常用的加工方法包括研磨加工、射出成型和压制成型等。

研磨加工是利用砂轮或研磨片对工件表面进行切削磨削的一种加工方法。

射出成型是将熔融的复合材料通过射出机加热喷射到模具中,并经冷却固化得到所需形状。

压制成型则是利用压力将熔融的复合材料填充到模具中,经冷却固化得到所需形状。

最后,还有难加工材料是硬质合金。

硬质合金由于其高硬度和脆性,使得加工变得困难。

在加工硬质合金时,常用的加工方法包括电火花加工、磨削加工和激光加工等。

电火花加工能够在硬质合金表面形成一层陶瓷膜,从而减小工件和工具的接触面积,降低切削力,从而使得加工更容易进行。

磨削加工则是利用砂轮或研磨片对硬质合金表面进行切削磨削的一种加工方法。

激光加工则是利用激光束将硬质合金表面的材料熔融并挥发,从而实现加工目的。

综上所述,对于难加工材料,我们需要结合其特殊性质采取相应的加工方法。

这些方法中包括电火花加工、激光加工、超音波加工、研磨加工、射出成型和压制成型等。

这些方法能够较好地克服难加工材料的特点,实现高质量、高效率的加工过程。

典型难加工零件工艺分析及编程

典型难加工零件工艺分析及编程

绿色制造的推广
要点一
环保材料
采用环保材料,如可回收材料、低毒材料等,减少对环境 的污染。
要点二
节能技术
采用节能技术,如高效加工技术、能源回收技术等,降低 能源消耗和排放。
THANKS
感谢观看
工艺分析的方法
工艺流程规划
根据零件的结构和加工要求,规划合理的加工流 程和顺序。
刀具与夹具选择
根据加工要求和零件结构,选择合适的刀具和夹 具,确保加工过程的稳定性和精度。
ABCD
加工参数确定
根据材料特性、刀具性能和加工条件,选择合适 的切削速度、进给速度和切削深度等参数。
工艺风险评估
对工艺流程和参数进行风险评估,确保加工过程 的安全性和可靠性。
编程技巧的应用
总结词
运用有效的编程技巧可以提高程序的可读性和执行效率。
详细描述
使用条件语句、循环语句和子程序等结构化编程技巧,可以简化复杂的加工过程。同时,利用优化算法和并行处 理技术可以提高程序的运行速度。
数控编程软件的使用
总结词
熟练掌握数控编程软件是实现高效编程的关键。
详细描述
常用的数控编程软件包括Mastercam、Fusion 360和SolidWorks等。这些软件提供了丰富的库函数 和工具,可以帮助程序员快速生成准确的数控代码。此外,程序员还需要了解如何设置工件坐标系、 选择合适的加工策略和刀具路径优化等技术。
降低生产成本
准确的工艺分析有助于减少 材料浪费、降低能耗和减少 刀具磨损,从而降低生产成 本。
提高产品质量
合理的工艺安排和参数选择 有助于减小加工误差,提高 零件的精度和一致性,从而 提高产品质量。
保障生产安全
正确的工艺分析可以避免因 不合理的加工方法和参数导 致的设备故障或生产事故, 保障生产安全。

难加工材料

难加工材料

摘要:阐述了难加工材料的特点,重点介绍了对难加工材料进行车削加工时应采取的措施,列举了几种不同材料车削时应选取的参数。

引言在压缩机的生产过程中,经常会接触到一些难加工的材料,如制造压缩机叶轮的材料有一种含有Cr、Ni、Mo等合金元素的高强度结构钢,这种钢材一经调质处理达到一定的硬度时,很难车削。

钦合金叶轮因为钦合金元素的存在给车削带来诸多麻烦,大型硬齿面齿轮,渗碳淬火的过程会造成一些需要加工的表面过硬而难以车削加工;还有一些运输机械常用紫铜等纯金属制造的套类零件也给车削带来相当大的麻烦。

为了解决这些难加工材料的车削加工问题,需要对难加工材料的特性有足够的了解,然后采取有针对性的措施才能予以解决。

1 难加工材料的加工特点1.何谓难加工材料所谓难加工材料,主要是指切削加工性能差的材料。

金属材料切削加工性的好坏,主要是从切削时的刀具耐用度、已加工表面的质量及切屑形成和排除的难易程度3个方面来衡量。

只要上述这3个方面有一项明显的差,就可认为是难加工材料。

常见的难加工材料有高强度钢、不锈钢、高温合金、钦合金、高锰钢和纯金属(如紫铜)等。

2.难加工材料的切削特点a.车削温度:在切削难加工材料时,切削温度一般都比较高,主要原因有以下两方面。

i.导热系数低:难加工材料的导热系数一般都比较低(纯金属紫铜等除外),在切削时切削热不易传散,而且易集中在刀尖处。

ii.热强度高:如镍基合金等高温合金在500一800℃时抗拉强度达到最高值。

因此在车削这类合金时,车刀的车削速度不宜过高,一般不宜超过10m/min,否则刀具切人工件的切削阻力将会增大。

b.切削变形系数和加工硬化:难加工材料中的高温合金和不锈钢等,这些材料的变形系数都比较大。

在较小的切削速度开始,变形系数就随着车削速度的增大而增大,在切削速度大约达到6m/min的情况下,切屑的变形系数将达到最大值。

由于车削过程中形成切屑时的塑性变形,金属产生硬化和强化,使切削阻力增大,刀具磨损加快,甚至产生崩刃。

金属结构工程加工制作特点和难点分析及解决措施

金属结构工程加工制作特点和难点分析及解决措施

金属结构工程加工制作特点和难点分析及
解决措施
引言
金属结构工程加工制作是一项重要的工程活动,它在建筑、制造和其他领域中扮演着关键的角色。

然而,由于金属材料的特性和制作过程的复杂性,金属结构工程加工制作常常面临一些特点和难点。

本文将对这些特点和难点进行分析,并提出相应的解决措施。

特点分析
1. 材料特性:金属材料具有高强度、耐腐蚀和良好的导电性等特点,但也存在着容易变形、容易受热膨胀和收缩等特点。

2. 制作过程复杂:金属结构加工需要进行多个步骤,如切割、焊接、折弯等,且这些步骤需要准确无误地执行。

3. 尺寸精度要求高:金属结构工程加工制作往往需要满足精确的尺寸要求,以确保结构的稳定性和安全性。

难点分析
1. 设计与加工不匹配:由于设计和加工环节之间的信息传递不畅,导致可能出现设计与加工之间不匹配的情况,进而影响结构质量。

2. 制作工艺选择困难:由于金属结构的复杂性,选择合适的制
作工艺往往是一个困难的决策。

3. 操作技术要求高:金属结构加工需要熟练的操作技术和经验,对操作人员的要求较高。

解决措施
1. 加强设计与制作间的沟通与协作,确保设计和加工之间的一
致性。

2. 提高技术人员的专业水平,加强对制作工艺的研究和掌握,
以选择最佳的制作工艺。

3. 建立标准化的操作规程,培训操作人员,提高其技术水平与
操作能力。

结论
金属结构工程加工制作具有一些特点和难点,但通过合理的分
析和解决措施,这些问题是可以克服的。

加强沟通协作、提高技术
水平和标准化操作是提高金属结构工程加工制作质量的关键因素。

难加工材料

难加工材料

加工高温合金、不锈钢材料时,刀具切削用量的选用一、高温合金的切削特点1.性能特征高温合金是一种多组元、激活能很高的高熔点,金属元素含量很多的复杂合金化材料。

有极好的热稳定性及热强性。

热稳定是高温下抗氧化、抗腐蚀的能力。

热强性是指高温下抵抗塑性变形和断裂的能力。

如以45号钢的切削加工性为100%,则高温合金的相对切削加工性为5%—20%。

可以说高温合金是各种各种难加工材料中最难切削的材料。

2.切削特点⑴切削力大:由于高温合金出众的高熔点、激活能大的组元,原子结合十分稳定。

切削时要使其原子脱离平衡位置,所需的能量很大,变形抗力大大上升。

合金中沉淀的硬化相对会增大塑性变形抗力,而塑性变形抗力使晶格严重扭曲,硬度大大提高,使变形抗力加大。

所以切削高温合金时,切削力比一般钢大2-3倍。

⑵切削温度高:由于切削时巨大的塑性变形,刀具与工件,切屑之间存在着强烈的摩擦,产生大量的切削热。

高温合金的导热系数很低,致使变形区的切削热高度集中于极小的切削区域内,使刀具切削刃及刀尖处的温度非常高。

在高温下会加剧刀具的扩散磨损和氧化磨损。

⑶加工硬化现象严重:高温中,高温合金的强化系数大,并且在切削过程中,合金中的强化相从固液中分解出来,弥散分布,使强化能力增加,加大了硬化程度。

切削高温合金时,已加工表面硬度要比基体硬度高的多约50%—100%。

⑷刀具易磨损:由于高温合金中的各种强化相和加工硬化现象,在切削过程中给刀具造成了巨大的摩擦,发生磨料磨损。

在高温高压条件下,刀具材料与被加工材料之间的亲和作用而造成粘附,使切屑与刀具之间出现粘结现象,造成粘结磨损。

在切削高温合金时,刀具除出现一般的正常磨损外,还会出现边界磨损及沟纹磨损。

主要原因是加工过程中高温合金的加工硬化所造成。

3.刀具的选用根据前面的了解,高温合金的切削加工性的确很差,导致刀具的耐用度低。

因此,应当寻求各种提高刀具的耐用度的措施。

⑴从刀具材料的选择着手:切削高温合金的刀具,要具备有高温硬度,高的耐磨性,强度和冲击韧性,良好的导热性,抗粘性及抗氧化性。

难加工材料的分类及难切削的原因

难加工材料的分类及难切削的原因

难加工材料的分类及难切削的原因
郑文虎
【期刊名称】《铁道机车车辆工人》
【年(卷),期】1996(000)003
【摘要】所谓难切削材料,科学地说,就是切削加工性差的材料,即硬度在HB>250,强度σ_b>100kg/mm^2,延伸率δ>80%,冲击值a_k>10kg·m/mm^2,导热系数λ<0.1cal/cm·s·℃的材料。

但在日常生产中,切削加工所用的材料种类很多,性能各异。

【总页数】4页(P21-23,29)
【作者】郑文虎
【作者单位】无
【正文语种】中文
【中图分类】TB39
【相关文献】
1.难加工材料的切削加工及刀具材料的选用 [J], 边梅彦
2.难加工材料的切削加工和刀具材料合理选择 [J], 汤铭权
3.难切削加工材料螺旋铣孔切削动力学及其试验研究 [J], 谭勇;胡小兵
4.谈切削加工中的难加工材料切削技术 [J], 杜明伟
5.跨越难切削材料加工尖峰——全球知名刀具企业难切削材料刀具技术最新进展[J], 胡晓睿
因版权原因,仅展示原文概要,查看原文内容请购买。

怎样算是难加工零件,遇到怎么办

怎样算是难加工零件,遇到怎么办

经常听到做机加工的人说某个零件难加工,那么到底什么样的零件才算难加工呢?今天为您全面总结一下,难加工零件的种种特征,以及在加工难加工零件时,需要注意哪些问题。

难加工零件的特征:首先在于零件材料。

难加工材料普遍具有“四高”,即高硬度、高强度、高韧性和高脆性的特点,另外,还有的工件导热性低,有微观的硬质点或硬夹杂物,化学性质活泼。

这些特性会导致切削过程中的切削力变大、切削热增加、切屑不易控制、刀具耐用度下降,从而影响加工的表面质量,降低加工效率和加工质量。

其次是零件外形。

外形越复杂的零件越难加工,像是具有不规则外形的异形件、壁厚度不一致的箱体类零件、半封闭腔体零件,都无法再普通机床上加工,必须使用数控设备才能够加工出来。

还有加工精度和加工误差的要求。

加工精度和加工误差都是评价加工表面几何参数的术语。

加工精度越高误差也就越低,反之亦然。

有些工件对加工精度有着极高的要求,加工误差必须控制在很小的范围内,这类工件加工起来难度是比较大的。

加工难加工零件的注意问题:遇到难加工零件,有以下几个问题需要注意:首先是工艺编制。

在工艺编制的过程中,要根据零件的实际情况设定合理的加工顺序,并选择合适的加工工具,这样有助于加工更加便捷、快速、高效的完成。

如果工艺编制不合理,就会严重影响到加工的效率和质量。

其次是刀具的选择。

选择了适合的刀具可以使加工顺利地进行,尤其对于难加工零件,正确选择刀具就显得更加重要。

选择刀具应该充分考虑机床的加工能力、工件材料的性能、加工工序、切削用量以及其他相关因素。

例如在粗加工时,由于需要快速切除大量材料,应选择足够大且拥有足够切削能力的刀具;在精加工时,为了保证零件外形结构的精度,应选择较小的刀具;在切削低硬度材料的时候,可以使用高速钢刀具,而当零件材料硬度很高时,就必须选择硬质合金刀具。

接下来是零件的装卡。

正确装卡可以保证零件在切削过程中,在切削力的作用下不会发生位移,始终保持正确的位置。

难加工材料

难加工材料

进给速度 vf
进给量f 或 进给速度vf 切削速度v 背吃刀量ap
切削用量三要素
在切削加工过程中,需要针对不同的工件材料、 刀具材料和其它技术经济要求来选定适宜的切削 速度vc 、进给量f 或进给速度vf ,还要选定适宜的 背吃刀量ap值和切削宽度ae值。
切削用量选择
选择顺序
背吃刀量ap 进给量fz 切削速度vc
工欲善其事,必先利其器
切削加工是现代机械 制造工业中最基本的 加工方法。 切削加工质量的好坏, 效率的高低,直接决定 产品的质量、性能 和生产成本。
要高质量、高效率 地进行切削加工, 就要求有高质量、高 性能的生产工具,包括 切削机床、切削刀具、 夹具和量具等。
切削刀具 的作用
刀具是直接对零件 进行加工的,刀具 的性能和质量的优 劣,直接影响加工效率、 加工精度和表面质量。
常见难加工材料及特点
•(2)宏观高硬度材料:如淬火钢、硬质合 金、陶瓷、冷硬铸铁、合金铸铁、喷涂材料 (镍基、钴基)等。
•特点是硬度高。切削这类材料时,由于切削 力大,切削温度高,刀具主要是磨料磨损和 崩刃。
常见难加工材料及特点
•(3)加工时硬化倾向严重的材料,如不锈 钢、高锰钢、耐热钢、高温合金等。 •这类材料的塑性高、韧性好、强度高,强化 系数高。切削加工时的切削表面和已加工表 面硬化现象严重。由于这类材料的强度高, 导热系数低,切削温度高,切削力大,刀具 主要承受磨料磨损、粘结磨损和热烈磨损。
螺纹铣刀和倒角刀
主运动、进给运动与合成切削运动
在切削加工过程中的运动单元分为主运动和进给 运动两种。 两个运动向量之和,称为合成切削运动。 例:在车床上,工件回转运动是主运动。 在钻床和铣床上,刀具的回转运动是主运动。

机械行业难加工材料与结构的加工技术

机械行业难加工材料与结构的加工技术

机械行业难加工材料与结构的加工技术在机械行业中,难加工材料和结构的加工技术是一个非常重要的领域。

难加工材料通常指那些具有较高硬度、强度和耐磨性的材料,如高温合金、陶瓷材料、硬质合金等。

而难加工结构则是指那些拥有复杂形状、几何结构困难、精度要求高的工件。

为了克服这些困难,机械行业开发了一系列的加工技术。

一种常见的难加工材料加工技术是电火花加工。

电火花加工利用电弧放电的高温高能量特性,在工件表面形成微小的坑洞或沟槽,进而去除材料。

这种加工技术适用于高硬度的材料,如陶瓷和硬质合金。

然而,由于在加工过程中材料的熔化和再凝固,导致工件表面粗糙度较高,因此通常需要进行后续的研磨和抛光。

另一种难加工材料加工技术是超声波加工。

超声波加工利用高频声波产生的波动能量,对工件表面施加正交力,从而去除材料。

这种加工技术适用于高韧性和高强度的材料,如钛合金和不锈钢。

超声波加工具有高效、精确、不产生热影响等优点,因此在航空航天和医疗器械等领域得到广泛应用。

此外,对于难加工结构的加工技术,激光加工是一种常用的方法。

激光加工利用高能量激光束对工件表面进行加热和熔化,然后通过气体喷吹或机械力去除熔化的材料。

激光加工可以实现对复杂形状的加工,并具有高精度和无接触的特点。

然而,由于激光加工过程中会产生大量的热,因此需要对工件进行冷却,以防止过热造成的变形和损伤。

总之,难加工材料和结构的加工技术对于机械行业具有重要的意义。

通过电火花加工、超声波加工和激光加工等方法,可以克服难加工材料和结构带来的困难,实现高效、精确和符合工程要求的加工目标。

难加工材料和结构的加工技术是机械行业中的一个重要领域,因为这些材料和结构在很多行业中都有广泛的应用,包括航空航天、汽车制造、能源等。

这些材料和结构具有较高的硬度、强度和耐磨性,对于传统的加工方法来说,加工难度较大。

为了克服这些困难,机械行业发展了一系列的加工技术。

首先,电火花加工是一种常用的加工技术,适用于难加工材料的加工。

设计机械零件时应满足哪些基本要求

设计机械零件时应满足哪些基本要求

设计机械零件时应满足哪些基本要求设计机械零件时应满足哪些基本要求随着工业的发展,机械零件的应用越来越广泛,因此设计机械零件的要求也越来越高。

在设计机械零件时,需要考虑多方面因素,以确保其能够满足使用需求并具有良好的性能和可靠性。

本文将从材料选择、结构设计、加工工艺等方面详细介绍设计机械零件时应满足的基本要求。

一、材料选择1. 材料性能:在选择材料时,需要考虑其强度、硬度、韧性、耐腐蚀性等方面的性能是否符合使用要求。

同时还需要考虑材料的密度和成本等因素。

2. 材料适用范围:不同材料适用于不同的环境和条件。

例如,在高温环境下使用的零件需要选择能够承受高温的材料。

3. 材料可加工性:在选择材料时还需要考虑其可加工性,以确保可以实现所需形状和尺寸,并且加工过程中不会出现问题。

二、结构设计1. 结构简单可靠:机械零件的结构应该尽可能简单,以便于制造和维修。

同时还需要确保结构可靠,能够承受使用过程中的各种力和负载。

2. 尺寸精确:机械零件的尺寸应该精确,以确保其与其他零件的配合和使用效果。

在设计时需要考虑加工误差和装配误差等因素。

3. 考虑装配:在设计机械零件时需要考虑其与其他零件的装配情况,以确保能够顺利组装并正常运转。

同时还需要考虑拆卸和维修时的方便性。

三、加工工艺1. 加工难度:在设计机械零件时需要考虑其加工难度,以确保能够实现所需形状和尺寸。

同时还需要考虑加工成本等因素。

2. 加工精度:机械零件的加工精度直接影响其性能和可靠性。

因此,在设计时需要考虑加工精度,并采取相应措施来保证加工精度。

3. 表面处理:在设计机械零件时还需要考虑其表面处理方式,以提高其耐腐蚀性、耐磨性和美观度等方面的性能。

四、其他要求1. 安全性:机械零件的设计应该考虑其安全性,以确保在使用过程中不会对人员和设备造成危害。

2. 环保性:在设计机械零件时需要考虑其环保性,尽可能选择符合环保要求的材料和加工工艺。

3. 经济性:在设计机械零件时还需要考虑其经济性,尽可能选用成本低、加工简单、使用寿命长的材料和结构。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Image
钛的同素异构体: α钛:六方晶格结构 β钛:体心立方晶格结构
钛的合金:改变相变温度及相分含量,添加适当的合 金元素而得到不同类型的钛合金 α相钛合金:TA,加工性能最好 β相钛合金:TB,加工性能最差 α+β相钛合金:TC
南京航空航天大学机电学院机械制造及其自动化系
(1) 钛合金的性能
南京航空航天大学机电学院机械制造及其自动化系
7.2.1钛合金的机械加工
No
1. 钛合金切削过程的特点
Image
①变形特点:变形系数接近1 剪切变形大,压缩变形小 变形程度不均匀,产生周期性集中剪切变形
② 切屑形状 节状切屑,背面呈锯齿形 ③ 切削形成的过程 微小破裂;收到压缩;产生
集中剪切 ④ 热导率低,切削温度高
Image
高强度和超高强度钢为具有 一定合金含量的结构钢。经 过调质处理(淬火和中温回 火),可获高强度。
高强度钢:σb>1.2GPa、 σs>1GPa
超高强度钢:σb>1.5GPa、 σs>1.3GPa
硬度在35~50HRC之间。
南京航空航天大学机电学院机械制造及其自动化系
(5) 复合材料
7.2.2 高温合金的加工
No
1. 高温合金加工特性
Image
1. 切削加工性差 2. 切削变形大 3. 加工硬化倾向大 4. 切削力大 5. 切削温度高 6. 刀具易磨损 7. 表面质量和精度不易保证
南京航空航天大学机电学院机械制造及其自动化系
No
2. 改善高温合金切削加工性的措施
Image
1. 尽量在硬化期前加工合金 2. 使用锋利的锐角切刃的刀具 3. 使用强度高的几何外形刀具 4. 采取提高刚度措施的刀具 5. 防止工件偏移 6. 在钻削加工中,采用较大的导程角 7. 当走刀次数较大时,改变切削深度
南京航空航天大学机电学院机械制造及其自动化系
No
影响切削加工性的主要因素
Image
南京航空航天大学机电学院机械制造及其自动化系
No
1. 难加工材料的分类
Image
钛合金 高温合金 不锈钢 高强度钢与超高强度钢 复合材料 硬脆性材料
南京航空航天大学机电学院机械制造及其自动化系
No
(1) 钛合金
南京航空航天大学机电学院机械制造及其自动化系
No
(3) 不锈钢
Image
不锈钢是指在大气中或在某些腐蚀性介质中具有一定 耐腐蚀能力的钢种。 马氏体不锈钢 铁素体不锈钢 奥氏体不锈钢 奥氏体-铁素体不锈钢 沉淀硬化型不锈钢
不锈钢阀门
南京航空航天大学机电学院机械制造及其自动化系
No
(4) 高强度钢与超高强度钢
比强度高 热强度、高温强度高 抗蚀性好 低温性能好 化学活性大 导热性差 弹性模量小
记忆钛合金镜架
No Image
钛合金刀具
南京航空航天大学机电学院机械制造及其自动化系
No
(2) 高温合金
Image
以铁、镍、钴、钛等为基的多组元复杂合金,能在600 ~1000℃的高温氧化环境及燃气腐蚀条件下工作,而 且还可以在一定应力作用下长期工作,有优良的热强 性能、热稳定性能和热疲劳性能。
Kr v60 v60
⑤ 刀具以前刀面磨损为主
南京航空航天大学机电学院机械制造及其自动化系
No
2. 钛合金的加工
Image
① 车削:切削温度高,工件回弹大 ② 铣削:顺铣改善切屑粘结 ③ 磨削:磨削比低,与砂轮发生化学反应 ④ 高速切削:PCD刀具及高效冷却方式 ⑤ 电解:
南京航空航天大学机电学院机械制造及其自动化系
低膨胀、恒弹性、高弹性高温合金
精密合金高温合金不锈钢棒
南京航空航天大学机电学院机械制造及其自动化系
No
高温合金分类
Image
基体合金元素:铁基、镍基和钴基
合金强化类型:固溶强化型,时效沉积强化
成形方式:变形合金、铸造合 金和粉末冶金合金。
使用特性:高强度合金、高屈服强度合金、抗松弛合 金、低膨胀合金、抗热腐蚀合金等
第七章 难加工材料与结构的 No
加工技术
Image
7.1 概述 7.2 难加工材料的加工技术 7.3 难加工结构的加工技术工
南京航空航天大学机电学院机械制造及其自动化系
7.1 概述
No
7.1.1材料的切削加工性
Image
定义:一定条件下工件材料切削加工的难易程度 材料可加工性的衡量:
刀具耐用度 已加工表面的完整性 切屑的控制 通常使用刀具耐用度作为衡量切削加工性的指标
晶体和非晶体硬脆性材料;
陶瓷刀具
南京航空航天大学机电学院机械制造及其自动化系
No
7.1.3 难加工结构
Image
所谓难加工结构是指在常规机床上加工时精度难以保 证或必须采用多轴联动才能加工出的结构。
难加工结构:外型面和内型面难加工结构。
外型面难加工结构:薄壁件、叶片、涡轮盘、微小源自 细零件外型面及其它特殊复杂的型面。
复合材料是由两种或两种以上的 物理和化学性质不同的物质人工 制成的多相组成固体材料,是由 增强相和基体相复合而成的,并 形成界面相。 增强相是承载相, 基体相是连接相, 界面相是传递载荷,
三者的不同组分和不同复合工艺 使复合材料具有不同的性能。
No Image
碳纳米管-氧化铝纳 米复相陶瓷
内型面难加工结构:蜂窝结构、阵列孔、有特殊要求 的小孔、窄缝及其它特殊复杂的形腔结构。
南京航空航天大学机电学院机械制造及其自动化系
No
7.2 难加工材料的加工
Image
1. 钛合金加工 2. 高温合金加工 3. 不锈钢加工 4. 高强度钢和超高强度钢的加工 5. 复合材料加工 6. 脆性材料加工
南京航空航天大学机电学院机械制造及其自动化系
No
复合材料的性能与种类
Image
复合材料的性能
改善或克服组成材料的弱点, 充分发挥其优点;
它可按构件结构和受力要求, 给出预定的、分布合理的配套 性能,进行材料的最佳设计;
单一组成材料不具备的性能。
复合材料的种类:
聚合物为基体,其中以树脂为 基体的居多;
热压氮化硼及其复合材料
金属或合金或陶瓷为基体。
南京航空航天大学机电学院机械制造及其自动化系
No
(6) 硬脆性材料
Image
硬脆性材料具有高强度、高硬度、高脆性、耐磨损和 腐蚀、隔热、低密度和膨胀系数及化学稳定性好等特 点,是一般金属材料无法比拟的。
自然和人工硬脆性材料
金属和非金硬脆性材料;
导电和非导电硬脆性材料;
相关文档
最新文档