2018年吉林省七下数学名校调研-第三次月考卷
吉林省德惠市七年级数学下学期3月月考试题华东师大版(2021年整理)
![吉林省德惠市七年级数学下学期3月月考试题华东师大版(2021年整理)](https://img.taocdn.com/s3/m/f008a5eaf111f18582d05a8a.png)
吉林省德惠市2017-2018学年七年级数学下学期3月月考试题华东师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(吉林省德惠市2017-2018学年七年级数学下学期3月月考试题华东师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为吉林省德惠市2017-2018学年七年级数学下学期3月月考试题华东师大版的全部内容。
吉林省德惠市2017-2018学年七年级数学下学期3月月考试题(本试卷满分:120分,时间:75分钟)一、选择题(每小题3分,共24分)1. 下列方程中,解为1=x 的是( )A 。
123+=x xB 。
312=-xC 。
x x 6-1132=-D 。
7512-=-x x2. 下列方程组中,是二元一次方程组的是( ) A. B.⎪⎩⎪⎨⎧=+=411-y x y x ⎩⎨⎧=+=+4264z y y x C.⎩⎨⎧=+=+101y x xy D 。
⎩⎨⎧=-=+15y x y x 3. 已知关于x 的方程092=-+a x 的解是2=x ,则a 的值是( )A 。
4 B.3 C 。
2 D 。
54. 若方程358+=x x 与关于x 的方程()322-6+=x k 的解相同,则k 的值为( )A. B 。
1- C.2 D.35 5. 已知x ,y 满足方程组⎩⎨⎧=+=+5242y x y x ,则y x +的值是( )A.9B.7 C 。
5 D.36. 下列变形正确的是( )A. 若ay ax =,则y x = B 。
若b a =,则c b c a -=+C.若b a =,则cb c a = D 。
若y x =,则m y m x 22+=+ 7. 某电影院,设座位有x 排,若每排坐30人,则有8人无座位;若每排坐31人,则空26个座位,则下列方程正确的是( )A. 26318-30+=x x B 。
2018年吉林省七下数学名校调研 第三次月考卷
![2018年吉林省七下数学名校调研 第三次月考卷](https://img.taocdn.com/s3/m/48292a7a48d7c1c708a1456c.png)
名校调研系列卷 七年下第三次月考卷 数学(人教版)1、9的平方根是( )。
A 、+3B 、-3C 、±3D 、±3 2、如图所示的各组图形中,表示平移关系的是( )。
3、下列是二元一次方程的是( )。
A 、x x =-63B 、y x 23=C 、02=-y x D 、xy y x =-324、在数轴上表示不等式-2 ≥x 的解集,正确的是( )。
5、象棋在中国有着三千多年的历史,是流行极为广泛的益智游戏,如图是一局象棋残局,已知表示棋子“馬”和“車”的点的坐标分别为(4,3),(-2,1),则表示棋子“炮”的点的坐标为( )。
A 、(3,3)B 、(0,3)C 、(3,2)D 、(1,3)6、对有理数x 、y 定义新运算:x ⊗y =1+-by ax ,其中a 、b 是常数,若2⊗(-1)=-3,3⊗3=4,则a 、b 的值分别为( )A 、2,1==b aB 、2,1=-=b aC 、2,1-=-=b aD 、2,1-==b a7、有下列数学表达式:①<03x ;②>054+x ;③3=x ;④x x +2;⑤4- ≠x ;⑥2>25++x x ,其中不等式有 个。
8、把无理数17,11,5,3- 表示在数轴上,在这四个无理数中,被墨迹(如图)覆盖住的无理数是 。
9、已知x >y ,则-2x -2y (填“>”“<”或“=” )。
10、如图,工程队铺设一公路,他们从点A 处铺设到点E 处,由于水塘挡路,他们决定改变方向经过点C ,再拐到点D ,然后沿着与AB 平行的DE 方向继续铺设,如果∠ABC =120°,∠CDE =140°,则∠BCD 的度数是 。
11、若点P (a -1,2a -1)在x 轴负半轴上,则P 点坐标是 。
12、某地区农业用水和居民家庭用水的总和为8亿立方米,其中居民家庭用水比农业用水的2倍还多0.5亿立方米,设农业用水为x 亿立方米,居民家庭用水为y 亿立方米。
七年级下第三次月考数学试题有答案
![七年级下第三次月考数学试题有答案](https://img.taocdn.com/s3/m/40533b1827d3240c8447efa1.png)
2017-2018学年度下学期七年级第三次月考试题 数学试卷考生须知:本试卷满分为120分,考试时间为120分钟.第Ⅰ卷 选择题(共30分) 一、选择题:(每题3分,共计30分) 1.√2的相反数是( )A .√2B .√22 C .-√2D. −√222.若a >b ,则下列不等式中不成立的是( )A. a −3>b −3B. −3a >−3bC. a3>b3D .−a <−b 3.在下列图形中,可以由一个基本图形平移得到的是( )4.由方程组{x +m =4y −3=m,可得出x 与y 的关系是()A .x +y =lB . x +y =−1C .x +y =−7 D. x +y =7 5.把不等式2x -1> x+2的解集在数轴上表示正确的是( )6.点A 在x 轴上,且到坐标原点的距离为2,则点A 的坐标为( ) A.(-2,0) B.(2,0) C.(2,0)或(-2,0) D.(0,-2)或(O,2) 7.估计√17−1的值在( )A.1到2之间B.2到3之间C.3到4之间D.4到5之间 8.不等式x -7<3x -2的负整数解有( ) A.1个 B.2个 C.3个 D.4个9.某校开展社团活动,参加活动的同学要分组活动,若每组7人,则余3人;若每组8人,则少5人;求课外活动小组的人数x 和分成的组数y ,可列方程组为( )A .{7y =x −38y =x +5 B .{7y =x +38y +5=x C .{7x +3=y 8x −5=y D.{7y =x +38y =x +510.如图,已知AB ∥CD, EF ∥CD ,则下列结论中一定正确的是( ) A .∠BCD= ∠DCE; B.∠ABC+∠BCE+∠CEF=360°;C.∠BCE+∠DCE=∠ABC+∠BCD; D .∠ABC+∠BCE -∠CEF=180°.第Ⅱ卷 非选择题(共90分) 二、填空题:(每题3分,共30分)11.把方程2x+3y=5改写成用含x 的式子表示y 的形式,则y=. 12.若3x -5有算术平方根,则x 需要满足的条件是. 13.已知关于x.y 的二元一次方程ax 一2y=6的一个解是{x =−1y =2,则a 的值是. 14.已知平面直角坐标系中,点A (2a-3,-2)在第四象限内,则a 的取值范围是. 15.计算:√−273×√1916 =. 16.解不等式:2+x 2≥2x−13−2的解集为.17.如图,CD ⊥AB 于点D ,过点D 引射线DM ,∠BDM 的度数比∠CDM 的度数的3倍多10°,则∠CDM=°.18.在一次智力测验中有20道选择题,评分标准为:对l 题给5分,错1题扣2分,不答题不给分也不扣分,张强有1道题末答,如果总分才不会低于70分,则他至少答对道题. 19.已知∠ABC=70°,点D 为BC 边上一点,过点D 作DP//AB ,若∠PBD=12∠ABC ,则∠DPB=°. 20.如图,AB ∥CD, AC ∥BD, CE 平分∠ACD ,交BD 于点E ,点F 在CD 的延长线上,且∠BEF=∠CEF,若∠DEF=∠EDF,则∠A的度数为°.三、解答题(共60分)21.(本题7分)按要求解二元一次方程组:用代入法解:{ x+ y=52x+ y=8 ②用加减法解:{3x−2y=72x+3y=2222.(本题7分)如图,在8x8的网格中,建立平面直角坐标系,已知三角形三个顶点A(1,-3)、B(-l,-2)、C(3,-1),将三角形ABC进行平移,使点A平移后的对应点A1的坐标为(0,1),点B的对应点为B1,点C的对应点为C1,得到对应的三角形A1B1C1.(1)画出三角形ABC;(2)画出平移后的三角形A1B1C1;(3)连接BB1、CC1,请直接写出四边形BCC1B1的面积.23.(本题8分)已知关于x,y方程组{x+y=−7−m x−y=1+3m,(1)若此方程组的解满足x>y,求m的取值范围;(2)若此方程组的解满足x=2y.求y-x的算术平方根.24.(本题8分)如图1,已知AD//BC,∠B=∠D=100°,E、F在AD上,且满足∠ACE=∠ACB,CF平分∠DCE.(1)求∠ACF的度数;(2)如图2,若∠CFD=∠BAC,求∠AEC的度数.25.(本题10分)“六一”期间,小明家进行新家装修,在装修客厅时,购进彩色地砖和单色地砖共100块,共花费5600元.已知彩色地砖的单价是80元/块,单色地砖的单价是40元/块.(1)两种型号的地砖各采购了多少块?(2)如果厨房也要铺设这两种型号的地砖共60块,且采购地砖的费用不超过3200元,那么彩色地砖最多能采购多少块?26.(本题10分)如图1,点P为直线AB、CD内部一点,连接PE、PF,∠P=∠BEP+∠PFD.(1)求证:AB∥CD;(2)如图2,点G为AB上一点,连接GP并延长交CD于点H,若∠PHF=∠EPF,过点G作GK⊥EP于点K,求证:∠PFH十∠PGK=90°;∠FPH=∠PFH+∠EPQ,当∠PHQ=2∠GPE (3)如图3,在(2)的条件下,PQ平分∠EPF,连接QH,12时,∠QHC=∠QPF-10°,求∠Q的度数.27.(本题10分)如图1,在平面直角坐标系中,点O为坐标原点,点A(a,0)、B(b,O)分别在x轴正半轴和y轴正半轴上,且√2a−b−5+(a−2b+2)2=0,点P从原点出发以每秒2个单位长度的速度沿x轴正半轴方向运动.(1)求点A、B的坐标;(2)连接PB,设三角形ABP的面积为s,点P的运动时间为t,请用含t的式子表示s,并直接写出t的取值范围;(3)在(2)的条件下,将线段OB沿x轴正方向平移,使点O与点A重合,点B的对应点为点D,连接BD,将线段PB沿x轴正方向平移,使点B与点D重合,点P的对应点为点Q,取DQ的中点H,是否存在t的值,使三角形ABP的面积等于三角形ADH的面积?若存在,求出t的值;若不存在,请说明理由.2017-2018学年度下学期七年级第三次月考试题数学试题参考答案答案 C B A D C C C B A D 二、填空题:题号 11 12 13 14 151617 18 19 20 21.解:(1)由①得,x y -=5③...........1' 把③代入②得,852=-+x x 解得,3=x ...........1' 把3=x 代入③得,2=y ...........1' ∴这个二元一次方程组的解为⎩⎨⎧==23y x ...........1'(2)①×3得,2169=-y x ③②×2得,4464=+y x ④ 由③+④得,6513=x ...........1'解得,5=x把5=x 代入①得,7253=-⨯y 解得,4=y ...........1' ∴这个二元一次方程组的解为⎩⎨⎧==45y x ...........1' 22.(1)画图正确..........3'(2)画图正确...........3'(3)17...........1'23. 解:(1)由①+②得,3-=m x ③...........1'把③代入①得,42--=m y ...........1' ∵y x >,即,423-->-m m ...........1'解得,31->m ...........1' (2)由(1)得,3-=m x ,42--=m y ∵y x 2=∴)42(23--=-m m 解得,1-=m ...........1'∴这个二元一次方程组的解为⎩⎨⎧-=-=24y x ,...........1'∴2=-x y ,...........1'∴x y -的算术平方根为2...........1' 24.(1)解:∵AD ∥BC ,∠D=100°∴∠D+∠BCD=180°...........1' ∴∠BCD=80°...........1' ∵CF 平分∠DCE∴∠ECF=∠DCF ...........1'∵∠ACE=∠ACB ,∠ACE+∠ACB+∠ECF+∠DCF=80° ∴∠ACF=∠ACE+∠FCE=40°...........1'(2)∵∠A=100°,∠BCD=80° ∴∠A+∠BCD=180° ∴AB ∥CD ...........1'∴∠BAC=∠ACD ,∠AEC+∠BCE=180° ∵∠CFD=BAC∴∠CFD=∠ACD ...........1' ∵AD ∥BC ∴∠CFD=∠BCF ∴∠BCF=∠ACD∴∠ACB+∠ACF =∠FCD+∠ACF ∴∠ACB=∠DCF∴∠ACB=∠ACE=∠ECF=∠FCD=20°...........1' ∴∠BCE=40°∴∠AEC=140°...........1'25.(1)解:设彩色地砖采购了x 块,单色地砖采购了y 块⎩⎨⎧=+=+56004080100y x y x ...........3' 解得⎩⎨⎧==6040y x ...........2'答:彩色地砖采购了40块,单色地砖采购了60块. (2)解:设彩色地砖能采购a 块3200)60(4080≤-+a a ...........3' 解得20≤a ...........1'答:彩色地砖最多能采购20块...........1' 26. (1)证明:过点P 作PM ∥AB ∴∠BEP=APE ...........1'∵∠EPF=∠BEP+∠PFD∴∠MPF=∠PFD ...........1' ∴PM ∥CD∴AB ∥CD ...........1' (2)∵PM ∥AB ∴∠MPG=∠PHF ∵∠PHF=∠EPF ∴∠MPG=∠EPF∴∠MPF=∠GPK ...........1' ∵MP ∥CD ∴∠MPF=∠∠PFH∴∠PFH=∠GPK ...........1' ∵GK ⊥PE ∴∠GKE=90° 过点P 作PN ∥KG∴∠NPK=∠GKE=90°,∠KGP=∠GPN ∴∠GPK+∠GPN=90°∴∠PFH+∠PGK=90°...........1' (3)∵PQ 平分∠EPF 设∴∠EPQ=∠QPF=α ∵∠QHC=∠QPF-10° ∴∠QHC=10-α° ∵PM ∥CD∴设∠MPF=∠PFH=β,∠MPH+∠PHF=180° ∵12 ∠FPH=∠PFH+∠EPQ ∴12∠FPH=β+α ∴∠FPH=2α+2β...........1' ∴∠MPH=2α+3β ∵∠PHC=∠EPF=2α∴2α+3β+2α=180°...........1' ∵∠QHC=α-10°∴∠PHQ=2α-(α-10°)=α+10° ∵∠PHQ=2∠GPE∴∠GPE=12∠PHQ=12α+5°由(2)得,∠EPG=∠MPF 即12α+5°=β ∴α=30°,β=20°...........1' ∴∠QHP=40° 过点Q 作QK ∥GHMN∴∠KQP=GPQ=50°,∠KQH=∠PHQ=40° ∴∠Q=10°...........1' 27.(1)解:∵0)22(522=+-+--b a b a∴⎩⎨⎧=+-=--022052b a b a ...........1'解得⎩⎨⎧==34b a ...........1'∴A (4,0),B (0,3)...........1' (2)由题意得,OP=t 2, ①当P 在线段OA 上时,AP=4-t 2∴S=12×AP ×OB=12×(4-t 2)×3=63+-t (20<≤t )...........2'②当P 在线段OA 的延长线上时,AP=t 2-4∴S=12×AP ×OB=12×(t 2-4)×3=63-t (2>t )...........1'(3)由题意得,BD=OA ,BD=PQ ,OB=AD ∴OA=PQ∵点H 为DQ 的中点 ∴DH=HQ过点A 作AM ⊥DQ 于点M∴S △AHQ =12HQ ×AM ,S △ADH =12DH ×AM∴S △AHQ = S △ADH ...........1' ①当P 在线段OA 上时, ∴OA-PA=PQ-PA 即 OP=AQ ∵OB ∥AD ∴∠DAQ=90°∴S △ADQ =S △OBP∴S △ADH =12S △ADQ =12S △BOP ...........1'即63+-t =12×t 2×3×1234=t ...........1' ②当P 在线段OA 的延长线上时 ∴OA+PA=PQ+PA 即 OP=AQ ∵OB ∥AD ∴∠DAQ=90° ∴S △ADQ =S △OBP∴S △ADH =12S △ADQ =12S △BOP即63-t =12×t 2×3×124=t ...........1'。
2018年第二学期七年级第三次月考数学试题(人教版)原创可编辑含答案
![2018年第二学期七年级第三次月考数学试题(人教版)原创可编辑含答案](https://img.taocdn.com/s3/m/8aabc451fe4733687e21aad7.png)
2018年第三次月考数学试题(人教版)(90分钟,120分)一、选择题:本大题共16个小题,1-10题每小题3分,11-16每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(﹣6)2的平方根是()A.﹣6 B.36 C.±6 D.±2.已知是方程2x﹣ay=3的一个解,那么a的值是()A.1 B.3 C.﹣3 D.﹣13.若a>b,则下列不等式变形正确的是()B.A.a+5<b+5 B.C.﹣4a>﹣4b D.3a﹣2<3b﹣24.如图,下列条件中,不能判断直线l1∥l2的是()A.∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°5.不等式2x+5≤1的解集在数轴上表示正确的是()A.B.C.D.6.如图,已知a∥b,小华把三角板的直角顶点放在直线a上.若∠1=40°,则∠2的度数为()A.100°B.110°C.120°D.130°7. 不等式组的非负整数解的个数是()A.4 B.5 C.6 D.78.如图,已知AB,CD相交于O,OE⊥CD于O,∠AOC=25°,则∠BOE的度数是( ) A.25°B.65°C.115°D.130°9.已知是方程组的解,则a,b间的关系是()A.a+b=3 B.a﹣b=﹣1 C.a+b=0 D.a﹣b=﹣310.某校组织学生进行了禁毒知识竞赛,竞赛结束后,菁菁和彬彬两个人的对话如下:根据以上信息,设单选题有x道,多选题有y道,则可列方程组为()A.B.C. D.11.一件商品成本价是30元,如果按原价的八五折销售,至少可获得15%的利润.如果设该商品的原价是x元,则列式()A.30+30×15%≤85%x B.30+30×15%≥85%xC.30﹣30×15%≤85%x D.30﹣30×15%≥85%x12.如图,直线m⊥n,在某平面直角坐标系中,x轴∥m,y轴∥n,点A的坐标为(4,2),点B的坐标为(﹣2,﹣2),则点C的坐标为()A.(2,1)B.(﹣2,1)C.(2,﹣1)D.(﹣2,﹣1)13.若关于x、y的方程组的解满足x+y>0,则m m的最大整数值是()A.-1 B.0 C.1 D.214.某种记事本零售价每本6元,凡一次性购买两本以上给予优惠,优惠方式有两种,第一种:“两本按原价,其余按七折优惠”;第二种:全部按原价的八折优惠,若想在购买相同数量的情况下,要使第一种办法比第二种办法得到的优惠多,最少要购买记事本()A.5本B.6本C.7本D.8本15.如图所示是由截面为同一种矩形的墙砖粘贴的部分墙面,其中三块横放的墙砖比一块竖放的墙砖高10cm,两块横放的墙砖比两块竖放的墙砖低40cm,则每块墙砖的截面面积是()A.425cm2B.525cm2C.600cm2D.800cm216.在平面直角坐标系xOy中,对于点P(x,y),我们把点P′(﹣y+1,x+1)叫做点P伴随点,已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,A n,….若点A1的坐标为(3,1),则点A2018的坐标为( ) A.(0,4)B.(﹣3,1)C.(0,﹣2)D.(3,1)二、填空题(本题共有3个小题,17-18每小题3分,19小题4分,满分10分)17.当x<a<0时,x2ax(填>,<,=)18.如图,∠1=∠2,∠3=80°,则∠4=______.19. 以方程组的解为坐标的点(y,x)在第象限.三、解答题(本大题共7小题,共68分.解答应写出文字说明、证明过程或演算步骤.)20.(本小题9分)解方程组:.21.(本小题9分)小明解不等式﹣≤1的过程如图.请指出他解答过程中错误步骤的序号,并写出正确的解答过程.22.(本小题9分)定义新运算:对于任意实数a,b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法、减法及乘法运算.比如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5.若3⊕x的值小于13,求x的取值范围,并在图示的数轴上表示出来.23.(本小题9分).如图,已知直线AB∥DF,∠D+∠B=180°.(1)求证:DE∥BC;(2)如果∠AMD=75°,求∠AGC的度数.24.(本小题9分)已知:如图,把△ABC向上平移3个单位长度,再向右平移2个单位长度,得到△A′B′C′(1)在图中画出△A′B′C′;(2)写出点A′、B′、C′的坐标;A′的坐标为;B′的坐标为;C′的坐标为;(3)在y轴上是否存在一点P,使得△BCP与△ABC面积相等?若存在,请直接写出点P的坐标;若不存在,说明理由.25.(本小题11分)已知关于x的不等式>x﹣1.(1)当m=1时,求该不等式的解集;(2)m取何值时,该不等式有解,并求出解集.26.(本小题12分)我市会展中心举行消夏灯会节,计划在现场安装小彩灯和大彩灯,已知安装5个小彩灯和4个大彩灯共需150元;安装7个小彩灯和6个大彩灯共需220元.(1)会展中心计划在当天共安装200个小彩灯和50个大彩灯,共需多少元?(2)若承办方安装小彩灯和大彩灯的数量共300个,费用不超过4350元,则最多安装大彩灯多少个?2018年第三次月考数学试题(人教版)参考答案一、选择题:二、填空题17. >18. 80°19. 四三、解答题20.解:,①+②,得4x=12,解得:x=3.将x=3代入②,得9﹣2y=11,解得y=﹣1.所以方程组的解是.21.解:错误的是①②⑤,正确解答过程如下:去分母,得3(1+x)﹣2(2x+1)≤6,去括号,得3+3x﹣4x﹣2≤6,移项,得3x﹣4x≤6﹣3+2,合并同类项,得﹣x≤5,两边都除以﹣1,得x≥﹣5.22.解:∵3⊕x<13,∴3(3﹣x)+1<13,9﹣3x+1<13,解得:x>﹣1..23.解:(1)∵AB∥DF,∴∠D+∠BHD=180°,∵∠D+∠B=180°,∴∠B=∠BHD,∴DE∥BC;(2)∵DE∥BC,∴∠AGB=∠AMD,即∠AMD=75°,∴∠AGB=75°,∴∠AGC=180°﹣∠AGB=180°﹣75°=105°.24.解:(1)图略;(2)由图可知,A′(0,4);B′(﹣1,1);C′(3,1);故答案为:(0,4);(﹣1,1);(3,1);(3)设P(0,y),∵△BCP与△ABC同底等高,∴|y+2|=3,即y+2=3或y+2=﹣3,解得y1=1,y2=﹣5,∴P(0,1)或(0,﹣5).25.解:(1)当m=1时,不等式为>﹣1,去分母得:2﹣x>x﹣2,解得:x<2;(2)不等式去分母得:2m﹣mx>x﹣2,移项合并得:(m+1)x<2(m+1),当m≠﹣1时,不等式有解,当m>﹣1时,不等式解集为x<2;当m<﹣1时,不等式的解集为x>2.26.解:(1)设安装1个小彩灯需要x元,安装1个大彩灯需要y元,根据题意得:,解得:,∴200x+50y=200×10+50×25=3250.答:安装200个小彩灯和50个大彩灯,共需3250元.(2)设安装大彩灯z个,则安装小彩灯(300﹣z)个,根据题意得:25z+10(300﹣z)≤4350,解得:z≤90.答:最多安装大彩灯90个.。
吉林省长春市名校调研(市命题三十四)2018-2019年七年级(下)第三次月考数学试卷(word,解
![吉林省长春市名校调研(市命题三十四)2018-2019年七年级(下)第三次月考数学试卷(word,解](https://img.taocdn.com/s3/m/f8e51d67453610661fd9f414.png)
吉林省长春市名校调研(市命题三十四)2018-2019学年七年级(下)第三次月考数学试卷一、选择题(每小题3分,共24分)1.(3分)现有两根小木棒,它们的长度分别为4cm 和5cm ,若要钉成一个三角形架,下列长度不可以作为第三根木棒长度的是为( )A .4cmB .5cmC .8cmD .10cm2.(3分)已知两个不等式的解集在数轴上如图所示,则由这两个不等式组成的不等式组的解集为( )A .22x -<<B .2x <C .2x -…D .2x >3.(3分)n 边形的内角和等于1080︒,则n 的值是( )A . 8B . 7C . 6D . 54.(3分)方程组23x y x y +=⎧⎨+=⎩■ 的解为2x y =⎧⎨=⎩■,则被遮盖的前后两个数分别为( ) A .1、2 B .1、5 C .5、1 D .2、45.(3分)若37m -和9m -互为相反数,则m 的值是( )A .4B .1C .1-D .4-6.(3分)用一批相同的正多边形地砖辅地,要求顶点聚在一起,且砖与砖之间不留空隙,这样的地砖是( )A .正五边形B .正三角形,正方形C .正三角形,正五边形,正六边形D .正三角形,正方形,正六边形7.(3分)已知关于x 的不等式组314(1)x x x m-<-⎧⎨<⎩无解,则m 的取值范围是( ) A .3m „ B .3m > C .3m < D .3m …8.(3分)某种服装的进价为240元,出售时标价为360元,由于换季,商店准备打折销售,但要保特利润不低20%,那么至多( )A .6折B .7折C .8折D .9折二、填空题(每小题3分,共18分)9.(3分)我们用如图的方法(斜钉上一块木条)来修理一条摇晃的凳子的数学原理是利用三角形的.10.(3分)当代数式22x-与3x+的值相等时,x=.11.(3分)若5357x yx y+=⎧⎨-=⎩,则x y-=.12.(3分)从一个多边形的某顶点出发,连接其余各顶点,把该多边形分成了4个三角形,则这个多边形是边形.13.(3分)关于x的不等式243x--…的所有负整数解的和是.14.(3分)如图,ABC∆是一块直角三角板,90BAC∠=︒,25B∠=︒,现将三角板叠放在一把直尺上,使得点A落在直尺的一边上,AB与直尺的另一边交于点D,BC与直尺的两边分别交于点E,F,若20CAF∠=︒,则BED∠的度数为o.三、解答题(本大题共10小题,共78分)15.(6分)解方程:1223xx-+=16.(6分)已知关于x,y的方程组21321x y mx y m+=+⎧⎨+=-⎩的解满足0x y+<,求m的取值范围.17.(6分)求不等式组123123xx-<⎧⎪+⎨<⎪⎩的整数解.18.(7分)一个多边形的每个内角都相等,并且其中一个内角比它相邻的外角大100︒,求这个多边形的边数.19.(7分)如图,在ABC ∆中,AD 是BC 边上的中线,ADC ∆的周长比ABD ∆的周长多5cm ,AB 与AC 的和为11cm ,求AC 的长.20.(7分)随着中国传统节日“端午节”的临近,永旺超市决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折.已知打折前,买1盒甲品牌粽子和2盒乙品牌粽子需230元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.(1)打折前甲、乙两种品牌粽子每盒分别为多少元?(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?21.(8分)定义一种法则“⊕”如下:()()a a b a b b a b >⎧=⎨⎩⊕…,例如:122=⊕. (1)(2018)(2019)--=⊕ ;(2)若(35)88p -+=⊕,求p 的负整数值.22.(9分)已知直线//PQ MN ,ABC ∆的顶点A 与B 分别在直线MN 与PQ 上,45C ∠=︒,设CBQ a ∠=∠,CAN β∠=∠.(1)如图①,当点C 落在PQ 的上方时,AC 与PQ 相交于点D ,求证:45a β∠=∠+︒;(2)如图②.当点C 落在直线MN 的下方时,BC 与MN 交于点F ,请判断a ∠与β∠的数量关系,并说明理由.23.(10分)某公司有A 、B 两种型号的客车,它们的载客量、每天的租金如表所示:A 型号客车B 型号客车 载客量(人/辆)45 30 租金(元/辆) 600 450已知某中学计划租用A 、B 两种型号的客车共10辆,同时送七年级师生到沙家参加社会实践活动,已知该中学租车的总费用不超过5600元.(1)求最多能租用多少辆A 型号客车?(2)若七年级的师生共有380人,请写出所有可能的租车方案.24.(12分)探究与发现:探究一:我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?已知:如图1,FDC ∠与ECD ∠分别为ADC ∆的两个外角,试探究A ∠与FDC ECD ∠+∠的数量关系.探究二:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系? 已知:如图2,在ADC ∆中,DP 、CP 分别平分ADC ∠和ACD ∠,试探究P ∠与A ∠的数量关系.探究三:若将ADC ∆改为任意四边形ABCD 呢?已知:如图3,在四边形ABCD 中,DP 、CP 分别平分ADC ∠和BCD ∠,试利用上述结论探究P ∠与A B ∠+∠的数量关系.吉林省长春市名校调研(市命题三十四)2018-2019学年七年级(下)第三次月考数学试卷参考答案与试题解析一、选择题(每小题3分,共24分)1.(3分)现有两根小木棒,它们的长度分别为4cm 和5cm ,若要钉成一个三角形架,下列长度不可以作为第三根木棒长度的是为( )A .4cmB .5cmC .8cmD .10cm【考点】6K :三角形三边关系【分析】根据三角形的三边关系得到第三根木棒的长的取值范围,再确定答案即可.【解答】解:根据三角形三边关系可得:54-<第三根木棒的长54<+,即:1<第三根木棒的长9<,故不可以是10cm .故选:D .【点评】此题主要考查了三角形的三边关系,关键是掌握三角形三边关系定理:三角形两边之和大于第三边.三角形的两边差小于第三边.2.(3分)已知两个不等式的解集在数轴上如图所示,则由这两个不等式组成的不等式组的解集为( )A .22x -<<B .2x <C .2x -…D .2x >【考点】4C :在数轴上表示不等式的解集【分析】根据数轴图示可知,这两个不等式组成的不等式组的解集为2x >,【解答】解:根据数轴图示可知,这两个不等式组成的不等式组的解集为2x >, 故选:D .【点评】本题考查了不等式的解集,正确理解数轴上不等式解集的意义是解题的关键.3.(3分)n 边形的内角和等于1080︒,则n 的值是( )A . 8B . 7C . 6D . 5【考点】3L :多边形内角与外角【分析】依据多边形的内角和公式计算即可 .【解答】解: 根据题意得;(2)1801080n -⨯︒=︒解得:8n =.故选:A .【点评】本题主要考查的是多边形的内角和公式的应用, 掌握多边形的内角和公式是解题的关键 .4.(3分)方程组23x y x y +=⎧⎨+=⎩■ 的解为2x y =⎧⎨=⎩■,则被遮盖的前后两个数分别为( ) A .1、2 B .1、5 C .5、1 D .2、4【考点】98:解二元一次方程组【分析】根据方程组的解满足方程组中的每个方程,代入求值可求出被遮盖的前后两个数.【解答】解:将2x =代入第二个方程可得1y =,将2x =,1y =代入第一个方程可得25x y +=∴被遮盖的前后两个数分别为:5,1故选:C .【点评】本题考查了解二元一次方程组,利用方程组的解满足每个方程即可.5.(3分)若37m -和9m -互为相反数,则m 的值是( )A .4B .1C .1-D .4-【考点】14:相反数;86:解一元一次方程【分析】根据相反数的性质得出关于m 的方程3790m m -+-=,解之可得.【解答】解:由题意知3790m m -+-=,则379m m -=-,22m =-,1m =-,故选:C .【点评】本题主要考查解一元一次方程,解题的关键是熟练掌握相反数的性质、等式的基本性质和解一元一次方程的基本步骤.6.(3分)用一批相同的正多边形地砖辅地,要求顶点聚在一起,且砖与砖之间不留空隙,这样的地砖是( )A .正五边形B .正三角形,正方形C .正三角形,正五边形,正六边形D .正三角形,正方形,正六边形【考点】4L :平面镶嵌(密铺)【分析】根据一种正多边形的镶嵌应符合一个内角度数能整除360︒求解即可.【解答】解:若是正三角形地砖,正三角形的每个内角是60︒,能整除360︒,能够铺满地面; 若是正四角形地砖,正方形的每个内角是90︒,能整除360︒,能够铺满地面;若是正五角形地砖,正五边形每个内角是1803605108︒-︒÷=︒,不能整除360︒,不能够铺满地面;若是正六角形地砖,正六边形的每个内角是120︒,能整除360︒,能够铺满地面; 故选:B .【点评】本题考查了平面镶嵌,体现了学数学用数学的思想.由平面镶嵌的知识可知只用一种正多边形能够铺满地面的是正三角形或正四边形或正六边形.7.(3分)已知关于x 的不等式组314(1)x x x m -<-⎧⎨<⎩无解,则m 的取值范围是( ) A .3m „ B .3m > C .3m < D .3m …【考点】CB :解一元一次不等式组【分析】先按照一般步骤进行求解,因为大大小小无解,那么根据所解出的x 的解集,将得到一个新的关于m 不等式,解答即可.【解答】解:解不等式314(1)x x -<-,得:3x >,Q 不等式组无解,3m ∴„,故选:A .【点评】主要考查了已知一元一次不等式解集求不等式中的字母的值,同样也是利用口诀求解,注意:当符号方向不同,数字相同时(如:x a >,)x a <,没有交集也是无解但是要注意当两数相等时,在解题过程中不要漏掉相等这个关系.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).8.(3分)某种服装的进价为240元,出售时标价为360元,由于换季,商店准备打折销售,但要保特利润不低20%,那么至多打( )A .6折B .7折C .8折D .9折【考点】9C :一元一次不等式的应用【分析】设打了x 折,用售价×折扣-进价得出利润,根据利润率不低于20%,列不等式求解.【解答】解:设打了x 折,由题意得3600.124024020%x ⨯-⨯…, 解得:8x …. 答:至多打8折.故选:C .【点评】本题考查了一元一次不等式的应用,解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于20%,列不等式求解.二、填空题(每小题3分,共18分)9.(3分)我们用如图的方法(斜钉上一块木条)来修理一条摇晃的凳子的数学原理是利用三角形的 稳定性 .【考点】4K :三角形的稳定性【分析】当三角形三边的长度确定后,三角形的形状和大小就能唯一确定下来,故三角形具有稳定性,根据三角形具有稳定性回答即可.【解答】解:用如图的方法(斜钉上一块木条)来修理一条摇晃的凳子的数学原理是利用三角形的稳定性,故答案为:稳定性.【点评】本题考查了三角形的稳定性,解题的关键是了解三角形具有稳定性,四边形不具有稳定性.10.(3分)当代数式22x -与3x +的值相等时,x = 5 .【考点】86:解一元一次方程【分析】根据题意列出方程,求出方程的解即可得到x 的值.【解答】解:根据题意得:223x x -=+,移项合并得:5x =,故答案为:5.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.11.(3分)若5357x y x y +=⎧⎨-=⎩,则x y -= 3 . 【考点】98:解二元一次方程组【分析】利用加减消元法解之即可.【解答】解:5357x y x y +=⎧⎨-=⎩①②, ①+②得:4412x y -=,方程两边同时除以4得:3x y -=,故答案为:3.【点评】本题考查了解二元一次方程组,正确掌握加减消元法是解题的关键.12.(3分)从一个多边形的某顶点出发,连接其余各顶点,把该多边形分成了4个三角形,则这个多边形是 6 边形.【考点】2L :多边形的对角线;1L :多边形【分析】根据n 边形从一个顶点出发可引出(2)n -个三角形解答即可.【解答】解:设这个多边形为n 边形.根据题意得:24n -=.解得:6n =.故答案为:6.【点评】本题主要考查的是多边形的对角线,掌握公式是解题的关键.13.(3分)关于x 的不等式243x --„的所有负整数解的和是 6- .【考点】7C :一元一次不等式的整数解【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的负整数即可求解.【解答】解:不等式243x --„的解集是72x -…, 故不等式的负整数解为3-,2-,1-.3216---=-, 故答案为:6-.【点评】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.14.(3分)如图,ABC∆是一块直角三角板,90BAC∠=︒,25B∠=︒,现将三角板叠放在一把直尺上,使得点A落在直尺的一边上,AB与直尺的另一边交于点D,BC与直尺的两边分别交于点E,F,若20CAF∠=︒,则BED∠的度数为85o.【考点】7K:三角形内角和定理;JA:平行线的性质【分析】依据//DE AF,可得BED BFA∠=∠,再根据三角形外角性质,即可得到206585BFA∠=︒+︒=︒,进而得出85BED∠=︒.【解答】解:如图所示,//DE AFQ,BED BFA∴∠=∠,又20CAF∠=︒Q,65C∠=︒,206585BFA∴∠=︒+︒=︒,85BED∴∠=︒,故答案为:85.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.三、解答题(本大题共10小题,共78分)15.(6分)解方程:1223x x-+=【考点】86:解一元一次方程【分析】依次去分母,去括号,移项,合并同类项,系数化为1,即可得到答案.【解答】解:方程两边同时乘以6得:632(2)x x+=-,去括号得:6342x x+=-,移项得:6243x x+=-,合并同类项得:81x=,系数化为1得:18x =. 【点评】本题考查了解一元一次方程,正确掌握解一元一次方程的方法是解题的关键.16.(6分)已知关于x ,y 的方程组21321x y m x y m +=+⎧⎨+=-⎩的解满足0x y +<,求m 的取值范围. 【考点】97:二元一次方程组的解;6C :解一元一次不等式【分析】根据题目中的不等式组可以求得x y +的值,从而可以求得m 的取值范围.【解答】解:21321x y m x y m +=+⎧⎨+=-⎩①②, ①+②,得3322x y m +=+,223m x y +∴+=, 0x y +<Q , ∴2203m +<, 解得,1m <-,即m 的取值范围是1m <-.【点评】本题考查解一元一次不等式组、二元一次方程组的解,解答本题的关键是明确题意,求出m 的取值范围.17.(6分)求不等式组123123x x -<⎧⎪+⎨<⎪⎩的整数解. 【考点】CC :一元一次不等式组的整数解【分析】先求出不等式组的解集,再求出不等式组的整数解即可.【解答】解:123123x x -<⎧⎪⎨+<⎪⎩①②Q 解不等式①得:1x >-,解不等式②得:5x <,∴不等式组的解集是:15x -<<,∴不等式组的整数解是:0,1,2,3,4.【点评】本题考查了解一元一次不等式组和不等式组的整数解,能求出不等式组的解集是解此题的关键.18.(7分)一个多边形的每个内角都相等,并且其中一个内角比它相邻的外角大100︒,求这个多边形的边数.【考点】3L :多边形内角与外角【分析】根据内角与相邻外角和为180度、内角比它相邻的外角大100︒,构造方程求出外角度数,最后利用外角和360︒可求边数.【解答】解:设每个内角度数为x 度,则与它相邻的外角度数为180x ︒-︒,根据题意可得(180)100x x --=,解得140x =.所以每个外角为40︒,所以这个多边形的边数为360409÷=.答:这个多边形的边数为4.【点评】本题主要考查多边形的内角与外角、多边形的外角和360︒知识,解题的关键是利用内、外角转化求边数.19.(7分)如图,在ABC ∆中,AD 是BC 边上的中线,ADC ∆的周长比ABD ∆的周长多5cm ,AB 与AC 的和为11cm ,求AC 的长.【考点】2K :三角形的角平分线、中线和高【分析】根据中线的定义知CD BD =.结合三角形周长公式知5AC AB cm -=;又11AC AB cm +=.易求AC 的长度.【解答】解:AD Q 是BC 边上的中线,D ∴为BC 的中点,CD BD =.ADC ∆Q 的周长ABD -∆的周长5cm =.5AC AB cm ∴-=.又11AB AC cm +=Q ,8AC cm ∴=.即AC 的长度是8cm .【点评】本题考查了三角形的角平分线、中线和高.三角形一边的中点与此边所对顶点的连线叫做三角形的中线.20.(7分)随着中国传统节日“端午节”的临近,永旺超市决定开展“欢度端午,回馈顾客”的让利促销活动,对部分品牌粽子进行打折销售,其中甲品牌粽子打八折,乙品牌粽子打七五折.已知打折前,买1盒甲品牌粽子和2盒乙品牌粽子需230元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元.(1)打折前甲、乙两种品牌粽子每盒分别为多少元?(2)阳光敬老院需购买甲品牌粽子80盒,乙品牌粽子100盒,问打折后购买这批粽子比不打折节省了多少钱?【考点】9A :二元一次方程组的应用【分析】(1)设打折前甲品牌粽子每盒x 元,乙品牌粽子每盒y 元,根据“打折前,买1盒甲品牌粽子和2盒乙品牌粽子需230元;打折后,买50盒甲品牌粽子和40盒乙品牌粽子需要5200元”,即可得出关于x 、y 的二元一次方程组,解之即可得出结论;(2)根据节省钱数=甲品牌粽子节省的钱数+乙品牌粽子节省的钱数,即可求出节省的钱数.【解答】解:(1)设打折前甲品牌粽子每盒x 元,乙品牌粽子每盒y 元,根据题意得:2230,500.8400.755200x y x y +=⎧⎨⨯+⨯=⎩g 解得:70,80x y =⎧⎨=⎩g 答:打折前甲品牌粽子每盒70元,乙品牌粽子每盒80元.(2)8070(180%)10080(175%)3120⨯⨯-+⨯⨯-=(元).答:打折后购买这批粽子比不打折节省了3120元.【点评】本题考查了二元一次方程组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据数量关系,列式计算.21.(8分)定义一种法则“⊕”如下:()()a a b a b b a b >⎧=⎨⎩⊕…,例如:122=⊕. (1)(2018)(2019)--=⊕ 2018- ;(2)若(35)88p -+=⊕,求p 的负整数值.【考点】1G :有理数的混合运算;7C :一元一次不等式的整数解【分析】(1)根据定义运算可得.(2)先根据题中所给的条件得出关于p 的不等式,求出p 的取值范围即可.【解答】解:(1)20182019->-Q ,(2018)(2019)2018∴--=-⊕,故答案为:2018-;(2)(35)88p -+=⊕Q ,358p ∴-+„,解得:1p -…,p ∴的负整数值为1-.【点评】本题考查的是解一元一次不等式,根据题意得出关于p 的不等式是解答此题的关键.22.(9分)已知直线//PQ MN ,ABC ∆的顶点A 与B 分别在直线MN 与PQ 上,45C ∠=︒,设CBQ a ∠=∠,CAN β∠=∠.(1)如图①,当点C 落在PQ 的上方时,AC 与PQ 相交于点D ,求证:45a β∠=∠+︒;(2)如图②.当点C 落在直线MN 的下方时,BC 与MN 交于点F ,请判断a ∠与β∠的数量关系,并说明理由.【考点】7K :三角形内角和定理;JA :平行线的性质【分析】(1)由三角形的外角性质得出CDQ C α∠=∠+∠,由平行线的性质得出CDQ β∠=∠,得出C βα∠=∠+∠,即可得出结论;(2)由三角形的外角性质得出CFN C β∠=∠+∠,由平行线的性质得出CFN α∠=∠,得出C αβ∠=∠+∠,即可得出结论.【解答】(1)证明:CDQ ∠Q 是CBD ∆的一个外角,CDQ C α∴∠=∠+∠,//PQ MN Q ,CDQ β∴∠=∠,C βα∴∠=∠+∠,45C ∠=︒Q ,45βα∴∠=∠+︒;(2)解:45αβ∠=∠+︒,理由如下:CFN ∠Q 是ACF ∆的一个外角,CFN C β∴∠=∠+∠,//PQ MN Q ,CFN α∴∠=∠,C αβ∴∠=∠+∠,45C ∠=︒Q ,45αβ∴∠=∠+︒.【点评】本题考查了平行线的性质以及三角形的外角性质;熟练掌握平行线的性质和三角形的外角性质是解题的关键.23.(10分)某公司有A 、B 两种型号的客车,它们的载客量、每天的租金如表所示:已知某中学计划租用A 、B 两种型号的客车共10辆,同时送七年级师生到沙家参加社会实践活动,已知该中学租车的总费用不超过5600元.(1)求最多能租用多少辆A 型号客车?(2)若七年级的师生共有380人,请写出所有可能的租车方案.【考点】9C :一元一次不等式的应用【分析】(1)设租用A 型号客车x 辆,则租用B 型号客车(10)x -辆,根据总租金600=⨯租用A型号客车的辆数450+⨯租用B型号客车的辆数结合租车的总费用不超过5600元,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,再取其中的最大整数值即可得出结论;(2)设租用A型号客车x辆,则租用B型号客车(10)x-辆,根据座位数45=⨯租用A型号客车的辆数30+⨯租用B型号客车的辆数结合师生共有380人,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,再结合(1)的结论及x为整数,即可得出各租车方案.【解答】解:(1)设租用A型号客车x辆,则租用B型号客车(10)x-辆,依题意,得:600450(10)5600x x+-„,解得:173 x„.又xQ为整数,x∴的最大值为7.答:最多能租用7辆A型号客车.(2)设租用A型号客车x辆,则租用B型号客车(10)x-辆,依题意,得:4530(10)x x+-,380…,解得:153 x….又xQ为整数,且173 x„,6x∴=,7.∴有两种租车方案,方案一:组A型号客车6辆、B型号客车4辆;方案二:组A型号客车7辆、B型号客车3辆.【点评】本题考查了一元一次不等式的应用,找准等量关系,正确列出一元一次不等式是解题的关键.24.(12分)探究与发现:探究一:我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?已知:如图1,FDC ∠与ECD ∠分别为ADC ∆的两个外角,试探究A ∠与FDC ECD ∠+∠的数量关系.探究二:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系? 已知:如图2,在ADC ∆中,DP 、CP 分别平分ADC ∠和ACD ∠,试探究P ∠与A ∠的数量关系.探究三:若将ADC ∆改为任意四边形ABCD 呢?已知:如图3,在四边形ABCD 中,DP 、CP 分别平分ADC ∠和BCD ∠,试利用上述结论探究P ∠与A B ∠+∠的数量关系.【考点】7K :三角形内角和定理;8K :三角形的外角性质;3L :多边形内角与外角【分析】探究一:根据三角形的一个外角等于与它不相邻的两个内角的和可得FDC A ACD ∠=∠+∠,ECD A ADC ∠=∠+∠,再根据三角形内角和定理整理即可得解;探究二:根据角平分线的定义可得12PDC ADC ∠=∠,12PCD ACD ∠=∠,然后根据三角形内角和定理列式整理即可得解;探究三:根据四边形的内角和定理表示出ADC BCD ∠+∠,然后同理探究二解答即可.【解答】解:探究一:FDC A ACD ∠=∠+∠Q ,ECD A ADC ∠=∠+∠,180FDC ECD A ACD A ADC A ∴∠+∠=∠+∠+∠+∠=︒+∠;探究二:DP Q 、CP 分别平分ADC ∠和ACD ∠, 12PDC ADC ∴∠=∠,12PCD ACD ∠=∠, 180P PDC PCD ∴∠=︒-∠-∠1118022ADC ACD =︒-∠-∠ 1180()2ADC ACD =︒-∠+∠ 1180(180)2A =︒-︒-∠1902A =︒+∠; 探究三:DP Q 、CP 分别平分ADC ∠和BCD ∠,12PDC ADC ∴∠=∠,12PCD BCD ∠=∠, 180P PDC PCD ∴∠=︒-∠-∠1118022ADC BCD =︒-∠-∠ 1180()2ADC BCD =︒-∠+∠ 1180(360)2A B =︒-︒-∠-∠ 1()2A B =∠+∠. 【点评】本题考查了三角形的外角性质,三角形的内角和定理,多边形的内角和公式,此类题目根据同一个解答思路求解是解题的关键.。
长春市七年级(下)第三次月考数学试卷含答案
![长春市七年级(下)第三次月考数学试卷含答案](https://img.taocdn.com/s3/m/6f64119f998fcc22bcd10dbe.png)
月考试卷一、选择题(本大题共8小题,共24.0分)1.下列长度的各组线段中,不能组成一个三角形的是()A. 2cm,3cm,4cmB. 5cm,7cm,7cmC. 5cm,6cm,12cmD. 6cm,8cm,10cm2.若a>b,且c为有理数,则下列各式正确的是()A. ac>bcB. ac<bcC. ac2<bc2D. ac2≥bc23.下列四个图形中,线段AD是△ABC的高的是()A. B.C. D.4.用下列两种正多边形能拼地板的是()A. 正三角形和正八边形B. 正方形和正八边形C. 正六边形和正八边形D. 正十边形和正八边形5.已知且3x-2y=0,则a的值为()A. 2B. 0C. -4D. 56.一副学生用的三角板如图放置,则∠AOD的度数为()A. 75°B. 100°C. 105°D. 120°7.如图,在△ABC中,D是BC中点,E是AD中点,连结BE、CE,若△ABC的面积为20,则△BCE的面积为()A. 5B. 10C. 15D. 18A. 4≤m<7B. 4<m<7C. 4≤m≤7D. 4<m≤7二、填空题(本大题共6小题,共18.0分)9.一个多边形的每一个外角为30°,那么这个多边形的边数为______.10.如图,自行车的车身为三角结构,这样做根据的数学道理是______.11.不等式1-2x<6的负整数解是______.12.已知是二元一次方程组的解,则a-b=______.13.如图,若ABCDEF是正六边形,ABGH是正方形,连结FH,则∠AFH+∠AHF=______.14.当三角形中一个内角是另一个内角的3倍时,我们称此三角形为“梦想三角形”,如果一个“梦想三角形”有一个角为120°,那么这个“梦想三角形”的最小内角的度数为______.三、计算题(本大题共2小题,共12.0分)15.解方程组:.16.解不等式3x+(13-x)>17,并把它的解集在所给的数轴上表示出来.四、解答题(本大题共8小题,共66.0分)17.解不等式组.18.一个多边形的内角和是外角和的3倍,求这个多边形的边数.19.如图,已知AD是△ABC的角平分线,CE是△ABC的高,∠ACE=20°,∠BCE=40°,求∠ADC的度数.20.当m取何值时,关于x、y的方程组的解中,x>1,y≥-1.21.如图,在四边形ABCD中,∠DAB,∠CBA的平分线交于点E,若∠AEB=105°,求∠C+∠D的度数.22.记R(x)表示正数c四舍五入后的结果,例如R(2.7)=3.R(7.11)=7,R(9)=9.(1)R(π)=______;(2)若R(x-1)=3,求x的取值范围.23.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?24.感知:如图①,在△ABC中,∠BAC=90°,D是BC边上一点,∠B=∠BAD,∠C=∠ADC,则∠DAC=______°.探究:如图②,在△ABC中,∠BAC=78°,D是BC边上一点,∠B=∠BAD,∠C=∠ADC,求∠DAC的度数;应用:如图③,在△ABC中,D是BC边上一点,∠BAC=∠C,∠B=∠BAD,∠C=∠ADC,则∠DAC=______°.答案和解析1.【答案】C【解析】解:A、∵2+3>4,∴能构成三角形;B、∵5+7>7,∴能构成三角形;C、∵5+6<12,∴不能构成三角形;D、∵6+8>10,∴能构成三角形.故选:C.根据三角形三边关系定理:三角形两边之和大于第三边,进行判定即可.此题主要考查学生对运用三角形三边关系判定三条线段能否构成三角形的掌握情况,注意只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.2.【答案】D【解析】解:①∵c为有理数,可以是正数也可以是负数,∴A、B都错误;②如果c=0,c2=0,C选项错误;③如果c≠0,c2>0,∴ac2>bc2,如果c=0,ac2=bc2,∴a2ac2≥bc2,D正确.故选D.根据不等式的基本性质2:不等式的两边同时乘以一个正数,不等号的方向不改变;不等式的基本性质3:不等式的两边同时乘以一个负数,不等号的方向改变解答即可.本题主要考查不等式的基本性质和平方数非负数,要注意a=0时的特殊情况,容易出现选C的错误.3.【答案】D【解析】解:线段AD是△ABC的高的图是选项D.故选:D.根据三角形高的画法知,过点A作BC边上的高,垂足为D,其中线段AD是△ABC的高,再结合图形进行判断.本题主要考查了三角形的高,三角形的高是指从三角形的一个顶点向对边作垂线,连接顶点与垂足之间的线段.4.【答案】B【解析】解:∵正八边形的每个内角是135°,正方形的内角为90°,∴两个正八边形和一个正方形可以拼地板;故选:B.正八边形的每个内角是135°,两个正八边形和一个正方形可以拼地板;此题主要考查了平面镶嵌,几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形5.【答案】B【解析】解:原方程组可整理得:,①-②得:5y=5a,解得:y=a,把y=a代入①得:x+a=a,解得:x=0,即方程组的解为:,把代入3x-2y=0得:-2a=0,解得:a=0,故选:B.利用加减消元法解方程组,得到关于a的x和y的值,代入方程3x-2y=0,得到关于a 的一元一次方程,解之即可.本题考查了解二元一次方程组,正确掌握加减消元法是解题的关键.6.【答案】C【解析】解:由题可得,∠ACB=45°,∠DBC=30°,∴△BCO中,∠BOC=180°-45°-30°=105°,∴∠AOD=∠BOC=105°,故选:C.依据三角形内角和定理,即可得到∠BOC=105°,再根据对顶角相等,即可得出∠AOD的度数.本题考查了三角形的内角和定理以及对顶角的性质,利用三角形内角和为180°是关键.7.【答案】B【解析】解:∵D是BC中点,∴△ABD的面积=△ACD的面积=×△ABC的面积=10,∵E是AD中点,∴△EBD的面积=△ABD的面积=5,△ECD的面积=△ACD的面积=5,∴△BCE的面积=△EBD的面积+△ECD的面积=10,故选:B.根据三角形的中线把三角形分为面积相等的两部分计算,得到答案.本题考查的是三角形的面积计算,掌握三角形的中线把三角形分为面积相等的两部分是解题的关键.8.【答案】A【解析】解:解不等式3x-m+1>0,得:x>,∵不等式有最小整数解2,解得:4≤m<7,故选:A.先解出不等式,然后根据最小整数解为2得出关于m的不等式组,解之即可求得m的取值范围.本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.9.【答案】12【解析】解:多边形的边数:360°÷30°=12,则这个多边形的边数为12.故答案为:12.一个正多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数.根据任何多边形的外角和都是360°,利用360°除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.10.【答案】三角形具有稳定性【解析】解:自行车的车身为三角结构,这是因为三角形具有稳定性.故答案为:三角形具有稳定性.根据三角形具有稳定性进行解答即可.此题主要考查了三角形的稳定性的应用,解题时注意:当三角形三边的长度确定后,三角形的形状和大小就能唯一确定下来,故三角形具有稳定性.11.【答案】-2,-1【解析】解:1-2x<6,移项得:-2x<6-1,合并同类项得:-2x<5,不等式的两边都除以-2得:x>-,∴不等式的负整数解是-2,-1,故答案为:-2,-1.根据不等式的性质求出不等式的解集,找出不等式的整数解即可.本题主要考查对解一元一次不等式,一元一次不等式的整数解,不等式的性质等知识点的理解和掌握,能根据不等式的性质求出不等式的解集是解此题的关键.12.【答案】-1【解析】解:把代入二元一次方程组得:,解得:,∴a-b=2-3=-1,故答案为:-1.把代入二元一次方程组,可以得到a,b的值.再求a-b的值.关于a,b的二元一次方程组,根据方程组来求解.13.【答案】30°【解析】解:正六边形ABCDEF的每一个内角是4×180°÷6=120°,正方形ABGH的每个内角是90°,∴∠FAH=360°-120°-90°=150°,∴∠AFH+∠AHF=180°-150°=30°;故答案为30°.分别求出正六边形和正方形的一个内角度数,再求出∠FAH的大小,即可求解.本题考查正多边形的内角;熟练掌握正多边形内角的求法是解题的关键.14.【答案】20°或15°【解析】解:①120°÷3=40°,180°-120°-40°=20°,则这个“梦想三角形”的最小内角的度数为20°;②设这个“梦想三角形”的其它两个内角的度数分别为3x、x,则3x+x+120°=180°,解得,x=15°,则这个“梦想三角形”的最小内角的度数15°,故答案为:20°或15°.分两种情况,根据三角形内角和定理计算即可.本题考查的是三角形内角和定理的应用,掌握三角形内角和等于180°、灵活运用分情况讨论思想是解题的关键.15.【答案】解:方程组整理得:,①×3-②得:y=0,把y=0代入①得:x=8,则方程组的解为.【解析】方程组整理后,利用加减消元法求出解即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.16.【答案】解:去括号,得3x+13-x>17移项及合并得,2x>4系数化为1,得x>2;在数轴上表示为:【解析】解本题的步骤为:去括号,移项及合并,系数化为1.本题考查解不等式的一般步骤,需注意:在不等式的两边同时除以同一个正数,不等号的方向不变.17.【答案】解:,由①得,x≤4,由②得,x>1,故不等式组的解集为:1<x≤4.【解析】分别求出各不等式的解集,再求出其公共解集即可.本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.【答案】解:设这个多边形是n边形,由题意得:(n-2)×180°=360°×3,解得:n=8.答:这个多边形的边数是8.【解析】根据多边形的外角和为360°,内角和公式为:(n-2)•180°,由题意可知:内角和=3×外角和,设出未知数,可得到方程,解方程即可.此题主要考查了多边形的外角和,内角和公式,做题的关键是正确把握内角和公式为:(n-2)•180°,外角和为360°.19.【答案】解:∵CE是△ABC的高,∴∠CEB=90°,∵∠ACE=20°,∴∠CAB=70°,∵AD是△ABC的角平分线,∴∠BAD=∠DAC=70°÷2=35°,∵∠BCE=40°,∴∠B=90°-40°=50°,∴∠ADC=∠BAD+∠B=35°+50°=85°,即∠ADC的度数是85°.【解析】此题主要考查了三角形的内角和定理,三角形的中线、角平分线、高.要熟练掌握,解答此题的关键是要明确:三角形的内角和是180°.由CE是△ABC边AB上的高,得到∠CEB=90°,根据三角形的内角和得到∠CAB=70°,根据角平分线的定义得到∠BAD=∠DAC=35°,求得∠B,于是得到结论.20.【答案】解:,①+②得:2x=m+1,即x=;①-②得:4y=1-m,即y=;根据题意列得:,解得:1<m≤5.【解析】将m看做已知数,求出方程组的解,然后根据题意列出不等式组,求出不等式组的解集即可得到m的范围.此题考查了解一元一次不等式组、解二元一次方程组,熟练掌握解不等式的和方程组的方法是解题的关键.21.【答案】解:∵∠DAB,∠CBA的平分线交于点E,∴∠DAB=2∠EAB,∠CBA=2∠EBA,在△EAB中,∠EAB+∠EBA=180°-∠AEB=180°-105°=75°,∴∠DAB+∠CBA=2(∠EAB+∠EBA)=150°,∴∠C+∠D=360°-(∠DAB+∠CBA)=360°-150°=210°.【解析】先根据角平分线得:∠DAB=2∠EAB,∠CBA=2∠EBA,之后运用三角形内角和定理和四边形内角和定理进行变形可得结论.本题考查了角平分线的定义、三角形内角和及四边形内角和,熟练掌握多边形内角和是关键.22.【答案】3【解析】解:(1)R(π)=3,故答案为:3;(2)∵R(x-1)=3,∴2.5≤x-1<3.5,解得:7≤x<9.(1)根据题意即可得到结论;(2)根据题意列不等式即可得到结论.本题考查了解一元一次不等式组,近似数和有效数字,正确的理解题意是解题的关键.23.【答案】解:(1)设一个足球的单价x元、一个篮球的单价为y元,根据题意得,解得:,答:一个足球的单价103元、一个篮球的单价56元;(2)设可买足球m个,则买篮球(20-m)个,根据题意得:103m+56(20-m)≤1550,解得:m≤9,∵m为整数,∴m最大取9答:学校最多可以买9个足球.【解析】(1)设一个足球的单价x元、一个篮球的单价为y元,根据:①1个足球费用+1个篮球费用=159元,②足球单价是篮球单价的2倍少9元,据此列方程组求解即可;(2)设买足球m个,则买篮球(20-m)个,根据购买足球和篮球的总费用不超过1550元建立不等式求出其解即可.本题考查了列二元一次方程组解实际问题的运用,列一元一次不等式解实际问题的运用,解答本题时找到建立方程的等量关系和建立不等式的不等关系是解答本题的关键.24.【答案】60 36【解析】解:感知:如图①中,∵∠BAC=90°,∴∠BAD+∠CAD=90°,∠B+∠C=90°,∵∠B=∠BAD,∴∠C=∠CAD,∵∠ADC=∠C,∴∠C=∠ADC=∠DAC=60°,故答案为60.探究:如图②中,设∠B=∠BAD=x,则∠ADC=∠C=2x.∵∠B+∠C+∠BAC=180°,∴3x+78°=180°,∴x=34°,∴∠ADC=∠C=68°,∴∠DAC=180°-2×68°=44°,应用:如图③中,设∠B=∠BAD=x,则∠ADC=∠C=2x.∵∠BAC+∠B+∠C=180°,∴5x=180°,∴x=36°,∴∠ADC=∠C=72°,∴∠ADC=180°-2×72°=36°,故答案为36.感知:如图①,想办法证明△ADC是等边三角形即可解决问题.探究:如图②,设∠B=∠BAD=x,则∠ADC=∠C=2x.利用三角形内角和定理,构建方程即可解决问题.应用:如图③中,设∠B=∠BAD=x,则∠ADC=∠C=2x.利用三角形内角和定理,构建方程即可解决问题.本题属于三角形综合题,考查了等腰三角形的判定和性质,三角形内角和定理,三角形的外角的性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.。
七年级下学期第三次月考数学试题含解析
![七年级下学期第三次月考数学试题含解析](https://img.taocdn.com/s3/m/caf2ccd690c69ec3d4bb7527.png)
七年级下学期第三次月考数学试题含解析一、选择题1.已知1,2xy=⎧⎨=⎩是二元一次方程24x ay+=的一组解,则a的值为()A.2B.2-C.1D.1-2.已知方程组43235x y kx y-=⎧⎨+=⎩的解满足x y=,则k的值为()A.1 B.2 C.3 D.4 3.二元一次方程2x+3y=15的正整数解的个数是()A.1个B.2个C.3个D.4个4.若二元一次方程组,3x y ax y a-=⎧⎨+=⎩的解是二元一次方程3570x y--=的一个解,则a为()A.3 B.5 C.7 D.9 5.将一张面值50元的人民币,兑换成5元和2元的零钱,兑换方案有()A.4种B.5种C.6种D.7种6.方程组22{?23x y mx y+=++=中,若未知数x、y满足x-y>0,则m的取值范围是( )A.m>1 B.m<1 C.m>-1 D.m<-17.某瓶中装有1分,2分,5分三种硬币,15枚硬币共3角5分,则有多少种装法( ) A.1. B.2. C.3. D.4.8.某工厂现有95个工人,一个工人每天可做8个螺杆或22个螺母,两个螺母和一个螺杆为一套,现在要求工人每天做的螺杆和螺母完整配套而没有剩余,若设安排x个工人做螺杆,y个工人做螺母,则列出正确的二元一次方程组为()A .;B .;C .;D .9.《孙子算经》是中国古代著名的数学著作.在书中有这样一道题:“今有木,不知长短.引绳度之,余绳四尺五,屈绳量之,不足一尺.问木长几何?”译成白话文:“现有一根木头,不知道它的长短.用整条绳子去量木头,绳子比木头长4.5尺;将绳子对折后去量,则绳子比木头短1尺.问木头的长度是多少尺?”设木头的长度为x尺,绳子的长度为y尺.则可列出方程组为()A.4.512x yyx-=⎧⎪⎨-=⎪⎩B.4.512y xyy-=⎧⎪⎨-=⎪⎩C.4.512y xyx-=⎧⎪⎨-=⎪⎩D.4.512x yyy-=⎧⎪⎨-=⎪⎩10.将一张面值100元的人民币,兑换成10元或20元的零钱,兑换方案有()A.6种B.7种C.8种D.9种二、填空题11.已知关于x ,y 的二元一次方程()()12120m x my m +++=﹣﹣,无论实数m 取何值,此二元一次方程都有一个相同的解,则这个相同的解是______.12.三位先生A 、B 、C 带着他们的妻子a 、b 、c 到超市购物,至于谁是谁的妻子现在只能从下列条件来推测:他们6人,每人花在买商品的钱数(单位:元)正好等于商品数量的平方,而且每位先生都比自己的妻子多花48元钱,又知先生A 比b 多买9件商品,先生B 比a 多买7件商品.则先生C 购买的商品数量是________.13.若m=m =________.14.2019年秋,重庆二外初2021级将开启“大阅读”活动,为了充实书吧藏书,学生会号召全年级学生捐书,得到各班的大力支持.同时,年级部分备课组的老师也购买藏书充实到年级书吧,其中数学组购买了甲、乙两种自然科学书籍若干本,用去699元;语文组购买了A 、B 两种文学书籍若干本,用去6138元,已知A 、B 的数量分别与甲、乙的数量相等,且甲种书与B 种书的单价相同,乙种书与A 种书的单价相同.若甲种书的单价比乙种书的单价多7元,则乙种书籍比甲种书籍多买了__________本.15.方程组1111121132x y x z y z ⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩的解为______.16.已知关于x 、y 的方程组135x y ax y a +=-⎧⎨-=+⎩,给出下列结论:①当1a =时,方程组的解也是方程3x y -=的解;②当x 与y 互为相反数时,1a =③不论a 取什么实数,2x y +的值始终不变;④若12z xy =,则z 的最大值为1.正确的是________(把正确答案的序号全部都填上)17.我校团委组织初三年级50名团员和鲁能社区36名社区志愿者共同组织了义务植树活动,为了便于管理分别把50名同学分成了甲、乙两组,36名志愿者分成了丙、丁两组.甲、丙两组到A 植树点植树,乙、丁两组到B 植树点植树,植树结束后统计植树成果得知:甲组人均植树量比乙组多2棵,丙、丁两组人均植树量相同,且是乙组人均植树量的2.5倍,A 、B 两个植树点的人均植树量相同,且比甲组人均植树量高25%.已知人均植树量为整数,则我校学生一共植树________棵.18.已知关于x 、y 的方程组343x y ax y a +=-⎧-=⎨⎩,其中31a -≤≤,有以下结论:①当2a =-时,x 、y 的值互为相反数;②当1a =时,方程组的解也是方程4x y a +=-的解;③若1x ≤,则 4.l y ≤≤其中所有正确的结论有______(填序号)19.对任意一个三位数n ,如果n 满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.(1)计算:F(241)=_________,F(635)=___________ ;(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:()()F skF t=,当F(s)+F(t)=18时,则k的最大值是___.20.火锅是重庆的一张名片,深受广大市民的喜爱.重庆某火锅店采取堂食、外卖、店外摆摊(简称摆摊)三种方式经营,6月份该火锅店堂食、外卖、摆摊三种方式的营业额之比为3:5:2.随着促进消费政策的出台,该火锅店老板预计7月份总营业额会增加,其中摆摊增加的营业额占总增加的营业额的25,则摆摊的营业额将达到7月份总营业额的720,为使堂食、外卖7月份的营业额之比为8:5,则7月份外卖还需增加的营业额与7月份总营业额之比是__________.三、解答题21.对于数轴上的点A,给出如下定义:点A在数轴上移动,沿负方向移动a个单位长度(a是正数)后所在位置点表示的数是x,沿正方向移动2a个单位长度(a是正数)后所在位置点表示的数是y,x与y这两个数叫做“点A的a关联数”,记作G(A,a)={x,y},其中x<y.例如:原点O表示0,原点O的1关联数是G(0,1)={-1,+2}(1)若点A表示-3,a=3,直接写出点A的3关联数.(2)①若点A表示-1,G(A,a)={-5,y},求y的值.②若G(A,a)={-2,7},求a的值和点A表示的数.(3)已知G(A,3)={x,y},G(B,2)={m,n},若点A、点B从原点同时同向出发,且点A的速度是点B速度的3倍.当|y-m|=6时,直接写出点A表示的数.22.阅读下列文字,请仔细体会其中的数学思想.(1)解方程组321327x yx y-=-⎧⎨+=⎩,我们利用加减消元法,很快可以求得此方程组的解为;(2)如何解方程组()()()()3523135237m nm n⎧+-+=-⎪⎨+++=⎪⎩呢?我们可以把m+5,n+3看成一个整体,设m+5=x,n+3=y,很快可以求出原方程组的解为;(3)由此请你解决下列问题:若关于m,n的方程组722am bnm bn+=⎧⎨-=-⎩与351m nam bn+=⎧⎨-=-⎩有相同的解,求a、b的值.23.阅读以下内容:已知有理数m,n满足m+n=3,且3274232m n km n+=-⎧⎨+=-⎩求k的值.三位同学分别提出了以下三种不同的解题思路:甲同学:先解关于m,n的方程组3274232m n km n+=-⎧⎨+=-⎩,再求k的值;乙同学:将原方程组中的两个方程相加,再求k的值;丙同学:先解方程组3232m nm n+=⎧⎨+=-⎩,再求k的值.(1)试选择其中一名同学的思路,解答此题;(2)在解关于x,y的方程组()()11821a x byb x ay⎧+-=⎪⎨++=⎪⎩①②时,可以用①×7﹣②×3消去未知数x,也可以用①×2+②×5消去未知数y.求a和b的值.24.平面直角坐标系中,A(a,0),B(0,b),a,b满足2(25)220a b a b++++-=,将线段AB平移得到CD,A,B的对应点分别为C,D,其中点C在y轴负半轴上.(1)求A,B两点的坐标;(2)如图1,连AD交BC于点E,若点E在y轴正半轴上,求BE OEOC-的值;(3)如图2,点F,G分别在CD,BD的延长线上,连结FG,∠BAC的角平分线与∠DFG 的角平分线交于点H,求∠G与∠H之间的数量关系.25.阅读下列材料,然后解答后面的问题.已知方程组372041027x y zx y z++=⎧⎨++=⎩,求x+y+z的值.解:将原方程组整理得2(3)()203(3)()27x y x y zx y x y z++++=⎧⎨++++=⎩①②,②–①,得x+3y=7③,把③代入①得,x+y+z=6.仿照上述解法,已知方程组6422641x yx y z+=⎧⎨--+=-⎩,试求x+2y–z的值.26.为了加强公民的节水意识,合理利用水资源,某城市规定用水收费标准如下:每户每月用水量不超过6米3时,水费按a 元/米3收费;每户每月用水量超过6米3时,不超过的部分每立方米仍按a 元收费,超过的部分按c 元/米3收费,该市某用户今年3、4月份的用水量和水费如下表所示:(1)求a 、c 的值,并写出每月用水量不超过6米3和超过6米3时,水费与用水量之间的关系式;(2)已知某户5月份的用水量为8米3,求该用户5月份的水费.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】把x 与y 的值代入方程计算即可求出a 的值. 【详解】把1,2x y =⎧⎨=⎩代入方程24x ay +=,得224a +=,解得1a =. 故选C. 【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.2.A解析:A 【分析】把x y =代入方程组43235x y kx y -=⎧⎨+=⎩,得到关于x 、k 的二元一次方程组,即可求解.【详解】x y =代入方程组43235x y k x y -=⎧⎨+=⎩,得43235x x k x x -=⎧⎨+=⎩,即1x kx =⎧⎨=⎩,所以k=1,故选:A 【点睛】此题考查了解二元一次方程组.把x=y 代入到方程组,消去y 是解答此题的关键.3.B解析:B 【详解】 解:2x+3y=15, 解得:x=3152y -+, 当y=1时,x=6;当y=3时,x=3, 则方程的正整数解有2对. 故选:B4.C解析:C 【分析】先用含a 的代数式表示x 、y ,即解关于x 、y 的方程组,再代入3570x y --=中即可求解. 【详解】 解:解方程组3x y a x y a -=⎧⎨+=⎩,得2x ay a =⎧⎨=⎩,把x =2a ,y=a 代入方程3570x y --=,得6570a a --=, 解得:a =7. 故选C. 【点睛】本题考查了解二元一次方程组和二元一次方程组的解的概念,求解的关键是先把a 看成已知,通过解关于x 、y 的方程组,得到x 、y 与a 的关系.5.C解析:C 【分析】设可以兑换m 张5元的零钱,n 张2元的零钱,根据零钱的总和为50元,即可得出关于m ,n 的二元一次方程,结合m ,n 均为非负整数,即可得出结论. 【详解】设可以兑换m 张5元的零钱,n 张2元的零钱, 依题意,得:5m+2n =50, ∴m =10﹣25n . ∵m ,n 均为非负整数, ∴当n =0时,m =10; 当n =5时,m =8;当n =10时,m =6; 当n =15时,m =4; 当n =20时,m =2; 当n =25时,m =0. ∴共有6种兑换方案. 故选:C . 【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.6.B解析:B 【解析】解方程组22{23x y m x y +=++=得43{123mx my -=+=, ∵x 、y 满足x-y>0,∴412330333m m m-+--=>, ∴3-3m>0, ∴m<1. 故选B.7.C解析:C 【详解】解:设1分的硬币有x 枚,2分的硬币有y 枚,则5分的硬币有(15-x-y)枚, 可得方程x+2y+5(15-x-y)=35, 整理得4x+3y=40,即x=10-34y , 因为x ,y 都是正整数, 所以y=4或8或12, 所以有3种装法, 故选C.8.C解析:C【解析】试题分析:设安排x 个工人做螺杆,y 个工人做螺母,根据“工厂现有95个工人”和“一个工人每天可做8个螺杆或22个螺母,两个螺母和一个螺杆为一套”列出方程组即可得到95{16220x y x y +=-= .故选:C点睛:此题主要考查了由实际问题抽象出二元一次方程组,关键是弄清题意,找出合适的等量关系,列出方程组.9.C解析:C【分析】根据“用绳子去量一根木头,绳子还剩余4.5尺,将绳子对折再量木头,木头还剩余1尺”,即可得出关于x,y的二元一次方程组,此题得解.【详解】依题意,得:4.512y xyx-=⎧⎪⎨-=⎪⎩,故选:C.【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.10.A解析:A【解析】试题解析:设兑换成10元x张,20元的零钱y元,由题意得:10x+20y=100,整理得:x+2y=10,方程的整数解为:24xy=⎧⎨=⎩,43xy=⎧⎨=⎩,62xy=⎧⎨=⎩,81xy=⎧⎨=⎩,10{xy==,5xy=⎧⎨=⎩.因此兑换方案有6种,故选A.考点:二元一次方程的应用.二、填空题11.【分析】将方程整理成关于m的一元一次方程,若无论实数m取何值,此二元一次方程都有一个相同的解,则与m无关,从而令m的系数为0,从而得关于x和y 的二元一次方程组,求解即可.【详解】将(m+1)解析:11 xy=-⎧⎨=⎩【分析】将方程整理成关于m的一元一次方程,若无论实数m取何值,此二元一次方程都有一个相同的解,则与m无关,从而令m的系数为0,从而得关于x和y的二元一次方程组,求解即可.【详解】将(m+1)x+(2m-1)y+2-m=0整理得:mx+x+2my-y+2-m=0,即m(x+2y-1)+x-y+2=0,因为无论实数m取何值,此二元一次方程都有一个相同的解,所以21020x yx y+-=⎧⎨-+=⎩,解得:11xy=-⎧⎨=⎩.故答案为:11xy=-⎧⎨=⎩.【点睛】考查了含参数的二元一次方程有相同解问题,解题关键是利用转化思想.12.7件.【分析】设一对夫妻,丈夫买了x件商品,妻子买了y件商品,列出关于x、y的二元二次方程,再根据x、y都是正整数,且x+y与x-y有相同的奇偶性,即可得出关于x、y的二元一次方程组,求出x、y解析:7件.【分析】设一对夫妻,丈夫买了x件商品,妻子买了y件商品,列出关于x、y的二元二次方程,再根据x、y都是正整数,且x+y与x-y有相同的奇偶性,即可得出关于x、y的二元一次方程组,求出x、y的值,再找出符合x-y=9和x-y=7的情况即可进行解答.【详解】解:设一对夫妻,丈夫买了x件商品,妻子买了y件商品.则有x2-y2=48,即(x十y)(x-y)=48.∵x、y都是正整数,且x+y与x-y有相同的奇偶性,又∵x+y>x-y,48=24×2=12×4=8×6,∴242x yx y+⎧⎨-⎩==或124x yx y+⎧⎨-⎩==或86x yx y+⎧⎨-⎩==.解得x=13,y=11或x=8,y=4或x=7,y=1.符合x-y=9的只有一种,可见A买了13件商品,b买了4件.同时符合x-y=7的也只有一种,可知B买了8件,a买了1件.∴C买了7件,c买了11件.故答案为:7件.【点睛】此题考查了非一次不定方程的性质.解题的关键是理解题意,根据题意列方程,还要注意分类讨论思想的应用.13.201【分析】根据能开平方的数一定是非负数,得199-x-y≥0,x-199+y≥0,所以199-x-y=x-199+y=0,即x+y=199①,从而有=0,再根据算术平方根的非负性可得出3x+解析:201【分析】根据能开平方的数一定是非负数,得199-x-y≥0,x-199+y≥0,所以199-x-y=x-199+y=0,即x+y=199,再根据算术平方根的非负性可得出3x+5y-2-m=0②,2x+3y-m=0③,联立①②③解方程组可得出m的值.【详解】解:由题意可得,199-x-y≥0,x-199+y≥0,∴199-x-y=x-199+y=0,∴x+y=199①.=0,∴3x+5y-2-m=0②,2x+3y-m=0③,联立①②③得,1993520 230x yx y mx y m+=⎧⎪+--=⎨⎪+-=⎩①②③,②×2-③×3得,y=4-m,将y=4-m代入③,解得x=2m-6,将x=2m-6,y=4-m代入①得,2m-6+4-m=199,解得m=201.故答案为:201.【点睛】本题考查了算术平方根的非负性以及方程组的解法,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键.14.777【分析】设乙种书与A种书的单价为x元,则甲种书与B种书的单价为(x+7)元,甲种书与A种书的数量为a本,乙种书与B种书的数量为b本,根据单价乘以数量等于总价,建立方程组,整理即可得出b-a解析:777【分析】设乙种书与A种书的单价为x元,则甲种书与B种书的单价为(x+7)元,甲种书与A种书的数量为a本,乙种书与B种书的数量为b本,根据单价乘以数量等于总价,建立方程组,整理即可得出b-a的值.【详解】设乙种书与A 种书的单价为x 元,则甲种书与B 种书的单价为(x+7)元,设甲种书与A 种书的数量为a 本,乙种书与B 种书的数量为b 本,由题意得:()()()()76991761382a x bx ax b x ⎧++=⎪⎨++=⎪⎩()()21-得775439-=b a∴777-=b a故答案为:777.【点睛】本题考查方程组的应用,熟练掌握单价乘以数量等于总价,建立方程组是解题的关键.15.【分析】先将三个方程依次标号,然后相加可得④,由④-①,④-②,④-③即可得出答案.【详解】解:由方程组,可得:,所以④,由可得:,由可得:,由可得综上所述方程组的解是.【点睛】 解析:43445x y z ⎧=⎪⎪=⎨⎪⎪=⎩【分析】 先将三个方程依次标号,然后相加可得11194x y z ++=④,由④-①,④-②,④-③即可得出答案.【详解】 解:由方程组1111121132x y x zy z ⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩①②③,++①②③可得:111922x y z ⎛⎫++= ⎪⎝⎭,所以11194x y z ++=④, 由-④①可得:154,45z z =∴=,由-④②可得:11,44y y =∴=,由-④③可得13,4x = 43x ∴= 综上所述方程组的解是43445x y z ⎧=⎪⎪=⎨⎪⎪=⎩.【点睛】本题考查的是三元一次方程组的解法,利用加减消元的思想是解题的关键.16.①③④【分析】根据题目中的条件代入原来的方程组中,即可判断结论是否成立,从而可以解答本题.【详解】解:当a=1时,,解得: ,则,∴①错误;当x 与y 互为相反数时,,得,∴②正确;解析:①③④【分析】根据题目中的条件代入原来的方程组中,即可判断结论是否成立,从而可以解答本题.【详解】解:当a=1时,08x y x y +=⎧⎨-=⎩,解得:44x y =⎧⎨=-⎩, 则()448x y -=--=,∴①错误;当x 与y 互为相反数时,01a =-,得1a =,∴②正确;∵135x y a x y a +=-⎧⎨-=+⎩,解得:322x a y a =+⎧⎨=--⎩, 则()()223224x y a a +=++--=,∴③正确; ∴()()()21132221122z xy a a a ==+--=-++≤, 即若12z xy =则z 的最大值为1, ∴④正确,综上说述,正确的有:①③④,故答案为: ①③④. 【点睛】本题考查二元一次方程组的解、二元一次方程的解,解答本题的关键是明确题意,可以判断题目中的各个结论是否成立.17.320【解析】【分析】设甲组分得a 人,则乙组为(50-a )人,丙组为b 人,则丁组为(36-b )人;再设全部人均种树x 棵,则甲组人均种x÷(1+25%)=0.8x 棵,乙组人均种(0.8x-2)棵解析:320【解析】【分析】设甲组分得a 人,则乙组为(50-a )人,丙组为b 人,则丁组为(36-b )人;再设全部人均种树x 棵,则甲组人均种x÷(1+25%)=0.8x 棵,乙组人均种(0.8x-2)棵,丙、丁两组人均植树2.5(0.8x-2)=(2x-5)棵,根据题意列出方程,整理后可得a=140-13x ,再根据a 和x 的取值范围确定a 和x 的值,从而得到植树的数量。
人教版七年级第二学期 第三次月考检测数学试卷含答案
![人教版七年级第二学期 第三次月考检测数学试卷含答案](https://img.taocdn.com/s3/m/9c364dc2cc7931b764ce1527.png)
人教版七年级第二学期 第三次月考检测数学试卷含答案一、选择题1.已知方程组2728x y x y +=⎧⎨+=⎩,则5510x y -+的值是( )A .5B .-5C .15D .252.已知方程组43235x y kx y -=⎧⎨+=⎩的解满足x y =,则k 的值为( )A .1B .2C .3D .43.若关于x 、y 的二元一次方程组3526x my x ny -=⎧⎨+=⎩的解是35x y =⎧⎨=⎩,则关于a 、b 的二元一次方程组()()()()3526a b m a b a b n a b ⎧+--=⎪⎨++-=⎪⎩的解是( ).A .35a b =⎧⎨=⎩B .35a b =⎧⎨=-⎩C .41a b =⎧⎨=-⎩D .41a b =⎧⎨=⎩ 4.已知2x y a=⎧⎨=⎩是方程25x y +=的一个解,则a 的值为( ) A .1a =-B .1a =C .23a =D .32a =5.如图所示是由截面为同一种矩形的墙砖粘贴的部分墙面,其中三块横放的墙砖比一块竖放的墙砖高10cm ,两块横放的墙砖比两块竖放的墙砖低40cm ,则每块墙砖的截面面积是( )A .425cm 2B .525cm 2C .600cm 2D .800cm 2 6.将一张面值100元的人民币,兑换成10元或20元的零钱,兑换方案有( )A .6种B .7种C .8种D .9种7.已知32x y =⎧⎨=-⎩是方程组23ax by bx ay +=⎧⎨+=-⎩的解,则+a b 的值是( )A .﹣1B .1C .﹣5D .58.若二元一次方程3x ﹣y =﹣7,x+3y =1,y =kx+9有公共解,则k 的取值为( ) A .3B .﹣3C .﹣4D .49.《九章算术》中记载一问题如下:“今有共买鸡,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱,问人数、物价各多少?设有x 人,买鸡的钱数为y ,依题意可列方程组为()A.8374x yx y+=⎧⎨+=⎩B.8374x yx y-=⎧⎨-=⎩C.8374x yx y+=⎧⎨-=⎩D.8374x yx y-=⎧⎨+=⎩10.对于任意实数a,b,定义关于“⊗”的一种运算如下:a⊗b=2a+b.例如3⊗4=2×3+4,若x⊗(﹣y)=2018,且2y⊗x=﹣2019,则x+y的值是()A.﹣1 B.1 C.13D.﹣13二、填空题11.已知21xy=⎧⎨=⎩,是二元一次方程组81mx nynx my+=⎧⎨-=⎩的解,则m+3n的平方根为______.12.二元一次方程3x+8y=27的所有正整数解为_________;整数解有_______个.13.某单位现要组织其市场和生产部的员工游览该公园,门票价格如下:如果按部门作为团体,选择两个不同的时间分别购票游览公园,则共需支付门票费为1245元;如果两个部门合在一起作为一个团体,同一时间购票游览公园,则需支付门票费为945元.那么该公司这两个部的人数之差的绝对值为_____.14.某商场在11月中旬对甲、乙、丙三种型号的电视机进行促销.其中,甲型号电视机直接按成本价1280元的基础上获利25%定价;乙型号电视机在原销售价2199元的基础上先让利199元,再按八五折优惠;丙型号电视机直接在原销售价2399元上减499元;活动结束后,三种型号电视机总销售额为20600元,若在此次促销活动中,甲、乙、丙三种型号的电视机至少卖出其中两种型号,则三种型号的电视机共______有种销售方案. 15.小明、小红和小光共解出了100道数学题目,每人都解出了其中的60道题目,如果将其中只有1人解出的题目叫做难题,2人解出的题目叫做中档题,3人都解出的题目叫做容易题,那么难题比容易题多________道.16.关于x,y的方程组223321x y mx y m+=+⎧⎨-=-⎩的解满足不等式组5030x yx y->⎧⎨-<⎩,则m的取值范围_____.17.对任意一个三位数n,如果n满足各个数位上的数字互不相同,且都不为零,那么称这个数为“相异数”,将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F(n).例如n=123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F(123)=6.(1)计算:F(241)=_________,F(635)=___________ ;(2)若s,t都是“相异数”,其中s=100x+32,t=150+y(1≤x≤9,1≤y≤9,x,y都是正整数),规定:()()F skF t=,当F(s)+F(t)=18时,则k的最大值是___.18.一个自行车轮胎,若把它安装在前轮,则自行车行驶5000 km后报废;若把它安装在后轮,则自行车行驶3000km后报废,行驶一定路程后可以交换前、后轮胎.如果交换前、后轮胎,要使一辆自行车的一对新轮胎同时报废,那么这辆车将能行驶___km.19.端午节是中华民族的传统节日,节日期间大家都有吃粽子的习惯.某超市去年销售蛋黄粽、肉粽、豆沙粽的数量比为3:5:2.根据市场调查,超市决定今年在去年销售量的基础上进货,肉粽增加20%、豆沙粽减少10%、蛋黄粽不变.为促进销售,将全部粽子包装成三种礼盒,礼盒A有2个蛋黄粽、4个肉粽、2个豆沙粽,礼盒B有3个蛋黄粽、3个肉粽、2个豆沙粽,礼盒C有2个蛋黄粽、5个肉粽、1个豆沙粽,其中礼盒A和C的总数不超过200盒,礼盒B和C的总数超过210盒.每个蛋黄粽、肉粽、豆沙粽的售价分别为6元、5元、4元,且A、B、C三种礼盒的包装费分别为10元、12元、9元(礼盒售价为粽子价格加上包装费).若这些礼盒全部售出,则销售额为_____元.20.有甲乙丙三堆苹果共432个,第一次从甲堆中拿出乙堆的个数给乙,第二次从乙堆中拿出丙堆的个数放入丙堆,第三次从丙堆中拿出现在的甲堆个数放入甲堆,最后甲乙丙三堆苹果数相等,则甲堆原来有____个苹果.三、解答题21.学校计划为“我和我的祖国”演讲比赛购买奖品.已知购买3个A奖品和2个B奖品共需120元;购买5个A奖品和4个B奖品共需210元.(1)求A,B两种奖品的单价;(2)学校准备购买A,B两种奖品共30个,且A奖品的数量不少于B奖品数量的13.请设计出最省钱的购买方案,并说明理由.22.平面直角坐标系中,点A坐标为(a,0),点B坐标为(b,2),点C坐标为(c,m),其中a、b、c满足方程组211 322 a b ca b c+-=⎧⎨--=-⎩.(1)若a=2,则三角形AOB的面积为;(2)若点B 到y 轴的距离是点C 到y 轴距离的2倍,求a 的值;(3)连接AB 、AC 、BC ,若三角形ABC 的面积小于等于9,求m 的取值范围. 23.某县某包装生产企业承接了一批上海世博会的礼品盒制作业务,为了确保质量,该企业进行试生产.他们购得规格是20040cm cm ⨯的标准板材作为原材料,每张标准板材再按照裁法一或裁法二裁下A 型与B 型两种板材.如图甲所示.(单位cm ) (1)列出方程(组),求出图甲中a 与b 的值;(2)在试生产阶段,若将625张标准板材用裁法一裁剪,125张标准板材用裁法二裁剪,再将得到的A 型与B 型板材做侧面和底面,刚好可以做成图乙的竖式与横式两种无盖礼品盒.求可以做竖式与横式两种无盖礼品盒各多少个?24.已知关于x 、y 的二元一次方程组23221x y k x y k -=-⎧⎨+=-⎩(k 为常数).(1)求这个二元一次方程组的解(用含k 的代数式表示); (2)若方程组的解x 、y 满足+x y >5,求k 的取值范围; (3)若1k ≤,设23m x y =-,且m 为正整数,求m 的值. 25.如图,已知()0,A a ,(),0Bb ,且满足|4|60a b -++=.(1)求A 、B 两点的坐标;(2)点(),C m n 在线段AB 上,m 、n 满足5n m -=,点D 在y 轴负半轴上,连CD 交x 轴的负半轴于点M ,且MBC MOD S S ∆∆=,求点D 的坐标;(3)平移直线AB ,交x 轴正半轴于E ,交y 轴于F ,P 为直线EF 上第三象限内的点,过P 作PG x ⊥轴于G ,若20PAB A ∆=,且12GE =,求点P 的坐标.26.某商店销售10台A 型和20台B 型电脑的利润为4000元,销售20台A 型和10台B 型电脑的利润为3500元.(1)求每台A 型电脑和B 型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共50台,其中A 型电脑的进货量不少于14台,B 型电的进货量不少于A 型电脑的2倍,那么该商店有几种进货方案?该商场购进A 型、B 型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A 型电脑出厂价下调m (0<m <100)元,若商店保持两种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这50台电脑销售总利润最大的进货方案.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】将方程①-方程②得到x-y=-1,代入5x-5y+10计算即可. 【详解】解:2728x y x y +=⎧⎨+=⎩①② ①-②,得:x-y=-1,∴5x-5y+10=5(x-y)+10=5×(-1)+10=5. 故选A. 【点睛】本题考查了用加减法解二元一次方程组.2.A解析:A 【分析】把x y =代入方程组43235x y kx y -=⎧⎨+=⎩,得到关于x 、k 的二元一次方程组,即可求解.【详解】x y =代入方程组43235x y k x y -=⎧⎨+=⎩,得43235x x k x x -=⎧⎨+=⎩,即1x kx =⎧⎨=⎩,所以k=1, 故选:A 【点睛】此题考查了解二元一次方程组.把x=y 代入到方程组,消去y 是解答此题的关键.3.C解析:C 【分析】 首先将35x y =⎧⎨=⎩代入到3526x my x ny -=⎧⎨+=⎩,可求得m 和n ;将m 和n 代入到()()()()3526a b m a b a b n a b ⎧+--=⎪⎨++-=⎪⎩,可求得a+b ,a-b 的值;再通过求解二元一次方程组,即可求得答案. 【详解】 ∵二元一次方程组3526x my x ny -=⎧⎨+=⎩的解是35x y =⎧⎨=⎩∴955656m n -=⎧⎨+=⎩∴450m n ⎧=⎪⎨⎪=⎩ 将450m n ⎧=⎪⎨⎪=⎩代入()()()()3526a b m a b a b n a b ⎧+--=⎪⎨++-=⎪⎩得()()()435526a b a b a b ⎧+--=⎪⎨⎪+=⎩∴35a b a b +=⎧⎨-=⎩∴41a b =⎧⎨=-⎩故选:C . 【点睛】本题考查了二元一次方程方程组的知识;解题的关键是熟练掌握二元一次方程方程组的性质,从而完成求解.4.B解析:B 【分析】 直接把2x y a =⎧⎨=⎩代入方程,即可求出a 的值. 【详解】 解:根据题意,∵2x y a=⎧⎨=⎩是方程25x y +=的一个解, ∴225a ⨯+=, ∴1a =; 故选:B . 【点睛】本题考查了二元一次方程的解,以及解一元一次方程,解题的关键是掌握运算法则进行解题.5.B解析:B 【解析】 【分析】设每块墙砖的长为xcm ,宽为ycm ,根据“三块横放的墙砖比一块竖放的墙砖高10cm ,两块横放的墙砖比两块竖放的墙砖低40cm”列方程组求解可得. 【详解】解:设每块墙砖的长为xcm ,宽为ycm ,根据题意得:1032240x yx y +⎧⎨+⎩==,解得:3515x y ⎧⎨⎩==,则每块墙砖的截面面积是35×15=525cm 2, 故选:B .【点睛】本题主要考查二元一次方程组的应用,理解题意找到题目蕴含的相等关系列方程组是解题的关键.6.A解析:A 【解析】试题解析:设兑换成10元x 张,20元的零钱y 元,由题意得: 10x+20y=100, 整理得:x+2y=10, 方程的整数解为:24x y =⎧⎨=⎩,43x y =⎧⎨=⎩,62x y =⎧⎨=⎩,81x y =⎧⎨=⎩,10{0x y ==,05x y =⎧⎨=⎩.因此兑换方案有6种, 故选A .考点:二元一次方程的应用.7.A解析:A 【分析】 把32x y =⎧⎨=-⎩代入方程组,可得关于a 、b 的方程组,继而根据二元一次方程组的解法即可求出答案. 【详解】将32x y =⎧⎨=-⎩代入23ax by bx ay +=⎧⎨+=-⎩,可得:322323a b b a -=⎧⎨-=-⎩,两式相加:1a b +=-, 故选A . 【点睛】本题考查二元一次方程组的解,解题的关键是熟练运用二元一次方程组的解法.8.D解析:D 【分析】由题意建立关于x ,y 的方程组,求得x ,y 的值,再代入y =kx+9中,即可求得k 的值. 【详解】解:解方程组3731x y x y -=-⎧⎨+=⎩得:21x y =-⎧⎨=⎩, 代入9y kx =+得:129k =-+,解得:4k =. 故选:D . 【点睛】本题考查了二元一次方程组,解决本题的关键是掌握解二元一次方程组的解法.9.D解析:D 【分析】一方面买鸡的钱数=8人出的总钱数-3钱,另一方面买鸡的钱数=7人出的总钱数+4钱,据此即可列出方程组. 【详解】解:设有x 人,买鸡的钱数为y ,根据题意,得:8374x yx y -=⎧⎨+=⎩. 【点睛】本题考查的是二元一次方程组的应用,正确理解题意、根据买鸡的总钱数不变列出方程组是解题关键.10.D解析:D 【分析】已知等式利用题中的新定义化简得到方程组,两方程左右两边相加即可求出所求. 【详解】解:根据题中的新定义得:2201842019x y y x -=⎧⎨+=-⎩①②,①+②得:3x+3y =﹣1, 则x+y =﹣13. 故选:D . 【点睛】本题主要考查的是定义新运算以及二元一次方程组的解法,掌握二元一次方程的解法是解题的关键.二、填空题 11.±3 【分析】把x 与y 的值代入方程组求出m 与n 的值,即可求出所求.【详解】解:把代入方程组得:,①×2-②得:5m=15,解得:m=3,把m=3代入①得:n=2,则m+3n=3+6=9解析:±3【分析】把x与y的值代入方程组求出m与n的值,即可求出所求.【详解】解:把21xy=⎧⎨=⎩代入方程组得:2821m nn m+=⎧⎨-=⎩①②,①×2-②得:5m=15,解得:m=3,把m=3代入①得:n=2,则m+3n=3+6=9,9的平方根是±3,故答案为:±3【点睛】此题考查了二元一次方程组的解,以及平方根,熟练掌握运算法则是解本题的关键.12.无数【分析】把x看做已知数求出y,分析即可确定出正整数解及整数解的情况.【详解】解:方程3x+8y=27,解得:,∵当x、y是正整数时,9-x是8的倍数,∴x=1,y=解析:13xy=⎧⎨=⎩无数【分析】把x看做已知数求出y,分析即可确定出正整数解及整数解的情况.【详解】解:方程3x+8y=27,解得:3(98)x y-=,∵当x、y是正整数时,9-x是8的倍数,∴x=1,y=3;∴二元一次方程3x+8y=27的正整数解只有1个,即13x y =⎧⎨=⎩; ∵当x 、y 是整数时,9-x 是8的倍数,∴x 可以有无数个值,如-7,-15,-23,……;∴二元一次方程3x+8y=27的整数解有无数个.故答案是:13x y =⎧⎨=⎩;无数. 【点睛】此题考查了二元一次方程的整数解及正整数解问题,解题的关键是将x 看做已知数求出y .13.15【分析】根据945不能被11和13整除,能被9整除,可得两个部门的人数之和为105;再根据1245不能被11和13整除可知两个部门的人数分别在1~50和51~100的范围,结合门票价格和人数解析:15【分析】根据945不能被11和13整除,能被9整除,可得两个部门的人数之和为105;再根据1245不能被11和13整除可知两个部门的人数分别在1~50和51~100的范围,结合门票价格和人数之间的关系列出方程组进行求解即可.【详解】解:设人数较少的部门有x 人,人数较多的部门有y 人,∵945不能被11和13整除且945÷9=105(人),∴两个部门的人数之和为105(人),∵1245不能被11和13整除,∴1≤x ≤50,51≤y ≤100,依题意,得:10513111245x y x y +=⎧⎨+=⎩, 解得:4560x y =⎧⎨=⎩, ∴15-=x y ,故答案为:15.【点睛】本题考查了函数的应用问题和学生分析问题的能力,结合门票和人数之间的关系,建立方程是解题的关键.14.五【分析】设甲种型号的电视机卖出x台,乙种型号的电视机卖出y台,丙种型号的电视机卖出z台,根据“三种型号电视机总销售额为20600元”列方程,整理后,分类讨论即可得出结论.【详解】设甲种型号解析:五【分析】设甲种型号的电视机卖出x台,乙种型号的电视机卖出y台,丙种型号的电视机卖出z 台,根据“三种型号电视机总销售额为20600元”列方程,整理后,分类讨论即可得出结论.【详解】设甲种型号的电视机卖出x台,乙种型号的电视机卖出y台,丙种型号的电视机卖出z 台,根据题意得:1280×(1+25%)x+(2199-199)×0.85y+(2399-499)z=20600整理得:16x+17y+19z=206∴16(x+y+z)+y+3z=16×12+14∵x、y、z为非负整数,且x、y、z最多一个为0,∴0≤x≤12,0≤y≤12,0≤z≤10,∴14≤y+3z≤42.设x+y+z=12-k,y+3z=14+16k,其中k为非负整数.∴14≤14+16k≤42,∴0≤k<2.∵k为整数,∴k=0或1.(1)当k=0时,x+y+z=12,y+3z=14,∴0≤z≤4.①当z=0时,y=14>12,舍去;②当z=1时,y=14-3z=11,x=12-y-z=12-11-1=0,符合题意;③当z=2时,y=14-3z=8,x=12-y-z=12-8-2=2,符合题意;④当z=3时,y=14-3z=5,x=12-y-z=12-5-3=4,符合题意;⑤当z=4时,y=14-3z=2,x=12-y-z=12-2-4=6,符合题意.(2)当k=1时,x+y+z=11,y+3z=30∵y=30-3z,∴0≤30-3z≤12,解得:6≤z≤10,当z=6时,y=30-3z=12,x=11-y-z=11-12-6=-7<0,舍去;当z=7时,y=30-3z=9,x=11-y-z=11-9-7=-5<0,舍去;当z=8时,y=30-3z=6,x=11-y-z=11-6-8=-3<0,舍去;当z =9时,y =30-3z =3,x =11-y -z =11-3-9=-1<0,舍去;当z =10时,y =30-3z =0,x =11-y -z =11-10-0=1,符合题意.综上所述:共有0111x y z =⎧⎪=⎨⎪=⎩,282x y z =⎧⎪=⎨⎪=⎩,453x y z =⎧⎪=⎨⎪=⎩,624x y z =⎧⎪=⎨⎪=⎩,1010x y z =⎧⎪=⎨⎪=⎩五种方案.故答案为:五.【点睛】本题考查了三元一次方程的应用.分类讨论是解答本题的关键.15.【分析】本题可设x 道难题,y 道中档题,z 道容易题,因为小明、小林和小颖共解出100道数学题,所以x+y+z=100①,又因每人都解出了其中的60道,只有1人解出的题叫做难题,2人解出的题叫做中档解析:【分析】本题可设x 道难题,y 道中档题,z 道容易题,因为小明、小林和小颖共解出100道数学题,所以x+y+z =100①,又因每人都解出了其中的60道,只有1人解出的题叫做难题,2人解出的题叫做中档题,3人都解出的题叫做容易题,所以有x+2y+3z =180②,①×2-②,得x-z =20,所以难题比容易题多20道.【详解】设x 道难题,y 道中档题,z 道容易题。
七年级下第三次月考数学试卷(有答案)
![七年级下第三次月考数学试卷(有答案)](https://img.taocdn.com/s3/m/f6e5e2e33086bceb19e8b8f67c1cfad6195fe907.png)
七年级下第三次月考数学试卷(有答案) 七年级下第三次月考数学试卷(附答案)一、选择题(每小题3分,共计30分)1.若a>b,则下列不等式一定成立的是()A.a-b<0 B.a-b>0 C.1-a<1-b D.-1+a<-1+b2.给出下列四个命题,其中真命题的个数为()①坐标平面内的点可以用有序数对来表示;②若a>0,b不大于0,则P(-a,b)在第三象限内;③在x轴上的点,其纵坐标都为0;④当m≠0时,点P(m²,-m)在第四象限内。
A.1 B.2 C.3 D.43.如图,AB∥CD∥EF,BC∥AD,AC平分∠BAD,则图中与∠AGE相等的角()A.2个 B.3个 C.4个 D.5个4.若不等式ax+x>1+a的解集是x<1,则a必须满足的条件是()A.a<-1 B.a<1 C.a>-1 D.a>15.立方根等于它本身的有()A.-1,0,1 B.-1,1 C.0,-1,1 D.16.某旅行社某天有空房10间,当天接待了一个旅行团,当每个房间只住3人时,有一个房间住宿情况是不满也不空。
若旅行团的人数为偶数,求旅行团共有多少人()A.27 B.28 C.29 D.307.点到直线的距离是指这点到这条直线的()A.垂线段 B.垂线 C.垂线的长度 D.垂线段的长度8.XXX用100元钱购得笔记本和笔共30件,已知每本笔记本2元,每支笔5元,那么XXX最多能买笔的数目为()A.14 B.13 C.12 D.119.某校七(2)班42名同学为“希望工程”捐款,共捐款320元,捐款情况如下表:捐款数(元) | 6 | 8 |人数 | x | y |表格中捐款6元和8元的人数不小心被墨水污染已看不清楚。
若设捐款6元的有x名同学,捐款8元的有y名同学,根据题意,可得方程组6x+8y=320x+y=42A.B.C.D.10.点M(a,a-1)不可能在()A.第一象限 B.第二象限 C.第三象限 D.第四象限二、认真填一填(每题3分,共24分)11.√2的平方根为2/√2=√2.12.关于x的不等式2x-a≤-3的解集如图所示,则a的值是3.13.如图,把长方形ABCD沿EF对折,若∠1=50°,则∠AEF的度数等于80°。
七年级数学第二学期 第三次月考测试卷含解析
![七年级数学第二学期 第三次月考测试卷含解析](https://img.taocdn.com/s3/m/f4985afabd64783e08122b08.png)
七年级数学第二学期 第三次月考测试卷含解析一、选择题1.用“代入法”将方程组7317x y x y +=⎧⎨+=⎩中的未知数y 消去后,得到的方程是( )A .3(7)17y y -+=B .3(7)17x x +-=C .210x =D .(317)7x x +-= 2.二元一次方程2x+3y=15的正整数解的个数是( )A .1个B .2个C .3个D .4个 3. 三个二元一次方程2x +5y -6=0,3x -2y -9=0,y =kx -9有公共解的条件是k =( )A .4B .3C .2D .14.已知方程组2(1)3(1)133(1)5(1)30a b a b --+=⎧⎨-++=⎩的解是9.30.2a b =⎧⎨=⎩,则方程组2(2)3(1)133(2)5(1)30x y x y +--=⎧⎨++-=⎩的解是( ). A . 6.32.2x y =⎧⎨=⎩B .8.31.2x y =⎧⎨=⎩C .9.30.2x y =⎧⎨=⎩D .10.32.2x y =⎧⎨=⎩5.巴广高速公路在5月10日正式通车,从巴中到广元全长约为126km .一辆小汽车,一辆货车同时从巴中,广元两地相向开出,经过45分钟相遇,相遇时小汽车比货车多行6km ,设小汽车和货车的速度分别为xkm /h ,ykm /h ,则下列方程组正确的是( )A .()()45126456x y x y ⎧+=⎪⎨-=⎪⎩B .()312646x y x y ⎧+=⎪⎨⎪-=⎩C .()()31264456x y x y ⎧+=⎪⎨⎪-=⎩D .()()31264364x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩6.新运算“△”定义为(a ,b )△(c ,d )=(ac +bd ,ad +bc ),如果对于任意数a ,b 都有(a ,b )△(x ,y )=(a ,b ),则(x ,y )=( ) A .(0,1) B .(0,﹣1)C .(﹣1,0)D .(1,0)7.如果1,{2x y ==是二元一次方程组1,{2ax by bx ay +=+=的解,那么关于m 的方程a 2m +2 016 b +=2017的解为( ) A .-1 B .1 C .0 D .-28.把某一段公路的一侧全部栽上银杏树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x 棵,公路长为y 米.根据题意,下面所列方程组中正确的是( )A .6(1)5(211)y x x y =-⎧⎨+-=⎩B .6(1)5(21)y x x y =-⎧⎨+=⎩C .65(211)y x x y =⎧⎨+-=⎩D .65(21)y x x y =⎧⎨+=⎩9.两位同学在解方程组时,甲同学由278ax by xcx y +=⎧⎨-=⎩正确地解出32x y =⎧⎨=-⎩,乙同学因把C写错了解得22x y =-⎧⎨=⎩,那么a 、b 、c 的正确的值应为A .452a b c ===-,,B .451a b c ===-,,C .450a b c =-=-=,,D .452a b c =-=-=,,10.已知32x y =⎧⎨=-⎩是方程组23ax by bx ay +=⎧⎨+=-⎩的解,则+a b 的值是( ) A .﹣1B .1C .﹣5D .5二、填空题11.已知关于x ,y 的二元一次方程()()12120m x my m +++=﹣﹣,无论实数m 取何值,此二元一次方程都有一个相同的解,则这个相同的解是______.12.某餐厅以A 、B 两种食材,利用不同的搭配方式推出了两款健康餐,其中,甲产品每份含200克A 、200克B ;乙产品每份含200克A 、100克B .甲、乙两种产品每份的成本价分别为A 、B 两种食材的成本价之和,若甲产品每份成本价为16元.店家在核算成本的时候把A 、B 两种食材单价看反了,实际成本比核算时的成本多688元,如果每天甲销量的4倍和乙销量的3倍之和不超过120份,那么餐厅每天实际成本最多为______元.13.若m =m =________.14.将108个苹果放到一些盒子中,盒子有三种规格:一种可以装10个苹果,一种可以装9个苹果,一种可以装6个苹果,要求每种规格都要有且每个盒子均恰好装满,则不同的装法总数为_____.15.新学期伊始,西大附中的学子们积极响应学校的“书香校园”活动,踊跃捐出自己喜爱的书籍,互相分享,让阅读成为一种习惯.据调查,某年级甲班、乙班共80人捐书,丙班有40人捐书,已知乙班人均捐书数量比甲班人均捐书数量多5本,而丙班的人均捐书数量是甲班人均捐书数量的一半,若该年级甲、乙、丙三班的人均捐书数量恰好是乙班人均捐书数量的35,且各班人均捐书数量均为正整数,则甲、乙、丙三班共捐书_____本. 16.中国古代著名的《算法统宗》中有这样一个问题:“只闻隔壁客分银,不知人数不知银,七两分之多四两,九两分之少半斤.”大意为:“一群人分银子,若每人分七两,则剩余四两;若每人分九两,则还差八两,问共有多少人?所分银子共有多少两?”(注:当时1斤=16两,故有“半斤八两”这个成语)设共有x 人,所分银子共有y 两,则所列方程组为_____________17.解三元一次方程组经过①-③和③×4+②消去未知数z 后,得到的二元一次方程组是________. 18.若方程123x y -=的解中,x 、y 互为相反数,则32x y -=_________ 19.有两种消费券:A 券,满60元减20元,B 券,满90元减30元,即一次购物大于等于60元、90元,付款时分别减20元,30元.小敏有一张A 券,小聪有一张B 券,他们都购了一件标价相同的商品,各自付款,若能用券时用券,这样两人共付款150元,则所购商品的标价是_____元.20.南岸区近年修建和完善了不少道路,其中一段道路两侧的绿化任务计划由甲、乙、丙、丁四个人完成.道路两侧的植树数量相同,如果乙、丙、丁同时开始植树,丁在道路左侧,乙和丙在道路右侧,2小时后,甲加入,在道路左侧与丁一起植树.这样恰好能保证道路两侧的植树任务同时完成.已知甲、乙、丙、丁每小时能完成的植树数量分别为6、7、8、10棵.实际在植树时,四人一起开始植树,甲和丁在道路左侧、乙和丙在道路右侧,为保证右侧比左侧提前5小时完成植树任务,甲中途转到右侧与乙和丙一起按要求完成了任务,左侧剩下的任务由丁独自完成、则在本次植树任务中,甲比丁少植树_____棵.三、解答题21.某生态柑橘园现有柑橘21吨,计划租用A ,B 两种型号的货车将柑橘运往外地销售.已知满载时,用2辆A 型车和3辆B 型车一次可运柑橘12吨;用3辆A 型车和4辆B 型车一次可运柑橘17吨.(1)1辆A 型车和1辆B 型车满载时一次分别运柑橘多少吨?(2)若计划租用A 型货车m 辆,B 型货车n 辆,一次运完全部柑橘,且每辆车均为满载.①请帮柑橘园设计租车方案;②若A 型车每辆需租金120元/次,B 型车每辆需租金100元/次.请选出最省钱的租车方案,并求出最少租车费.22.如图,在四边形ABCD 中,已知AB CD ∥,AD BC ∥,且AB BC ⊥.(1)填空:A ∠=_____,C ∠=______,D ∠=_______;(2)点E 为射线BC 上一任意一点,连接AE ,作DAE ∠的平分线AF ,交射线BC 于点F ,作AEC ∠的平分线EG ,交直线AD 于点G ,请探究射线AF 与EG 之间的位置关系,并加以证明;(3)连接AC ,若AC 恰好平分BAD ∠,则在(2)问的条件下,是否存在角度x ︒,使得当BAE x ∠=︒时,有GEF k DAF ∠=∠(其中k 为不超过10的正整数)?若存在,求出x 的值;若不存在,请说明理由.23.用如图1所示的,A B 两种纸板作侧面或底面制作如图2所示的甲、乙两种长方体形状的无盖纸盒.(1)现有A 纸板70张,B 型纸板160张,要求恰好用完所有纸板,问可制作甲、乙两种无盖纸盒各多少个?(2)若现仓库A 型纸板较为充足,B 型纸板只有30张,根据现有的纸板最多可以制作多少个如图2所示的无盖纸盒(甲、乙两种都有,要求B 型纸板用完)(3)经测量发现B 型纸板的长是宽的2倍(即b=2a),若仓库有6个丙型的无盖大纸盒(长宽高分别为2,,2a a a ),现将6个丙型无盖大纸盒经过拆剪制作成甲、乙两种型号的纸盒,可以各做多少个(假设没有边角消耗,没有余料)?24.为了拉动内需,全国各地汽车购置税补贴活动正式开始.重庆长安汽车经销商在出台前一个月共售出长安SUV 汽车SC35的手动型和自动型共960台,政策出台后的第一月售出这两种型号的汽车共1228台,其中手动型和自动型汽车的销售量分别比政策出台前一个月增长30%和25%.(1)在政策出台前一个月,销售的手动型和自动型汽车分别为多少台;(2)若手动型汽车每台价格为9万元,自动型汽车每台价格为10万元.根据汽车补贴政策,政府按每台汽车价格的5%给购买汽车的用户补贴,问政策出台后的第一个月,政府对这1228台汽车用户共补贴了多少万元.25.学校捐资购买了一批物资120吨打算支援山区,现有甲、乙、丙三种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均满载) 车型甲 乙 丙 汽车运载量(吨/辆) 5 8 10 汽车运费(元/辆)400500600(1)若全部物资都用甲、乙两种车型来运送,需运费8200元,问分别需甲、乙两种车型各几辆?(2)若该学校决定用甲、乙、丙三种汽车共15辆同时参与运送,你能求出参与运送的三种汽车车辆数吗?(甲、乙、丙三种车辆均要参与运送)26.百脑汇商场中路路通商店有甲、乙两种手机内存卡,买2个甲内存卡和1个乙内存卡用了90元,买3个甲内存卡和2个乙内存卡用了160元. (1)求甲、乙两种内存卡每个各多少元?(2)如果小亮准备购买甲.乙两种手机内存卡共10个,总费用不超过350元,且不低于300元,问有几种购买方案,哪种方案费用最低?(3)某天,路路通售货员不小心把当天上午卖的甲、乙种手机内存卡的销售量统计单丢失了,但老板记得每件甲内存卡每个赚10元,乙内存卡每个赚15元,一上午售出的内存卡共赚了100元,请你帮助老板算算有几种销售方案?并直接写出销售方案.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】第一个式子中用x 表示y ,代入到第二个式子中即可. 【详解】 解:7317x y x y +=⎧⎨+=⎩①②由①得7y x =-③,将③代入②中得3(7)17x x +-=, 故选:B . 【点睛】本题考查代入消元法解一元二次方程.熟练掌握代入消元法解一元二次方程的一般步骤是解题关键.2.B解析:B 【详解】 解:2x+3y=15, 解得:x=3152y -+, 当y=1时,x=6;当y=3时,x=3, 则方程的正整数解有2对. 故选:B3.B解析:B 【分析】把2x 5y 60+-=,3x 2y 90--=,y kx 9=-组成方程组,求解即可. 【详解】 解:由题意可得:256032909x y x y y kx +-⎧⎪--⎨⎪-⎩===, ①×3-②×2得y=0, 代入①得x=3, 把x ,y 代入③, 得:3k-9=0, 解得k=3. 故选B. 【点睛】本题考查了解三元一次方程组,解题的关键是运用三元一次方程组的知识,把三个方程组成方程组求解.4.A解析:A 【分析】根据二元一次方程组的解可得a -1,b +1的值,然后对比得到x+2,y -1的值,求解即可. 【详解】 ∵方程组2(1)3(1)133(1)5(1)30a b a b --+=⎧⎨-++=⎩∴9.30.2a b =⎧⎨=⎩∴18.31 1.2a b -=⎧⎨+=⎩∴对比两方程组可知:12a x -=+;11b y +=- ∴=3x a -,=2y b + ∴x =6.3,y =2.2 故选:A . 【点睛】本题考查了二元一次方程组的知识;求解的关键是掌握二元一次方程组的性质,从而完成求解.5.D解析:D 【解析】设小汽车的速度为xkm/h ,则45分钟小汽车行进的路程为34xkm ;设货车的速度为ykm/h ,则45分钟货车行进的路程为34ykm .由两车起初相距126km ,则可得出34(x+y )=126; 又由相遇时小汽车比货车多行6km ,则可得出34(x-y )=6.可得出方程组31264364x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩()(). 故选:D .点睛:学生在分析解答此题时需注意弄清题意,明白所要考查的要点.另外,还需注意单位的换算,避免粗心造成失误.6.D解析:D 【解析】 【分析】根据新定义运算法则列出方程{ax by a ay bx b +=+=①②,由①②解得关于x 、y 的方程组,解方程组即可. 【详解】由新定义,知: (a,b)△(x,y)=(ax+by,ay+bx)=(a,b),则{ax by a ay bx b +=+=①②由①+②,得:(a+b)x+(a+b)y=a+b , ∵a ,b 是任意实数,∴x+y=1,③ 由①−②,得(a−b)x−(a−b)y=a−b ,∴x−y=1,④ 由③④解得,x=1,y=0, ∴(x,y)为(1,0); 故选D.7.B解析:B【解析】试题分析:根据二元一次方程组的解,可直接代入可得21{22a b b a +=+=,解得1{0a b ==,代入可得m+2016+0=2017,解得m=1. 故选:B.点睛:此题主要考查了二元一次方程组的解,解题关键是把二元一次方程组的解代入原方程组,然后可求出系数a ,b ,再代入即可求解.8.A解析:A 【分析】设原有树苗x 棵,公路长为y 米,由栽树问题“栽树的棵数=分得的段数+1”,建立方程组即可. 【详解】设原有树苗x 棵,公路长为y 米, 由题意,得6(1)5(211)y x x y =-⎧⎨+-=⎩,故选:A . 【点睛】本题考查了由实际问题抽象出二元一次方程组.关键是找出题目中的相等关系,有的题目所含的等量关系比较隐藏,要注意仔细审题,耐心寻找.9.A解析:A 【分析】把32x y =⎧⎨=-⎩代入278ax by xcx y +=⎧⎨-=⎩得,3223148a b c -=⎧⎨+=⎩由方程组中第二个式子可得:c=-2.用排除法,可以直接解答. 【详解】解:把32x y =⎧⎨=-⎩代入278ax by x cx y +=⎧⎨-=⎩得:3223148a b c -=⎧⎨+=⎩①②, 由②得:c 2=-,四个选项中行只有A 符合条件. 故选择:A. 【点睛】此题主要考查了二元一次方程组的解,做这类题目时要用代入法或排除法,这样可以提高做题效率.10.A解析:A【分析】 把32x y =⎧⎨=-⎩代入方程组,可得关于a 、b 的方程组,继而根据二元一次方程组的解法即可求出答案. 【详解】将32x y =⎧⎨=-⎩代入23ax by bx ay +=⎧⎨+=-⎩,可得:322323a b b a -=⎧⎨-=-⎩,两式相加:1a b +=-, 故选A . 【点睛】本题考查二元一次方程组的解,解题的关键是熟练运用二元一次方程组的解法.二、填空题11.【分析】将方程整理成关于m 的一元一次方程,若无论实数m 取何值,此二元一次方程都有一个相同的解,则与m 无关,从而令m 的系数为0,从而得关于x 和y 的二元一次方程组,求解即可. 【详解】 将(m+1)解析:11x y =-⎧⎨=⎩【分析】将方程整理成关于m 的一元一次方程,若无论实数m 取何值,此二元一次方程都有一个相同的解,则与m 无关,从而令m 的系数为0,从而得关于x 和y 的二元一次方程组,求解即可. 【详解】将(m+1)x+(2m-1)y+2-m=0整理得:mx+x+2my-y+2-m=0,即m (x+2y-1)+x-y+2=0, 因为无论实数m 取何值,此二元一次方程都有一个相同的解, 所以21020x y x y +-=⎧⎨-+=⎩,解得:11x y =-⎧⎨=⎩.故答案为:11x y =-⎧⎨=⎩.【点睛】考查了含参数的二元一次方程有相同解问题,解题关键是利用转化思想.12.824 【分析】先求出100克A 原料和100克B 原料的成本和,再设100克A 原料的成本为m 元,则100克B 种原料的成本为元,生产甲产品x 份,乙产品y 份,根据题意列方程求出 【详解】 解:∵甲产品每解析:824 【分析】先求出100克A 原料和100克B 原料的成本和,再设100克A 原料的成本为m 元,则100克B 种原料的成本为(8)m -元,生产甲产品x 份,乙产品y 份,根据题意列方程求出 【详解】解:∵甲产品每份含200克A 、200克B ,甲产品每份成本价为16元 ∴100克A 原料和100克B 原料的成本为8元设100克A 原料的成本为m 元,则100克B 种原料的成本为(8)m -元,生产甲产品x 份,乙产品y 份,根据题意可得出:[]4312016(28)162(8)688x y x m m y x m m y +≤⎧⎨++-=+-++⎩整理得出:4344my y =+∴餐厅每天实际成本16(8)1612344W x m y x y =++=++ ∵43120x y +≤ ∴1612480x y +≤∴餐厅每天实际成本的最大值为:480344824+=(元). 故答案为:824. 【点睛】本题考查的知识点是二元一次方程组的应用,读懂题意,理清题目中的各关系量是解此题的关键.13.201 【分析】根据能开平方的数一定是非负数,得199-x-y≥0,x-199+y≥0,所以199-x-y=x-199+y=0,即x+y=199①,从而有=0,再根据算术平方根的非负性可得出3x+解析:201 【分析】根据能开平方的数一定是非负数,得199-x-y ≥0,x-199+y ≥0,所以199-x-y=x-199+y=0,即x+y=199,再根据算术平方根的非负性可得出3x+5y-2-m=0②,2x+3y-m=0③,联立①②③解方程组可得出m的值.【详解】解:由题意可得,199-x-y≥0,x-199+y≥0,∴199-x-y=x-199+y=0,∴x+y=199①.=0,∴3x+5y-2-m=0②,2x+3y-m=0③,联立①②③得,1993520 230x yx y mx y m+=⎧⎪+--=⎨⎪+-=⎩①②③,②×2-③×3得,y=4-m,将y=4-m代入③,解得x=2m-6,将x=2m-6,y=4-m代入①得,2m-6+4-m=199,解得m=201.故答案为:201.【点睛】本题考查了算术平方根的非负性以及方程组的解法,掌握几个非负数的和为0时,这几个非负数都为0是解题的关键.14.【分析】先列出方程10x+9y+6z=108,再根据x,y,z是正整数,进行计算即可得出结论.【详解】解:设装10个苹果的有x盒,装9个苹果的有y盒,装6个苹果的有z盒,∵每种规格都要有且解析:【分析】先列出方程10x+9y+6z=108,再根据x,y,z是正整数,进行计算即可得出结论.【详解】解:设装10个苹果的有x盒,装9个苹果的有y盒,装6个苹果的有z盒,∵每种规格都要有且每个盒子均恰好装满,∴0<x<10,0<y≤11,0<z≤15,且x,y,z都是整数,则10x+9y+6z=108,∴x=1089610--y z=3(3632)10--y z,∵0<x<10,且为整数,∴36﹣3y﹣2z是10的倍数,即:36﹣3y﹣2z=10或20或30,当36﹣3y﹣2z=10时,y=2623-z,∵0<y≤11,0<z≤15,且y,z都为整数,∴26﹣2z=3或6或9或12或15或18或21或24,∴z=232(舍)或z=10或z=172(舍)或z=7或z=112(舍)或z=4或z=52(舍)或z=1,当z=10时,y=2,x=3,当z=7时,y=4,x=3,当z=4时,y=8,x=3当z=1时,y=8,x=3,当36﹣3y﹣2z=20时,y=1623-z,∵0<y≤11,0<z≤15,且y,z都为整数,∴16﹣2z=3或6或9或12或15或18或21或24,∴z=132(舍)或z=5或z=72(舍)或z=2或z=12(舍)当z=5时,y=2,x=6,当z=2时,y=4,x=6,当36﹣3y﹣2z=30时,y=623-z,∵0<y≤11,0<z≤15,且y,z都为整数,∴6﹣2z=3,∴z=32(舍)即:满足条件的不同的装法有6种,故答案为6.【点睛】此题主要考查了三元一次方程,整除问题,分类讨论时解本题的关键.15.【分析】根据设间接未知数列二元一次方程求各班人均捐书数,然后再求三个班共捐书即可解答.【详解】设甲班的人均捐书数量为x本,乙班的人均捐书数量为(x+5)本,丙班的人均捐书数量为本,设甲班解析:【分析】根据设间接未知数列二元一次方程求各班人均捐书数,然后再求三个班共捐书即可解答.【详解】设甲班的人均捐书数量为x本,乙班的人均捐书数量为(x+5)本,丙班的人均捐书数量为2x 本, 设甲班有y 人,乙班有(80﹣y )人.根据题意,得xy +(x +5)(80﹣y )+2x •40=3(5)1205x +⨯ 解得:y =284035855x x x +=++, 可知x 为2且5的倍数,故x =10,y =64,共捐书10×64+15×16+5×40=1080.答:甲、乙、丙三班共捐书1080本.故答案为1080.【点睛】此题考查二元一次方程的实际应用,题中有三个量待求,但是只有一个等量关系,因此只能设出两个未知数,用一个未知数表示另一个未知数,根据数量的要求及代数式的形式确定未知数的值,这是此题的难点.16.【解析】【分析】题中涉及两个未知数:共有x 人,所分银子共有y 两;两组条件:每人分七两,则剩余四两;每人分九两,则还差八两;列出二元一次方程组即可.【详解】两组条件:每人分七两,则剩余四两;解析:7498x y x y +=⎧⎨-=⎩【解析】【分析】题中涉及两个未知数:共有x 人,所分银子共有y 两;两组条件:每人分七两,则剩余四两;每人分九两,则还差八两;列出二元一次方程组即可.【详解】两组条件:每人分七两,则剩余四两;每人分九两,则还差八两;解:7498x y x y +=⎧⎨-=⎩【点睛】本题考查二元一次方程组的应用,找到等量关系,列方程组是解答本题的关键. 17.4x+3y=27x+5y=3.【解析】【分析】根据加减消元的方法即可进行求解.【详解】解:①-③得4x+3y=2,③×4+②得7x+5y=3,∴消去未知数z后,得到的二元一次方程组是4解析:.【解析】【分析】根据加减消元的方法即可进行求解.【详解】解:①-③得4x+3y=2,③×4+②得7x+5y=3,∴消去未知数z后,得到的二元一次方程组是.【点睛】本题考查了三元一次方程组的求解,中等难度,熟悉加减消元的方法是解题关键.18.【解析】试题分析:根据x、y互为相反数,可得x+y=0,然后和方程构成方程组,解得,所以3x-2y=.19.100或85.【分析】设所购商品的标价是x元,然后根据两人共付款150元的等量关系,分所购商品的标价小于90元和大于90元两种情况,分别列出方程求解即可.【详解】解:设所购商品的标价是x元,解析:100或85.【分析】设所购商品的标价是x元,然后根据两人共付款150元的等量关系,分所购商品的标价小于90元和大于90元两种情况,分别列出方程求解即可.【详解】解:设所购商品的标价是x元,则①所购商品的标价小于90元,x﹣20+x=150,解得x=85;②所购商品的标价大于90元,x﹣20+x﹣30=150,解得x=100.故所购商品的标价是100或85元.故答案为100或85.【点睛】本题主要考查了一元一次方程的应用,正确运用分类讨论思想是解答本题的关键. 20.90【分析】首先可设道路一侧植树棵树为x 棵,根据时间的等量关系列出方程求解;实际在植树时,可设甲在左侧植树的时长为y ,根据时间的等量关系列出方程求解;最后进一步求得丁植树的时长,从而可求得甲比丁解析:90【分析】首先可设道路一侧植树棵树为x 棵,根据时间的等量关系列出方程求解;实际在植树时,可设甲在左侧植树的时长为y ,根据时间的等量关系列出方程求解;最后进一步求得丁植树的时长,从而可求得甲比丁少植树的棵树.【详解】解:设道路一侧植树棵数为x 棵,则78x+=2+102610x -⨯+, 解得x =180,实际在植树时,设甲在左侧植树的时长为y ,则 ()18061010y-+﹣5=()18078678y -+++, 解得y =5, 则丁植树的时长为1805610-⨯=15, 所以甲比丁少植树15×10﹣(15﹣5)×6=90(棵).故答案为:90.【点睛】本题考查了二元一次方程的应用,解题的关键是直接求解两人植树棵树较困难时,可通过计算两人的植树时间进行比较.三、解答题21.(1)1辆A 型车满载时一次可运柑橘3吨,1辆B 型车满载时一次可运柑橘2吨;(2)①共有4种租车方案,方案1:租用1辆A 型车,9辆B 型车;方案2:租用3辆A 型车,6辆B 型车;方案3:租用5辆A 型车,3辆B 型车;方案4:租用7辆A 型车;②最省钱的租车方案是租用7辆A 型车,最少租车费是840元【分析】(1)设1辆A 型车满载时一次可运柑橘x 吨,1辆B 型车满载时一次可运柑橘y 吨,根据“用2辆A 型车和3辆B 型车一次可运柑橘12吨;用3辆A 型车和4辆B 型车一次可运柑橘17吨”,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)①根据一次运载柑橘21吨,即可得出关于m ,n 的二元一次方程,结合m ,n 均为非负整数,即可得出各租车方案;②根据租车总费用=租用每辆车的费用×租用的辆数,即可求出各租车方案所需费用,比较后即可得出结论.【详解】解:(1)设1辆A 型车满载时一次可运柑橘x 吨,1辆B 型车满载时一次可运柑橘y 吨, 依题意,得:23123417x y x y +=⎧⎨+=⎩, 解得:32x y ==⎧⎨⎩. 故答案为:1辆A 型车满载时一次可运柑橘3吨,1辆B 型车满载时一次可运柑橘2吨. (2)①依题意,得:3m+2n =21,∴m =7﹣23n . 又∵m ,n 均为非负整数,∴19m n =⎧⎨=⎩或36m n =⎧⎨=⎩或53m n ==⎧⎨⎩或70m n =⎧⎨=⎩. 答:共有4种租车方案,方案1:租用1辆A 型车,9辆B 型车;方案2:租用3辆A 型车,6辆B 型车;方案3:租用5辆A 型车,3辆B 型车;方案4:租用7辆A 型车. ②方案1所需租车费为120×1+100×9=1020(元),方案2所需租车费为120×3+100×6=960(元),方案3所需租车费为120×5+100×3=900(元),方案4所需租车费为120×7=840(元).∵1020>960>900>840,故答案为:最省钱的租车方案是租用7辆A 型车,最少租车费是840元.【点睛】本题主要考查列二元一次方程以及利用二元一次方程解决方案问题,正确理想二元一次方程组并运用二元一次方程解决方案问题是本题解题的关键.22.(1)90︒;90︒;90︒(2)AF //EG ;证明见详解(3)存在;50x =︒、54x =︒或35711x ⎛⎫=︒ ⎪⎝⎭ 【分析】(1)根据垂直的定义、平行线的性质、四边形的内角和即可得解;(2)按照题目要求画出图形后,根据已知条件、角平分线的性质、平行线的性质和判定即可得到结论并证明;(3)结合图形根据平行线的性质、角平分线的性质、角的和差可列出360901x k ︒︒=︒-+,再由x 、k 的取值范围即可求得结论.【详解】解:(1)∵AB BC ⊥∴90B ∠=︒∵//AB CD∴18090C B ∠=︒-∠=︒∵//AD BC∴18090D C ∠=︒-∠=︒∴36090A B C D ∠=︒-∠-∠-∠=︒;(2)按照题目要求作图:猜想:射线AF 与EG 的位置关系是:AF //EG证明: ∵AF 平分DAE ∠,EG 平分BEA ∠ ∴12EAF DAE ∠=∠,12AEG BEA ∠=∠ ∵//DG BF∴DAE BEA ∠=∠∴EAF AEG ∠=∠ ∴AF //EG ;(3)在(2)问的条件下,连接AC ,如图:∵AF //EG ,//DG BF∴180AFB GEF ∠+∠=︒,DAF AFB ∠=∠∴180GEF DAF ∠+∠=︒∵GEF k DAF ∠=∠∴1801DAF EAF k ︒∠=∠=+ ∵BAE x ∠=︒∴1801809011x k k ︒︒︒++=︒++ ∴360901x k ︒︒=︒-+ ∵AC 恰好平分BAD ∠,由(1)可知90BAD ∠=︒∴1452BAC DAC BAD ∠=∠=∠=︒ ∵E 为射线BC 上一任意一点∴45BAE x ∠=︒>︒∵k 为不超过10的正整数∴当8k 时,50BAE x ∠=︒=︒;当9k =时,54BAE x ∠=︒=︒;当10k =时,35711BAE x ⎛⎫∠=︒=︒ ⎪⎝⎭∴存在角度x ︒,使得当BAE x ∠=︒时,有GEF k DAF ∠=∠(其中k 为不超过10的正整数);50x =︒、54x =︒或35711x ⎛⎫=︒ ⎪⎝⎭. 【点睛】本题考查了垂直的定义、平行线的判定和性质、四边形的内角和、角的和差、根据要求画图、代入消元法、根据参数的取值范围求角的度数等知识点,熟练掌握相关知识点世界解决问题的关键.23.(1)制作甲24个,乙22个.(2)最多可以制作甲,乙纸盒24个.(3)制作甲6个,乙4个.【分析】(1)设制作甲x 个,乙y 个,则需要A ,B 型号的纸板如下表:(2)设制作甲m 个,乙k 个,则需要A ,B 型号的纸板如下表:(3)由1个丙型大纸盒可以拆成7块B 型纸板,所以6个丙型大纸盒可以拆成42块B 型纸板,而制作1个甲纸盒要4块B 型纸板,制作1个乙纸盒要4.5块B 型纸板,通过列方程求方程的正整数解得到答案.【详解】解:(1)设制作甲x 个,乙y 个,则34160270x y x y +=⎧⎨+=⎩, 解得:2422x y =⎧⎨=⎩ , 即制作甲24个,乙22个.(2)设制作甲m 个,乙k 个,则23430m k n m k +=⎧⎨+=⎩, 消去k 得,465m n =-, 因为:,m n 为正整数, 所以:10152, 6.63n n m m k k ==⎧⎧⎪⎪==⎨⎨⎪⎪==⎩⎩综上,最多可以制作甲,乙纸盒24个.(3)因为1个丙型大纸盒可以拆成7块B 型纸板,所以6个丙型大纸盒可以拆成42块B 型纸板,而制作1个甲纸盒要4块B 型纸板,制作1个乙纸盒要4.5块B 型纸板,设制作甲c 个,乙d 个,则4 4.542c d +=,因为,c d 为正整数,所以6,4c d ==,即可以制作甲6个,乙4个.【点睛】此题考查了二元一次方程组的应用.二元一次方程(组)的正整数解,解题关键是弄清题意,找出题目蕴含的等量关系,列出方程或方程组解决问题.24.(1)手动型汽车560台,自动型汽车400台;(2)577.6万元.【分析】(1)根据题意设在政策出台前一个月,销售的手动型汽车x 台,自动型汽车y 台,根据政策出台前一个月及出台后的第一月销售量,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)由题意根据总价=单价×数量结合政府按每台汽车价格的5%给购买汽车的用户补贴,即可求出结论.【详解】解:(1)设在政策出台前一个月,销售的手动型汽车x 台,自动型汽车y 台,依题意,得:()()960130%125%1228x y x y +=⎧⎪⎨+++=⎪⎩,解得:560400 xy=⎧⎨=⎩.答:在政策出台前一个月,销售的手动型汽车560台,自动型汽车400台.(2)[560×(1+30%)×9+400×(1+25%)×10]×5%=577.6(万元).答:政府对这1228台汽车用户共补贴了577.6万元.【点睛】本题考查二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.25.(1)甲8辆,乙10辆;(2)甲2辆,乙10辆,丙3辆或甲4辆,乙5辆,丙6辆.【解析】【分析】(1)设需甲车x辆,乙车y辆列出方程组即可.(2)设甲车有a辆,乙车有b辆,则丙车有(15-a-b)辆,列出等式.【详解】(1)设需要甲种车型x辆,乙种车型y辆,根据题意得:解得:.答:需要甲种车型8辆,乙种车型10辆.(2)设甲车有a辆,乙车有b辆,则丙车有(15-a-b)辆,由题意得:5a+8b+10(15-a-b)=120,化简得5a+2b=30,即a=6-b,∵a、b、15-a-b均为正整数,∴b只能等于5或10,当b=5时,a=4,15-a-b=6,当b=10时,a=2,15-a-b=3∴甲车2辆,乙车10辆,丙车3辆或甲4辆,乙5辆,丙6辆.【点睛】本题考查二元一次方程组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出方程即可求解.利用整体思想和未知数的实际意义通过筛选法可得到未知数的具体解,这种方法要掌握.26.(1)甲内存卡每个20元,乙内存卡每个50元;(2) 有两种购买方案,方案一:购买A商品5件,B商品5件;方案二:购买A商品6件,B商品4件,其中方案二费用最低;(3) 共有4种销售方案:方案一:卖了甲内存卡10个,乙内存卡0个;方案二:卖了甲内存卡7个,乙内存卡2个;方案三:卖了甲内存卡4个,乙内存卡4个;方案四:卖了甲内存卡1个,乙内存卡6个.。
七年级(下)学期 第三次月考检测数学试题含答案
![七年级(下)学期 第三次月考检测数学试题含答案](https://img.taocdn.com/s3/m/467b3339e009581b6ad9eb15.png)
七年级(下)学期 第三次月考检测数学试题含答案一、选择题1.如图,周长为34的矩形ABCD 被分成7个全等的矩形,则矩形ABCD 的面积为 ( )A .280B .140C .70D .196 2.方程()()218235m nm x n y ---++=是二元一次方程,则( ) A .23m n =⎧⎨=⎩ B .23m n =-⎧⎨=-⎩ C .23m n =⎧⎨=-⎩ D .23m n =-⎧⎨=⎩3.已知方程组211x y x y +=⎧⎨-=-⎩,则x +2y 的值为( ) A .2 B .1C .-2D .3 4.若实数x ,y 满足()229310-++++=x y x y ,则2y x 等于( )A .1B .-16C .16D .-15.二元一次方程组2213x y a x y +=⎧⎪⎨+=⎪⎩的解也是方程36x y -=-的解,则a 等于( ) A .-3B .13-C .3D .13 6.若45x y =-⎧⎨=-⎩是方程27x ky +=的解,则k 是( ). A .3 B .5 C .-3 D .以上都不对7.端午节前夕,某超市用1680元购进A ,B 两种商品共60,其中A 型商品每件24元,B 型商品每件36元.设购买A 型商品x 件、B 型商品y 件,依题意列方程组正确的是( )A .6036241680x y x y +=⎧⎨+=⎩B .6024361680x y x y +=⎧⎨+=⎩C .3624601680x y x y +=⎧⎨+=⎩D .2436601680x y x y +=⎧⎨+=⎩8.如图,一个粒子在第一象限和x ,y 轴的正半轴上运动,在第一秒内, 它从原点运动到(0,1),接着它按图所示在x 轴、y 轴的平行方向来回运动,即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)→…,且每秒运动一个单位长度,那么2020秒时,这个粒子所处位置为( )A.(4,44) B.(5,44) C. (44,4) D. (44,5)9.《孙子算经》是中国古代著名的数学著作.在书中有这样一道题:“今有木,不知长短.引绳度之,余绳四尺五,屈绳量之,不足一尺.问木长几何?”译成白话文:“现有一根木头,不知道它的长短.用整条绳子去量木头,绳子比木头长4.5尺;将绳子对折后去量,则绳子比木头短1尺.问木头的长度是多少尺?”设木头的长度为x尺,绳子的长度为y尺.则可列出方程组为()A.4.512x yyx-=⎧⎪⎨-=⎪⎩B.4.512y xyy-=⎧⎪⎨-=⎪⎩C.4.512y xyx-=⎧⎪⎨-=⎪⎩D.4.512x yyy-=⎧⎪⎨-=⎪⎩10.如图,在两个形状、大小完全相同的大长方形内,分别互不重叠地放入四个如图③的小长方形后得图①、图②,已知大长方形的长为2a,两个大长方形未被覆盖部分分别用阴影表示,则图①阴影部分周长与图②阴影部分周长的差是()(用a的代数式表示)A.﹣a B.a C.12a D.﹣12a二、填空题11.商场购进A、B、C 三种商品各100件、112件、60 件,分别按照25%、40%、60%的利润进行标价,其中商品C的标价为80元,为了促销,商场举行优惠活动:如果同时购买A、B 商品各两件,就免费获赠三件C商品.这个优惠活动实际上相当于这七件商品一起打了七五折.那么,商场购进这三种商品一共花了______元..12.自来水厂的供水池有7个进出水口,每天早晨6点开始进出水,且此时水池中有水15%,在每个进出水口是匀速进出的情况下,如果开放3个进口和4个出口,5小时将水池注满;如果开放4个进口和3个出口,2小时将水池注满.若某一天早晨6点时水池中有水24%,又因为水管改造,只能开放3个进口和2个出口,则从早晨6点开始经过____小时水池的水刚好注满.13.若m35223x y m x y m+--+-199199x y x y=---+m=________.14.2018年10月21日,重庆市第八届中小学艺术工作坊在渝北区空港新城小学体育馆开幕,来自全重庆市各个区县共二十多个工作坊集中展示了自己的艺术特色.组委会准备为现场展示的参赛选手购买三种纪念品,其中甲纪念品5元/件,乙纪念品7元/件,丙纪念品10元/件.要求购买乙纪念品数量是丙纪念品数量的2倍,总费用为346元.若使购买的纪念品总数最多,则应购买纪念品共_____件.15.蜂蜜具有消食、润肺、安神、美颜之功效,是天然的健康保健佳品.秋天即将来临时,雪宝山土特产公司抓住商机购进甲、乙、丙三种蜂蜜,已知销售每瓶甲蜂蜜的利润率为10%,每瓶乙蜂蜜的利润率为20%,每瓶丙蜂蜜的利润率为30%.当售出的甲、乙、丙蜂蜜瓶数之比为1:3:1时,商人得到的总利润率为22%;当售出的甲、乙、丙蜂蜜瓶数之比为3:2:1时,商人得到的总利润率为20%.那么当售出的甲、乙、丙蜂蜜瓶数之比为5:6:1时,该公司得到的总利润率为_____.16.历代数学家称《九章算术》为“算经之首”.书中有这样一道题的记载,译文为:今有5只雀、6只燕,分别聚集在一起称重,称得雀重,燕轻.若将一只雀、一只燕交换位置,则重量相等;将5只雀、6只燕放在一起称量,则总重量为1斤.问雀、燕每1只各重多少斤?若设雀每只重x斤,燕每只重y斤,则可列方程组为________________17.若3x-5y-z=8,请用含x,y的代数式表示z,则z=________.18.国庆期间某外地旅行团来重庆的网红景点打卡,游览结束后旅行社对该旅行团做了一次“我最喜爱的巴渝景点”问卷调查(每名游客都填了调査表,且只选了一个景点),統计后发现洪崖洞、长江索道、李子坝轻轨站、磁器口榜上有名.其中选李子坝轻轨站的人数比选磁器口的少8人;选洪崖洞的人数不仅比选磁器口的多,且为整数倍;选磁器口与洪崖洞的人数之和是选李子坝轻轨站与长江索道的人数之和的5倍;选长江索道与洪崖洞的人数之和比选李子坝轻轨站与磁器口的人数之和多24人.则该旅行团共有_______人. 19.两位同学在解方程组时,甲同学正确地解出,乙同学因把c写错而解得,则a=_____,b=_____,c=_____.20.如图,小强和小红一起搭积木,小强所搭的“小塔”的高度为23 cm,小红所搭的“小树”的高度为22 cm,设每块A型积木的高为x cm,每块B型积木的高为y cm,则x=__________,y=__________.三、解答题21.对于数轴上的点A,给出如下定义:点A在数轴上移动,沿负方向移动a个单位长度(a是正数)后所在位置点表示的数是x,沿正方向移动2a个单位长度(a是正数)后所在位置点表示的数是y,x与y这两个数叫做“点A的a关联数”,记作G(A,a)={x,y},其中x y.例如:原点O表示0,原点O的1关联数是G(0,1)={-1,+2}(1)若点A表示-3,a=3,直接写出点A的3关联数.(2)①若点A表示-1,G(A,a)={-5,y},求y的值.②若G(A,a)={-2,7},求a的值和点A表示的数.(3)已知G(A,3)={x,y},G(B,2)={m,n},若点A、点B从原点同时同向出发,且点A的速度是点B速度的3倍.当|y-m|=6时,直接写出点A表示的数.22.阅读下列文字,请仔细体会其中的数学思想.(1)解方程组321327x yx y-=-⎧⎨+=⎩,我们利用加减消元法,很快可以求得此方程组的解为;(2)如何解方程组()()()()3523135237m nm n⎧+-+=-⎪⎨+++=⎪⎩呢?我们可以把m+5,n+3看成一个整体,设m+5=x,n+3=y,很快可以求出原方程组的解为;(3)由此请你解决下列问题:若关于m,n的方程组722am bnm bn+=⎧⎨-=-⎩与351m nam bn+=⎧⎨-=-⎩有相同的解,求a、b的值.23.阅读以下内容:已知有理数m,n满足m+n=3,且3274232m n km n+=-⎧⎨+=-⎩求k的值.三位同学分别提出了以下三种不同的解题思路:甲同学:先解关于m,n的方程组3274232m n km n+=-⎧⎨+=-⎩,再求k的值;乙同学:将原方程组中的两个方程相加,再求k的值;丙同学:先解方程组3232m nm n+=⎧⎨+=-⎩,再求k的值.(1)试选择其中一名同学的思路,解答此题;(2)在解关于x,y的方程组()()11821a x byb x ay⎧+-=⎪⎨++=⎪⎩①②时,可以用①×7﹣②×3消去未知数x,也可以用①×2+②×5消去未知数y.求a和b的值.24.平面直角坐标系中,A(a,0),B(0,b),a,b满足2(25)220a b a b++++-=,将线段AB平移得到CD,A,B的对应点分别为C,D,其中点C在y轴负半轴上.(1)求A,B两点的坐标;(2)如图1,连AD交BC于点E,若点E在y轴正半轴上,求BE OEOC-的值;(3)如图2,点F ,G 分别在CD ,BD 的延长线上,连结FG ,∠BAC 的角平分线与∠DFG 的角平分线交于点H ,求∠G 与∠H 之间的数量关系.25.如图,已知∠a 和β∠的度数满足方程组223080αββα︒︒⎧∠+∠=⎨∠-∠=⎩,且CD //EF,AC AE ⊥.(1)分别求∠a 和β∠的度数;(2)请判断AB 与CD 的位置关系,并说明理由;(3)求C ∠的度数。
吉林省吉林市长春市名校调研系列卷2018-2019学年中考数学三模考试试卷及参考答案
![吉林省吉林市长春市名校调研系列卷2018-2019学年中考数学三模考试试卷及参考答案](https://img.taocdn.com/s3/m/1f1bd848e53a580216fcfed5.png)
7. 计算:
=________.
8. 某城市3年前人均收入为x元,预计今年人均收入是3年前的2倍多500元,那么今年人均收入将达________元. 9. 若关于x的一元二次方程x'-x-m=0有两个相等的实数根,则m=________. 10. 如图,一扇窗户打开后,用窗钩AB可将其固定,其理论依据是________.
(1) 点A(2,6)的“坐标差”为; (2) 求抛物线y=-x2+5.x+4的“特征值”; (3) 某二次函数y=-x2+bx+c(c≠0)的“特征值”为-1,点B与点C分别是此二次函数的图象与x轴和y轴的交点,且点B 与点C的“坐标差”相等,求此二次函数的解析式; (4) 二次函数y=-x2+px+q的图象的顶点在“坐标差”为2的一次函数的图象上,四边形DEFO是矩形,点E的坐标为(7 ,3),点O为坐标原点,点D在x轴上点下在x轴上,当二次函数y=-x2+Ax+q的图象与矩形的边只有三个交点时,求此二次
表的方法求他俩诵读两个不同材料的概率。
18. 如图,菱形ABCD的对角线AC,BD相交于点O,且DE∥AC,AE∥BD.求证:四边形AODE是矩形.
四 、 解 答 题 ( 每 小 题 7分 , 共 28分 )
19. 图①、图②、图③都是4×4的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点叫做格点,线段AB的 顶点都在格点上.
吉林省七年级下学期数学第三次月考试卷
![吉林省七年级下学期数学第三次月考试卷](https://img.taocdn.com/s3/m/87ff49e176c66137ee0619ff.png)
吉林省七年级下学期数学第三次月考试卷姓名:________ 班级:________ 成绩:________一、选择题(每小题3分,共30分) (共10题;共30分)1. (3分) (2018八上·许昌期末) 若分式的值为0,则的值为()A . 0B . -3C . 3D . 3或-32. (3分)下列方程是二元一次方程的是()A .B .C .D .3. (3分) (2016七下·郾城期中) 在A、B、C、D四幅图案中,能通过图甲平移得到的是()A .B .C .D .4. (3分) (2019八上·丹江口期末) 下列多项式不能使用平方差公式的分解因式是()A .B .C .D .5. (3分)如图,下列能判定的条件有()个。
(1) ;(2);(3) ;(4) 。
A . 1B . 2C . 3D . 46. (3分)下列运算正确的是()A .B . =C .D . =7. (3分)(2019·衡阳) 下列各式中,计算正确的是()A .B .C .D .8. (3分) (2018八上·柳州期末) 暑假期间,赵强同学借了一本书,共280页,要在两周借期内读完,当他读了一半时,发现平时每天要多读21页,才能在借期内读完,他读了前一半时,平均每天读多少页?如果设读前一半时,平均每天读x页,则下面所列方程中正确的是()A .B .C .D .9. (3分) (2019七下·眉山期末) 若a+b=3,ab=2,则a2+b2的值为()A . 6B . 5C . 4D . 210. (3分)(2020·河北) 若,则()A . 12B . 10C . 8D . 6二、填空题(每小题2分,共12分) (共6题;共12分)11. (2分)(2018·无锡模拟) 分解因式:2x2-4x=________.12. (2分) (2020八上·天津月考) 如图,在中,与的平分线交于点,过点作,分别交、于点、.若的周长为7,的周长是12,则的长度为________.13. (2分) (2018八上·长春期末) 计算: ________.14. (2分) (2019九下·新田期中) 若关于的方程有增根,则的值为________15. (2分)(2021·东城模拟) 4月23日是世界读书日,甲、乙两位同学在读书日到来之际共购买图书22本,其中甲同学购买的图书数量比乙同学购买的图书数量的2倍多1,求甲、乙两位同学分别购买的图书数量.设甲同学购买图书x本、乙同学购买图书y本,则可列方程组为________.16. (2分) (2021八下·武汉月考) 我们定义为不超过a的最大整数.例如:.若,则a的取值范围是________.三、解答题(共58分) (共8题;共58分)17. (6分)(2016·贺州) 计算:﹣(π﹣2016)0+| ﹣2|+2sin60°.18. (6分) (2020八上·长沙月考)(1)(2)19. (6分)先化简,再求值:(1)÷ ﹣,其中x=2;(2)÷ ﹣,其中x= .20. (6分)已知:如图①,直线MN⊥ 直线PQ,垂足为O,点A在射线OP上,点B在射线OQ上( A、B不与O点重合),点C在射线ON上且 OC=2,过点C作直线 .点 D在点C的左边且CD=3.(1)直接写出的面积________;(2)如图②,若,作的平分线交于,交于,试说明;(3)如图③,若,点在射线上运动,的平分线交的延长线于点 ,在点运动过程中的值是否变化?若不变,求出其值;若变化,求出变化范围.21. (8分) (2016八上·县月考) 把下列各式分解因式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年吉林省七下数学名校调研-第三次月考卷
名校调研系列卷 七年下第三次月考卷 数学(人教版)
1、9的平方根是( )。
A 、+3
B 、-3
C 、±3
D 、±3
2、如图所示的各组图形中,表示平移关系的是( )。
3、下列是二元一次方程的是( )。
A 、x x =-63
B 、y x 23=
C 、02=-y x
D 、xy y x =-32 4、在数轴上表示不等式-2 ≥x 的解集,正确的是( )。
5、象棋在中国有着三千多年的历史,是流行
极为广泛的益智游戏,如图是一局象棋残局,
已知表示棋子“馬”和“車”的点的坐标分
别为(4,3),(-2,1),则表示棋子“炮”的点的坐标为( )。
A 、(3,3)
B 、(0,3)
C 、(3,2)
D 、(1,3)
6、对有理数x 、y 定义新运算:x ⊗y =1+-by ax ,其中a 、b 是常数,若2⊗(-1)=-3,3⊗3=4,则a 、b 的值分别为
( ) A 、2,1==b a B 、2,1=-=b a C 、2,1-=-=b a D 、2,1-==b a
⑤4-≠
x;⑥2
5+
x,其中不等式有个。
+x
2
>
8、把无理数17,11,5,3
-表示在数轴上,在这四个无理数中,被墨迹(如图)覆盖住的无理数是。
9、已知x>y,则-2x-2y(填“>”“<”或“=”)。
10、如图,工程队铺设一公路,他们从点A处铺设到点E处,由于水塘挡路,他们决定改变方向经过点C,再拐到点D,然后沿着与AB平行的DE方向继续铺设,如果∠ABC=120°,∠CDE=140°,则∠BCD的度数是。
11、若点P(a-1,2a-1)在x轴负半轴上,则P点坐标是。
12、某地区农业用水和居民家庭用水的总和为8亿立方米,其中居民家庭用水比农业用水的2倍还多0.5亿立方米,设农业用水为x亿立方米,居民家庭用水为y亿立方米。
依题意,可列方程组为。
13、已知关于a 、b 的方程组⎩⎨⎧=-=+4225b a b a ,则2)3(b a - = 。
14、如图,各个点的坐标为)0,0(0A ,)2,1(1A ,)0,2(2A ,)2,3(3-A ,)0,4(4
A ,根据这个规律,探究可得
点2018A 的
坐标是 。
15、计算:25+327--41
16、用代入法解方程组:⎩⎨⎧=--=13431
2y x y x
17、用加减法解方程组:⎧-=-1
23y x
18、已知实数12-a 的平方根是±3,
532=+b ,求 a +b 的平
方根。
19、某商场用36000元购进甲、乙两种商品,销售完后共得利润6000元,其中甲种商品每件进价是120元,售价是138元;乙种商品每件进价是100元,售价是120元。
求商场购进甲、乙两种商品各多少件?
20、如图,线段CD 是线段AB 经过某种变换得到的。
(1)若点A 与点C ,点B 与点D 是对应点,第一象限内的点M 的坐标为(m , n ),在这种变换下,点M 的对应点N 的坐标为 (用含m ,n 的式子表示);
(2)连接BD 、AC ,直接写出四边形ABDC 的面积。
21、若关于x 、y 的方程组⎩
⎨⎧=++=+m y x m y x 32253的解x 与y 的和等于2,求m 的值。
22、如图,∠1+∠2=180°,∠3=∠B。
(1)求证:AB∥EF;
(2)试判断DE与BC的位置关系,并证明你的结论。
23、已知:A(0,1),B(2,0),C(4,3)。
(1)在如图所示的平面直角坐标系中描出各点,画出三角形ABC;
(2)求三角形ABC的面积;
(3)设点P在x轴上,且三角形ABP与三角形ABC的面积相等,求点P的坐标。
24、如图,已知射线CD∥OA,点E、F是OA上的动点,CE平分∠OCF,且满足∠FCA=∠FAC。
(1)若∠O=∠ADC,判断AD与OB的位置关系,并证明你的结论;
(2)若∠O=∠ADC=60°,求∠ACE的度数。
25、如图,A、B两地有公路和铁路相连,在这条路上有一家食品厂,它到B地的距离是到A地距离的2倍,这家食品厂从A 地购买原料,制成食品卖到B地。
已知公路运价为1.5元/(公里.吨),这两次运输(每一次:A地→食品厂,第二次:食品厂→B地)共支出公路运费15600元,铁路运费20600元。
(1)求这家食品厂到A地的距离是多少公里?
(2)这家食品厂此次共买进原料和卖出食品各多少吨?
26、对于平面直角坐标系中的点P(a、b),若点P′的
坐标为(b
a+
+,)(其中k为常数,且k≠0),则称点P′
kb
ka
为P的“k属派生点”,例如:P(1,4)的“2属派生
(1)点P(-1,6)的“2属派生点”P′的坐标为;
(2)若点P的“3属派生点” P′的坐标为(6,2),求点P的坐标;
(3)若点P在x轴的正半轴上,点P的“k属派生点”为P′点,且线段PP′的长度为线段OP长度的2倍,求k的值。