2018年全国卷高考数学试题分析

合集下载

2018高考数学全国卷含答案解析

2018高考数学全国卷含答案解析
则 .
从而 ,故MA,MB的倾斜角互补,所以 .
综上, .
20.(12分)
解:(1)20件产品中恰有2件不合格品的概率为 .因此
.
令 ,得 .当 时, ;当 时, .
所以 的最大值点为 .
(2)由(1)知, .
(i)令 表示余下的180件产品中的不合格品件数,依题意知 , ,即 .
所以 .
(ii)如果对余下的产品作检验,则这一箱产品所需要的检验费为400元.
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.若 , 满足约束条件 ,则 的最大值为_____________.
14.记 为数列 的前 项和.若 ,则 _____________.
15.从2位女生,4位男生中选3人参加科技比赛,且至少有1位女生入选,则不同的选法共有_____________种.(用数字填写答案)
建设前经济收入构成比例建设后经济收入构成比例
则下面结论中不正确的是
A.新农村建设后,种植收入减少
B.新农村建设后,其他收入增加了一倍以上
C.新农村建设后,养殖收入增加了一倍
D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半
4.记 为等差数列 的前 项和.若 , ,则
A. B. C. D.
解:(1)在 中,由正弦定理得 .
由题设知, ,所以 .
由题设知, ,所以 .
(2)由题设及(1)知, .
在 中,由余弦定理得
.
所以 .
18.(12分)
解:(1)由已知可得,BF⊥PF,BF⊥EF,所以BF⊥平面PEF.
又 平面ABFD,所以平面PEF⊥平面ABFD.
(2)作PH⊥EF,垂足为H.由(1)得,PH⊥平面ABFD.

2018年高考理科数学新课标全国2卷逐题解析

2018年高考理科数学新课标全国2卷逐题解析

2018 年一般高等学校招生全国一致考试新课标2 卷理科数学注意事项:1.答卷前,考生务势必自己的姓名、准考证号填写在答题卡上。

2.作答时,将答案写在答题卡上。

写在本试卷及稿本纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共 12 小题,每题 5 分,共 60 分,在每题给出的四个选项中,只有一项为哪一项吻合题目要 求的。

1+2i1. 1-2i =( )4 3 4 3 343 4A .- 5-5iB . - 5 + 5iC .- 5-5iD . - 5 + 5i分析:选 D2.已知会集 A={(x,y)|x2+y 2≤ 3,x ∈Z,y ∈ Z } ,则 A 中元素的个数为 ( )A . 9B . 8C . 5D . 4分析:选 A 问题为确立圆面内整点个数3.函数 f(x)=e x -e -x的图像大体为 ( ) x 2分析:选 B f(x) 为奇函数,消除A,x>0,f(x)>0,消除 D, 取 x=2,f(2)=e 2-e -2>1, 应选 B44.已知向量 a , b 满足 |a|=1 , a · b=-1 ,则 a · (2a-b)= ( )A . 4B . 3C . 2D . 0分析:选 B a · (2a-b)=2a 2-a ·b=2+1=32-y 25.双曲线 x22 =1(a > 0, b > 0) 的离心率为 3,则其渐近线方程为( )ab23A . y= ± 2xB . y=± 3xC . y=± 2 xD . y=± 2 x分析:选 A e=222a3 c =3a b=C 56.在 ABC 中, cos 2= 5 , BC=1, AC=5,则 AB= ( )A .4 2B . 30C . 29D .2 5分析:选 A cosC=2cos2C3 222-1= -AB=AC+BC-2AB · BC ·cosC=32 AB=4 2251 / 61 1 - 1 1 1( )7. 算 S=1- +3+⋯⋯+- , 了右 的程序框 , 在空白框中 填入2 499100开始N 0,Ti 1是100 否i1S NTN NiT T1出 Si 1束A . i=i+1 B. i=i+2C . i=i+3D. i=i+4分析: B8.我国数学家 景 在哥德巴赫猜想的研究中获得了世界 先的成就. 哥德巴赫猜想是“每个大于2 的偶数可以表示 两个素数的和”,如30=7+23.在不超 30 的素数中,随机 取两个不一样的数,其和等于30 的概率是 ()1111A .B .C .D .121415 18 分析: C不超30 的素数有 2, 3, 5, 7, 11, 13, 17,19, 23, 29 共 10 个,从中 2 个其和 30 的3 2= 17+23, 11+19, 13+17,共 3 种情况,所求概率 P= 15C109.在 方体 ABCD-AB C D 中, AB=BC=1, AA =3, 异面直 AD 与 DB 所成角的余弦 ()1 1 1 11111552A .B .C .D .5652分析: C建立空 坐 系,利用向量 角公式可得。

(完整版)2018年高考全国1卷理科数学试题及答案详细解析(word版_精校版)

(完整版)2018年高考全国1卷理科数学试题及答案详细解析(word版_精校版)

绝密★启用前2018年普通高等学校招生全国统一考试(全国卷Ⅰ)理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上。

写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设1i2i 1iz -=++,则||z = A .0 B .12C .1D .2 2.已知集合2{|20}A x x x =-->,则A =RA .{|12}x x -<<B .{|12}x x -≤≤C {|1}{|2}x x x x <->D .{|1}{|2}x x x x -≤≥3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番。

为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:则下面结论中不正确的是 A .新农村建设后,种植收入减少B .新农村建设后,其他收入增加了一倍以上C .新农村建设后,养殖收入增加了一倍D .新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半4.记n S 为等差数列{}n a 的前n 项和. 若3243S S S =+,12a ,则5aA .12-B .10-C .10D .12 5.设函数32()(1)f x x a x ax =+-+。

若()f x 为奇函数,则曲线()y f x =在点(0,0)处的切线方程为A .2y x =-B .y x =-C .2y x =D .y x =6.在ABC △中,AD 为BC 边上的中线,E 为AD 的中点,则EB =A .3144AB AC - B .1344AB AC - C .3144AB AC + D .1344AB AC +7.某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为A .217B .25C .3D .28.设抛物线24C y x :的焦点为F ,过点(2,0)且斜率为23的直线与C 交于M ,N 两点,则FM FNA .5B .6C .7D .89.已知函数e ,0,()ln ,0,x x f x x x ⎧=⎨>⎩≤ ()()g x f x x a =++. 若()g x 存在2个零点,则a 的取值范围是A .[1,0)-B .[0,)+∞C .[1,)-+∞D .[1,)+∞10.下图来自古希腊数学家希波克拉底所研究的几何图形. 此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC 的斜边BC ,直角边AB ,AC .ABC △的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ。

全国卷Ⅲ2018年理数高考试题解析(word档含答案解析)

全国卷Ⅲ2018年理数高考试题解析(word档含答案解析)

为 9 3 ,则三棱锥 D ABC 体积的最大值为
A .0.7
B. 0.6
C. 0.4
D. 0.3
9.△ ABC 的内角 A ,B ,C 的对边分别为
a2 a ,b , c ,若 △ ABC 的面积为
b2
c2 ,则 C
4
A. π 2
B. π 3
C. π 4
D. π 6
10.设 A ,B ,C ,D 是同一个半径为 4 的球的球面上四点, △ ABC 为等边三角形且其面积
项是符合题目要求的.
1.已知集合 A x | x 1≥ 0 , B 0,1,2 ,则 A B
A. 0
B. 1
C. 1,2
D. 0,1,2
2. 1 i 2 i
A. 3 i
B. 3 i
C. 3 i
D. 3 i
3.中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图
中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长
2018 年普通高等学校招生全国统一考试
理科数学
注意事项: 1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如
需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。 写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一
方体,则咬合时带卯眼的木构件的俯视图可以是
4.若 sin A. 8 9
1 ,则 cos 2
3
B. 7 9

2018年全国新课标Ⅲ卷全国3卷高考理科数学试卷及参考答案与试题解析

2018年全国新课标Ⅲ卷全国3卷高考理科数学试卷及参考答案与试题解析

2018年全国新课标Ⅲ卷全国3卷高考理科数学试卷及参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5.00分)已知集合A={x|x-1≥0},B={0,1,2},则A∩B=( )A.{0}B.{1}C.{1,2}D.{0,1,2}2.(5.00分)(1+i)(2-i)=( )A.-3-iB.-3+iC.3-iD.3+i3.(5.00分)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )A. B. C. D.4.(5.00分)若sinα=,则cos2α=( )A. B. C.- D.-5.(5.00分)(x2+)5的展开式中x4的系数为( )A.10B.20C.40D.806.(5.00分)直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x-2)2+y2=2上,则△ABP面积的取值范围是( )A.[2,6]B.[4,8]C.[,3]D.[2,3]7.(5.00分)函数y=-x4+x2+2的图象大致为( )A. B. C.D.8.(5.00分)某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立.设X为该群体的10位成员中使用移动支付的人数,DX=2.4,P(x=4)<P(X=6),则p=( ) A.0.7 B.0.6 C.0.4 D.0.39.(5.00分)△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=( )A. B. C. D.10.(5.00分)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且面积为9,则三棱锥D-ABC体积的最大值为( )A.12B.18C.24D.5411.(5.00分)设F1,F2是双曲线C:-=1(a>0.b>0)的左,右焦点,O是坐标原点.过F2作C的一条渐近线的垂线,垂足为P,若|PF1|=|OP|,则C的离心率为( )A. B.2 C. D.12.(5.00分)设a=log0.20.3,b=log20.3,则( )A.a+b<ab<0B.ab<a+b<0C.a+b<0<abD.ab<0<a+b二、填空题:本题共4小题,每小题5分,共20分。

2018年数学真题及解析_2018年全国统一高考数学试卷(理科)(全国新课标ⅲ)

2018年数学真题及解析_2018年全国统一高考数学试卷(理科)(全国新课标ⅲ)

2018年云南省高考数学试卷(理科)(全国新课标Ⅲ)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5.00分)已知集合A={x|x﹣1≥0},B={0,1,2},则A∩B=()A.{0}B.{1}C.{1,2}D.{0,1,2}2.(5.00分)(1+i)(2﹣i)=()A.﹣3﹣i B.﹣3+i C.3﹣i D.3+i3.(5.00分)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()A. B. C. D.4.(5.00分)若sinα=,则cos2α=()A.B.C.﹣ D.﹣5.(5.00分)(x2+)5的展开式中x4的系数为()A.10 B.20 C.40 D.806.(5.00分)直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x﹣2)2+y2=2上,则△ABP面积的取值范围是()A.[2,6]B.[4,8]C.[,3]D.[2,3]7.(5.00分)函数y=﹣x4+x2+2的图象大致为()A.B.C.D.8.(5.00分)某群体中的每位成员使用移动支付的概率都为p,各成员的支付方式相互独立.设X为该群体的10位成员中使用移动支付的人数,DX=2.4,P(x=4)<P(X=6),则p=()A.0.7 B.0.6 C.0.4 D.0.39.(5.00分)△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=()A.B.C.D.10.(5.00分)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且面积为9,则三棱锥D﹣ABC体积的最大值为()A.12B.18C.24D.5411.(5.00分)设F1,F2是双曲线C:﹣=1(a>0.b>0)的左,右焦点,O是坐标原点.过F2作C的一条渐近线的垂线,垂足为P,若|PF1|=|OP|,则C的离心率为()A.B.2 C.D.12.(5.00分)设a=log0.20.3,b=log20.3,则()A.a+b<ab<0 B.ab<a+b<0 C.a+b<0<ab D.ab<0<a+b二、填空题:本题共4小题,每小题5分,共20分。

2018年高考全国I、II卷数学深度解析立足基础知识学习是关键

2018年高考全国I、II卷数学深度解析立足基础知识学习是关键

2018年高考全国I、II卷数学深度解析立足基础知识学习是关键2018年全国高考Ⅰ卷数学试题依照《高中数学课程标准》与《2018年普通高等学校招生全国统一考试大纲(数学)》进行命题。

以“立德树人、服务选拔、引导教学”为核心,考查“必备知识、关键能力、学科素养、核心价值”。

注重“基础性、综合性、应用性、创新性”。

突出“四基、四能、三会、六素养”。

即:①四基是指数学的基础知识、基本技能、基本思想、基本活动经验;②四能是指发现问题的能力,提出问题的能力,分析问题的能力,解决问题的能力;③三会是指会说、会辩、会用;④六个数学核心素养是指数学抽象、逻辑推理、数学建模、数学运算、直观想象和数据分析。

因此,高考命题中逐渐由“以能力立意命题”的指导思想过渡到“以素养立意命题”。

2018年的试题具有以下特征:一、重理性思维考查,彰显选拔性。

在注重基础知识的同时,还必须考查学生的综合分析能力,逻辑推理能力,解决实际问题的能力,运算能力等。

一份好的试卷应该有较好的区分度,彰显试卷选拔功能。

如理科第12题,考查空间想象能力,截面运动到相应的位置面积才会最大;理科第16题,用普通的三角函数的凑、配就难于解决,利用导数解题也必须有较强的解决问题的能力;理科第20题的解决,就必须有清晰的思路,首先必须读懂题意,阅读理解能力的欠缺是该题的最大障碍,这是对人文素养的考查!阅读能力欠佳的学生,就难于理解题意。

当然,概率统计知识的合理运用也体现了该题的选拔功能;理科第21题,作为整套试卷中的压轴题,以导数知识为基础,考查函数的思想,方程的思想,韦达定理虽然是最基础的知识,想得到且会运用,区分度也就在这里体现出来!今年的压轴题不设难度较大的第三问,高考在选拔功能方面降低了内容的难度,加强了思维的广度和宽度。

二、重视应用性考查,增强实践性。

广泛的应用性是数学的基本属性,数学已成为人们日常生活不可或缺的重要方面,科学技术的进步更离不开数学。

18年高考数学

18年高考数学

18年高考数学近年来,高考数学一直是考生关注的焦点。

在2018年的高考数学试卷中,考查了不少知识点,题型多样,涉及的内容丰富多样。

下面就我对2018年高考数学试卷的总结以及对一些题目的思考,进行一些简要的分析。

2018年高考数学试卷整体难度适中,难易程度相对平衡。

在选择题中,既有基础知识的考查,也有思维能力和解题技巧的考察,要求考生具备扎实的基础知识和较好的解题思路。

这样的题目设计既能考查考生对知识点的掌握程度,又能培养考生的综合运用能力。

值得注意的是,2018年高考数学试卷中的一些题目,不再强调思维定式和机械解题方法。

例如第一卷选择题第4题,本题考查了均值和中位数的关系,考生需要通过分析题目中给出的条件,灵活运用知识点进行推导和解题。

这类题目测试了考生对知识的理解和灵活运用能力。

另外,在第二卷的解答题中,也出现了一些应用题和思维题,要求考生具备较强的问题转化和解决问题的能力。

2018年高考数学试卷中的一些题目,考验了考生的思维能力和创新能力。

例如第一卷的选择题第9题,考察了数列的递推关系,要求考生通过分析已知的递推关系和求和公式,推导出数列的通项公式。

这类题目需要考生运用所学的数学知识来进行思考和推导,提高了考生的综合运用能力。

2018年高考数学试卷中的一些题目,考查了对数学实际应用的理解和应用能力。

例如第二卷解答题第13题,考察了空间中直线与平面的相交问题,要求考生能够在现实情景中找出数学问题,并加以分析和解决。

这类题目培养了考生的应用能力和实际问题解决能力,对培养学生的综合素质具有重要意义。

总的来说,2018年高考数学试卷在考查知识点的同时,也注重考查考生的综合能力和应用能力。

试题涉及的内容丰富多样,题型多样化,反映了数学与实际生活的紧密联系。

通过对2018年高考数学试卷的分析和思考,我们可以理解到数学的重要性和应用价值,同时也需要我们在学习过程中不断提高解题的能力和思维的灵活性。

希望广大考生在备战高考数学科目时,能够充分理解题意,运用所学知识灵活解题,提升解题能力,以取得理想的成绩。

2018年全国卷高考数学计算题真题解析

2018年全国卷高考数学计算题真题解析

2018年全国卷高考数学计算题真题解析2018年全国卷高考数学试卷是一份经典的试卷,对于备战高考的学生来说具有重要的参考价值。

本文将对2018年全国卷高考数学试卷中的计算题进行解析,帮助同学们更好地理解和掌握相关知识。

1. 题目一解析:这道题目是一道简单的四则运算题。

首先,我们先算括号内的乘法运算,即18×5=90。

然后,根据次序律,先乘法后加法,我们得到90+15=105。

因此,答案为105。

2. 题目二解析:这道题目是一道概率题。

根据题目中的描述,共有4只红球、3只蓝球和2只绿球。

因此,总共有9只球。

我们需要计算抽到红球的概率。

根据概率的定义,红球的概率等于红球的数目除以总球数,即4/9。

因此,答案为4/9。

3. 题目三解析:这道题目是一道三角函数题。

根据题目中的给定条件,我们可以先利用已知的两个角的正弦值和余弦值计算出这两个角的正弦差。

然后,根据正弦差公式sin(A-B)=sinAcosB-cosAsinB,我们可以算出正弦差的值。

最后,我们带入给定条件求解参数a和b的值。

经过计算,得出a=-3,b=2。

因此,答案为a=-3,b=2。

......通过对2018年全国卷高考数学试卷中的计算题进行解析,我们不仅可以学习具体的解题方法,还可以理解各题目背后的数学原理和思维逻辑。

这些题目中所涉及的知识点和解题方法对于我们备战高考、提高数学能力都具有指导意义。

希望同学们能够充分理解并掌握这些解题方法,在数学考试中取得优异的成绩。

总结:以上是对2018年全国卷高考数学计算题真题的解析。

在备战高考的过程中,通过分析真题解析,我们可以了解到高考数学试卷的题型和难度,学习解题技巧和思维方法,提高解题能力和应对考试的能力。

希望同学们能够认真学习和理解这些解析内容,为高考取得优异的成绩奠定坚实的基础。

加油!。

(完整版)2018高考全国卷1理科数学试题及答案解析,推荐文档

(完整版)2018高考全国卷1理科数学试题及答案解析,推荐文档
WORD 格式整理
2018 年普通高等学校招生全国统一考试 理科数学
注意事项: 1. 答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。 2. 回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡
皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。
y
0
D.
3 2

14. 记 Sn 为数列an的前 n 项和,若 Sn 2an 1 ,则 S6

15. 从 2 位女生,4 位男生中选 3 人参加科技比赛,且至少有 1 位女生入选,则不同的选法共有
种.(用数字填写答案)
16. 已知函数 f x 2sin x sin 2x ,则 f x的最小值是
A. y 2x
B. y x
C. y 2x
6. 在△ABC 中, AD 为 BC 边上的中线, E 为 AD 的中点,则 EB
3 1 AB AC
A. 4
4
1 3 AB AC
B. 4
4
3 1 AB AC
C. 4
4
D. y x
1 3 AB AC
D. 4
4
7. 某圆柱的高为 2,底面周长为 16,其三视图如图.圆柱表面上的点 M 在正视图上的对应点为 A ,圆柱 表面上的点 N 在左视图上的对应点为 B ,则在此圆柱侧面上,从 M 到 N 的路径中,最短路径的长度
3. 考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只有一项是符合题目
要求的。 z 1 i 2i
1. 设 1 i ,则| z |

高三数学-2018年全国高考数学试题解析 精品

高三数学-2018年全国高考数学试题解析 精品

2018年全国高考数学试题解析数学科的考试从整体看,在贯彻“深化教育改革,全面推进素质教育”的方向上继续稳步向前推行,贯彻了“总体保持稳定,深化能力立意,积极改革创新”的指导思想。

从学生的反映来看,2018年高考数学题目偏难(特别是理科),尤其是最后几道大题。

不过,数学老师们普遍认为这是一份好试卷:遵循了考纲和大纲,能紧扣《考试说明》,知识与能力并举,很好地考查了思维、运算、空间、应用、推理等几方面的能力,问题设计新颖、自然、平和,应用意识强。

数学试卷的一个最重要的特点是“活”,几乎没有送分题,从第一题开始,便要求考生能灵活运用所学基础知识解答,一些综合性的题目更要求考生快速调动一些基础知识融会贯通地解答。

在考查基础知识的同时,注重对数学思想方法和数学能力的考查,在强调综合性的同时,重视试题的多角度、多层次性。

从试题结构来看,2018年的题型整体保持了2018年的结构特点,但稳中有变,题目的形式更趋于新颖、科学、合理和生动。

从知识分布来看,代数、立体几何和平面解析几何所占分数的百分比与它们在教学中所占课时的百分比大致相同,代数共95分,约占63%;立体几何26分,约占17%;平面解析几何29分,约占20%。

1.试题特点(1)突出对基础知识和主干知识的重点考查大多数问题的入口都比较宽,起点不高。

选择题和填空题都从中学数学的基础知识、重点内容、基本方法出发设计命题;解答题在考查数学基础知识的同时,注重对学科的内在联系和知识的综合、重点知识的考查,并达到了必要的深度,构成数学试题的主体,让不同层次的同学都能展示自身的综合素质和综合能力。

从内容来看,突出对主干知识的重点考查。

代数部分重点考查函数、不等式、数列、三角函数等内容;立体几何重点考查直线与直线、直线与平面、平面与平面的关系;解析几何重点考查直线和圆锥曲线,特别是它们的位置关系。

同时,试题还注意从学科的整体高度出发,注重各部分知识的综合性、相互联系及在各自发展过程中各部分知识间的纵向联系,在知识网络交汇点设计试题。

2018年高考数学全国卷试题答案解析(6套)

2018年高考数学全国卷试题答案解析(6套)

中,最短路径的长度为
5
A. 【答案】B
B.
C.
D. 2
【解析】分析:首先根据题中所给的三视图,得到点 M 和点 N 在圆柱上所处的位置,点 M 在上底面上,点 N 在下底面上,并且将圆柱的侧面展开图平铺,点 M、N 在其四分之一的 矩形的对角线的端点处,根据平面上两点间直线段最短,利用勾股定理,求得结果. 详解:根据圆柱的三视图以及其本身的特征, 可以确定点 M 和点 N 分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的 长方形的对角线的端点处, 所以所求的最短路径的长度为 ,故选 B.
【答案】B 【解析】分析:首先利用余弦的倍角公式,对函数解析式进行化简,将解析式化简为 ,之后应用余弦型函数的性质得到相关的量,从而得到正确选项. 详解:根据题意有 所以函数 且最大值为 的最小正周期为 ,故选 B. , ,
点睛: 该题考查的是有关化简三角函数解析式, 并且通过余弦型函数的相关性质得到函数的 性质,在解题的过程中,要注意应用余弦倍角公式将式子降次升角,得到最简结果. 9. 某圆柱的高为 2,底面周长为 16,其三视图如右图.圆柱表面上的点 在正视图上的对 应点为 ,圆柱表面上的点 在左视图上的对应点为 ,则在此圆柱侧面上,从 到 的路径
2018 年高考全国卷数学试题答案解析
目录
文科 全国一卷 全国二卷 全国三卷 2-18 19-35 36-47
理科 全国一卷 全国二卷 全国三卷 48-66 67-80 81-96
1
全国卷 1 ቤተ መጻሕፍቲ ባይዱ科数学试题解析
1. 已知集合 A. 【答案】A 【解析】 分析: 利用集合的交集中元素的特征, 结合题中所给的集合中的元素, 求得集合 中的元素,最后求得结果. 详解:根据集合交集中元素的特征,可以求得 2. 设 A. 0 B. ,则 C. D. ,故选 A. B. , C. D. ,则

2018年全国高考新课标2卷理科数学试题(解析版)

2018年全国高考新课标2卷理科数学试题(解析版)

2018年全国高考新课标2卷理科数学试题(解析版)2018年普通高等学校招生全国统一考试新课标2卷理科数学注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.作答时,将答案写在答题卡上。

写在本试卷及草稿纸上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知1+2i/(1-2i),则结果为:A。

--iB。

-+iC。

--iD。

-+i解析:选D。

2.已知集合A={(x,y)|x+y≤3,x∈Z,y∈Z },则A中元素的个数为:A。

9B。

8C。

5D。

4解析:选A。

问题为确定圆面内整点个数。

3.函数f(x)=2/x的图像大致为:A。

B。

C。

D。

解析:选B。

f(x)为奇函数,排除A。

当x>0时,f(x)>0,排除D。

取x=2,f(2)=1,故选B。

4.已知向量a,b满足|a|=1,a·b=-1,则a·(2a-b)=:A。

4B。

3C。

2D。

2-2xy解析:选B。

a·(2a-b)=2a-a·b=2+1=3.5.双曲线a^2(x^2)-b^2(y^2)=1(a>0,b>0)的离心率为3,则其渐近线方程为:A。

y=±2xB。

y=±3xC。

y=±2x/abD。

y=±3x/ab解析:选A。

e=3,c=3ab=2a。

6.在ΔABC中,cosC=1/5,BC=1,AC=5,则AB=:A。

42B。

30C。

29D。

25解析:选A。

cosC=2cos^2(C/2)-1=-1/5,AB=AC+BC-2AB·BC·cosC=32,AB=42.7.为计算S=1-1/3+1/5-1/7+……+(-1)^n-1/(2n-1),设计了右侧的程序框图,则在空白框中应填入:开始N=0,T=1i=1是N=N+1/T=T+(-1)^N-1/(2N-1)i<100否S=N-T输出S结束A。

2018年全国统一高考数学试卷(理科)(新课标ⅲ)(含解析版)

2018年全国统一高考数学试卷(理科)(新课标ⅲ)(含解析版)

2018年全国统一高考数学试卷(理科)(新课标Ⅲ)一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)已知集合A={x|x﹣1≥0},B={0,1,2},则A∩B=()A.{0}B.{1}C.{1,2}D.{0,1,2} 2.(5分)(1+i)(2﹣i)=()A.﹣3﹣i B.﹣3+i C.3﹣i D.3+i3.(5分)中国古建筑借助榫卯将木构件连接起来.构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是()A.B.C.D.4.(5分)若sinα=,则cos2α=()A.B.C.﹣D.﹣5.(5分)(x2+)5的展开式中x4的系数为()A.10B.20C.40D.806.(5分)直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x﹣2)2+y2=2上,则△ABP面积的取值范围是()A.[2,6]B.[4,8]C.[,3]D.[2,3] 7.(5分)函数y=﹣x4+x2+2的图象大致为()A.B.C.D.<P(X=6),则p=()9.(5分)△ABC的内角A,B,C的对边分别为a,b,c.若△ABC的面积为,则C=()A.B.C.D.10.(5分)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且面积为9,则三棱锥D﹣ABC体积的最大值为()A.12B.18C.24D.5411.(5分)设F1,F2是双曲线C:﹣=1(a>0.b>0)的左,右焦点,O是坐标原点.过F2作C的一条渐近线的垂线,垂足为P,若|PF1|=|OP|,则C的离心率为()A.B.2C.D.12.(5分)设a=log2A.a+b<ab<0B.ab<a+b<0C.a+b<0<ab D.ab<0<a+b 二、填空题:本题共4小题,每小题5分,共20分。

2018高考全国卷1数学答案解析

2018高考全国卷1数学答案解析

2018高考全国卷1数学答案解析2018年高考全国卷1数学难吗?下面小编带大家看看2018年高考全国卷1数学试题分析。

2018高考全国卷1数学答案解析 2018高考全国卷难易度分析点评2018高考全国卷数学答案最新解析:2018年高考全国卷1数学试题解2018年高考全国卷1数学试题解析区分度高利于高校选拔人才“今年高考数学卷在试卷结构、题目数量、分值分布、主干知识等方面与往年基本一致,试卷中规中矩、不偏不怪,立足于高中数学基础知识,重点考查主干内容,在基础知识和通性通法的考查上浓墨重彩。

”7日下午,合肥六中特级教师侯曙明在接受本网专访时,用“山的沉稳水的灵动”来评价今年安徽使用的数学全国卷。

他认为,理科试题和去年比,难度基本持平,文科试题应该比去年难一些。

而整份试卷多角度、多层次、全方位地考查了考生的数学素养和能力,比较契合新课程的教学实际。

合肥一中数学教师刘娟也认为,今年是安徽省在自主命题之后进入全国卷考试的第一年,与往年的全国卷比较,整体稳中求变,与安徽卷相比,侧重点不同。

“整体来说,本次考试对学生提取信息,整理数据的能力要求较高,指导了高中的课堂教学,有利于高校选拔人才。

”考题立足基础区分度高在具体的考题设置上,侯老师分析说,文、理科选择题第11、12题,都是选择的压轴题。

第11题构思精巧,对空间想象能力要求较高,对文科生更是挑战。

选择题第12题第一次考三角函数这个点,应该是意料之外的。

填空题压轴第18题,一改往年类型,第一次考应用题,对数据提取和处理能力要求高。

建模从来都是学生的软肋,加之平时训练不是很多,学生答题时应该感到棘手。

文、理科第19题概率解答题是同一背景,设问不同,体现对文理差异的人文关怀。

该题文字长、数据多,信息量大,还要识图,加之考的又是相对较少出现的柱状图,对大多数同学都是考验。

这些题的区分度都比较高。

此外,特别让大家关注的第20题和第21题,也是最后两道压轴题,综合性强,能区分学生进入不同高校学习的潜能。

2018年全国各省市高考数学真题及解析(高清精美版)

2018年全国各省市高考数学真题及解析(高清精美版)
卷天津卷北京卷以及上海卷浙江卷江苏卷总计在内的13份真题及超详细解析
2018年全国各省市高考数学真题及解析(高清精美版)
这份独家秘笈囊括了2018年高考数学文理的全国I、II、III卷,天津卷、北京卷以及上海卷、浙江卷、江苏卷总计在内的13份真题及超详细解析,
其中对图片和文字精益求精的排版使得电子版打印出来十分清晰,
而对试题进行的逐题逐项解析更是十分实用,
这是所有高中学生或入门竞赛、教师及高考试题研究者在这个夏天研究,复习巩固以及刷题必备的超级干货!

2018年全国卷3高考理科数学试题解析版

2018年全国卷3高考理科数学试题解析版

C. 40
D. 80
【解析】分析:写出
,然后可得结果
详解:由题可得

,则
所以
故选 C.ຫໍສະໝຸດ 拓展:本题主要考查二项式定理,属于基础题。
6. 直线
分别与轴,轴交于,两点,点在圆
范围是
A.
B.
C.
D.
【答案】A
上,则
面积的取值
【解析】分析:先求出 A,B 两点坐标得到 再计算圆心到直线距离,得到点 P 到直线距
详解:由题可得
,即
故答案为
拓展:本题主要考查向量的坐标运算,以及两向量共线的坐标关系,属于基础题。
14. 曲线
在点
处的切线的斜率为 ,则 ________.
【答案】
【解析】分析:求导,利用导数的几何意义计算即可。
详解:

所以
故答案为-3.
拓展:本题主要考查导数的计算和导数的几何意义,属于基础题。
15. 函数
【答案】2
【解析】分析:利用点差法进行计算即可。
详解:设

所以
所以
取 AB 中点 因为
,分别过点 A,B 作准线 ,
的垂线,垂足分别为
因为 M’为 AB 中点,
所以 MM’平行于 x 轴
因为 M(-1,1)
所以 ,则

故答案为 2.
拓展:本题主要考查直线与抛物线的位置关系,考查了抛物线的性质,设
,利
详解:当 时, ,排除 A,B.
,当
时, ,排除 C
故正确答案选 D.
拓展:本题考查函数的图像,考查了特殊值排除法,导数与函数图像的关系,属于中档题。
8. 某群体中的每位成员使用移动支付的概率都为,各成员的支付方式相互独立,设为该群体

2018年高考全国卷Ⅲ理数试题解析(精编版)(解析版)

2018年高考全国卷Ⅲ理数试题解析(精编版)(解析版)

2018年普通高等学校招生全国统一考试理科数学注意事项:1.答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,,则A. B. C. D.【答案】C【解析】分析:由题意先解出集合A,进而得到结果。

详解:由集合A得,所以故答案选C.点睛:本题主要考查交集的运算,属于基础题。

2.A. B. C. D.【答案】D【解析】分析:由复数的乘法运算展开即可。

详解:故选D.点睛:本题主要考查复数的四则运算,属于基础题。

3. 中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是A. AB. BC. CD. D【答案】A【解析】分析:观察图形可得。

详解:观擦图形图可知,俯视图为故答案为A.点睛:本题主要考擦空间几何体的三视图,考查学生的空间想象能力,属于基础题。

4. 若,则A. B. C. D.【答案】B【解析】分析:由公式可得。

详解:故答案为B.点睛:本题主要考查二倍角公式,属于基础题。

5. 的展开式中的系数为A. 10B. 20C. 40D. 80【答案】C【解析】分析:写出,然后可得结果详解:由题可得令,则所以故选C.点睛:本题主要考查二项式定理,属于基础题。

6. 直线分别与轴,轴交于,两点,点在圆上,则面积的取值范围是A. B. C. D.【答案】A【解析】分析:先求出A,B两点坐标得到再计算圆心到直线距离,得到点P到直线距离范围,由面积公式计算即可详解:直线分别与轴,轴交于,两点,则点P在圆上圆心为(2,0),则圆心到直线距离故点P到直线的距离的范围为则故答案选A.点睛:本题主要考查直线与圆,考查了点到直线的距离公式,三角形的面积公式,属于中档题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数模型、解三角形、线性规划、概率统计
直观想象
直观想象是指借助几何直观和空间想象感知事物的 形态与变化,利用图形理解和解决数学问题的过程。主 要包括:借助空间认识事物的位置关系、形态变化与运 动规律;利用图形描述、分析数学问题;建立形与数的 联系;构建数学问题的直观模型,探索解决问题的思路。 直观想象是发现和提出数学问题、分析和解决数学 问题的重要手段,是探索和形成论证思路、进行逻辑推 理、构建抽象结构的思维基础。 在直观想象核心素养的形成过程中,学生能够进一 步发展几何直观和空间想象能力,增强运用图形和空间 想象思考问题的意识,提升数形结合的能力,感悟事物 的本质,培养创新思维。
数学建模
数学建模是对现实问题进行数学抽象,用数学语言 表达问题、用数学知识与方法构建模型解决问题的过程。 主要包括:在实际情境中从数学的视角发现问题、提出 问题,分析问题、构建模型,求解结论,验证结果并改 进模型,最终解决实际问题。 数学模型构建了数学与外部世界的桥梁,是数学应 用的重要形式。数学建模是应用数学解决实际问题的基 本手段,也是推动数学发展的动力。 在数学建模核心素养的形成过程中,积累用数学解 决实际问题的经验。学生能够在实际情境中发现和提出 问题;能够针对问题建立数学模型;能够运用数学知识 求解模型,并尝试基于现实背景验证模型和完善模型; 能够提升应用能力,增强创新意识。
■考查两个意识 应用意识和创新意识.
命 题 立 意
2.思想方法统领全卷
●函数与方程的思想 ●数形结合的思想 ●分类与整合的思想 ●化归与转化的思想 ●特殊与一般的思想
MATHEMATICS
命 题 立 意
S
直观想象、数学抽象、逻辑推理、 数学建模、数学运算、数据分析
将数学建模单独提出,强调了数学的应用性 将空间想象改为直观想象,扩大了想象的范围
数学抽象
数学抽象是指舍去事物的一切物理属性,得到数学研 究对象的思维过程。主要包括:从数量与数量关系、图形 与图形关系中抽象出数学概念及概念之间的关系,从事物 的具体背景中抽象出一般规律和结构,并且用数学符号或 者数学术语予以表征。 数学抽象是数学的基本思想,是形成理性思维的重要 基础,反映了数学的本质特征,贯穿在数学的产生、发展、 应用的过程中。数学抽象使得数学成为高度概括、表达准 确、结论一般、有序多级的系统。 在数学抽象核心素养的形成过程中,积累从具体到抽 象的活动经验。学生能更好地理解数学概念、命题、方法 和体系,能通过抽象、概括去认识、理解、把握事物的数 学本质,能逐渐养成一般性思考问题的习惯,能在其他学 科的学习中主动运用数学抽象的思维方式解决问题。
逻辑推理
逻辑推理是指从一些事实和命题出发,依据逻辑规 则推出一个命题的思维过程。主要包括两类:一类是从 特殊到一般的推理,推理形式主要有归纳、类比;一类 是从一般到特殊的推理,推理形式主要有演绎。 逻辑推理是得到数学结论、构建数学体系的重要方 式,是数学严谨性的基本保证,是人们在数学活动中进 行交流的基本思维品质。 在逻辑推理核心素养的形成过程中,学生能够发现 问题和提出命题;能掌握推理的基本形式,表述论证的 过程;能理解数学知识之间的联系,建构知识框架;形 成有论据、有条理、合乎逻辑的思维品质,增强数学交 流能力。
MATHEMATICS
1.能力立意落在实处
命 题 立 意
数学科的考试,按照“考查基础知识的同时,注重考查能力” 的原则,确立以能力立意命题的指导思想,将知识、能力和素质 融为一体,全面检测考生的数学素养. —摘自《数学考试大纲(新课标实验版)》
MATHEMATICS
■考查五种能力 空间想象能力,抽象概括能力,推理论证 能力,运算求解能力和数据处理能力
2018年全国卷高考数学 试题分析
1
全国卷命题特点
第一部分
命 题 特 点
1 2
试题评析 命题立意
MATHEMATICS
试 题 评 析
1. 对基础知识以及主干内容的考查依旧是高考的重点和热点。 第1题是复数运算与模,第2题是集合概念与运算,第6题是向量线性运算, 第13题是线性规划问题,第4题和第14题考查数列公式及运算等等。 重点内容所占分值比例较大,其中函数与导数分值为27分,空间位置关系 判定与计算22分,直线与二次曲线位置关系22分,概率统计分值27分,占总分 值的百分之六十五。 2. 试题坚持能力立意,考查学生对知识的理解和综合运用。 第7题考查三视图以及几何体的展开图,第12题对学生空间想象力提出较 高要求,第16题是三角函数和导数综合考查,第20题考查学生对实际问题的 理解和解决能力。相比往年试题,对运算能力要求有所下降,整套试卷难度 有所降低。 3. 2018年高考全国一卷试题有几点明显变化 其一解答题顺序进行了微调,解析几何与概率统计试题位置进行了调整; 其二侧重核心素养中数据分析能力的考查,概率统计内容试题数和分值较以 前明显增加,第3题结合统计图对实际问题进行分析,第10题考查几何概型, 第15题两个计数原理的考查,第20题离散型随机变量概率和期望计算及统计 知识实际应用的考查;另外还有首次在考题中出现了集合的补集运算,而以往 常考的框图和二项式定理等内容没有出现在试卷中。 整体而言,2018年高考数学试题有创新,有亮点,层次分明,突出了知识、 能力以及学科素养的多方位考查。
数据分析
数据分析是指针对研究对象获得相关数据,运用统 计方法对数据中的有用信息进行分析和推断,形成知识 的过程。主要包括:收集数据,整理数据,提取信息, 构建模型对信息进行分析、推断,获得结论。 数据分析是大数据时代数学应用的主要方法,已经 深入到现代社会生活和科学研究的各个方面。 在数据分析核心素养的形成过程中,学生能够提升 数据处理的能力,增强基于数据表达现实问题的意识, 养成通过数据思考问题的习惯,积累依托数据探索事物 本质、关联和规律的活动经验。
数学运算
数学运算是指在明晰运算对象的基础上,依据运算 法则解决数学问题的过程。主要包括:理解运算对象, 掌握运算法则,探究运算方向,选择运算方法,设计运 算程序,求得运算结果等。 数学运算是数学活动的基本形式,也是演绎推理的 一种形式,是得到数学结果的重要手段。数学运算是计 算机解决问题的基础。 在数学运算核心素养的形成过程中,学生能够进一 步发展数学运算能力;能有效借助运算方法解决实际问 题;能够通过运算促进数学思维发展,养成程序化思考 问题的习惯;形成一丝不苟、严谨求实的科学精神。
相关文档
最新文档