高中数学一元二次方程单元复习卷带答案

合集下载

一元二次方程单元测试题及答案

一元二次方程单元测试题及答案

一元二次方程单元测试题及答案一、选择题(每题3分,共30分)1. 下列方程中,不是一元二次方程的是()。

A. x^2 - 2x + 1 = 0B. 3x - 2 = 0C. 2x^2 - 3x + 1 = 0D. x^2 - 3x + 2 = 0答案:B2. 一元二次方程ax^2 + bx + c = 0(a ≠ 0)的根的判别式是()。

A. b^2 - 4acB. b^2 + 4acC. 4ac - b^2D. 4ac + b^2答案:A3. 已知方程x^2 - 5x + 6 = 0的两个根为x1和x2,则x1 + x2的值为()。

A. 5B. -5C. 6D. -6答案:A4. 如果方程x^2 + 2x - 3 = 0的两个根是x1和x2,那么x1x2的值为()。

A. 3B. -3C. 1D. -1答案:B5. 一元二次方程x^2 - 4x + 4 = 0的解是()。

A. x = 2B. x = -2C. x = 0D. x = 4答案:A6. 已知方程2x^2 - 3x - 2 = 0的判别式为△,那么△的值为()。

A. 13B. -13C. 17D. -17答案:B7. 一元二次方程x^2 - 2x - 3 = 0的根的和为()。

A. 2B. -2C. 3D. -3答案:A8. 方程x^2 + 4x + 4 = 0的根是()。

A. x = 2B. x = -2C. x = 0D. x = -4答案:B9. 一元二次方程x^2 - 6x + 9 = 0的根是()。

A. x = 3B. x = -3C. x = 0D. x = 9答案:A10. 方程x^2 - 2x + 1 = 0的判别式△为()。

A. 1B. 0C. -1D. 3答案:B二、填空题(每题4分,共20分)1. 一元二次方程x^2 - 4x + 4 = 0的根为______。

答案:x = 22. 已知方程x^2 - 6x + 9 = 0的两个根为x1和x2,则x1x2 =______。

高中试卷-第2单元 一元二次函数、方程与不等式(强化篇)(含答案)

高中试卷-第2单元 一元二次函数、方程与不等式(强化篇)(含答案)

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!第2单元一元二次函数、方程与不等式(强化篇)基础知识讲解一.不等式定理【基础知识】①对任意的a,b,有a>b⇔a﹣b>0;a=b⇒a﹣b=0;a<b⇔a﹣b<0,这三条性质是做差比较法的依据.②如果a>b,那么b<a;如果a<b,那么b>a.③如果a>b,且b>c,那么a>c;如果a>b,那么a+c>b+c.推论:如果a>b,且c>d,那么a+c>b+d.④如果a>b,且c>0,那么ac>bc;如果c<0,那么ac<bc.二.不等式大小比较【技巧方法】不等式大小比较的常用方法(1)作差:作差后通过分解因式、配方等手段判断差的符号得出结果;(2)作商(常用于分数指数幂的代数式);(3)分析法;(4)平方法;(5)分子(或分母)有理化;(6)利用函数的单调性;(7)寻找中间量或放缩法;(8)图象法.其中比较法(作差、作商)是最基本的方法.三.基本不等式【基础知识】基本不等式主要应用于求某些函数的最值及证明不等式.其可表述为:两个正实数的几何平均数小于或等于它们的算术平均数.公式为:≥(a≥0,b≥0),变形为ab≤()2或者a+b≥2.常常用于求最值和值域.四、基本不等式的应用【基础知识】1、求最值2、利用基本不等式证明不等式3、基本不等式与恒成立问题4、均值定理在比较大小中的应用【技巧方法】技巧一:凑项需要调整项的符号,又要配凑项的系数,使其积为定值.技巧二:凑系数遇到无法直接运用基本不等式求解,但凑系数后可得到和为定值,从而可利用基本不等式求最大值.技巧三:分离技巧四:换元一般,令t =x +1,化简原式在分离求最值.技巧五:结合函数f (x )=x +的单调性.技巧六:整体代换多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错.技巧七:取平方两边平方构造出“和为定值”,为利用基本不等式创造条件.总结我们利用基本不等式求最值时,一定要注意“一正二定三相等”,同时还要注意一些变形技巧,积极创造条件利用基本不等式.五.二次函数的性质【基础知识】二次函数相对于一次函数而言,顾名思义就知道它的次数为二次,且仅有一个自变量,因变量随着自变量的变化而变化.它的一般表达式为:y =ax 2+bx +c (a ≠0)【技巧方法】①开口、对称轴、最值与x 轴交点个数,当a >0(<0)时,图象开口向上(向下);对称轴x =a b 2-;最值为:f (ab2-);判别式△=b 2﹣4ac ,当△=0时,函数与x 轴只有一个交点;△>0时,与x 轴有两个交点;当△<0时无交点.②根与系数的关系.若△≥0,且x 1、x 2为方程y =ax 2+bx +c 的两根,则有x 1+x 2=ab-,x 1•x 2=ac ;③二次函数其实也就是抛物线,所以x 2=2py 的焦点为(0,2p ),准线方程为y =2p -,含义为抛物线上的点到到焦点的距离等于到准线的距离.④平移:当y=a(x+b)2+c向右平移一个单位时,函数变成y=a(x﹣1+b)2+c;六.一元二次不等式【基础知识】含有一个未知数且未知数的最高次数为2的不等式叫做一元二次不等式.它的一般形式是ax2+bx+c>0 或ax2+bx+c<0(a不等于0)其中ax2+bx+c是实数域内的二次三项式.【技巧方法】(1)当△=b2﹣4ac>0时,一元二次方程ax2+bx+c=0有两个实根,那么ax2+bx+c可写成a(x﹣x1)(x﹣x2)(2)当△=b2﹣4ac=0时,一元二次方程ax2+bx+c=0仅有一个实根,那么ax2+bx+c可写成a(x﹣x1)2.(3)当△=b2﹣4ac<0时.一元二次方程ax2+bx+c=0没有实根,那么ax2+bx+c与x轴没有交点.二.不等式的解法(1)整式不等式的解法(根轴法).步骤:正化,求根,标轴,穿线(偶重根打结),定解.特例:①一元一次不等式ax>b解的讨论;②一元二次不等式ax2+bx+c>0(a≠0)解的讨论.(2)分式不等式的解法:先移项通分标准化,.(3)无理不等式:转化为有理不等式求解.(4)指数不等式:转化为代数不等式(5)对数不等式:转化为代数不等式(6)含绝对值不等式①应用分类讨论思想去绝对值; ②应用数形思想;③应用化归思想等价转化.七.一元二次方程根与系数的关系【基础知识】一元二次方程根与系数的关系其实可以用一个式子来表达,即当ax 2+bx +c =0(a ≠0)有解时,不妨设它的解为x 1,x 2,那么这个方程可以写成ax 2﹣a (x 1+x 2)x +ax 1•x 2=0.即x 2﹣(x 1+x 2)x +x 1•x 2=0.它表示根与系数有如下关系:x 1+x 2=﹣a b ,x 1•x 2=ac .习题演练一.选择题(共12小题)1.关于x 的不等式22280(0)x ax a a --<>的解集为12(,)x x ,且:2115x x -=,则a =( )A .52B .72C .154D .152【答案】A 【解析】因为关于x 的不等式22280(0)x ax a a --<>的解集为12(,)x x ,所以212122,8x x a x x a +==-,又2115x x -=,所以2222212121()()43615x x x x x x a -=+-==,解得52a =±,因为0a >,所以52a =.故选:A.2.已知a ,b 为非零实数,且a b >,则下列命题成立的是()A .22a b >B .1ba<C .()lg 0a b ->D .1122a bæöæö<ç÷ç÷èøèø【答案】D 【解析】A 不正确,如1a =,1b =-,显然22a b >不成立,B 不正确,如1a =-,2b =-时,显然1ba<不成立,C 不正确,如2a =,1b =时,显然()lg 0a b ->不成立.∵函数12xy æö=ç÷èø在定义域R 上是个减函数,∴1122a bæöæö<ç÷ç÷èøèø.所以D 选项正确.故选:D3.若0a b >>,则下列不等式中一定成立的是( )A .11a b b a +>+B .11b b a a +>+C .11a b b a->-D .22a b aa b b+>+【答案】A 【解析】取21a b =,=,排除B 与D ;Q 函数1()f x x x=-是(0)+¥,上的增函数,当0a b >>时,()()f a f b >必定成立, 即1111a b a b a b b a->-Û+>+,所以A 正确Q 函数1()g x x x=+在(01],上递减,在[1)+¥,上递增,当0a b >>时, ()()g a g b >不一定成立,所以C 不成立 故选:A4.两个正实数a ,b 满足3a ,12,b 成等差数列,则不等式2134m m a b+³+恒成立时实数m 的取值范围是( )A .[]4,3-B .[]2,6-C .[]6,2-D .[]3,4-【答案】C 【解析】解:Q 两个正实数a ,b 满足3a ,12,b 成等差数列,13a b \=+,1\…,112ab \…,\112ab….\不等式2134m m a b++…恒成立,即234a bm m ab++…恒成立,即214m m ab+…恒成立.2412m m \+…,求得62m -……,故选:C .5.设0a >,0b >,21a b +=,则21a b+的最小值为( )A.B .3C .4D .9【答案】D 【解析】∵,21a b +=.所以212122()(2)559b a a b a b a b a b+=++=++³+= 当且仅当22b a a b =即13a b ==时取等号,∴21a b+的最小值为9.6.已知01x <<,则1221x x+-的最小值为( ).A .9B .92C .5D .52【答案】B 【解析】()111122522221121x x x x x x x x-+=+=++---.01x <<Q ,0x \>且10x ->,()112221x x x x -+=-≥,当且仅当()11221x x x x-=-,即13x =时,()11221x x x x -+-取得最小值2.1221x x\+-的最小值为59222+=.故选B .7.若0x >,0y >,21x y +=,则2xyx y+的最大值为( )A .14B .15C .19D .112【答案】C 【解析】1212xx y y -+=Þ=,2231xy x x x y x -=++设13+1(14)3t x t x t -=Þ=<<原式2545451()999999t t t t t -+-==-+£-=当4299t t t =Þ=即11,33x y ==时有最大值为19故答案选C8.已知正实数,a b 满足1a b +=,则222124a b a b+++的最小值为( )A .10B .11C .13D .21【答案】B 【解析】解:正实数,a b 满足1a b +=,则2221241422a b a b a b a b+++=+++,()142a b a b æö=+++ç÷èø4777411b a a b =++³+=+=,即:22212411a b a b+++³,当且仅当4b aa b =且1a b +=,即21,33b a ==时取等号,所以222124a b a b+++的最小值为11.故选:B.9.关于x 的不等式()210x a x a -++<的解集中恰有两个整数,则实数a 的取值范围是( )A .(][)2,13,4--ÈB .[][]2,13,4--ÈC .[)(]2,13,4--ÈD .()()2,13,4--È【答案】C 【解析】不等式()210x a x a -++<,即()()10x x a --<,若1a <,不等式解集为(),1a ;若1a >,不等式解集为()1,a ,要保证恰含有两个整数,则21a -£<-或34a <£,所以正确选项为C .10.已知0<b<1+a ,若关于x 的不等式(x -b )2>(ax )2的解集中的整数恰有3个,则( )A .-1<a<0B .0<a<1C .1<a<3D .3<a<6【答案】C 【解析】由22()()x b ax ->,整理可得(1-2a )2x -2bx+2b >0,由于该不等式的解集中的整数恰有3个,则有1-2a <0,此时2a >1,而0<b<1+a ,故a>1,由不等式222(1)2a x bx b -+-<0解得222222,2(1)2(1)b ab b ab x a a ---+<<--即111b bx a a -<<<-+要使该不等式的解集中的整数恰有3个,那么-3<1b a --<-2,由1b a --<-2得-b<-2(a -1),则有a<2b +1,即a<2b+1<12a ++1,解得a<3,由-3<1ba --得3a -3>b>0,解得a>1,则1<a<3.11.若存在正实数y ,使得154xy y x x y=-+,则实数x 的最大值为( )A .15B .54C .1D .4【答案】A【解析】∵154xy y x x y=-+,∴4xy 2+(5x 2﹣1)y +x =0,∴y 1•y 214=>0,∴y 1+y 22514x x-=-³0,∴25100x x ì-³íî<,或25100x x ì-£íî>,∴0<x £x £①,△=(5x 2﹣1)2﹣16x 2≥0,∴5x 2﹣1≥4x 或5x 2﹣1≤﹣4x ,解得:﹣1≤x 15£②,综上x 的取值范围是:0<x 15£;x 的最大值是15,故选:A .12.若a 、b 、c 均大于0,且2a b c ++=,则()a a b c bc +++的最大值为( )A .34B C .32D .2【答案】C 【解析】解:Q a 、b 、c 均大于0,\()2a a b c bc a ab ac bc+++=+++()()()()2a ac ab bc a a c b a c =+++=+++()()()()22a b a c a b a c +++éù=++£êúëû222322a b c ++æö===ç÷èø当且仅当a b a c +=+=时取“=”,\()a a b c bc +++的最大值为32.故选:C二.填空题(共6小题)13.已知正数a b ,满足:1910a b a b+++=,则+a b 的最小值是_____________.【答案】2.【解析】因为1910a b a b +++=,所以()()()2910a b a b a b a b a b+++++=+,所以()()291010b a a b a b a b ++++=+,所以()()291010b a a b a b a b++=+-+,所以()()2101016a b a b +-+³+=,取等号时3b a =,所以()()280a b a b +-+-£éùéùëûëû,所以28a b £+£,当2a b +=时,1232a b ì=ïïíï=ïî符合条件,所以()min 2a b +=.故答案为:2.14对于实数x ,y ,若,,则的最大值为 .【答案】5【解析】此题,看似很难,但其实不难,首先解出x 的范围,,再解出y 的范围,,最后综合解出x-2y+1的范围,那么绝对值最大,就去515.设a ,b ,c 是三个正实数,且2bc a b c a ++=,则393a b c+的最大值为______.【答案】3【解析】因为2bca b c a++=,所以2,202a abc b a b a+=->-,所以23939393933132232aa b a b b a ab b cb b a b a a b ab a a===++++++--+-,令2bx a=>,所以()()133********x f x x x x x +=+=-++³+=--,当且仅当()3322x x -=-,即3x =时,取等号,所以39393313a b c £=+所以393abc+的最大值为3故答案为:316.已知正实数a ,b 满足21a b +=,则222122a b a b +-++的最小值是______.【答案】53【解析】由正实数a ,b 满足21a b +=,所以223a b ++=,则2222121(2)4(2)2222a b b b a a b a b +-+-+++=++++()1212224122a b a b a b =++++-=+-++112[2(2)](132a b a b =++×+-+124(4132b a a b +=++-+15(4133³+-=,当且仅当242b aa b +=+且23a b +=,即51,42a b ==时等号成立,即222122a b a b +-++的最小值是53.故答案为:53.17.设,0,5a b a b >+=, ________.【答案】【解析】由222ab a b £+两边同时加上22a b +得222()2()a b a b +£+两边同时开方即得:a b +£0,0a b >>且当且仅当a b =时取“=”),£==13a b +=+,即73,22a b ==时,“=”成立)故填:.【名师点睛】本题考查应用基本不等式求最值,先将基本不等式222ab a b £+转化为a b +£a>0,b>0且当且仅当a=b 时取“=”)再利用此不等式来求解.本题属于中档题,注意等号成立的条件.18.已知实数x ,y 满足0x >,0y >,且1353y x x y+++=,则3x y +的最小值为________.【答案】3【解析】因为13313533y x y x x y x y++++=++=,所以2223)93)3)5(3=6612333x y y x x y x y x y x y +++++++³++=+(((),当且仅当3362y x ==或时,取等号.上式可化为23)153)360x y x y +-++£((,解得3)12x y £+£3(,所以3x y +的最小值为3.故答案为:3三.解析题(共6小题)19.已知()|3|f x ax =-,不等式()6f x …的解集是{|13}x x -…….(1)求a 的值;(2)若()()3f x f x k +-<存在实数解,求实数k 的取值范围.【答案】(1)3a =;(2)()2,+¥【解析】解:(1)由|3|6ax -…,得636ax --……,即39ax -……,当0a =时,x ÎR ,不合题意,当0a >时,39x a a-……,则3193a aì-=-ïïíï=ïî,解得3a =,符合题意,当0a <时,93x a a-……,则9133a aì=-ïïíï=ïî,无解,综上,3a =;(2)因为()()|33||33||1||1||1(1)|233f x f x x x x x x x +--++==-++--+=…,要使()()3f x f x k +-<存在实数解,只需2k >,\实数k 的取值范围为(2,)+¥.20.已知,x y R Î,且1x y +=.(1)求证:22334x y +³;(2)当0xy >时,不等式11|2||1|a a x y +³-++恒成立,求a 的取值范围.【答案】(1)见证明;(2)35[,]22-.【解析】解:(1)由柯西不等式得22222)11x x éùæéù+³×+çêúëûëûè+.∴()22243()3x yx y +´³+,当且仅当3x y =时取等号.∴22334x y +³;(2)1111()224y x x y x y x y x y æö+=++=++³+=ç÷èø,要使得不等式11|2||1|a a x y+³-++恒成立,即可转化为|2||1|4a a -++£,当2a ³时,421a -≤,可得522a ££,当1a 2-<<时,34£,可得1a 2-<<,当1a £-时,214a -+£,可得312a -££-,∴a 的取值范围为:35[,22-.21.已知函数f (x )=|2x ﹣1|+2|x +1|.(1)求不等式f (x )≤5的解集;(2)若存在实数x 0,使得f (x 0)≤5+m ﹣m 2成立的m 的最大值为M ,且实数a ,b 满足a 3+b 3=M ,证明:0<a +b ≤2.【答案】(1) 3,12éù-êúëû;(2)证明见解析.【解析】(1) 解:()122152f x x x =-++£,则15122x x -++£,由绝对值的几何意义可得32x =-和1x =时使得等号成立,所以()5f x £解集为3,12éù-êúëû(2)证明:由绝对值的几何意义已知()1212f x x x æö=-++ç÷èø的最小值为3,所以235m m £+-,解得12m -££,所以2M =,所以332a b +=,因为()()33222a b a b a ab b =+=+-+,222213024a ab b a b b æö-+=-+³ç÷èø,所以0a b +>,由()24a b ab +£得,()()()()()23221234a b a ab b a b a b ab a b éù=+-+=++-³+ëû,则2a b +£,综上所述,02a b <+£.22.设函数2()(2)3(0)f x ax b x a =+-+¹,(1)若不等式()0f x >的解集为()1,3-,求2a b +的值;(2)若(1)4,1f b =>-,求11a ab ++的最小值.(3)若3,b a =-- 求不等式()42f x x <-+的解集.【答案】(1)2;(2)34;(3)分类讨论,详见解析.【解析】(1)由不等式()0f x >的解集为()1,3-可得:方程()2230ax b x +-+=的两根为1-,3且0a <,由根与系数的关系可得:1,4a b =-=,所以22a b +=(2)由已知得()()14,14f a b =++=,则()111114144144a a a a b a b a a a b a b a a b a a++++=+=++³+=++++,当0a >时,1a a =,所以1514a a b +³+(当且仅当45,33a b ==时等号成立);当0a <时,1a a =-,所以1314a a b +³+(当且仅当4,7a b =-=时等号成立);所以11a a b ++的最小值为34;(3)由()42f x x <-+得()22342ax b x x +-+<-+,又因为3,b a =-- 所以不等式()42f x x <-+化为2(1)10ax a x -++<,即()()110x ax --<,当0a <时,11a <,原不等式11(1)0x x x a aÛ-->Û<或 1.x >若0a >,原不等式1(1)0.x x a Û--<此时原不等式的解的情况应由1a 与1的大小关系决定,故(1)当1a =时,不等式1()(1)0x x a--<的解集为Æ;(2)当1a >时,11a <,不等式1()(1)0x x a --<11x aÛ<<;(3)当01a <<时,11a>,不等式1()(1)0x x a --< 11x a Û<<.综上所述,不等式的解集为:①当0a <时,1x x aì<íî或}1x >;②当01a <<时,11x x a ìü<<íýîþ;③当1a =时,Æ;④当1a >时,11x x a ìü<<íýîþ.故得解.23.已知函数y =ax 2−(2a +1)x +a +1.(1)若a =2,解不等式y ≥0;(2)若对于a ∈[−2,2],函数值y <0恒成立,求实数x 的取值范围.【答案】(1){x|x ≤1或x ≥32};(2){x|1<x <32}.【解析】(1)a =2,则y ≥0,即2x 2−5x +3≥0⇒(2x−3)(x−1)≥0,对应抛物线开口向上,不等式解集为“两根之外(含两根)”,所以y ≥0的解集为{x|x ≤1或x ≥32};(2)a ∈[−2,2],ax 2−(2a +1)x +a +1<0恒成立,将左边代数式整理成关于a 的式子,即(x 2−2x +1)a +(−x +1)<0,则左边是关于a 的一次函数,记作t =(x 2−2x +1)a +(−x +1),题意变为对a ∈[−2,2],函数t =(x 2−2x +1)a +(−x +1)的函数值t <0恒成立由于一次函数图象为一条直线,要使函数值t <0恒成立,则a =−2和a =2时都有函数值t <0,得−2(x 2−2x +1)+(−x +1)<02(x 2−2x +1)+(−x +1)<0 ,化简−2x 2+3x−1<02x 2−5x +3<0 ,解得x <12或x >11<x <32 ,得1<x <32,所以实数x 的取值范围{x|1<x <32}.24.已知函数()24f x x mx =++.(1)求函数在区间[]1,2上的最大值max y ;(2)当[]1,2x Î时,0y <恒成立,求实数m 的取值范围.【答案】(1)当3m >-时,82max y m =+;当3m £-时,5max y m =+ ;(2)5m <-.【解析】(1)函数24y x mx =++的图象开口向上,对称轴为2m x =-,在区间[]1,2上的最大值,分两种情况:①322m -<(3m >-)时,根据图象知,当2x =时,函数取得最大值82max y m =+;②322m -³(3m £-)时,当1x =时,函数取得最大值5max y m =+.所以,当3m >-时,82max y m =+;当3m £-时,5max y m =+.(2)[]1,20x y Î<,恒成立,只需在区间[]1,2上的最大值0max y <即可,所以(1)0(2)0f f <ìí<î,得45m m <-ìí<-î,所以实数m 的取值范围是5m <-.。

第一章一元二次方程复习测试(含答案)

第一章一元二次方程复习测试(含答案)

4x ﹣ 5x+2=0B . x ﹣ 6x+9=0C . 5x ﹣ 4x ﹣1=0D . 3x一、选择题(共 20 分)一元二次方程 复习测试1. 如果关于 x 的一元二次方程 xpx q 0 的两根分别为 x 1 2 , x 2 1 ,那么 p 、 q 的值分别是()A . -3,2B. 3, -2C. 2,-3D. 2, 32. 在一元二次方程 ax2bx c 0 中,如果 a 和 c 异号,那么这个方程()A .无实数根B. 有两个相等的实数根C .有两个不相等的实数根 D. 不能确定25 23. 若 x 2 是 关 于 x 的 一 元 二 次 方 程 xax a 20 的 一 个 根 , 则 a 的 值 为()A . 1 或 4 B. -1 或-4 C. -1 或 4 D. 1 或 44. 某超市一月份的营业额为 36 万元,三月份的营业额为 48 万元 .设每月的平均增长率为 x ,则可列方程为()A. 48(1 x)236B. 48(1 x)236 B. C. 36(1 x) 248D. 36(1 x)2485. 已 知 关 于 x 的 一 元 二 次 方 程 x () ax b 0 有 一 个 非 零 根 b , 则 a b 的 值 为A . 1B. -1C. 0D. -26. 已知关于 x 的一元二次方程 (k 2 22) x (2 k 1)x 1 0 有两个不相等的实数根, 则 k 的 取值范围是() 4 4 A .k且 k2 33B . k 且 k 2 33 B. C. k且 k 24D. k且 k 247. 下列一元二次方程中,没有实数根的是()A . 22228. 某种品牌运动服经过两次降价,每件件零售价由560 元降为 315 元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为 x ,下面所列的方程中正确的是()A .560( 1+ x )2=315B . 560( 1﹣ x ) 2=315C . 560( 1﹣ 2x ) 2=315D . 560( 1﹣ x 2)=31522 29. 设 x 1, x 2 是方程 x +5x ﹣3=0 的两个根,则x 1 +x 2 的值是()A . 19B . 25C . 31D . 30﹣ 4x+1=02221 2 1 2 12 210.等 腰 三 角 形 三 边 长 分 别 为 a 、b 、2 , 且 a 、b 是 关 于 x 的 一 元 二 次 方 程x26 x n 1 0 的两根,则 n 的值为()A .9B. 10C. 9 或 10D. 8 或 10二、填空题(共 20 分)11 . 方 程 ( 2x1)x( 1) 化1 成 一 般 形 式 是, 其 中 二 次 项 系 数是,一次项系数是.12. 若关于 x 的方程 x22 m x m23m 2 0 有两个实数根 x 、 x 则 x ( x x ) x 的最小值为.13. 若两个连续自然数的积为 72,则这两个数分别是 .14. 若关于 x 的一元二次方程x2(a 1)x a20 的两个根互为倒数,则 a =.15 . 若 一 元 二 次 方 程 x2b.ax b 0 配 方 后 为 (x 4) 23 , 则 a,16. 若三角形的每条边长都是方程x26 x 8 0 的根,则三角形的周长是.17. 若关于 x 的一元二次方程x22 x m 0 有两个实数根, 则 m 的取值范围是.18. 有一个矩形铁片,长是60cm ,宽是 40cm 中间挖去 288 cm 的矩形,剩下的铁框四周一样宽,若设宽度为, x cm ,那么挖去的矩形长是cm ,宽是cm ,根据题意可得方程.19. 一个容器盛满纯药液40L ,第一次倒出若干升后,用水加满;第二次又倒出同样体积的溶液,这时容器里只剩下纯药液 10L ,则每次倒出的液体是 L .20. 已知实数 m , n 满足 3m三、解答题(共 60 分)21. 按要求解下列方程:2 +6m ﹣ 5=0, 3n 2m n +6n ﹣5=0,且 m ≠n ,则 = .n m(1) 2 x21 3x (用配方法) ; ( 2) x23 x 1 0 (用公式法) ;(3) (3 y 1)( y 1)4 ;(4) (2 x 3)22 3(2 x 3)22. 请阅读下列材料 :问题 :已知方程, 求一个一元二次方程 x2x 1 0 ,使它的根分别是已知方程的根的2 倍.解: 设所求方程的根为 y ,则 y2x ,所以 xy .2把 xy 2代入已知方程,得 2y y 1 0 .22化简,得 y22 y 4 0 .故所求方程为 y22 y 4 0 .这种利用方程根的代换求新方程的方法,我们称为“换根法” .请用阅读材料提供的“换根法”求新方程(要求:把所求方程化为一般形式 ).(1) 已知方程 x反数 ;x 2 0 ,求一个一元二次方程,使它的根分别是已知方程的根的相(2) 已知关于 x 的一元二次方程 ax2bx c 0 ( a 0 )有两个不等于零的实数根,求一个一元二次方程,使它的根分别是已知方程的根的倒数.23. 已知关于 x 的一元二次方程 (a c)x22bx (a c) 0 ,其中 a 、 b 、 c 分别为△ ABC三边的长。

高中数学必修一第二章 一元二次函数、方程和不等式 复习与测试(含答案)

高中数学必修一第二章 一元二次函数、方程和不等式 复习与测试(含答案)

高中数学必修一第二章一、单选题1.已知a≥0,b≥0,且a+b=2,则( )A.ab≤12B.ab≥12C.a2+b2≥2D.a2+b2≤32.已知正数x,y满足x+1y=1,则1x+4y的最小值为( )A.9B.10C.6D.83.在实数集上定义运算⊗:x⊗y=x(1﹣y),若不等式(x﹣a)⊗(x+a)<1对任意实数x都成立,则实数a的取值范围是( )A.(﹣1,1)B.(0,2)C.(―12,32)D.(―32,12)4.已知1≤a+b≤5,―1≤a―b≤3,则3a―2b的取值范围是( )A.[―6,14]B.[―2,14]C.[―2,10]D.[―6,10] 5.若关于x的不等式x2―4x―2―a>0在区间(1,4)内有解,则实数a的取值范围是( )A.a<―2B.a>―2C.a>―6D.a<―6 6.若x=5―2,y=2―3,则x,y满足( )A.x>y B.x≥y C.x<y D.x=y7.正数a,b满足9a +1b=2,若a+b≥x2+2x对任意正数a,b恒成立,则实数x的取值范围是( )A.[―4,2]B.[―2,4]C.(―∞,―4]∪[2,+∞)D.(―∞,―2]∪[4,+∞)8.设正数a,b满足b―a<2,若关于x的不等式(a2―4)x2+4bx―b2<0的解集中的整数解恰有4个,则a的取值范围是( )A.(2,3)B.(3,4)C.(2,4)D.(4,5)二、多选题9.下列函数最小值为2的是( )A.y=x2+1x2B.y=x2+3+1x2+3C.y=2x+12x D.y=x2+1x,x>010.已知a>0,b>0.若4a+b=1,则( )A.14a +1b的最小值为9B.1a+1b的最小值为9C.(4a+1)(b+1)的最大值为94D.(a+1)(b+1)的最大值为9411.已知a>0,b>0,则下列式子一定成立的有( )A.2aba+b ≤ab B.a2+b22≤a+b2C.1a +1b≤4a+bD.a2+b22≤a2+b2a+b12.已知正数a,b满足a(a+b)=1,下列结论中正确的是( )A.a2+b2的最小值为22―2B.2a+b的最小值为2C.1a +1b的最小值为332D.a―b的最大值为1三、填空题13.设一元二次不等式ax2+bx+1>0的解集为{x|―1<x<13},则ab的值是 .14.已知x,y为正实数,且x+4y=1x+1y=m,则m的最小值为 .15.已知实数a,b满足ab>0,则aa+b―aa+2b的最大值为 16.已知实数x,y,z满足:{x+y+z=3x2+y2+z2=36,则|x|+|y|+|z|的最大值为 .四、解答题17.已知集合A={x|―2<x<5},B={x|m+1≤x≤2m―1}.(1)当m=3时,求(∁R A)∩B;(2)若A∪B=A,求实数m的取值范围.18.求证下列问题:(1)已知a,b,c均为正数,求证:bca +acb+abc≥a+b+c.(2)已知xy>0,求证:1x>1y的充要条件是x<y.19.已知不等式组{―x<2,x2+7x―8<0的解集为A,集合B={x|a―5<x<3a―5}.(1)求A;(2)若A∪B=B,求a的取值范围.20.已知函数g(x)=k2x+k,ℎ(x)=x2―2(k2―k+1)x+4.(1)当k=1时,求函数y=ℎ(x)g(x),x∈(―∞,―1)的最大值;(2)令f(x)={g(x),x>0ℎ(x),x<0,求证:对任意给定的非零实数x1,存在惟一的实数x2(x1≠x2)使得f(x1)=f(x2)成立的充要条件是k=4.21.若函数f(x)=a x2―(2a+1)x+2.(1)讨论f(x)>0的解集;(2)若a=1时,总∃x∈[13,1],对∀m∈[1,4],使得f(1x)+3―2mx≤b2―2b―2恒成立,求实数b的取值范围.22.已知函数f(x)=2|x+1|―|x―a|(a∈R).(Ⅰ)当a=2时,求不等式f(x)⩾x+2的解集;(Ⅱ)设函数g(x)=f(x)+3|x―a|,当a=1时,函数g(x)的最小值为t,且2m +12n=t(m>0,n>0),求m+n的最小值.答案解析部分1.【答案】C 2.【答案】A 3.【答案】C 4.【答案】C 5.【答案】A 6.【答案】C 7.【答案】A 8.【答案】C 9.【答案】A,C 10.【答案】B,C 11.【答案】A,D 13.【答案】614.【答案】315.【答案】3―2216.【答案】1+22217.【答案】(1)解:∵集合A ={x|―2<x <5},B ={x|m +1≤x ≤2m ―1}.∴∁R A ={x|x ≤―2或x ≥5},m =3时,B ={x|4≤x ≤5},∴(∁R A )∩B ={5}(2)解:若A ∪B =A ,则B ⊆A ,当B =∅时,m +1>2m ―1,解得m <2,成立;当B ≠∅时,{m +1≤2m ―1m +1>―22m ―1<5,解得2≤m <3,综上实数m 的取值范围为(―∞,3)18.【答案】(1)证明:bc a +ac b +ab c =2bc a +2ac b +2ab c 2=bc a +ac b +bc a +ab c +ac b +ab c 2≥2bc a ⋅ac b+2bc a ⋅ab c+2ac b ⋅ab c=a +b +c ,当且仅当bc a =ac b ,bc a=ab c ,acb =abc ,即a =b =c 时等号成立.(2)证明:依题意xy >0,则{x >0y >0或{x <0y <0,所以:1x >1y ⇔1x ―1y =y ―x xy >0⇔y ―x >0⇔x <y ,所以:1x>1y 的充要条件是x <y .19.【答案】(1)解:由{―x <2x 2+7x ―8<0,得{x >―2―8<x <1,得―2<x <1,所以A ={x |―2<x <1}.(2)解:由A ∪B =B ,得A ⊆B ,所以{a ―5≤―23a ―5≥1,得2≤a ≤3,故a 的取值范围为[2,3].20.【答案】(1)解:当 k =1 时,函数 y =x 2―2x +4x +1, x ∈(―∞,―1) ,令 t =x +1<0 ,则 y =t +7t―4 ,此时 ―t >0 ,由 (―t )+(―7t )≥2(―t )×7―t =27 ,即 t +7t≤―27 ,当且仅当 t =―7 ,即 x =―7―1 时取等号,综上,当 x =―7―1 时, y 最大值是 ―27―4 .(2)解:充分性:当 k =4 时, f (x )={16x +4,x >0x 2―26x +4,x <0 , 当 x >0 时, y =16x +4 在 (0,+∞) 单调递增,且 y >4 ,当 x <0 时, y =x 2―26x +4 在 (―∞,0) 单调递减,且 y >4 ,若 x 1>0 ,则存在惟一的 x 2<0 ,使得 f (x 1)=f (x 2) ,同理 x 1<0 时也成立,必要性:当 x >0 时, y =k 2x +k ,当 k =0 时, f (x ) 在 (0,+∞) 上的值域为 {0} ,显然不符合题意,因此 k ≠0 ,当 x >0 时, f (x ) 在 f (x ) 的取值集合 A =(k ,+∞) ,x <0 , f (x )=x 2―2(k 2―k +1)x +4 的对称轴 x =k 2―k +1>0 , f (x ) 在 (―∞,0) 上递减, f (x )>f (0)=4 ,所以 f (x ) 的取值集合 B =(4,+∞) ,①若 x 1>0 , f (x ) 且在 (0,+∞) 上单调递增,要使 f (x 1)=f (x 2) ,则 x 2<0 ,且 A ⊆B ,有 k ≥4 .②若 x 1<0 , f (x ) 且在 (―∞,0) 上单调递减,要使 f (x 1)=f (x 2) ,则 x 2>0 ,且 B ⊆A ,有 k ≤4 .综上: k =4 .21.【答案】(1)已知f (x )=a x 2―(2a +1)x +2,①当a =0时,f (x )=―x +2>0时,即x <2;②当a ≠0时,f (x )=a (x ―1a )(x ―2),若a <0,f (x )>0,解得 1a <x <2,若0<a <12,f (x )>0,解得x <2或x >1a ,若a =12,f (x )>0,解得x ≠2,若a >12时,f (x )>0,解得x <1a 或x >2,综上所述:当a <0时,f (x )>0的解集为(1a ,2);当a =0时,f (x )>0的解集为(―∞,2);当0<a <12时,f (x )>0的解集为(―∞,2)∪(1a ,+∞);当a =12时,f (x )>0的解集为(―∞,2)∪(2,+∞);当a >12时,f (x )>0的解集为(―∞,1a )∪(2,+∞).(2)若a =1,则f (x )=x 2―3x +2,∴f (1x )+3―2m x =1x 2―2m x +2,令t =1x ,原题等价于∃t ∈[1,3],对∀m ∈[1,4]使得t 2―2mt +2≤b 2―2b ―2恒成立,令g (m )=―2tm +t 2+2,∴g (m )是关于m 的减函数,∴对∀m ∈[1,4],g (m )≤b 2―2b ―2恒成立,即b 2―2b ―2≥g (m )max =g (1)=t 2―2t +2,又∃t ∈[1,3],b 2―2b ―2≥t 2―2t +2,即b 2―2b ―2≥(t 2―2t +2)min =12―2×1+2=1,故b 2―2b ―3=(b ―3)(b +1)≥0,解得b ≤―1或b ≥3.22.【答案】解:(Ⅰ)当 a =2 时, f (x )⩾x +2 化为 2|x +1|―|x ―2|≥x +2 ,当 x⩽―1 时,不等式化为 ―x ―4⩾x +2 ,解得 x⩽―3 ;当 ―1<x <2 时,不等式化为 3x⩾x +2 ,解得 1⩽x <2 ;当 x⩾2 时,不等式化为 x +4⩾x +2 ,解得 x⩾2 ,综上不等式 f (x )⩾x +2 的解集是 {x |x⩽―3或x⩾1}(Ⅱ)当 a =1 时, g (x )=2|x +1|+2|x ―1|⩾2|x +1+1―x |=4 ,当且仅当 (x +1)(x ―1)⩽0 ,即 ―1⩽x⩽1 时,等号成立.所以,函数 g (x ) 的最小值 t =4 ,所以 2m +12n =4 , 12m +18n=1 .m +n =(m +n )(12m +18n )=n 2m +m 8n +58⩾2n 2m ⋅m 8n +58=98 ,当且仅当 {12m +18n =1,n 2m =m 8n 即 {m =34,n =38时等号成立,所以 m +n 的最小值为 98.。

高中数学第二章一元二次函数方程和不等式经典知识题库(带答案)

高中数学第二章一元二次函数方程和不等式经典知识题库(带答案)

高中数学第二章一元二次函数方程和不等式经典知识题库单选题1、若对任意实数x >0,y >0,不等式x +√xy ≤a(x +y)恒成立,则实数a 的最小值为( ) A .√2−12B .√2−1C .√2+1D .√2+12答案:D分析:分离变量将问题转化为a ≥x+√xy x+y对于任意实数x >0,y >0恒成立,进而求出x+√xy x+y的最大值,设√yx=t(t >0)及1+t =m(m >1),然后通过基本不等式求得答案.由题意可得,a ≥x+√xy x+y对于任意实数x >0,y >0恒成立,则只需求x+√xy x+y的最大值即可,x+√xy x+y=1+√y x 1+y x,设√yx =t(t >0),则1+√y x 1+y x=1+t1+t 2,再设1+t =m(m >1),则1+√y x 1+y x=1+t 1+t 2=m 1+(m−1)2=m m 2−2m+2=1m+2m−2≤2√m⋅m−2=2√2−2=√2+12,当且仅当m =2m⇒√y x=√2−1时取得“=”.所以a ≥√2+12,即实数a 的最小值为√2+12. 故选:D.2、已知函数y =ax 2+2bx −c(a >0)的图象与x 轴交于A (2,0)、B (6,0)两点,则不等式cx 2+2bx −a <0 的解集为( )A .(−6,−2)B .(−∞,16)∪(12,+∞) C .(−12,−16)D .(−∞,−12)∪(−16,+∞) 答案:D解析:利用函数图象与x 的交点,可知ax 2+2bx −c =0(a >0)的两个根分别为x 1=2或x 2=6,再利用根与系数的关系,转化为b =−4a ,c =−12a ,最后代入不等式cx 2+2bx −a <0,求解集. 由条件可知ax 2+2bx −c =0(a >0)的两个根分别为x 1=2或x 2=6, 则2+6=−2ba,2×6=−ca ,得b =−4a ,c =−12a , ∴cx 2+2bx −a <0⇔−12ax 2−8ax −a <0,整理为:12x 2+8x +1>0⇔(2x +1)(6x +1)>0, 解得:x >−16或x <−12,所以不等式的解集是(−∞,−12)∪(−16,+∞). 故选:D小提示:思路点睛:本题的关键是利用根与系数的关系表示b =−4a ,c =−12a ,再代入不等式cx 2+2bx −a <0化简后就容易求解. 3、已知a >b >c >0,则( ) A .2a <b +c B .a (b −c )>b (a −c ) C .1a−c >1b−c D .(a −c )3>(b −c )3 答案:D分析:由不等式的性质判断ACD ;取特殊值判断B.解:对于A ,因为a >b >c >0,所以a +a >b +a >b +c ,即2a >b +c ,故错误; 对于B ,取a =3>b =2>c =1>0,则a (b −c )=3<b (a −c )=4,故错误; 对于C ,由a >b >c >0,得a −c >b −c >0,所以1a−c<1b−c,故错误;对于D ,由a >b >c >0,得a −c >b −c >0,所以(a −c )3>(b −c )3,故正确. 故选:D.4、《几何原本》卷2的几何代数法(以几何方法研究代数问题)成了后世西方数学家处理问题的重要依据,通过这一原理,很多的代数的公理或定理都能够通过图形实现证明,也称之为无字证明.现有如图所示图形,点F 在半圆O 上,点C 在直径AB 上,且OF ⊥AB ,设AC =a ,BC =b ,则该图形可以完成的无字证明为( )A .a+b 2≥√ab(a >0,b >0)B .a 2+b 2≥2√ab(a >0,b >0)C .2aba+b ≤√ab(a >0,b >0)D .a+b 2≤√a 2+b 22(a >0,b >0)答案:D分析:根据图形,求出圆的半径以及OC .再利用勾股定理求得FC ,结合直角三角形的直角边长小于斜边长,可得答案.设AC=a,BC=b,可得圆O的半径为r=OF=12AB=a+b2,又由OC=OB−BC=a+b2−b=a−b2,在直角△OCF中,可得FC2=OC2+OF2=(a−b2)2+(a+b2)2=a2+b22,因为FO≤FC,所以a+b2≤√a2+b22,当且仅当a=b时取等号.故选:D.5、已知a>1,则a+4a−1的最小值是()A.5B.6C.3√2D.2√2答案:A分析:由于a>1,所以a−1>0,则a+4a−1=(a−1)+4a−1+1,然后利用基本不等式可求出其最小值由于a>1,所以a−1>0所以a+4a−1=a−1+4a−1+1≥2√(a−1)⋅4(a−1)+1=5,当且仅当a−1=4a−1,即a=3时取等号.故选:A.6、不等式1+x1−x≥0的解集为()A.{x|x≥1或x≤−1}B.{x∣−1≤x≤1} C.{x|x≥1或x<−1}D.{x|−1≤x<1}答案:D分析:不等式等价于x+1x−1≤0,即(x+1)(x−1)≤0,且x−1≠0,由此求得不等式的解集.不等式等价于x+1x−1≤0,即(x+1)(x−1)≤0,且x−1≠0,解得−1≤x<1,故不等式的解集为{x|−1≤x<1},故选:D.7、已知关于x 的不等式mx 2−6x +3m <0在(0,2]上有解,则实数m 的取值范围是( ) A .(−∞,√3)B .(−∞,127)C .(√3,+∞)D .(127,+∞) 答案:A分析:分离参数,将问题转换为m <6xx 2+3在(0,2]上有解,设函数g(x)=6xx 2+3,x ∈(0,2],求出函数g(x)=6x x 2+3的最大值,即可求得答案.由题意得,mx 2−6x +3m <0,x ∈(0,2],即m <6xx 2+3,故问题转化为m <6xx 2+3在(0,2]上有解,设g(x)=6xx 2+3,则g(x)=6xx 2+3=6x+3x,x ∈(0,2],对于x +3x≥2√3 ,当且仅当x =√3∈(0,2]时取等号,则g(x)max =2√3=√3,故m <√3 , 故选:A8、已知a,b 为正实数且a +b =2,则b a+2b的最小值为( )A .32B .√2+1C .52D .3 答案:D分析:由题知ba +2b =2(1a +1b )−1,再结合基本不等式求解即可. 解:因为a,b 为正实数且a +b =2, 所以b =2−a , 所以,ba+2b=2−a a +2b =2a +2b −1=2(1a +1b)−1 因为2a +2b =2(1a +1b )=(a +b )(1a +1b )=2+ba +ab ≥2+2=4,当且仅当a =b =1时等号成立; 所以ba +2b =2−a a+2b =2a +2b −1≥3,当且仅当a =b =1时等号成立;故选:D 多选题9、已知正数a,b满足a2+b2=2a+2b,若a+b∈Z,则a+b的值可以是()A.2B.3C.4D.5答案:BC分析:利用基本不等式构造关于a+b的一元二次不等式,即可求解.解:2(a+b)=a2+b2=12(a2+b2+a2+b2)≥12(a+b)2(当且仅当a=b时,取等号),即(a+b)2−4(a+b)≤0,解得:0≤a+b≤4,又a+b=2时,ab=0,不合题意,故选:BC10、某辆汽车以xkm/ℎ的速度在高速公路上匀速行驶(考虑到高速公路行车安全,要求60≤x≤120)时,每小时的油耗(所需要的汽油量)为15(x−k+4500x)L,其中k为常数.若汽车以120km/h的速度行驶时,每小时的油耗为11.5L,欲使每小时的油耗不超过...9L,则速度x的值可为()A.60B.80C.100D.120答案:ABC解析:先利用120km/h时的油耗,计算出k的值,然后根据题意“油耗不超过9L”列不等式,解不等式求得x的取值范围.由汽车以120km/h的速度行驶时,每小时的油耗为11.5L,∴15(120−k+4500120)=11.5,解得:k=100,故每小时油耗为15(x+4500x)−20,由题意得15(x+4500x)−20≤9,解得:45≤x≤100,又60≤x≤120,故60≤x≤100,所以速度x的取值范围为[60,100].故选:ABC小提示:关键点点睛:本题考查利用待定系数法求解析式,考查一元二次不等式的解法,解题的关键是先利用120km/h时的油耗,计算出k的值,然后代入根据题意解不等式,考查实际应用问题,属于中档题.11、下列结论正确的是()A.当x>0时,√x√x≥2B.当x>2时,x+1x的最小值是2C.当x<54时,4x−2+14x−5的最小值是5D.设x>0,y>0,且x+y=2,则1x +4y的最小值是92答案:AD分析:由已知结合基本不等式检验各选项即可判断.解:x>0时,√x+√x⩾2,当且仅当x=1时取等号,A正确;当x>2时,x+1x >52,没有最小值,B错误;当x<54时,4x−2+14x−5=4x−5+14x−5+3=−(5−4x+15−4x)+3⩽−2√(5−4x)15−4x+3=1,有最大值,没有最小值,C错误;x>0,y>0,x+y=2,则1x +4y=(1x+4y)(x+y)×12=12(5+yx+4xy)⩾12(5+4)=92,当且仅当yx =4xy且x+y=2即x=23,y=43时取等号,故选:AD.12、2022年1月,在世界田联公布的2022赛季首期各项世界排名中,我国一运动员以1325分排名男子100米世界第八名,极大地激励了学生对百米赛跑的热爱.甲、乙、丙三名学生同时参加了一次百米赛跑,所用时间(单位:秒)分别为T1,T2,T3.甲有一半的时间以速度(单位:米/秒)V1奔跑,另一半的时间以速度V2奔跑;乙全程以速度√V1V2奔跑;丙有一半的路程以速度V1奔跑,另一半的路程以速度V2奔跑.其中V1>0,V2>0.则下列结论中一定成立的是()A.T1≤T2≤T3B.T1≥T2≥T3C.T1T3=T22D.1T1+1T3=1T2答案:AC分析:首先利用时间和速度的关系表示三人的时间,再利用不等式的关系,结合选项,比较大小,即可判断选项.由题意12T1V1+12T1V2=100,所以T1=100V1+V22,T2=V1V2,T3=50V1+50V2=1002V1V2V1+V2,根据基本不等式可知V 1+V 22≥√V 1V 2≥2V 1V 2V 1+V 2>0,故T 1≤T 2≤T 3,当且仅当V 1=V 2时等号全部成立,故A 选项正确,B 选项错误; T 1T 3=100V 1+V 22×1002V 1V 2V 1+V 2=1002V 1V 2=T 22,故C 选项正确;1T 1+1T 3=V 1+V 22100+2V 1V 2V 1+V 2100≠√V 1V 2100=1T 2,故D 选项错误.故选:AC .13、十六世纪中叶,英国数学家雷科德在《砺智石》一书中首先把“=”作为等号使用,后来英国数学家哈里奥特首次使用“<”和“>”符号,并逐渐被数学界接受,不等号的引入对不等式的发展影响深远.若a ,b ,c ∈R ,则下列命题正确的是( )A .若a >b >0,则1a<1b B .若a,b,∈R ,则3a 2+b 2≥2√3abC .若a >b >0,c >0,则ac −bc >0D .若a <b ,则|a |<|b | 答案:ABC分析:根据不等式的性质,或者做差法,即可判断选项. 对于A ,因为a >b >0,所以1a −1b =b−a ab <0,故A 正确;对于B ,3a 2+b 2−2√3ab =(√3a −b)2≥0,故B 正确;对于C ,若a >b >0,c >0,则ac >bc ,即ac −bc >0,故C 正确; 对于D ,当a =−2,b =1时,满足a <b ,但|a |>|b |,故D 不正确. 故选:ABC . 填空题 14、函数f(x)=√ax 2+3ax+1的定义域是R ,则实数a 的取值范围为________.答案:[0,49)分析:由题知不等式ax 2+3ax +1>0恒成立,进而分a =0和a ≠0两种情况讨论求解即可. 解:因为函数f (x )的定义域是R . 所以不等式ax 2+3ax +1>0恒成立.所以,当a =0时,不等式等价于1>0,显然恒成立;当a ≠0时,则有{a >0Δ<0,即{a >09a 2−4a <0,解得0<a <49.综上,实数a的取值范围为[0,49).故答案为: [0,49)15、若实数a,b满足a2+b2=1,则1a2+4b2+1的最小值为_________.答案:92##4.5分析:根据实数a,b满足a2+b2=1,利用“1”的代换得到1a2+4b2+1=12(1a2+4b2+1)⋅(a2+b2+1)=1 2(5+b2+1a2+4a2b2+1),再利用基本不等式求解.因为实数a,b满足a2+b2=1,所以1a2+4b2+1=12(1a2+4b2+1)⋅(a2+b2+1)=12(5+b2+1a2+4a2b2+1),≥12(5+2√(b2+1a2)⋅(4a2b2+1))=92,当且仅当{b2+1a2=4a2b2+1a2+b2+1=2,即a=√63,b=√33时,等号成立,所以1a2+4b2+1的最小值为92,所以答案是:9216、若实数a>b,则下列说法正确的是__________.(1)a+c>b+c;(2)ac<bc;(3)1a <1b;(4)a2>b2答案:(1)分析:根据不等式的性质以及特殊值验证法,对四个说法逐一分析,由此确定正确的说法. 根据不等式的性质(1)正确;(2)中如果c≥0时不成立,故错误;(3)若a=1,b=−1时,1a <1b不成立,故错误;(4)若a=1,b=−1,a2>b2不成立,故错误.故答案为:(1)小提示:本小题主要考查不等式的性质,属于基础题.解答题17、在△ABC 中,2B =A +C .(1)当AC =12时,求S △ABC 的最大值; (2)当S △ABC =4√3时,求△ABC 周长的最小值. 答案:(1)36√3;(2)12.分析:(1)由题意,B =60°,b =12,由余弦定理、基本不等式,即可求S △ABC 的最大值; (2)当S △ABC =4√3时,求出ac ,利用余弦定理、基本不等式,即可求出△ABC 周长的最小值. 解:(1)由题意,B =60°,b =12,∴由余弦定理可得122=a 2+c 2−2accos60°≥ac , ∴ac ≤144,∴S △ABC =12acsinB ≤36√3, ∴S △ABC 的最大值为36√3; (2)S △ABC =4√3=12ac ×√32, ∴ac =16,又b 2=a 2+c 2−2accos60°=(a +c)2−48, b 2=a 2+c 2−2accos60°≥ac , ∴a +c =√b 2+48,b ≥4∴△ABC 周长为a +b +c ≥8+4=12当且仅当时,△ABC 周长的最小值为12.小提示:本题考查了余弦定理、基本不等式,考查三角形面积、周长的求解,考查学生分析解决问题的能力,属于较难题.18、(1)若x >1,求y =x +4x−1的最小值及对应x 的值; (2)若0<x <2,求4x +12−x 的最小值及对应x 的值. 答案:(1)最小值为5,x =3;(2)最小值为92,x =43. 分析:(1)化简y =x −1+4x−1+1,再利用基本不等式求解;a b c ==(2)化简y=12(4x+12−x)×2=12(4x+12−x)×[x+(2−x)],再利用基本不等式求解.(1)因为x>1,所以x−1>0,4x−1>0,y=x−1+4x−1+1≥2√(x−1)(4x−1)+1=5当且仅当x−1=4x−1(x>1)即x=3时等号成立,函数取最小值5;(2)y=12(4x+12−x)×2=12(4x+12−x)×[x+(2−x)]=12[5+4(2−x)x+x2−x]≥12(5+2√4(2−x)x×x2−x)=92当且仅当4(2−x)x =x2−x(0<x<2)即x=43时等号成立,函数取最小值92.。

一元二次方程单元测试题及答案

一元二次方程单元测试题及答案

一元二次方程单元测试题及答案一、选择题1. 一元二次方程的一般形式是:A. ax^2 + bx + c = 0B. ax^2 + bx = 0C. ax^2 + c = 0D. ax + b = 0答案:A2. 下列哪个方程不是一元二次方程?A. x^2 - 3x + 2 = 0B. x^2 - 5 = 0C. 2x + 5 = 0D. 3x^2 - 7x = 0答案:C3. 一元二次方程 ax^2 + bx + c = 0 的判别式是:A. b^2 - 4acB. b^2 + 4acC. a^2 - 4bcD. a^2 + 4bc答案:A二、填空题4. 解一元二次方程 x^2 - 5x + 6 = 0,其判别式为 _______ 。

答案:15. 如果一元二次方程的根是 x1 = 2 和 x2 = 3,那么这个方程可以写成 _______ 。

答案:x^2 - 5x + 6 = 0三、解答题6. 解一元二次方程 2x^2 - 7x + 3 = 0。

解:首先计算判别式Δ = b^2 - 4ac = (-7)^2 - 4 * 2 * 3 = 49 - 24 = 25。

由于Δ > 0,方程有两个不相等的实数根。

根据求根公式 x = (-b ± √Δ) / (2a),我们得到:x1 = (7 + √25) / 4 = (7 + 5) / 4 = 12 / 4 = 3,x2 = (7 - √25) / 4 = (7 - 5) / 4 = 2 / 4 = 0.5。

7. 已知方程 x^2 + 4x + k = 0 的一个根是 x = -2,求 k 的值。

解:将 x = -2 代入方程,得到 (-2)^2 + 4 * (-2) + k = 0。

简化得 4 - 8 + k = 0,解得 k = 4。

四、应用题8. 一个长方形的长是宽的两倍,面积是 24 平方米,求这个长方形的长和宽。

解:设宽为 x 米,长为 2x 米。

一元二次方程单元测验题及答案

一元二次方程单元测验题及答案

一元二次方程单元测验题及答案
1.求解方程:x²+4x+4=0
解答:该方程可以写成(x+2)²=0,由此可以得到x=-2
2.求解方程:2x²+5x-3=0
解答:使用因式分解,可以写成(2x-1)(x+3)=0,解得x=1/2或x=-3
3.求解方程:3x²-12x+9=0
解答:使用因式分解,可以写成(3x-3)²=0,解得x=1
4.求解方程:x²-7x+12=0
解答:使用因式分解,可以写成(x-3)(x-4)=0,解得x=3或x=4
5.求解方程:4x²-12x+9=0
解答:使用二次方程公式,可以得到x=(-(-12)±√((-12)²-
4*4*9))/(2*4),解得x=(3±√3)/2
6.求解方程:x²+3x+2=0
解答:使用二次方程公式,可以得到x=(-3±√(3²-4*1*2))/(2*1),解得x=-1或x=-2
7.求解方程:2x²+7x+3=0
解答:使用二次方程公式,可以得到x=(-7±√(7²-4*2*3))/(2*2),解得x=-1/2或x=-3
8.求解方程:x²+5x+6=0
解答:使用因式分解,可以写成(x+2)(x+3)=0,解得x=-2或x=-3
9.求解方程:x²-9=0
解答:使用因式分解,可以写成(x+3)(x-3)=0,解得x=3或x=-3
10.求解方程:3x²+4x+1=0
解答:使用二次方程公式,可以得到x=(-4±√(4²-4*3*1))/(2*3),解得x=-1或x=-1/3。

高中数学必修一第二章 一元二次函数、方程和不等式 单元测试(含答案)

高中数学必修一第二章 一元二次函数、方程和不等式 单元测试(含答案)

高中数学必修一第二章一、单选题1.已知a>b>0,c>d,下列不等式中必成立的一个是( )A.a c>bdB.ad<bc C.a+c>b+d D.a―c>b―d2.已知x,y均为正实数,且1x+2+4y+3=12,则x+y的最小值为( )A.10B.11C.12D.133.若两个正实数x,y满足2x+1y=1,且x+2y>m2+2m恒成立,则实数m的取值范围是( )A.(―∞,―2)∪[4,+∞)B.(―∞,―4)∪[2,+∞)C.(―2,4)D.(―4,2)4.若x,y∈R+,且x+3y=5xy,则3x+4y的最小值是( )A.5B.245C.235D.1955.小明从甲地到乙地往返的时速分别为a和b(a<b),其全程的平均时速为v,则( )A.a<v<ab B.v=ab C.ab<v<a+b2D.v=a+b26.已知a>0,b>0,若不等式m3a+b ―3a―1b≤0恒成立,则m的最大值为( )A.4B.16C.9D.37.已知x,y∈(―2,2),且xy=1,则22―x2+44―y2的最小值是( )A.207B.127C.16+427D.16―4278.已知函数f(x)=2x|2x―a|,若0≤x≤1时f(x)≤1,则实数a的取值范围为( )A.[74,2]B.[53,2]C.[32,2]D.[32,53]二、多选题9.已知a>b>c>0,则( )A.a+c>b+c B.ac>bc C.aa+c>bb+cD.a x<b c10.已知a>0,b>0,且a+b=ab,则( )A.(a―1)(b―1)=1B.ab的最大值为4C.a+4b的最小值为9D.1a2+2b2的最小值为2311.已知a,b∈R∗,a+2b=1,则b2a +12b+12ab的值可能为( )A.6B.315C.132D.5212. 现有图形如图所示,C 为线段AB 上的点,且AC =a ,BC =b ,O 为AB 的中点,以AB 为直径作半圆.过点.C 作AB 的垂线交半圆于点D ,连结OD ,AD ,BD ,过点C 作OD 的垂线,垂足为E.则该图形可以完成的无字证明有( )A .a +b 2≥ab (a >0,b >0)B .a 2+b 2≥2ab (a >0,b >0)C .a 2+b 22≥a +b2(a ≥0,b >0)D .ab ≥21a+1b(a >0,b >0)三、填空题13.已知不等式|x ―1|+|x +2|≥5的解集为  .14. 已知实数x ,y 满足―1≤x +y ≤4且2≤x ―y ≤3,则x +3y 的取值范围是  .15.若关于x 的不等式x 2+mx ―2<0在区间[1,2]上有解,则实数m 的取值范围为  .16.设正实数x ,y ,z 满足x 2―3xy +4y 2―z =0,则当xyZ 取得最大值时,2x+1y ―2z的最大值为 .四、解答题17.U =R ,非空集合 A ={x |x 2―5x +6<0} ,集合 B ={x |(x ―a )(x ―a 2―2)<0} .(1)a =12时,求 (∁ U B )∩A ;(2)若 x ∈B 是 x ∈A 的必要条件,求实数 a 的取值范围.18.已知 p :|1―x ―13|≤2 , q :x 2―2x +1―m 2≤0(m >0) ,若 ¬p 是 ¬q 的充分而不必要条件,求实数m 的取值范围.19.求解不等式x 2―a ≥|x ―1|―120.已知a ,b ,c 都为正实数,满足abc (a +b +c )=1(1)求S =(a +c )(b +c )的最小值(2)当S 取最小值时,求c 的最大值.21.某项研究表明;在考虑行车安全的情况下,某路段车流量F (单位时间内经过测量点的车辆数,单位;辆∕时)与车流速度v (假设车辆以相同速度v 行驶,单位米∕秒)、平均车长l (单位:米)的值有关,其公式为F =76000νv 2+18v +20l(1)如果不限定车型,l =6.05,则最大车流量为多少.(2)如果限定车型,l =5,则最大车流量比(1)中的最大车流量增加多少.22.已知a ,b ,c 为实数且a +2b +5c =10.(1)若a ,b ,c 均为正数,当2ab +5ac +10bc =10时,求a +b +c 的值;(2)证明:(2b +5c )2+(a +b +5c )2+(a +2b +4c )2≥4903.答案解析部分1.C已知a>b>0,c>d,由不等式的同向相加的性质得到a+c>b+d正确;当a=2,b=1,c=-1,d=-2时,a c<bd, ,a―c=b―d A,D不正确;c=2,d=1时,ad=bc,B不正确. 2.D解:因为x,y>0,且1x+2+4y+3=12,则x+y=(x+2)+(y+3)―5=2(1x+2+4y+3)[(x+2)+(y+3)]―5=2(5+y+3x+2+4(x+2)y+3)―5≥2(5+2y+3x+2⋅4(x+2)y+3―5=13,当且仅当y+3x+2=4(x+2)y+3,即x=4,y=9时等号成立,则x+y的最小值为13.3.D由基本不等式得x+2y=(x+2y)(2x +1y)=4yx+xy+4≥24yx⋅xy+4=8,当且仅当4yx=xy,由于x>0,y>0,即当x=2y时,等号成立,所以,x+2y的最小值为8,由题意可得m2+2m<8,即m2+2m―8<0,解得―4<m<2,因此,实数m的取值范围是(―4,2),4.A从题设可得15y+35x=1,则3x+4y=15(3x+4y)(1y+3x)=15(3x y+12yx+13)≥15(12+13)=5,5.A6.B7.C8.C不等式f(x)≤1可化为|2x―a|≤2―x,有―2―x≤a―2x≤2―x,有2x―2―x≤a≤2x+2―x,当0≤x≤1时,2x+2―x≥22x×2―x=2(当且仅当x=0时取等号),2x―2―x≤2―12=32,故有32≤a≤2。

一元二次方程单元测试题及答案

一元二次方程单元测试题及答案

一元二次方程单元测试题及答案1. 单项选择题(每题2分,共10题)1) 求方程x^2 + 3x - 4 = 0的根是:A. 2和-2B. 1和-4C. -1和4D. 0和-32) 方程2x^2 + 5x + 3 = 0的根是:A. -3和-1/2B. 1/2和3C. -1/2和-3D. -3和1/23) 若x^2 + ax + 6 = 0的根为-2和3,则a的值是:A. -5B. -1C. 1D. 54) 若x^2 + (k + 1)x + 1 = 0有相等的根,则k的值是:B. 0C. 1D. 25) 若x^2 - (2k + 1)x + 2 = 0的根之和与根之积的乘积为4,则k的值是:A. -1B. 0C. 1D. 26) 方程x^2 + (k + 3)x + 2k = 0的根是互为相反数,则k的值是:A. 2/7B. -2/7C. 3/8D. -3/87) 若方程x^2 - (a + 1)x + a^2 - 2a + 1 = 0的两个根之差为1,则a的值是:A. -1B. 0D. 28) 若方程x^2 - (2k + 1)x + k^2 + 1 = 0的两个根之和为k,则k的值是:A. -2B. -1C. 0D. 19) 若方程3x^2 - (a - 1)x - 2a = 0的两个根之差为2,则a的值是:A. -2B. -1C. 0D. 110) 若方程(k + 1)x^2 - (2k - 1)x + k - 4 = 0的两个根之积为4,则k 的值是:A. -3B. -2C. -1D. 1答案:1) B 2) A 3) B 4) C 5) A 6) B 7) C 8) A 9) C 10) B2. 解答题(每题10分,共2题)题目1:求解方程x^2 - 5x + 6 = 0的根。

解答:首先,我们可以尝试因式分解这个二次方程,看看是否可以将其化简为两个一次方程相乘的形式。

将x^2 - 5x + 6 = 0进行因式分解,得到(x - 2)(x - 3) = 0。

《一元二次方程》单元测试题及答案

《一元二次方程》单元测试题及答案

《一元二次方程》单元测试题一、选择题 (共8题,每题有四个选项,其中只有一项符合题意。

每题3分,共24分):1.下列方程中不一定是一元二次方程的是( )A.(a-3)x 2=8 (a ≠3)B.ax 2232057x +-= 2下列方程中,常数项为零的是( )A.x 2+x=1 B.2x 2-x-12=12;C.2(x 2-1)=3(x-1) D.2(x 2+1)=x+23.一元二次方程2x 2-3x+1=0化为(x+a)2=b 的形式,正确的是( ) A. 23162x ⎛⎫-= ⎪⎝⎭; B.2312416x ⎛⎫-= ⎪⎝⎭; C. 231416x ⎛⎫-= ⎪⎝⎭; D.以上都不对 4.关于x 的一元二次方程()22110a x x a -++-=的一个根是0,则a 值为()A 1 B 1- C 1或1-D1/25.已知三角形两边长分别为2和9,第三边的长为二次方程x 2-14x+48=0的一根, 则这个三角形的周长为( ) A.11 B.17 C.17或19 D.196.已知一个直角三角形的两条直角边的长恰好是方程22870x x -+=的两个根,则这个直角三角形的斜边长是( )A 、 B 、3 C 、6 D 、97.使分式2561x x x --+ 的值等于零的x 是( ) A.6 B.-1或6 C.-1 D.-6 8.若关于y 的一元二次方程ky 2-4y-3=3y+4有实根,则k 的取值范围是( )A.k>-7/4B.k ≥-7/4 且k ≠0C.k ≥-7/4D.k>7/4 且k ≠09.已知方程22=+x x ,则下列说中,正确的是( )A 方程两根和是1B 方程两根积是2C 方程两根和是1-D 方程两根积比两根和大210.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元, 如果平均每月增长率为x,则由题意列方程应为( )A.200(1+x)2=1000B.200+200×2x=1000C.200+200×3x=1000D.200[1+(1+x)+(1+x)2]=1000二、填空题:(每小题4分,共20分)11.用______法解方程3(x-2)2=2x-4比较简便. 12.如果2x 2+1与4x 2-2x-5互为相反数,则x 的值为____ ____. 13.22____)(_____3-=+-x x x14.若一元二次方程ax 2+bx+c=0(a ≠0)有一个根为-1,则a 、b 、c 的关系是______.15.已知方程3ax 2-bx-1=0和ax 2+2bx-5=0,有共同的根-1, 则a= ______, b=______.16.一元二次方程x 2-3x-1=0与x 2-x+3=0的所有实数根的和等于____.17.已知x 2+mx+7=0的一个根,则m=________,另一根为_______.18.已知两数的积是12,这两数的平方和是25, 以这两数为根的一元二次方程是___________.19.已知x x 12,是方程x x 2210--=的两个根,则1112x x +等于__________.20.关于x 的二次方程20x mx n ++=有两个相等实根,则符合条件的一组,m n 的实数值可以是m = ,n = .三、用适当方法解方程:(每小题5分,共10分)21.22(3)5x x -+=22.230x ++=四、列方程解应用题:(每小题7分,共21分)23.某电视机厂计划用两年的时间把某种型号的电视机的成本降低36%, 若每年下降的百分数相同,求这个百分数.24.如图所示,在宽为20m ,长为32m 的矩形耕地上,修筑同样宽的三条道路,(互相垂直),把耕地分成大小不等的六块试验田,要使试验田的面积为570m 2,道路应为多宽?25.某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。

高中数学必修一第二章一元二次函数方程和不等式专项训练(带答案)

高中数学必修一第二章一元二次函数方程和不等式专项训练(带答案)

高中数学必修一第二章一元二次函数方程和不等式专项训练单选题1、若a>0,b>0,则下面结论正确的有()A.2(a2+b2)≤(a+b)2B.若1a +4b=2,则a+b≥92C.若ab+b2=2,则a+b≥4D.若a+b=1,则ab有最大值12答案:B分析:对于选项ABD利用基本不等式化简整理求解即可判断,对于选项C取特值即可判断即可. 对于选项A:若a>0,b>0,由基本不等式得a2+b2≥2ab,即2(a2+b2)≥(a+b)2,当且仅当a=b时取等号;所以选项A不正确;对于选项B:若a>0,b>0,1 2×(1a+4b)=1,a+b=12×(1a+4b)(a+b)=12(5+ba+4ab)≥12(5+2√ba⋅4ab)=92,当且仅当1a +4b=2且ba=4ab,即a=32,b=3时取等号,所以选项B正确;对于选项C:由a>0,b>0,ab+b2=b(a+b)=2,即a+b=2b,如b=2时,a+b=22=1<4,所以选项C不正确;对于选项D:ab≤(a+b2)2=14,当且仅当a=b=12时取等则ab有最大值14,所以选项D不正确;故选:B2、若不等式2x2+2mx+m4x2+6x+3<1对一切实数x均成立,则实数m的取值范围是()A .(1,3)B .(−∞,1)C .(−∞,1)∪(3,+∞)D .(3,+∞) 答案:A分析:因为4x 2+6x +3=4(x +34)2+34>0恒成立,则2x 2+2mx+m 4x 2+6x+3<1恒成立可转化为2x 2+(6−2m )x +(3−m )>0恒成立,则Δ<0,即可解得m 的取值范围 因为4x 2+6x +3=4(x +34)2+34>0恒成立 所以2x 2+2mx+m 4x 2+6x+3<1恒成立⇔2x 2+2mx +m <4x 2+6x +3恒成立 ⇔2x 2+(6−2m )x +(3−m )>0恒成立 故Δ=(6−2m )2−4×2×(3−m )<0 解之得:1<m <3 故选:A3、若不等式ax 2+bx +2>0的解集是{x |−12<x <13},则ax +b >0的解集为( )A .(−∞,−16)B .(−∞,16)C .(−16,+∞)D .(16,+∞)答案:A分析:利用根于系数的关系先求出a,b ,再解不等式即可. 不等式ax 2+bx +2>0的解集是{x |−12<x <13} 则根据对应方程的韦达定理得到:{(−12)+13=−ba(−12)⋅13=2a , 解得{a =−12b =−2,则−12x −2>0的解集为(−∞,−16) 故选:A4、不等式|5x −x 2|<6的解集为( )A .{x|x <2,或x >3}B .{x|−1<x <2,或3<x <6}C .{x|−1<x <6}D .{x|2<x <3}答案:B分析:按照绝对值不等式和一元二次不等式求解即可. 解:∵|5x−x2|<6,∴−6<5x−x2<6∴{x 2−5x−6<0x2−5x+6>0⇒{−1<x<6x<2或x>3⇒−1<x<2或3<x<6则不等式的解集为:{x|−1<x<2或3<x<6}故选:B.5、已知x>0,y>0,且x+y=2,则下列结论中正确的是()A.2x +2y有最小值4B.xy有最小值1C.2x+2y有最大值4D.√x+√y有最小值4答案:A分析:利用基本不等式和不等式的性质逐个分析判断即可解:x>0,y>0,且x+y=2,对于A,2x +2y=12(x+y)(2x+2y)=2+xy+yx≥2+2√xy⋅yx=4,当且仅当x=y=1时取等号,所以A正确,对于B,因为2=x+y≥2√xy,所以xy≤1,当且仅当x=y=1时取等号,即xy有最大值1,所以B错误,对于C,因为2x+2y≥2√2x⋅2y=2√2x+y=4,当且仅当x=y=1时取等号,即2x+2y有最小值4,所以C错误,对于D,因为(√x+√y)2=x+y+2√xy≤2(x+y)=4,当且仅当x=y=1时取等号,即√x+√y有最大值4,所以D错误,故选:A6、已知集合M={x|−4<x<2},N={x|x2−x−6<0},则M∩N=A.{x|−4<x<3}B.{x|−4<x<−2}C.{x|−2<x<2}D.{x|2<x<3}答案:C分析:本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题.由题意得,M={x|−4<x<2},N={x|−2<x<3},则M∩N={x|−2<x<2}.故选C.小提示:不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分.7、关于x的方程x2+(m−2)x+2m−1=0恰有一根在区间(0,1)内,则实数m的取值范围是()A.[12,32]B.(12,23]C.[12,2)D.(12,23]∪{6−2√7}答案:D分析:把方程的根转化为二次函数的零点问题,恰有一个零点属于(0,1),分为三种情况,即可得解. 方程x2+(m-2)x+2m-1=0对应的二次函数设为:f(x)=x2+(m-2)x+2m-1因为方程x2+(m-2)x+2m-1=0恰有一根属于(0,1),则需要满足:①f(0)⋅f(1)<0,(2m-1)(3m-2)<0,解得:12<m<23;②函数f(x)刚好经过点(0,0)或者(1,0),另一个零点属于(0,1),把点(0,0)代入f(x)=x2+(m-2)x+2m-1,解得:m=12,此时方程为x2-32x=0,两根为0,32,而32⋅(0,1),不合题意,舍去把点(1,0)代入f(x)=x2+(m-2)x+2m-1,解得:m=23,此时方程为3x2-4x+1=0,两根为1,13,而13⋅(0,1),故符合题意;③函数与x轴只有一个交点,Δ=(m-2)2-8m+4=0,解得m=6±2√7,经检验,当m=6-2√7时满足方程恰有一根在区间 (0,1) 内;综上:实数m的取值范围为(12,23]⋅{6-2√7}故选:D8、已知1a <1b<0,则下列结论正确的是()A.a<b B.a+b<ab C.|a|>|b|D.ab>b2答案:B分析:结合不等式的性质、差比较法对选项进行分析,从而确定正确选项.因为1a <1b<0,所以b<a<0,故A错误;因为b<a<0,所以a+b<0,ab>0,所以a+b<ab,故B正确;因为b<a<0,所以|a|>|b|不成立,故C错误;ab−b2=b(a−b),因为b<a<0,所以a−b>0,即ab−b2=b(a−b)<0,所以ab<b2成立,故D错误.故选:B多选题9、若a,b,c∈R,则下列命题正确的是()A.若ab≠0且a<b,则1a >1bB.若0<a<1,则a2<aC.若a>b>0且c>0,则b+ca+c >baD.a2+b2+1≥2(a−2b−2)答案:BCD分析:由不等式的性质逐一判断即可.解:对于A,当a<0<b时,结论不成立,故A错误;对于B,a2<a等价于a(a−1)<0,又0<a<1,故成立,故B正确;对于C,因为a>b>0且c>0,所以b+ca+c >ba等价于ab+ac>ab+bc,即(a−b)c>0,成立,故C正确;对于D,a2+b2+1≥2(a−2b−2)等价于(a−1)2+(b+2)2≥0,成立,故D正确. 故选:BCD.10、已知正实数a,b满足a+b=ab,则()A.a+b≥4B.ab≥6C.a+2b≥3+2√2D.ab2+ba2≥1答案:ACD分析:根据特殊值判断B,利用ab⩽(a+b)24判断A,利用换“1”法判断C,变形后利用基本不等式判断D. 对于B,当a=b=2时,满足a+b=ab,此时ab<6,B错误;对于A,ab⩽(a+b)24,则(a+b)24⩾a+b,变形可得a+b⩾4,当且仅当a=b=2时等号成立,A正确;对于C ,a +b =ab ,变形可得1a +1b =1,则有a +2b =(a +2b)(1a +1b )=3+2b a+ab ⩾3+2√2,当且仅当a =2b 时等号成立,C 正确; 对于D ,ab 2+ba 2=a 3+b 3a 2b 2=(a+b)(a 2+b 2−ab)a 2b 2=b a +ab −1⩾2−1=1,当且仅当a =b =2时等号成立,D 正确;故选:ACD11、对任意两个实数a,b ,定义min{a ,b}={a,a ≤b,b,a >b,若f (x )=2−x 2,g (x )=x 2,下列关于函数F (x )=min {f (x ),g (x )}的说法正确的是( ) A .函数F (x )是偶函数 B .方程F (x )=0有三个解C .函数F (x )在区间[−1,1]上单调递增D .函数F (x )有4个单调区间 答案:ABD分析:结合题意作出函数F (x )=min {f (x ),g (x )}的图象,进而数形结合求解即可.解:根据函数f (x )=2−x 2与g (x )=x 2,,画出函数F (x )=min {f (x ),g (x )}的图象,如图. 由图象可知,函数F (x )=min {f (x ),g (x )}关于y 轴对称,所以A 项正确; 函数F (x )的图象与x 轴有三个交点,所以方程F (x )=0有三个解,所以B 项正确;函数F (x )在(−∞,−1]上单调递增,在[−1,0]上单调递减,在[0,1]上单调递增,在[1,+∞)上单调递减,所以C 项错误,D 项正确. 故选:ABD填空题12、若不等式kx2+2kx+2<0的解集为空集,则实数k的取值范围是_____.答案:{k|0≤k≤2}分析:分k=0和k>0两种情况讨论,当k>0时需满足Δ≤0,即可得到不等式,解得即可;解:当k=0时,2<0不等式无解,满足题意;当k>0时,Δ=4k2−8k≤0,解得0<k≤2;综上,实数k的取值范围是{k|0≤k≤2}.所以答案是:{k|0≤k≤2}13、已知a,b,a+m均为大于0的实数,给出下列五个论断:①a>b,②a<b,③m>0,④m<0,⑤b+ma+m >ba.以其中的两个论断为条件,余下的论断中选择一个为结论,请你写出一个正确的命题___________. 答案:①③推出⑤(答案不唯一还可以①⑤推出③等)解析:选择两个条件根据不等式性质推出第三个条件即可,答案不唯一.已知a,b,a+m均为大于0的实数,选择①③推出⑤.①a>b,③m>0,则b+ma+m −ba=ab+am−ab−bma(a+m)=am−bma(a+m)=(a−b)ma(a+m)>0,所以b+ma+m >ba.所以答案是:①③推出⑤小提示:此题考查根据不等式的性质比较大小,在已知条件中选择两个条件推出第三个条件,属于开放性试题,对思维能力要求比较高.14、已知不等式ax2+bx+c>0的解集为(2,4),则不等式cx2+bx+a<0的解集为___________.答案:{x|x>12或x<14}分析:先由不等式ax2+bx+c>0的解集为(2,4),判断出b=-6a,c=8a,把cx2+bx+a<0化为8x2−6x+ 1>0,即可解得.因为不等式ax2+bx+c>0的解集为(2,4),所以a<0且2和4是ax2+bx+c=0的两根.所以{2+4=−ba2×4=ca可得:{b=−6ac=8a,所以cx2+bx+a<0可化为:8ax2−6ax+a<0,因为a<0,所以8ax2−6ax+a<0可化为8x2−6x+1>0,即(2x−1)(4x−1)>0,解得:x>12或x<14,所以不等式cx2+bx+a<0的解集为{x|x>12或x<14}.所以答案是:{x|x>12或x<14}.解答题15、回答下列问题:(1)若a>b,且c>d,能否判断a−c与b−d的大小?举例说明.(2)若a>b,且c<d,能否判断a+c与b+d的大小?举例说明.(3)若a>b,且c>d,能否判断ac与bd的大小?举例说明.(4)若a>b,c<d,且c≠0,d≠0,能否判断ac 与bd的大小?举例说明.答案:(1)不能判断,举例见解析(2)不能判断,举例见解析(3)不能判断,举例见解析(4)不能判断,举例见解析分析:因为a,b,c,d的正负不确定,因此可举例说明每个小题中的两式的大小关系不定. (1)不能判断a−c与b−d的大小,举例:取a=5,b=3,c=1,d=0,满足条件a>b,且c>d,此时a−c>b−d;取a=5,b=4,c=3,d=0,满足条件a>b,且c>d,此时a−c<b−d;取a=5,b=4,c=3,d=2,满足条件a>b,且c>d,此时a−c=b−d;(2)不能判断a+c与b+d的大小,举例:取a=5,b=3,c=0,d=1,满足条件a>b,且c<d,此时a+c>b+d;取a=5,b=3,c=2,d=6,满足条件a>b,且c<d,此时a+c<b+d.取a=5,b=3,c=4,d=6,满足条件a>b,且c<d,此时a+c=b+d;(3)不能判断ac与bd的大小,举例:取a=5,b=3,c=1,d=0,满足条件a>b,且c>d,此时ac>bd;取a=5,b=3,c=−3,d=−5,满足条件a>b,且c>d,此时ac=bd;取a=5,b=−3,c=1,d=−2,满足条件a>b,且c>d,此时ac<bd;(4)不能判断ac 与bd的大小举例:取a=6,b=3,c=1,d=2,满足条件a>b,且c<d,此时ac >bd;取a=2,b=1,c=−1,d=2,满足条件a>b,且c<d,此时ac <bd;取a=6,b=3,c=−2,d=−1,满足条件a>b,且c<d,此时ac =bd;。

高中数学第二章一元二次函数方程和不等式专项训练题(带答案)

高中数学第二章一元二次函数方程和不等式专项训练题(带答案)

高中数学第二章一元二次函数方程和不等式专项训练题单选题1、实数a,b 满足a >b ,则下列不等式成立的是( ) A .a +b <ab B .a 2>b 2C .a 3>b 3D .√a 2+b 2<a +b 答案:C分析:利用不等式的性质逐一判断即可. A ,若a =1,b =0,则a +b >ab ,故A 错误; B ,若a =1,b =−2,则a 2<b 2,故B 错误;C ,若a >b ,则a 3−b 3=(a −b )(a 2+ab +b 2)=(a −b )[(a +b 2)2+3b 24]>0,所以a 3>b 3,故C 正确;D ,若a =1,b =−2,则√a 2+b 2>a +b ,故D 错误. 故选:C2、若a,b,c ∈R ,则下列命题为假命题的是( ) A .若√a >√b ,则a >b B .若a >b ,则ac >bc C .若b >a >0,则1a >1b D .若ac 2>bc 2,则a >b 答案:B分析:根据不等式的性质逐一分析各选项即可得答案. 解:对A :因为√a >√b ,所以a >b ≥0,故选项A 正确;对B :因为a >b ,c ∈R ,所以当c >0时,ac >bc ;当c =0时,ac =bc ;当c <0时,ac <bc ,故选项B 错误;对C :因为b >a >0,所以由不等式的性质可得1a>1b >0,故选项C 正确;对D :因为ac 2>bc 2,所以c 2>0,所以a >b ,故选项D 正确. 故选:B.3、若x >53,则3x +43x−5的最小值为( )A .7B .4√3C .9D .2√3 答案:C分析:利用基本不等式即可求解. 解:∵x >53, ∴3x −5>0,则3x +43x−5=(3x −5)+43x−5+5≥2√(3x −5)⋅43x−5+5=9, 当且仅当3x −5=2时,等号成立, 故3x +43x−5的最小值为9,故选:C .4、已知2<a <3,−2<b <−1,则2a −b 的范围是( ) A .(6,7)B .(5,8)C .(2,5)D .(6,8) 答案:B分析:由不等式的性质求解即可.,故4<2a <6,1<−b <2,得5<2a −b <8 故选:B5、已知a,b >0,a +4b =ab ,则a +b 的最小值为( ) A .10B .9C .8D .4 答案:B分析:由题可得4a +1b =1,根据a +b =(a +b )(4a +1b )展开利用基本不等式可求.∵a,b >0,a +4b =ab ,∴4a +1b =1, ∴a +b =(a +b )(4a +1b )=4b a +a b +5≥2√4b a ⋅ab +5=9,当且仅当4ba =ab 时等号成立,故a +b 的最小值为9. 故选:B.23,21<<-<<-a b6、已知两个正实数x ,y 满足x +y =2,则1x+9y+1的最小值是( )A .163B .112C .8D .3 答案:A分析:根据题中条件,得到1x +9y+1=13(1x +9y+1)[x +(y +1)],展开后根据基本不等式,即可得出结果. 因为正实数x,y 满足x +y =2,则1x +9y+1=13(1x +9y+1)[x +(y +1)]=13(10+y+1x+9x y+1)≥13(10+2√y+1x⋅9x y+1)=163,当且仅当y+1x=9xy+1,即x =34,y =54时,等号成立.故选:A .小提示:易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.7、关于x 的方程x 2+2(m −1)x +m 2−m =0有两个实数根α,β,且α2+β2=12,那么m 的值为( ) A .−1B .−4C .−4或1D .−1或4 答案:A分析:α2+β2=(α+β)2−2α⋅β,利用韦达定理可得答案. ∵关于x 的方程x 2+2(m −1)x +m 2−m =0有两个实数根, ∴Δ=[2(m −1)]2−4×1×(m 2−m )=−4m +4⩾0, 解得:m ⩽1,∵关于x 的方程x 2+2(m −1)x +m 2−m =0有两个实数根α,β, ∴α+β=−2(m −1),α⋅β=m 2−m ,∴α2+β2=(α+β)2−2α⋅β=[−2(m −1)]2−2(m 2−m )=12,即m 2−3m −4=0,解得:m =−1或m =4(舍去). 故选:A.8、已知实数x ,y 满足x 2+y 2=2,那么xy 的最大值为( ) A .14B .12C .1D .2 答案:C分析:根据重要不等式x 2+y 2≥2xy 即可求最值,注意等号成立条件.由x 2+y 2=2≥2xy ,可得xy ≤1,当且仅当x =y =1或x =y =−1时等号成立. 故选:C. 多选题9、下面所给关于x 的不等式,其中一定为一元二次不等式的是( ) A .3x +4<0B .x 2+mx -1>0 C .ax 2+4x -7>0D .x 2<0 答案:BD分析:利用一元二次不等式的定义和特征对选项逐一判断即可.选项A 是一元一次不等式,故错误;选项B ,D ,不等式的最高次是二次,二次项系数不为0,故正确;当a =0时,选项C 是一元一次不等式,故不一定是一元二次不等式,即错误. 故选:BD.10、已知a >0,b >0,且a 2+b 2=2,则下列不等式中一定成立的是( ) A .ab ≥1B .a +b ≤2 C .lga +lgb ≤0D .1a +1b ≤2 答案:BC分析:对于AD ,举例判断,对于BC ,利用基本不等式判断 解:对于A ,令a =√22,b =√62满足a 2+b 2=2,则ab =√22×√62=√32<1,所以A 错误,对于B ,因为(a +b)2=a 2+b 2+2ab =2+2ab ≤2+a 2+b 2=4,所以a +b ≤2,当且仅当a =b =1时取等号,所以B 正确,对于C ,因为lga +lgb =lgab ≤lg a 2+b 22=lg1=0,当且仅当a =b =1时取等号,所以C 正确,对于D ,令a =√22,b =√62满足a 2+b 2=2,则1a +1b =√2+√63≈1.414+0.8165>2,所以D 错误,故选:BC11、已知a >0,b >0,且a +b =1,则( ) A .a 2+b 2≥12B .2a−b >12C .log 2a +log 2b ≥−2D .√a +√b ≤√2 答案:ABD分析:根据a +b =1,结合基本不等式及二次函数知识进行求解. 对于A ,a 2+b 2=a 2+(1−a )2=2a 2−2a +1=2(a −12)2+12≥12, 当且仅当a =b =12时,等号成立,故A 正确;对于B ,a −b =2a −1>−1,所以2a−b >2−1=12,故B 正确;对于C ,log 2a +log 2b =log 2ab ≤log 2(a+b 2)2=log 214=−2,当且仅当a =b =12时,等号成立,故C 不正确; 对于D ,因为(√a +√b)2=1+2√ab ≤1+a +b =2,所以√a +√b ≤√2,当且仅当a =b =12时,等号成立,故D 正确; 故选:ABD小提示:本题主要考查不等式的性质,综合了基本不等式,指数函数及对数函数的单调性,侧重考查数学运算的核心素养.12、下列选项中正确的是( ) A .不等式a +b ≥2√ab 恒成立B .存在实数a ,使得不等式a +1a ≤2成立 C .若a ,b 为正实数,则ba +ab ≥2D .若正实数x ,y 满足,则2x +1y ≥821x y +=答案:BCD分析:根据基本不等式的条件与“1”的用法等依次讨论各选项即可得答案. 解:对于A选项,当a<0,b<0时不成立,故错误;对于B选项,当a<0时,a+1a =−[(−a)+(−1a)]≤2,当且仅当a=−1等号成立,故正确;对于C选项,若a,b为正实数,则ba >0,ab>0,所以ba+ab≥2√ba⋅ab=2,当且仅当a=b时等号成立,故正确;对于D选项,由基本不等式“1”的用法得2x +1y=(2x+1y)(x+2y)=4+4yx+xy≥4+2√4yx⋅xy=8,当且仅当x=2y时等号成立,故正确.故选:BCD13、已知函数f(x)=x2−2(a−1)x+a,若对于区间[−1,2]上的任意两个不相等的实数x1,x2,都有f(x1)≠f(x2),则实数a的取值范围可以是()A.(−∞,0]B.[0,3]C.[−1,2]D.[3,+∞)答案:AD解析:对于区间[−1,2]上的任意两个不相等的实数x1,x2,都有f(x1)≠f(x2),分析即f(x)在区间[−1,2]上单调,利用二次函数的单调区间判断.二次函数f(x)=x2−2(a−1)x+a图象的对称轴为直线x=a−1,∵任意x1,x2∈[−1,2]且x1≠x2,都有f(x1)≠f(x2),即f(x)在区间[−1,2]上是单调函数,∴a−1≤−1或a−1≥2,∴a≤0或a≥3,即实数a的取值范围为(−∞,0]∪[3,+∞).故选:AD小提示:(1)多项选择题是2020年高考新题型,需要要对选项一一验证.(2)二次函数的单调性要看开口方向、对称轴与区间的关系.填空题14、已知三个不等式:①ab>0,②ca >db,③bc>ad,用其中两个作为条件,剩下的一个作为结论,则可组成______个真命题. 答案:3分析:根据题意,结合不等式性质分别判断①、②、③作为结论的命题的真假性即可. 由不等式性质,得{ab >0c a >d b ⇒{ab >0bc−ad ab>0⇒bc >ad ;{ab >0bc >ad ⇒c a >d b ;{ca>d bbc >ad⇒{bc−adab>0bc >ad⇒ab >0.故可组成3个真命题.所以答案是:3.15、命题p:∀x ∈R ,x 2+ax +a ≥0,若命题p 为真命题,则实数a 的取值范围为___________. 答案:[0,4]分析:根据二次函数的性质判别式解题即可.∀x ∈R ,要使得x 2+ax +a ≥0,则Δ=a 2−4a ≤0,解得0≤a ≤4. 若命题p 为真命题,则实数a 的取值范围为[0,4]. 所以答案是:[0,4]. 16、a >b >c ,n ∈N ∗,且1a−b+1b−c≥n a−c恒成立,则n 的最大值为__.答案:4分析:将不等式变形分离出n ,不等式恒成立即n 大于等于右边的最小值;由于a −c =a −b +b −c ,凑出两个正数的积是常数,利用基本不等式求最值. 解:由于1a−b+1b−c≥n a−c恒成立,且a >c即恒成立 只要的最小值即可∵a −c a −b +a −c b −c =a −b +b −c a −b +a −b +b −cb −c=2+b −c a −b +a −bb −c∵a >b >ca c a cn a b b c --≤+--a c a cn a b b c --≤+--∴a −b >0,b −c >0,故(a−c a−b +a−cb−c )≥4,因此n ≤4 所以答案是:4. 解答题17、(1)已知x >1,求4x +1+1x−1的最小值;(2)已知0<x <1,求x (4−3x )的最大值. 答案:(1)9;(2)43.分析:(1)由于x −1>0,则4x +1+1x−1=4(x −1)+1x−1+5,然后利用基本不等式求解即可, (2)由于0<x <1,变形得x (4−3x )=13⋅(3x )⋅(4−3x ),然后利用基本不等式求解即可. (1)因为x >1,所以x −1>0,所以4x +1+1x−1=4(x −1)+1x−1+5≥2√4(x −1)⋅1x−1+5=9, 当且仅当4(x −1)=1x−1,即x =32时取等号,所以4x +1+1x−1的最小值为9.(2)因为0<x <1,所以x (4−3x )=13⋅(3x )⋅(4−3x )≤13(3x+4−3x 2)2=43,当且仅当3x =4−3x ,即x =23时取等号,故x (4−3x )的最大值为43.18、在△ABC 中,内角A ,B ,C 对边分别为a ,b ,c ,已知2acosB =2c −b . (1)求角A 的值;(2)若b =5,AC⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ =−5,求△ABC 的周长; (3)若2bsinB +2csinC =bc +√3a ,求△ABC 面积的最大值. 答案:(1)A =π3;(2)20;(3)3√34. 解析:(1)利用正弦定理及两角和的正弦公式展开,可得,可求得角A 的值;(2)根据向量的数量积及余弦定理分别求出a,c ,即可求得周长;1cos 2A(3)将利用正弦定理将角化成边,再利用余弦定理结合基本不等式可求得面积的最值; (1)∵2acosB =2c −b ⇒2sinA ⋅cosB =2sinC −sinB ,∴2sinA ⋅cosB =2⋅sin(A +B)−sinB =2(sinA ⋅cosB +cosA ⋅sinB)−sinB , ∴,∵0<A <π,∴A =π3;(2)∵AC⃗⃗⃗⃗⃗ ⋅CB ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ ⋅(AB ⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ )=AC ⃗⃗⃗⃗⃗ ⋅AB ⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ 2 =c ⋅5⋅cos π3−52=52c −25=−5⇒c =8,在△ABC 中利用余弦定理得:a 2=b 2+c 2−2b ⋅c ⋅cosA =52+82−2⋅5⋅8⋅12=49, ∴a =7,∴ΔABC 的周长为:5+8+7=20; (3)∵bsinB =csinC =asinA =√32=2√3a3,∴sinB =√32ba,sinC =√32ca, ∴2b ⋅√32⋅b a+2c ⋅√32⋅ca=bc +√3a ,∴√3(b 2+c 2−a 2)=abc ⇒√3⋅cosA =a2⇒√3⋅12=a2⇒a =√3, ∴√3(b 2+c 2−3)=√3bc ⇒b 2+c 2=3+bc , ∴3+bc ⩾2bc ⇒bc ⩽3,等号成立当且仅当, △ABC 面积的最大值为(12bcsinA)max=3√34. 小提示:本题考查三角恒等变换、正余弦定理在解三角形中的应用,求解时注意选择边化成角或者角化成边的思路.1cos 2A =b c =。

一元二次方程单元测试题及答案

一元二次方程单元测试题及答案

一元二次方程单元测试题及答案一、选择题(每题3分,共30分)1. 下列哪个方程是一元二次方程?A. x^2 + 3x + 2 = 0B. 2x - 5 = 0C. 3y^2 + y = 7D. x^3 - 4x^2 + x - 6 = 02. 解一元二次方程 x^2 - 5x + 6 = 0 的判别式Δ 的值是多少?A. 1B. 25C. 49D. 03. 方程 x^2 + 4x + 4 = 0 有几个实数解?A. 0B. 1C. 2D. 34. 如果一元二次方程 ax^2 + bx + c = 0 的一个解是 x = 2,那么2a + b 的值是多少?A. aB. -cC. a - bD. c5. 用配方法解方程 x^2 - 6x + 5 = 0 的解是什么?A. x = 1, 5B. x = 2, 3C. x = 3, 4D. x = 4, 56. 方程 2x^2 - 8x + 5 = 0 的解的和是多少?A. 0B. 4C. 8D. 167. 方程 x^2 + 2x + 1 = 0 的解是:A. x = -1B. x = 1C. x = -1, 1D. 无实数解8. 一元二次方程的一般形式是:A. ax + b = 0B. ax^2 + bx + c = 0C. a(x - b)^2 = cD. ax^2 + bx = c9. 如果一元二次方程的系数 a = 1,b = -6,c = 5,那么方程的根的情况是:A. 有两个不相等的实数根B. 有两个相等的实数根C. 没有实数根D. 一个实数根10. 解方程 3x^2 - 12x + 10 = 0 的判别式Δ 的值是:A. 36B. 0C. -4D. 4二、填空题(每题4分,共20分)11. 方程 2x^2 - 3x + 1 = 0 的判别式Δ = ____。

12. 方程 x^2 - 4x + __ = 0 是完全平方。

13. 如果一元二次方程的解为x = 3 ± 2√2,那么 a = ____,b = ____。

《一元二次方》单元测试及答案

《一元二次方》单元测试及答案

周周清3一、选择题(每小题3分,共30分) 姓名 1、下列方程是一元二次方程的是( )A 、 ax 2+bx+c=0B 、 x 2-y+1=0C 、 x 2=0D 、212=+x x2、 把方程)2(5)2(-=+x x x 化成一般形式,则a 、b 、c 的值分别是( )A 、10,3,1-B 、 10,7,1-C 、 12,5,1-D 、 2,3,1 3、已知3是关于x 的方程012342=+-a x 的一个解,则2a 的值是( ) A 、11 B 、12 C 、13 D 、14 4、一元二次方程x 2-1=0的根是( )A 、 x=1B 、x=-1C 、x 1=0, x 2=1D 、x 1=1 ,x 2= -1 5、将方程2x 2-4x-3=0配方后所得的方程正确的是( )A 、(2x-1)2=0B 、(2x-1)2-4=0C 、2(x-1)2-1=0D 、2(x-1)2-5=0 6、已知直角三角形的三边恰好是三个连续整数,则这个直角三角形的斜边长是A 、 ±5B 、 5C 、 4D 、 不能确定 ( ) 7、方程3x 2+4x-2=0的根的情况是( )A 、两个不相等的实数根B 、两个相等的实数根C 、没有实数根D 、无法确定根的个数8、设—元二次方程x 2-2x -4=0的两个实根为x 1和x 2,则下列结论正确的是( ) A 、x 1+x 2=2B 、x 1+x 2=-4C 、x 1·x 2=-2D 、x 1·x 2=49、已知x 1 、x 2是方程x 2-2mx+3m=0的两根,且满足(x 1+2) (x 2+2)=22-m 2则m 等于( ) A 、2 B —9 C 、—9 或2 D 9 或2 10、某商品降价20%后欲恢复原价,则提价的百分数为( ) A 、18% B 、20% C 、25%、 D 、 30% 二、填空题 (每小题3分,共24分)11、已知一元二次方程有一个根是2,那么这个方程可以是 (填上你认为正确的一个方程即可) 12、填空 x 2-3x + = (x- )213、等腰三角形的底和腰是方程x 2-6x+8=0的两根,则这个三角形的周长是 14、在实数范围内定义一种运算“﹡”,其规则为a ﹡b=a 2-b 2,根据这个规则,方程(x+2) ﹡5=0的解为15、已知x 2+3x+5的值为11,则代数式3x 2+9x+12的值为16、在一元二次方程ax 2+bx+c=0(a ≠0)中,若a-b+c=0则方程必有一根为 17、已知α,β是方程0522=-+x x 的两个实数根,则α2+β2+2α+2β的值为_________。

(完整版)一元二次方程全章测试及答案

(完整版)一元二次方程全章测试及答案

一元二次方程全章测试及答案一、填空题1.一元二次方程x 2-2x +1=0的解是______.2.若x =1是方程x 2-mx +2m =0的一个根,则方程的另一根为______.3.小华在解一元二次方程x 2-4x =0时,只得出一个根是x =4,则被他漏掉的另一个根是x =______.4.当a ______时,方程(x -b )2=-a 有实数解,实数解为______.5.已知关于x 的一元二次方程(m 2-1)x m -2+3mx -1=0,则m =______.6.若关于x 的一元二次方程x 2+ax +a =0的一个根是3,则a =______.7.若(x 2-5x +6)2+|x 2+3x -10|=0,则x =______.8.已知关于x 的方程x 2-2x +n -1=0有两个不相等的实数根,那么|n -2|+n +1的化简结果是______.二、选择题9.方程x 2-3x +2=0的解是( ).A .1和2B .-1和-2C .1和-2D .-1和210.关于x 的一元二次方程x 2-mx +(m -2)=0的根的情况是( ).A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法确定11.已知a ,b ,c 分别是三角形的三边,则方程(a +b )x 2+2cx +(a +b )=0的根的情况是( ).A .没有实数根B .可能有且只有一个实数根C .有两个不相等的实数根D .有两个不相等的实数根12.如果关于x 的一元二次方程0222=+-k x x 没有实数根,那么k 的最小整数值是( ).A .0B .1C .2D .313.关于x 的方程x 2+m (1-x )-2(1-x )=0,下面结论正确的是( ).A .m 不能为0,否则方程无解B .m 为任何实数时,方程都有实数解C .当2<m <6时,方程无实数解D .当m 取某些实数时,方程有无穷多个解三、解答题14.选择最佳方法解下列关于x 的方程:(1)(x +1)2=(1-2x )2.(2)x 2-6x +8=0.(3).02222=+-x x (4)x (x +4)=21.(5)-2x 2+2x +1=0.(6)x 2-(2a -b )x +a 2-ab =0.15.应用配方法把关于x 的二次三项式2x 2-4x +6变形,然后证明:无论x 取任何实数值,二次三项式的值都是正数.16.关于x 的方程x 2-2x +k -1=0有两个不等的实数根.(1)求k 的取值范围;(2)若k +1是方程x 2-2x +k -1=4的一个解,求k 的值.17.已知关于x 的两个一元二次方程:方程:02132)12(22=+-+-+k k x k x ①方程:0492)2(2=+++-k x k x ②(1)若方程①、②都有实数根,求k 的最小整数值;(2)若方程①和②中只有一个方程有实数根;则方程①,②中没有实数根的方程是______(填方程的序号),并说明理由;(3)在(2)的条件下,若k 为正整数,解出有实数根的方程的根.18.已知a ,b ,c 分别是△ABC 的三边长,当m >0时,关于x 的一元二次方程+2(x c 02)()2=--+ax m m x b m 有两个相等的实数根,试说明△ABC 一定是直角三角形.19.如图,菱形ABCD 中,AC ,BD 交于O ,AC =8m ,BD =6m ,动点M 从A 出发沿AC方向以2m/s 匀速直线运动到C ,动点N 从B 出发沿BD 方向以1m/s 匀速直线运动到D ,若M ,N 同时出发,问出发后几秒钟时,ΔMON 的面积为?m 412答案与提示一元二次方程全章测试1.x 1=x 2=1. 2.-2. 3.0. 4..,0a b x -±=≤5.4. 6.⋅-49 7.2. 8.3.9.A. 10.A. 11.A. 12.D. 13.C.14.(1)x 1=2,x 2=0; (2)x 1=2,x 2=4; (3);221==x x (4)x 1=-7,x 2=3; (5);31,3121-=+=x x (6)x 1=a ,x 2=a -b .15.变为2(x -1)2+4,证略.16.(1)k <2;(2)k =-3.17.(1)7;(2)①;∆2-∆1=(k -4)2+4>0,若方程①、②只有一个有实数根,则∆2>0> ∆ 1;(3)k =5时,方程②的根为;2721==x x k =6时,方程②的根为x 1=⋅-=+278,2782x 18.∆=4m (a 2+b 2-c 2)=0,∴a 2+b 2=c 2.19.设出发后x 秒时,⋅=∆41MON S (1)当x <2时,点M 在线段AO 上,点N 在线段BO 上.⋅=--41)3)(24(21x x 解得);s (225,2)s (225,21-=∴<±=x x x x (2)当2<x <3时,点M 在线段OC 上,点N 在线段BO 上,)3)(42(21x x --⋅=41解得);s (2521==x x (3)当x >3时,点M 在线段OC 上,点N 在线段OD 上,=--)3)(42(21x x ⋅41解得).s (225+=x 综上所述,出发后s,225+或s 25时,△MON 的面积为.m 412。

一元二次方程单元测试题及答案

一元二次方程单元测试题及答案

一元二次方程单元测试题及答案一、选择题1. 解一元二次方程 ax^2 + bx + c = 0 的常用方法不包括:A. 配方法B. 因式分解法C. 直接开平方法D. 微分法2. 已知方程 x^2 - 5x + 6 = 0 的两个根为 a 和 b,下列关系式正确的是:A. a + b = 5B. ab = 6C. a^2 + b^2 = 25D. a^2 - 5ab + b^2 = 13. 若一元二次方程 x^2 - 2x + 1 = 0 有两个相等的实根,则该方程的判别式Δ等于:A. 1B. 0C. -4D. 44. 一元二次方程 ax^2 + bx + c = 0 的根与系数的关系中,如果 a < 0,b > 0,c < 0,那么方程的根的情况是:A. 有两个正实根B. 有两个负实根C. 有一个正实根和一个负实根D. 没有实根5. 用配方法解方程 x^2 - 6x + 9 = 0,其解为:A. x = 3B. x = -3C. x = ±3D. x = 0二、填空题6. 方程 x^2 - 4x + 3 = 0 的两个根之积为 _______。

7. 方程 x^2 - 8x + 15 = 0 的两个根之和为 _______。

8. 已知一元二次方程 ax^2 + bx + c = 0 的两个根为 x1 和 x2,则a -b +c = _______。

9. 若一元二次方程 x^2 + px + q = 0 有两个不相等的实根,且这两个实根的倒数之和为 4,则 p = _______,q = _______。

三、解答题10. 解方程 x^2 - 3x - 4 = 0,并验证其解的正确性。

11. 已知一元二次方程 x^2 - (m-1)x - m^2 = 0 有两个不相等的实根,求 m 的取值范围。

12. 利用因式分解法解方程 2x^2 + 5x - 3 = 0,并指出其解的情况。

高中数学第二章一元二次函数方程和不等式知识点题库(带答案)

高中数学第二章一元二次函数方程和不等式知识点题库(带答案)

高中数学第二章一元二次函数方程和不等式知识点题库单选题1、设m ,n 为正数,且m +n =2,则4m+1+1n+1的最小值为( )A .134B .94C .74D .95 答案:B分析:将m +n =2拼凑为m+14+n+14=1,利用“1”的妙用及其基本不等式求解即可.∵m +n =2,∴(m +1)+(n +1)=4,即m+14+n+14=1,∴4m+1+1n+1=(4m+1+1n+1)(m+14+n+14)=n+1m+1+m+14(n+1)+54 ≥2√n+1m+1⋅m+14(n+1)+54=94,当且仅当n+1m+1=m+14(n+1),且m +n =2时,即m =53,n =13时等号成立.故选:B .2、若不等式ax 2+bx +c >0的解集为{x |−1<x <2},则不等式a (x 2+1)+b(x −1)+c >2ax 的解集是( )A .{x |0<x <3}B .{x |x <0或x >3}C .{x |1<x <3}D .{x |−1<x <3} 答案:A分析:由题知{ba =−1ca=−2,a <0,进而将不等式转化为x 2−3x <0,再解不等式即可. 解:由a (x 2+1)+b (x −1)+c >2ax ,整理得ax 2+(b −2a )x +(a +c −b )>0 ①. 又不等式ax 2+bx +c >0的解集为{x |−1<x <2},所以a <0,且{(−1)+2=−b a (−1)×2=c a,即{ba=−1ca=−2②. 将①两边同除以a 得:x 2+(ba −2)x +(1+ca −ba )<0③.将②代入③得:x2−3x<0,解得0<x<3.故选:A3、已知二次函数y=ax2+bx+c的图象如图所示,则不等式ax2+bx+c>0的解集是()A.{x|−2<x<1}B.{x|x<−2或x>1}C.{x|−2≤x≤1}D.{x|x≤−2或x≥1}答案:A分析:由二次函数与一元二次不等式关系,结合函数图象确定不等式解集.由二次函数图象知:ax2+bx+c>0有−2<x<1.故选:A4、某工厂近期要生产一批化工试剂,经市场调查得知,生产这批试剂的成本分为以下三个部分:①生产1单位试剂需要原料费50元;②支付所有职工的工资总额由7500元的基本工资和每生产1单位试剂补贴20元组成;③后续保养的费用是每单位(x+600x−30)元(试剂的总产量为x单位,50≤x≤200),则要使生产每单位试剂的成本最低,试剂总产量应为()A.60单位B.70单位C.80单位D.90单位答案:D分析:设生产每单位试剂的成本为y,求出原料总费用,职工的工资总额,后续保养总费用,从而表示出y,然后利用基本不等式求解最值即可.解:设每生产单位试剂的成本为y,因为试剂总产量为x单位,则由题意可知,原料总费用为50x元,职工的工资总额为7500+20x元,后续保养总费用为x(x+600x−30)元,则y=50x+7500+20x+x2−30x+600x =x+8100x+40≥2√x⋅8100x+40=220,当且仅当x=8100x,即x=90时取等号,满足50≤x≤200,所以要使生产每单位试剂的成本最低,试剂总产量应为90单位.故选:D.5、若“﹣2<x<3”是“x2+mx﹣2m2<0(m>0)”的充分不必要条件,则实数m的取值范围是()A.m≥1B.m≥2C.m≥3D.m≥4答案:C分析:x2+mx﹣2m2<0(m>0),解得﹣2m<x<m.根据“﹣2<x<3”是“x2+mx﹣2m2<0(m>0)”的充分不必要条件,可得﹣2m≤﹣2,3≤m,m>0.解出即可得出.解:x2+mx﹣2m2<0(m>0),解得﹣2m<x<m.∵“﹣2<x<3”是“x2+mx﹣2m2<0(m>0)”的充分不必要条件,∴﹣2m≤﹣2,3≤m,(两个等号不同时取)m>0.解得m≥3.则实数m的取值范围是[3,+∞).故选:C.6、已知p:a>b>0q:1a2<1b2,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案:A分析:根据a>b>0与1a2<1b2的互相推出情况判断出属于何种条件.当a>b>0时,a2>b2>0,所以1a2<1b2,所以充分性满足,当1a2<1b2时,取a=−2,b=1,此时a>b>0不满足,所以必要性不满足,所以p是q的充分不必要条件,故选:A.7、不等式(x+1)(x+3)<0的解集是()A.R B.∅C.{x∣−3<x<−1}D.{x∣x<−3,或x>−1}答案:C分析:根据一元二次不等式的解法计算可得;解:由(x+1)(x+3)<0,解得−3<x<−1,即不等式的解集为{x∣−3<x<−1};故选:C8、若不等式(ax−2)(|x|−b)≥0对任意的x∈(0,+∞)恒成立,则()A.a>0,ab=12B. a>0,ab=2C.a>0,a=2b D.a>0,b=2a答案:B分析:由选项可知a>0,故原不等式等价于(x−2a)(|x|−b)≥0,当b≤0时,不满足题意,故b>0,再由二次函数的性质即可求解由选项可知a>0,故原不等式等价于(x−2a)(|x|−b)≥0,当b≤0时,显然不满足题意,故b>0,由二次函数的性质可知,此时必有2a=b,即ab=2,故选:B多选题9、若−1<a<b<0,则()A.a2+b2>2ab B.1a <1bC.a+b>2√ab D.a+1a>b+1b答案:AD分析:应用作差法判断B、D,根据重要不等式判断A,由不等式性质判断C.A:由重要不等式知:a2+b2≥2ab,而−1<a<b<0,故a2+b2>2ab,正确;B:由−1<a<b<0,则1a −1b=b−aab>0,故1a>1b,错误;C:由−1<a<b<0,则a+b<0<2√ab,错误;D :(a +1a )−(b +1b )=a −b +1a −1b =a −b +b−a ab=(a −b)(ab−1ab)>0,故a +1a >b +1b ,正确.故选:AD10、下列说法中正确的是( ) A .若a >b ,则ac 2+1>bc 2+1 B .若-2<a <3,1<b <2,则-3<a -b <1 C .若a >b >0,m >0,则ma<mbD .若a >b ,c >d ,则ac >bd 答案:AC分析:利用不等式的性质对各选项逐一分析并判断作答.对于A ,因c 2+1>0,于是有1c 2+1>0,而a >b ,由不等式性质得a c 2+1>bc 2+1,A 正确; 对于B ,因为1<b <2,所以-2<-b <-1,同向不等式相加得-4<a -b <2,B 错误; 对于C ,因为a >b >0,所以1a <1b ,又因为m >0,所以ma <mb ,C 正确;对于D ,−1>−2且−2>−3,而(−1)⋅(−2)<(−2)(−3),即ac >bd 不一定成立,D 错误. 故选:AC11、下列说法正确的是( )A .若x >2,则函数y =x +1x−1的最小值为3B .若x >0,y >0,3x +1y =5,则3x +4y 的最小值为5 C .若x >0,则xx 2+1的最大值为12D .若x >0,y >0,x +y +xy =3,则xy 的最小值为1 答案:BC分析:利用基本不等式以及“1”的代换,结合不等式的解法,逐项判定,即可求解.对于A 中,由x >2,可得函数y =x +1x−1=(x −1)+1x−1+1≥2√(x −1)×1x−1+1=3, 当且仅当x −1=1x−1时,即x =2时等号成立,因为x >2,所以等号不成立,所以函数y =x +1x−1的最小值为不是3,所以A 不正确;对于B 中,由x >0,y >0,3x+1y=5,则3x +4y =15⋅(3x +4y)(3x+1y)=15×[13+(12y x+3x y)]≥15×(13+2√12y x×3x y)=5,当且仅当12y x=3x y时,即x =2y =1时,等号成立,所以3x +4y 的最小值为5,所以B 正确;对于C 中,由x >0,则x x 2+1=1x+1x因为x +1x≥2√x ×1x=2,当且仅当x =1x时,即x =1时,等号成立,所以x x 2+1的最大值为12,所以C 正确;对于D 中,由x >0,y >0,可得x +y +xy ≥2√xy +xy ,当且仅当x =y 时,等号成立, 所以xy +2√xy ≤3,即xy +2√xy −3=(√xy +3)(√xy −1)≤0, 解得0<√xy ≤1,即0<xy ≤1,所以xy 的最大值为1,所以D 不正确. 故选:BC.12、已知正数a ,b 满足a +2b =1,则( ) A .ab 有最大值18B .1a +2b 有最小值8 C .1b+ba有最小值4D .a 2+b 2有最小值15答案:ACD分析:A 由a ⋅2b ≤(a+2b 2)2即可确定ab 最大值;B 利用基本不等式“1”的代换有1a +2b =2b a+2a b+5即可求最小值;C 将a +2b =1代入,利用基本不等式即可求最小值;D 将a =1−2b 代入,结合二次函数的性质求最值. A :a ⋅2b ≤(a+2b 2)2=14,则ab ≤18当且仅当a =12,b =14时取等号,正确;B :1a +2b =(a +2b )(1a +2b )=2b a +2a b+5≥4+5=9,当且仅当a =b =13时取等号,错误;C :1b +ba =a+2b b+ba =2+ab +ba ≥2+2=4,当且仅当a =b =13时取等号,正确;D :a 2+b 2=(1−2b )2+b 2=5b 2−4b +1=5(b −25)2+15(0<b <12),故最小值为15,正确.故选:ACD13、下列命题不正确的()A.1a <1b<0⇒|a|>|b|B.ac>bc⇒a>bC.a 3>b3ab>0}⇒1a<1bD.a2>b2ab>0}⇒1a<1b答案:ABD分析:利用不等式的性质,结合特殊值法、比较法逐一判断即可.A:∵1a <1b<0∴ab>0且−1a>−1b>0,因此−1a⋅ab>−1b⋅ab>0⋅ab,即−b>−a>0⇒|−b|>|−a|>0⇒|b|>|a|,故本命题不正确;B:因为4−2>8−2,显然4>8不成立,所以本命题不正确;C:由a3>b3⇒a3−b3=(a−b)(a2+ab+b2)>0,而ab>0,所以有a>b,而1a −1b=b−aab<0⇒1a<1b,故本命题正确;D:若a=−2,b=−1,显然{a 2>b2ab>0成立,但是1−2<1−1不成立,故本命题不正确,故选:ABD小提示:方法点睛:关于不等式是否成立问题,一般有直接运用不等式性质法、特殊值法、比较法. 填空题14、已知a,b,c均为正实数,且aba+2b ⩾13,bcb+2c⩾14,cac+2a⩾15,那么1a+1b+1c的最大值为__________.答案:4分析:本题目主要考察不等式的简单性质,将已知条件进行简单变形即可因为a,b,c均为正实数,所以由题可得:0<a+2bab ≤3,0<b+2cbc≤4,0<c+2aac≤5,即0<1b+2a≤3,0<1c+2 b ≤4,0<1a+2c≤5,三式相加得:0<3(1a+1b+1c)≤12,所以0<1a+1b+1c≤4所以1a +1b+1c的最大值为4所以答案是:415、若a>0,b>0,则1a +ab2+b的最小值为____________.答案:2√2分析:两次利用基本不等式即可求出. ∵a >0,b >0, ∴1a +a b2+b ≥2√1a⋅a b2+b =2b+b ≥2√2b⋅b =2√2, 当且仅当1a =a b2且2b=b ,即所以1a +ab 2+b 的最小值为2√2. 所以答案是:2√2.16、已知a ,b ∈R ,若对任意x ≤0,不等式(ax +2)(x 2+2bx −1)≤0恒成立,则a +b 的最小值为___________. 答案:√3分析:考虑两个函数g(x)=ax +2,f(x)=x 2+2bx −1,由此确定a >0,x <0时,f(x),g(x)有相同的零点,得出a,b 的关系,检验此时f(x)也满足题意,然后计算出a +b (用a 表示),然后由基本不等式得最小值.设g(x)=ax +2,f(x)=x 2+2bx −1,f(x)图象是开口向上的抛物线,因此由x ≤0时,f(x)g(x)≤0恒成立得a >0, g(x)=0时,x =−2a ,x <−2a 时,g(x)<0,−2a <x ≤0时,g(x)>0, 因此x <−2a 时,f(x)>0,−2a <x ≤0时,f(x)<0,f(−2a )=0, 所以4a 2−4b a−1=0①,−b >−2a②,由①得b =1a−a 4,代入②得a 4−1a>−2a,因为a >0,此式显然成立.a +b =1a+3a 4≥2√1a×3a 4=√3,当且仅当1a=3a 4,即a =2√33时等号成立, 所以a +b 的最小值是√3. 所以答案是:√3.小提示:关键点点睛:本题考查不等式恒成立问题,考查基本不等式求最值.解题关键是引入两个函数f(x)和g(x),把三次函数转化为二次函数与一次函数,降低了难度.由两个函数的关系得出参数a,b 的关系,从而a b ==可求得a +b 的最小值. 解答题17、设函数f (x )=mx 2−mx −1.(1)若对于一切实数x ,f (x )<0恒成立,求m 的取值范围; (2)解不等式f (x )<(m −1)x 2+2x −2m −1. 答案:(1)(−4,0];(2)答案见解析.分析:(1)分别在m =0和m ≠0两种情况下,结合二次函数图象的分析可确定不等式组求得结果; (2)将不等式整理为(x −m )(x −2)<0,分别在m <2,m >2和m =2三种情况下求得结果. (1)由f (x )<0知:mx 2−mx −1<0, 当m =0时,−1<0,满足题意;当m ≠0时,则{m <0Δ=m 2+4m <0,解得:−4<m <0;综上所述:m 的取值范围为(−4,0].(2)由f (x )<(m −1)x 2+2x −2m −1得mx 2−mx −1−mx 2+x 2−2x +2m +1<0, 即x 2−(m +2)x +2m <0,即(x −m )(x −2)<0;当m <2时,解得:m <x <2;当m >2时,解得2<x <m ;当m =2时,解集为∅. 综上所述:当m <2时,解集为(m,2);当m >2时,解集为(2,m );当m =2时,解集为∅. 18、已知关于x 的不等式kx 2−2x +6k <0(k ≠0). (1)若不等式的解集是{x |x <−3或x >−2},求k 的值; (2)若不等式的解集是R ,求k 的取值范围; (3)若不等式的解集为∅,求k 的取值范围. 答案:(1)k =−25;(2)(−∞,−√66);(3)[√66,+∞). 分析:(1)由题意可知不等式kx 2−2x +6k =0的两根分别为−3、−2,利用韦达定理可求得实数k 的值; (2)由题意得出{k <0Δ<0,由此可解得实数k 的取值范围;(3)由题意得出{k >0Δ≤0,由此可解得实数k 的取值范围.(1)因为不等式kx 2−2x +6k <0(k ≠0)的解集是{x |x <−3或x >−2}, 所以,−3和−2是方程kx 2−2x +6k =0的两个实数根,且k <0, 由韦达定理得(−3)+(−2)=2k,所以k =−25;(2)由于不等式kx 2−2x +6k <0(k ≠0)的解集是R ,所以{k <0Δ=4−24k 2<0,解得k <−√66, 因此,实数k 的取值范围是(−∞,−√66); (3)由于不等式kx 2−2x +6k <0(k ≠0)的解集为∅, 则不等式kx 2−2x +6k ≥0(k ≠0)对任意的x ∈R 恒成立, 所以{k >0Δ=4−24k 2≤0,解得k ≥√66. 因此,实数k 的取值范围是[√66,+∞). 小提示:本题考查利用一元二次不等式的解求参数,同时也考查了一元二次不等式恒成立,考查计算能力,属于中等题.。

高中数学必修一第二章 一元二次函数、方程和不等式 单元测试(含答案)

高中数学必修一第二章 一元二次函数、方程和不等式 单元测试(含答案)

高中数学必修一第二章一、单选题1.已知集合A ={x‖x ―2|<1}, B ={x |x 2―2x ―3<0}.则A ∩B =A .{x |1<x <3}B .{x |―1<x <3}C .{x |―1<x <2}D .{x |x >3}2.下列结论成立的是( )A .若ac >bc ,则a >bB .若a >b ,则a 2>b 2C .若a >b ,c <d ,则a+c >b+dD .若a >b ,c >d ,则a ﹣d >b ﹣c3.已知关于 x 的不等式 a x 2―2x +3a <0 在 (0,2] 上有解,则实数 a 的取值范围是( )A .(―∞,33)B .(―∞,47)C .(33,+∞)D .(47,+∞)4.当x >3时,不等式x+1x ―1≥a 恒成立,则实数a 的取值范围是( ) A .(﹣∞,3]B .[3,+∞)C .[ 72,+∞)D .(﹣∞, 72]5.下列不等式恒成立的是( )A .a 2+b 2≤2abB .a +b ≥―2|ab |C .a 2+b 2≥―2abD .a +b ≤2|ab |6.已知 x >2 ,函数 y =4x ―2+x 的最小值是( ) A .5B .4C .8D .67.设正实数x ,y ,z 满足x 2―3xy +4y 2―z =0,则当xy z取得最大值时,2x +1y ―2z 的最大值是( )A .0B .1C .94D .38.已知正数x ,y 满足x+y =1,且 x 2y +1+y 2x +1≥m ,则m 的最大值为( ) A .163B .13C .2D .4二、多选题9.设正实数a ,b 满足a +b =1,则( )A .a 2b +b 2a ≥14B .1a +2b +12a +b ≥43C .a 2+b 2≥12D .a 3+b 3≥1410.若a ,b ∈(0,+∞),a +b =1,则下列说法正确的有( )A .(a +1a)(b +1b )的最小值为4B .1+a +1+b 的最大值为6C.1a +2b的最小值为3+22D.2aa2+b+ba+b2的最大值是3+23311.已知a,b是正实数,若2a+b=2,则( )A.ab的最大值是12B.12a+1b的最小值是2C.a2+b2的最小值是54D.14a+b+2a+b的最小值是3212.已知a,b,c为实数,则下列命题中正确的是( )A.若a c2<bc2,则a<b B.若ac>bc,则a>bC.若a>b,c>d,则a+c>b+d D.若a<b<0,则1a >1 b三、填空题13.不等式﹣2x(x﹣3)(3x+1)>0的解集为 .14.已知正实数x,y满足xy―x―2y=0,则x+y的最小值是 . 15.已知a,b均为正数,且ab―a―2b=0,则a24+b2的最小值为 .16.以max A表示数集A中最大的数.已知a>0,b>0,c>0,则M=max{1c +ba,1ac+b,ab+c}的最小值为 四、解答题17.已知U=R且A={x∣x2―5x―6<0},B={x∣―4≤x≤4},求:(1)A∪B;(2)(C U A)∩(C U B).18.解下列关于x的不等式:(1)x2―2x―3≤0;(2)―x2+4x―5>0;(3)x2―ax+a―1≤019.已知关于x的不等式2x2+x>2ax+a(a∈R).(1)若a=1,求不等式的解集;(2)解关于x的不等式.20.某县一中计划把一块边长为20米的等边三角形ABC的边角地辟为植物新品种实验基地,图中DE 需把基地分成面积相等的两部分,D在AB上,E在AC上.(1)设AD=x(x≥10),ED=y,试用x表示y的函数关系式;(2)如果DE是灌溉输水管道的位置,为了节约,则希望它最短,DE的位置应该在哪里?如果DE 是参观线路,则希望它最长,DE的位置又应该在哪里?说明理由.答案解析部分1.【答案】A2.【答案】D3.【答案】A4.【答案】D5.【答案】C6.【答案】D7.【答案】B8.【答案】B9.【答案】B,C,D10.【答案】B,C,D11.【答案】A,B12.【答案】A,C,D13.【答案】(﹣∞,﹣1)∪(0,3)314.【答案】3+2215.【答案】816.【答案】217.【答案】(1)解:因为A={x∣x2―5x―6<0}=(―1,6),且B={x∣―4≤x≤4}=[―4,4],则A ∪B=[―4,6).(2)解:由(1)可知,A=(―1,6),B=[―4,4],则C U A=(―∞,―1]∪[6,+∞),C U B=(―∞,―4)∪(4,+∞),所以(C U A)∩(C U B)=(―∞,―4)∪[6,+∞).18.【答案】(1)解:x2―2x―3≤0,(x―3)(x+1)≤0⇒x≤―1或x≥3,故解集为: (―∞,―1]∪[3,+∞).(2)解:―x2+4x―5>0,∴x2―4x+5<0⇒(x―2)2+1<0⇒x无解,故解集为: ∅(3)解:x2―ax+a―1≤0,∴[x―(a―1)](x―1)≤0,当a―1<1,即a<2时,解集为[a―1,1],当a―1=1,即a=2时,解集为x=1,当 a ―1>1 ,即 a >2 时,解集为 [1,a ―1] .所以:当 a <2 时,解集为 [a ―1,1] ,当 a =2 时,解集为 x =1 ,当 a >2 时,解集为 [1,a ―1] .19.【答案】(1)解:2x 2+x >2ax +a ,∴x (2x +1)>a (2x +1),∴(x ―a )(2x +1)>0,当a =1时,可得解集为{x |x >1或x <―12}.(2)对应方程的两个根为a ,―12,当a =―12时,原不等式的解集为{x |x ≠―12},当a >―12时,原不等式的解集为{x |x >a 或x <―12},当a <―12时,原不等式的解集为{x |x <a 或x >―12}.20.【答案】(1)解:∵△ABC 的边长是20米,D 在AB 上,则10≤x≤20,S △ADE = 12S △ABC ,∴12 x•AEsin60°= 12 • 34 •(20)2,故AE= 200x,在三角形ADE 中,由余弦定理得:y= x 2+4⋅104x 2―200 ,(10≤x≤20);(2)解:若DE 作为输水管道,则需求y 的最小值, ∴y= x 2+4⋅104x 2―200 ≥ 400―200 =10 2 ,当且仅当x 2= 4⋅104x 2即x=10 2 时“=”成立.。

部编版高中数学必修一第二章一元二次函数方程和不等式带答案真题

部编版高中数学必修一第二章一元二次函数方程和不等式带答案真题

(名师选题)部编版高中数学必修一第二章一元二次函数方程和不等式带答案真题单选题1、已知−1≤x +y ≤1,1≤x −y ≤5,则3x −2y 的取值范围是( ) A .[2,13]B .[3,13]C .[2,10]D .[5,10]2、已知a >b >0,下列不等式中正确的是( ) A .ca >cb B .ab <b 2C .a −b +1a−b ≥2D .1a−1<1b−13、已知x >0,y >0,x +2y =1,则1x +1y 的最小值为( ) A .3+2√2B .12C .8+4√3D .64、若对任意实数x >0,y >0,不等式x +√xy ≤a(x +y)恒成立,则实数a 的最小值为( ) A .√2−12B .√2−1C .√2+1D .√2+125、已知x >2,则x +4x−2的最小值为( ) A .6B .4C .3D .26、若非零实数a ,b 满足a <b ,则下列不等式成立的是( ) A .ab<1B .ba+ab>2C .1ab 2<1a 2b D .a 2+a <b 2+b7、若不等式ax 2+bx +2>0的解集是{x |−12<x <13},则ax +b >0的解集为( )A .(−∞,−16)B .(−∞,16)C .(−16,+∞)D .(16,+∞)8、若关于x 的不等式x 2−6x +11−a <0在区间(2,5)内有解,则实数a 的取值范围是( ) A .(−2,+∞)B .(3,+∞)C .(6,+∞)D .(2,+∞) 多选题9、小王从甲地到乙地往返的速度分别为a 和b(a <b),其全程的平均速度为v ,则( )A.a<v<√ab B.v=√abC.√ab<v<a+b2D.v=2aba+b10、下列选项中正确的是()A.不等式a+b≥2√ab恒成立B.存在实数a,使得不等式a+1a≤2成立C.若a,b为正实数,则ba +ab≥2D.若正实数x,y满足x+2y=1,则2x +1y≥811、十六世纪中叶,英国数学家雷科德在《砺智石》一书中首先把“=”作为等号使用,后来英国数学家哈利奥特首次使用“<”和“>”符号,并逐步被数学界接受,不等号的引入对不等式的发展影响深远.若a、b、c∈R,则下列命题正确的是()A.若a>b>0,则ac2>bc2B.若a<b<0,则a+1b <b+1aC.若a<b<c<0,则ba <b+ca+cD.若a>0,b>0,则b2a+a2b≥a+b填空题12、若实数a>b,则下列说法正确的是__________.(1)a+c>b+c;(2)ac<bc;(3)1a <1b;(4)a2>b2部编版高中数学必修一第二章一元二次函数方程和不等式带答案(十九)参考答案1、答案:A分析:设3x −2y =m (x +y )−n (x −y )=(m −n )x +(m +n )y ,求出m,n 的值,根据x +y,x −y 的范围,即可求出答案.设3x −2y =m (x +y )−n (x −y )=(m −n )x +(m +n )y ,所以{m −n =3m +n =−2,解得:{m =12n =−52,3x −2y =12(x +y )+52(x −y ), , 因为−1≤x +y ≤1,1≤x −y ≤5,所以3x −2y =12(x +y )+52(x −y )∈[2,13], 故选:A. 2、答案:C分析:由a >b >0,结合不等式的性质及基本不等式即可判断出结论. 解:对于选项A ,因为a >b >0,0<1a<1b,而c 的正负不确定,故A 错误;对于选项B ,因为a >b >0,所以ab >b 2,故B 错误;对于选项C ,依题意a >b >0,所以a −b >0,1a−b >0,所以a −b +1a−b ≥2√(a −b )×1a−b =2,故C 正确; 对于选项D ,因为a >b >0,a −1>b −1>−1,1a−1与1b−1正负不确定,故大小不确定,故D 错误; 故选:C. 3、答案:A分析:根据基本不等中“1”的用法,即可求出结果. 因为x >0,y >0,x +2y =1, 所以(1x +1y )(x +2y)=3+2y x+xy ≥3+2√2,当且仅当2yx =xy ,即x =√2−1,y =2−√22时,等号成立.故选:A. 4、答案:D分析:分离变量将问题转化为a ≥x+√xy x+y对于任意实数x >0,y >0恒成立,进而求出x+√xy x+y的最大值,设√yx=t(t >0)及1+t =m(m >1),然后通过基本不等式求得答案.由题意可得,a ≥x+√xy x+y对于任意实数x >0,y >0恒成立,则只需求x+√xy x+y的最大值即可,x+√xy x+y=1+√y x 1+y x,设√yx =t(t >0),则1+√y x 1+y x=1+t 1+t2,再设1+t =m(m >1),则1+√y x 1+y x=1+t 1+t2=m 1+(m−1)2=mm 2−2m+2=1m+2m−2≤2√m⋅m−2=2√2−2=√2+12,当且仅当m =2m⇒√yx=√2−1时取得“=”.所以a ≥√2+12,即实数a 的最小值为√2+12. 故选:D. 5、答案:A分析:利用基本不等式可得答案. ∵x >2,∴x −2>0,∴x +4x−2= x −2+4x−2+2≥2√(x −2)⋅4x−2+2=6, 当且仅当x −2=4x−2即x =4时, x +4x−2取最小值6, 故选:A . 6、答案:C分析:举出符合条件的特例即可判断选项A ,B ,D ,对于C ,作出不等式两边的差即可判断作答. 取a =−2,b =−1,满足a <b ,而ab =2>1,A 不成立;取a =−2,b =1,满足a <b ,而b a +a b =−12+(−2)=−52<2,B 不成立; 因1ab 2−1a 2b=a−b a 2b 2<0,即有1ab 2<1a 2b,C 成立;取a =−2,b =−1,满足a <b ,而a 2+a =2,b 2+b =0,即a 2+a >b 2+b ,D 不成立. 故选:C 7、答案:A分析:利用根于系数的关系先求出a,b ,再解不等式即可. 不等式ax 2+bx +2>0的解集是{x |−12<x <13}则根据对应方程的韦达定理得到:{(−12)+13=−ba (−12)⋅13=2a ,解得{a =−12b =−2,则−12x −2>0的解集为(−∞,−16)故选:A 8、答案:D分析:设f(x)=x 2−6x +11,由题意可得a >f(x)min ,从而可求出实数a 的取值范围 设f(x)=x 2−6x +11,开口向上,对称轴为直线x =3,所以要使不等式x 2−6x +11−a <0在区间(2,5)内有解,只要a >f(x)min 即可, 即a >f(3)=2,得a >2, 所以实数a 的取值范围为(2,+∞), 故选:D 9、答案:AD分析:根据题意,求得v ,结合基本不等式即可比较大小. 设甲、乙两地之间的距离为s ,则全程所需的时间为s a +sb , ∴v =2ss a +s b=2ab a+b.∵b >a >0,由基本不等式可得√ab <a+b 2,∴v =2aba+b <2√ab=√ab ,另一方面v =2aba+b <2⋅(a+b 2)2a+b=a+b 2,v −a =2ab a+b−a =ab−a 2a+b>a 2−a 2a+b=0,∴v >a ,则a <v <√ab .故选:AD.小提示:本题考查利用基本不等式比较大小,属基础题.10、答案:BCD分析:根据基本不等式的条件与“1”的用法等依次讨论各选项即可得答案. 解:对于A选项,当a<0,b<0时不成立,故错误;对于B选项,当a<0时,a+1a =−[(−a)+(−1a)]≤2,当且仅当a=−1等号成立,故正确;对于C选项,若a,b为正实数,则ba >0,ab>0,所以ba+ab≥2√ba⋅ab=2,当且仅当a=b时等号成立,故正确;对于D选项,由基本不等式“1”的用法得2x +1y=(2x+1y)(x+2y)=4+4yx+xy≥4+2√4yx⋅xy=8,当且仅当x=2y时等号成立,故正确.故选:BCD11、答案:BCD解析:取c=0可判断A选项的正误;利用作差法可判断BCD选项的正误. 对于A选项,当c=0时,则ac2=bc2,A选项错误;对于B选项,(a+1b )−(b+1a)=(a−b)+(1b−1a)=(a−b)+a−bab=(a−b)(1+1ab),∵a<b<0,a−b<0,ab>0,∴1+1ab >0,则(a+1b)−(b+1a)<0,B选项正确;对于C选项,ba −b+ca+c=b(a+c)−a(b+c)a(a+c)=c(b−a)a(a+c),∵a<b<c<0,则b−a>0,a+c<0,则ba −b+ca+c<0,C选项正确;对于D选项,(b2a +a2b)−(a+b)=b2−a2a+a2−b2b=(b2−a2)(1a−1b)=(b2−a2)(b−a)ab=(b+a)(b−a)2ab,∵a>0,b>0,则(b2a +a2b)−(a+b)=(b+a)(b−a)2ab≥0,D选项正确.故选:BCD.小提示:判断不等式是否成立,主要利用不等式的性质和特殊值验证两种方法,特别是对于有一定条件限制的选择题,用特殊值验证的方法更简便.12、答案:(1)分析:根据不等式的性质以及特殊值验证法,对四个说法逐一分析,由此确定正确的说法. 根据不等式的性质(1)正确;(2)中如果c≥0时不成立,故错误;(3)若a=1,b=−1时,1a <1b不成立,故错误;(4)若a=1,b=−1,a2>b2不成立,故错误.故答案为:(1)小提示:本小题主要考查不等式的性质,属于基础题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程单元复习题
1.将方程22x=3(x-6)化为一般形式后,二次项系数、一次项系数和常数项分别为( ) A.2、3、-6 B.2、-3、18 C.2、-3、6 D.2、3、6
2.解方程2(2x-1)2=6x-3,最适当的方法应是( )
A.直接开平方法B.配方法C.公式法D.西式分解莹
3.一元二次方程3x2=2x的根是( )
A.x1=0,x2=3
2
B.x1=0,x2=
2
3
-C.x=0 D.x1=0,x2=
2
3
4.已知一元二次方程x2+kx-3=0的一个根是x=1,则另一个根是( ) A.x=3 B.x=-1 C. x=-3 D.x=-2
5.若关于x的方程2x2-ax+a-2=0有两个相等的实数根,则a的值为( ) A.-4 B.4 C.4或-4 D.2
6.关于x的一元二次方程x2-mx+(m-2)=0的根的情况是( )
A.有两个不相等的实数根B.有两个相等的实数根
C.没有实数根D.无法确定
7.关于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一个根是0,则m的值为( ) A.3或-1 B.-3或1 C.1 D.-3
8.九年级(3)班文学小组在举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,全组一共互赠了240本图书.设全组共有x名同学,依题意,列出的方程是( )
A.x(x+1)=240 B.x(x-1)=240 C.2x(x+1)=240 D.1
2
x(x+1)=240
9.根据下面表格中的对应值:
判断方程以ax2+bx+c=0(a≠0,a、b、c都为常数)一个根x的取值范围为( ) A.6<x<6.17 B.6.17<x<6.18
C.6.18<x<6.19 D.6.19<x<6.20
10.如图是一次函数y=kx+b与反比例函数y=2
x
的图象,则关于x的方程
kx+b=2x
的解为 ( ) A .x 1=1,x 2=2 B .x 1=-2,x 2=-1
C .x 1=1,x 2=-2
D .x 1=2,x 2=-1
11.若关于x 的方程(k -1)x 2-4x+5=0是一元二次方程,则是的取值范围是________.
12. 若a 是方程x 2+x -1=0的一个根。

则代数式3a 2+3a -5的值为________.
13.已知三角形中每条边的长都是方程x 2-6x+8=0的根,则三角形的周长是________.
14.如果关于x 的一元二次方程x 2+px+q=0的两根分别为x 1=2,x 2=1,那么p+q 的值是________.
15. 已知x=-1是关于x 的方程2x 2+ax -a 2=0的一个根,则a=________.
16.若一元二次方程.x2-(a+2)x+2a=0的两个实数根分别是3、b ,
则a+b=________.
17.如图是一张长9 cm 、宽5 cm 的矩形纸板,将纸板的四个角各
剪去一个同样的正方形,可制成底面积是12 cm 2的一个无盖长方
体纸盒.设剪去的正方形边长为x cm ,则可列出 关于x 的方
程为________.
18.在等腰△ABC 中,BC=6,AB 、AC 的长是关于x 的方程x 2-l0x+m=0的两根,则m 的值为________.
19.用适当的方法解下列方程:
(1)4x 2+3x -1=0; (2)x 2-3x -2=0;
(3)x 2+2x -143=0; (4)(x+1)(x+8)=-12.
20.已知关于x 的一元二次方程x 2-mx+m -1=0有两个相等的实数根,求m 的值及方程的根.
21.已知△ABC 的两边AB 、BC 的长是关于x 的一元二次方程x 2-(2k+3)x+ k 2+3k+2=0的两个实数根,第三边的长为5.
(1)当k 为何值时,△ABC 是直角三角形?
(2)当k 为何值时,△ABC 是等腰三角形?请求出此时△ABC 的周长.
22.在一元二次方程ax 2+bx+c=0中,如果b 2+4ac ≥0,那么它的两个根是:
221244,22b b ac b b ac x x a a
-+----==.
通过计算可以得到:x1+x2=
b
a
-,x1x2=
c
a

由此可见,一元二次方程的两个根的和、两个根的积都是由一元二次方程的系数确定的.运用上述关系解答下面的问题:
(1)设方程2x2-6x-1=0的两个根分别为x1、x2,则
x1+x2=________,x l·x2=________.
(2) 方程x2+3x-2=0与方程2x2-6x-1=0所有实数根的和为多少?
23.某校团委准备举办学生绘画展览,为了美化画面,在长30 cm、宽20 cm的矩形画面四周镶上宽度相等的彩纸,并使彩纸的面积恰好与原画的面积相等(如图),求彩纸的宽度.
24.某公司投资新建了一座商场,共有商铺30间.据预测,当每间的年租金定为10万元时,可以全部租出.每间的年租金每增加5 000元,则少租出商铺l间.该公司要为租出的商铺每间每年交各种费用1万元,未租出的商铺每间每年交各种费用5000元.
(1)当每间商铺的年租金定为13万元时,能租出多少间?
(2)当每间商铺的年租金定为多少万元时,该公司的年收益(收益=租金-各种费用) 为275万元?
答案
一、l. B 2.D 3.D 4.C 5.B 6.A 7.D 8.B 9.C 10.C
二、11.k ≠1 12.-2 13.6或10或12 14.-1
15.-2或1 16.5 17.(9-2x)(5-2x)=12 18.24或25
三、19. (1)
121,14x x ==- (2) 132x +=,232x = (3) 1211,13x x ==- (4) 124,5x x =-=-
20.由题意可知,b 2-4ac=0,即m 2-4(m -1)=0,解得m=2.∴原方程化为x 2-2x+1=0, 解得121x x ==.∴原方程的根为121x x ==
21.(1)由方程x 2-(2k+3)x+k 2+3k+2=0,得b 2-4ac=1,∴无论k 取何值,方程均有实数根:x 1=k +1,x 2=k+2.不妨设AB=k+1,AC=k+2.第三边BC=5,∴当△ABC 为直角三角形时,分两种情况:
①当BC=5是斜边时,有AB 2+AC 2=BC 2,即(k+1)2+(k+2)2=25,解得k 1=2,k 2=-5(舍去);②当AC 是斜边时,有AB 2+BC 2=AC 2,即(k+1)2+52=(k+2)2,解得k=11.∴当k=2和k=11时,△ABC 是直角三角形 (2) AB=k+1,AC=k+2,BC=50, ∴当△ABC 是等腰三角形时,有两种情况:
①当AC=BC=5时,k+2=5,∴k=3.
∴△ABC 的周长为5+5+k+1=14;②当AB=BC=5时,k+1=5,∴k=4.∴△ABC 的周长为5+5+k+2=16.故当k=3和4时,△ABC 是等腰三角形,△ABC 的周长分别是14和16
22.(1)3 12
- (2)0 23.设彩纸的宽为x cm ,根据题意,得(30+2x)(20+2x)=2×30×20,整理,得x 2+25x -150= 0,解得12305,x x ==- (不合题意,舍去).答:彩纸的宽为5 cm
24.(1)30 000÷5 000=6,则能租出24间
(2)设每间商铺的年租金增加x 万元,则
()30103010.52750.50.50.5x x x x ⎛⎫⎛⎫-⨯+--⨯-⨯= ⎪ ⎪⎝⎭⎝⎭
, 2x 2-11x+5=0,解得
120.55,x x ==,则每间商铺的年租金定为10.5万元或15万元。

相关文档
最新文档