三角形(知识点+题型分类练习)

合集下载

全等三角形题型分类及练习

全等三角形题型分类及练习

全等三角形知识要点② 全等三角形面积相等. 2.证题的思路:⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧)找任意一边()找两角的夹边(已知两角)找夹已知边的另一角()找已知边的对角()找已知角的另一边(边为角的邻边)任意角(若边为角的对边,则找已知一边一角)找第三边()找直角()找夹角(已知两边AAS ASA ASA AAS SAS AAS SSS HL SAS 3. 请填空1) 全等形的概念两个______________的图形叫全等形。

2) 全等形的性质全等图形的________和__________都相同。

3) 全等三角形的判定____________________________________________________ 4)角平分线的性质角平分线的性质:___________________________ 5)角平分线的判定角平分线的判定的判定定理:_________________________________________ 6)三角形角平分线的性质三角形的三条内角平分线交于一点,并且这一点到三条边的距离相等。

题型汇总一、填空题(3分×10=30分) 题型:边角边证明三角形全等 1.如图(1),△ABC 中,AB =AC ,AD 平分∠BAC ,则__________≌__________.2.如图4,已知AB=BE ,BC=BD ,∠1=∠2,那么图中 ≌ ,AC= ,∠ABC= .3、如图,AB =AD ,∠BAD =∠C AE ,AC=AE ,求证:CB=ED4、已知:如图,AB =CD ,AB ∥DC. 求证:,AD∥BC , AD =BCAB CDE5、如图,D 、E 在BC 上,且BD=CE ,AD=AE ,∠ADE=∠AED ,求证:AB=AC 。

6、如图,已知AB=AD ,且AC 平分∠BAD ,求证:BC=DC题型:角角边证明三角形全等 1.如图(3),若∠1=∠2,∠C =∠D ,则△ADB ≌__________,理由______________________.2.如图(5),AB =AC ,BD ⊥AC 于D ,CE ⊥AB 于E ,交BD 于P ,则PD __________PE (填“<”或“>”或“=”).AB C D题型:角边角证明三角形全等1.如图(4),∠C=∠E,∠1=∠2,AC=AE,则△ABD按边分是__________ 三角形.2.(5分)已知EF是AB上的两点,AE=BF,AC∥BD,且AC=DB,求证:CF=DE.题型:边边边证明三角形全等1.如图(6),△ABC中,AB=AC,现利用证三角形全等证明∠B=∠C,若证三角形全等所用的公理是SSS公理,则图中所添加的辅助线AD应是____________________________.题型:角平分线的应用1、如图,在△AB C中,∠C=90°,AD平分∠BAC,BC=10cm,BD=6cm,则点D到AB的距离为___________。

八年级上册第一章三角形整章复习知识点和对应练习

八年级上册第一章三角形整章复习知识点和对应练习

T ——三角形一、知识梳理:专题一:三角形有关的线段;专题二:三角形有关的角;专题三:多边形及其内角和.二、考点分类专题一:三角形有关的线段考点一:三角形的边1.三角形的概念:由不在同一直线上的三条线段首尾顺次相接所组成的图形.2.三角形分类:(1)按角的关系分类 (2)按边的关系分类⎧⎪⎧⎨⎨⎪⎩⎩直角三角形三角形锐角三角形斜三角形钝角三角形⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形底和腰不相等的等腰三角形等腰三角形等边三角形 3.三角形的三边关系:两边之和大于第三边,两边之差小于第三边.【例1】【类型一】 判定三条线段能否组成三角形以下列各组线段为边,能组成三角形的是( )A .2cm ,3cm ,5cm ;B .5cm ,6cm ,10cm ;C .1cm ,1cm ,3cm ;D .3cm ,4cm ,9cm 解析:选项A 中2+3=5,不能组成三角形,故此选项错误;选项B 中5+6>10,能组成三角形,故此选项正确;选项C 中1+1<3,不能组成三角形,故此选项错误;选项D 中3+4<9,不能组成三角形,故此选项错误.故选B.方法总结:判定三条线段能否组成三角形,只要判定两条较短的线段长度之和大于第三条线段的长度即可.【类型二】 判断三角形边的取值范围一个三角形的三边长分别为4,7,x ,那么x 的取值范围是( )A .3<x <11 ;B .4<x <7 ;C .-3<x <11 ;D .x >3解析:∵三角形的三边长分别为4,7,x ,∴7-4<x <7+4,即3<x <11.故选A.方法总结:判断三角形边的取值范围要同时运用两边之和大于第三边,两边之差小于第三边.有时还要结合不等式的知识进行解决.【类型三】等腰三角形的三边关系已知一个等腰三角形的两边长分别为4和9,求这个三角形的周长.解析:先根据等腰三角形两腰相等的性质可得出第三边长的两种情况,再根据两边和大于第三边来判断能否构成三角形,从而求解.解:根据题意可知等腰三角形的三边可能是4,4,9或4,9,9,∵4+4<9,故4,4,9不能构成三角形,应舍去;4+9>9,故4,9,9能构成三角形,∴它的周长是4+9+9=22.方法总结:在求三角形的边长时,要注意利用三角形的三边关系验证所求出的边长能否组成三角形.【类型四】三角形三边关系与绝对值的综合若a,b,c是△ABC的三边长,化简|a-b-c|+|b-c-a|+|c+a-b|.解析:根据三角形三边关系:两边之和大于第三边,两边之差小于第三边,来判定绝对值里的式子的正负,然后去绝对值符号进行计算即可.解:根据三角形的三边关系,两边之和大于第三边,得a-b-c<0,b-c-a<0,c+a-b>0.∴|a-b-c|+|b-c-a|+|c+a-b|=b+c-a+c+a-b+c+a-b=3c+a-b.方法总结:绝对值的化简首先要判断绝对值符号里面的式子的正负,然后根据绝对值的性质将绝对值的符号去掉,最后进行化简.此类问题就是根据三角形的三边关系,判断绝对值符号里面式子的正负,然后进行化简.考点二:三角形的高、中线与角平分线1.三角形的高:从三角形的一个顶点向它的对边作垂线,顶点和垂足间的线段叫做三角形的高.2.三角形的中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.3.三角形的角平分线:三角形的一个角的平分线与这个角的对边相交,连接这个角的顶点与交点的线段叫做三角形的角平分线.【例2】探究点一:三角形的高【类型一】三角形高的画法画△ABC的边AB上的高,下列画法中,正确的是( )解:过点C 作边AB 的垂线段,即画AB 边上的高CD ,所以画法正确的是D.故选D. 方法总结:三角形任意一边上的高必须满足:(1)过该边所对的顶点;(2)垂足必须在该边或在该边的延长线上.【类型二】 根据三角形的面积求高如图所示①,在△ABC 中,AB =AC =5,BC =6,AD ⊥BC 于点D ,且AD =4,若点P 在边AC 上移动,则BP 的最小值为________.解析:根据垂线段最短,可知当BP ⊥AC 时,BP 有最小值.由△ABC 的面积公式可知12AD ·BC =12BP ·AC ,解得BP =245方法总结:解答此题可利用面积相等作桥梁(但不求面积)求三角形的高,这种解题方法通常称为“面积法”.① ② ③ ④ 探究点二:三角形的中线【类型一】 应用三角形的中线求线段的长如图②在△ABC 中,AC =5cm ,AD 是△ABC 的中线,若△ABD 的周长比△ADC 的周长大2cm ,则BA =________.解析:如图,∵AD 是△ABC 的中线,∴BD =CD ,∴△ABD 的周长-△ADC 的周长=(BA +BD +AD )-(AC +AD +CD )=BA -AC ,∴BA -5=2,∴BA =7cm.方法总结:通过本题要理解三角形的中线的定义,解决问题的关键是将△ABD 与△ADC 的周长之差转化为边长的差.【类型二】 利用中线解决三角形的面积问题如图③,在△ABC 中,E 是BC 上的一点,EC =2BE ,点D 是AC 的中点,设△ABC ,△ADF 和△BEF 的面积分别为S △ABC ,S △ADF 和S △BEF ,且S △ABC =12,则S △ADF -S △BEF =________.解析:∵点D 是AC 的中点,∴AD =12AC .∵S △ABC =12,∴S △ABD =12S △ABC =12×12=6.∵EC =2BE ,S △ABC =12,∴S △ABE =13S △ABC =13×12=4.∵S △ABD -S △ABE =(S △ADF +S △ABF )-(S △ABF +S △BEF )=S △ADF -S △BEF ,即S △ADF -S △BEF =S △ABD -S △ABE =6-4=2.故答案为2.方法总结:三角形的中线将三角形分成面积相等的两部分;高相等时,面积的比等于底边的比;底相等时,面积的比等于高的比.探究点三:三角形的角平分线如图④,已知:AD 是△ABC 的角平分线,CE 是△ABC 的高,∠BAC =60°,∠BCE =40°,求∠ADB 的度数.解析:根据AD 是△ABC 的角平分线,∠BAC =60°,得出∠BAD =30°,再利用CE 是△ABC 的高,∠BCE =40°,得出∠B 的度数,进而得出∠ADB 的度数.解:∵AD 是△ABC 的角平分线,∠BAC =60°,∴∠DAC =∠BAD =30°.∵CE 是△ABC 的高,∠BCE =40°,∴∠B =50°,∴∠ADB =180°-∠B -∠BAD =180°-50°-30°=100°.方法总结:通过本题要灵活掌握三角形的角平分线的表示方法,同时此类问题往往和三角形的高综合考查.考点三:三角形的稳定性【例3】要使四边形木架(用4根木条钉成)不变形,至少需要加钉1根木条固定,要使五边形木架不变形,至少需要加2根木条固定,要使六边形木架不变形,至少需要加3根木条固定,…,那么要使一个n 边形木架不变形,至少需要几根木条固定?解析:由于多边形(三边以上的)不具有稳定性,将其转化为三角形后木架的形状就不变了.根据具体多边形转化为三角形的经验及题中所加木条可找到一般规律.解:过n 边形的一个顶点可以作(n -3)条对角线,把多边形分成(n -2)个三角形,所以,要使一个n 边形木架不变形,至少需要(n -3)根木条固定.方法总结:将多边形转化为三角形时,所需要的木条根数,可从具体到一般去发现规律,然后验证求解.专题二:三角形有关的角考点四:三角形的内角1.三角形的内角和定理:三角形的内角和等于180°2.直角三角形的性质:直角三角形两锐角互余【例4】探究点一:三角形的内角和【类型一】 求三角形内角的度数已知,如图①,D 是△ABC 中BC 边延长线上一点,DF ⊥AB 交AB 于F ,交AC 于E ,若∠A =46°,∠D =50°.求∠ACB 的度数.① ② 解析:在Rt △DFB 中,根据三角形内角和定理,求得∠B 的度数,再在△ABC 中求∠ACB 的度数即可.解:在△DFB 中,∵DF ⊥AB ,∴∠DFB =90°.∵∠D =50°,∠DFB +∠D +∠B =180°,∴∠B =40°.在△ABC 中,∵∠A =46°,∠B =40°,∴∠ACB =180°-∠A -∠B =94°. 方法总结:求三角形的内角,必然和三角形内角和定理有关,解决问题时要根据图形特点,在不同的三角形中,灵活运用三角形内角和定理求解.【类型二】 判断三角形的形状一个三角形的三个内角的度数之比为1∶2∶3,这个三角形一定是( )A .直角三角形B .锐角三角形C .钝角三角形D .无法判定解析:设这个三角形的三个内角的度数分别是x ,2x ,3x ,根据三角形的内角和为180°,得x +2x +3x =180°,解得x =30°,∴这个三角形的三个内角的度数分别是30°,60°,90°,即这个三角形是直角三角形.故选A.方法总结:在解决有关比例问题时,通常先设比例系数,然后列方程求解.【类型三】 三角形的内角与角平分线、高的综合运用如图②,在△ABC 中,∠A =12∠B =13∠ACB ,CD 是△ABC 的高,CE 是∠ACB 的角平分线,求∠DCE 的度数.解析:根据已知条件用∠A 表示出∠B 和∠ACB ,利用三角形的内角和求出∠A ,再求出∠ACB ,∠ACD ,最后根据角平分线的定义求出∠ACE 即可求得∠DCE 的度数.解:∵∠A =12∠B =13∠ACB ,设∠A =x ,∴∠B =2x ,∠ACB =3x .∵∠A +∠B +∠ACB =180°,∴x +2x +3x =180°,解得x =30°,∴∠A =30°,∠ACB =90°.∵CD 是△ABC 的高,∴∠ADC =90°,∴∠ACD =180°-90°-30°=60°.∵CE 是∠ACB 的角平分线,∴∠ACE =12×90°=45°,∴∠DCE =∠ACD -∠ACE =60°-45°=15°.方法总结:本题是常见的几何计算题,解题的关键是利用三角形的内角和定理和角平分线的性质,找出角与角之间的关系并结合图形解答.探究点二:直角三角形的性质【类型一】 直角三角形性质的运用如图,CE ⊥AF ,垂足为E ,CE 与BF 相交于点D ,∠F =40°,∠C =30°,求∠EDF 、∠DBC 的度数.解析:根据直角三角形两锐角互余列式计算即可求出∠EDF ,再根据三角形的内角和定理求出∠C +∠DBC =∠F +∠DEF ,然后求解即可.解:∵CE ⊥AF ,∴∠DEF =90°,∴∠EDF =90°-∠F =90°-40°=50°.由三角形的内角和定理得∠C +∠DBC +∠CDB =∠F +∠DEF +∠EDF ,∴30°+∠DBC =40°+90°,∴∠DBC =100°.方法总结:本题主要利用了直角三角形两锐角互余的性质和三角形的内角和定理,熟记性质并准确识图是解题的关键.考点五:三角形的外角1.三角形外角的定义:三角形的一边与另一边的延长线组成的角.2.三角形外角的性质:三角形的外角等于与它不相邻的两内角的和;三角形的一个外角大于与它不相邻的任何一个内角.【例5】探究点:三角形的外角【类型一】 应用三角形的外角求角的度数如图所示,P 为△ABC 内一点,∠BPC =150°,∠ABP =20°,∠ACP =30°,求∠A 的度数.解析:延长BP交AC于E或连接AP并延长,构造三角形的外角,再利用外角的性质即可求出∠A的度数.解:延长BP交AC于点E,则∠BPC,∠PEC分别为△PCE,△ABE的外角,∴∠BPC=∠PEC +∠PCE,∠PEC=∠ABE+∠A,∴∠PEC=∠BPC-∠PCE=150°-30°=120°.∴∠A=∠PEC-∠ABE=120°-20°=100°.方法总结:利用三角形的外角的性质将已知与未知的角联系起来是计算角的度数的方法.【类型二】用三角形外角的性质把几个角的和分别转化为一个三角形的内角和已知:如图为一五角星,求证:∠A+∠B+∠C+∠D+∠E=180°.解析:根据三角形外角性质得出∠EFG=∠B+∠D,∠EGF=∠A+∠C,根据三角形内角和定理得出∠E+∠EGF+∠EFG=180°,代入即可得证.证明:∵∠EFG、∠EGF分别是△BDF、△ACG的外角,∴∠EFG=∠B+∠D,∠EGF=∠A +∠C.又∵在△EFG中,∠E+∠EGF+∠EFG=180°,∴∠A+∠B+∠C+∠D+∠E=180°.方法总结:解决此类问题的关键是根据图形的特点,利用三角形外角的性质将分散的角集中到某个三角形中,利用三角形内角和进行解决.【类型三】三角形外角的性质和角平分线的综合应用如图①,∠ACD是△ABC的外角,BE平分∠ABC,CE平分∠ACD,且BE、CE交于点E.(1)如果∠A=60°,∠ABC=50°,求∠E的度数;(2)猜想:∠E与∠A有什么数量关系(写出结论即可);(3)如图②,点E是△ABC两外角平分线BE、CE的交点,探索∠E与∠A之间的数量关系,并说明理由.解析:先计算特殊角的情况,再综合运用三角形的内角和定理及其推论结合三角形的角平分线概念解决.解:(1)根据外角的性质得∠ACD =∠A +∠ABC =60°+50°=110°,∵BE 平分∠ABC ,CE 平分∠ACD ,∴∠1=12∠ACD =55°,∠2=12∠ABC =25°.∵∠E +∠2=∠1,∴∠E =∠1-∠2=30°;(2)猜想:∠E =12∠A ; (3)∵BE 、CE 是两外角的平分线,∴∠2=12∠CBD ,∠4=12∠BCF ,而∠CBD =∠A +∠ACB ,∠BCF =∠A +∠ABC ,∴∠2=12(∠A +∠ACB ),∠4=12(∠A +∠ABC ).∵∠E +∠2+∠4=180°,∴∠E +12(∠A +∠ACB )+12(∠A +∠ABC )=180°,即∠E +12∠A +12(∠A +∠ACB +∠ABC )=180°.∵∠A +∠ACB +∠ABC =180°,∴∠E +12∠A =90°. 方法总结:对于本题发现的结论要予以重视:图①中,∠E =12∠A ;图②中,∠E =90°-12∠A .考点六:多边形及其内角和多边形1.定义:在同一平面内,由不在同一条直线上的一些线段首尾顺次相接组成的封闭图形.2.相关概念:顶点、边、内角、对角线.3.多边形的对角线:n 边形从一个顶点出发的对角线条数为(n -3)条;n 边形共有对角线n (n -3)2条(n ≥3).4.正多边形:如果多边形的各边都相等,各内角也都相等,那么就称为正多边形. 多边形的内角和与外角和1.性质:多边形的内角和等于(n -2)·180°;多边形的外角和等于360°.2.多边形的边数与内角和、外角和的关系:(1)n 边形的内角和等于(n -2)·180°(n ≥3,n 是正整数),可见多边形内角和与边数n 有关,每增加1条边,内角和增加180°.(2)多边形的外角和等于360°,与边数的多少无关.(3).正n 边形:正n 边形的内角的度数为(n -2)·180°n ,外角的度数为360°n. 【例6】探究点一:多边形的概念【类型一】 多边形及其概念下列图形不是凸多边形的是( )解析:根据凸多边形的概念,如果多边形的边都在任意一条边所在的直线的同旁,该多边形即是凸多边形,否则即是凹多边形.由此可得选项D 的图形不是凸多边形.故选D. 方法总结:多边形可分为凸多边形和凹多边形,辨别凸多边形可有两种方法:(1)画多边形任何一边所在的直线,整个多边形都在此直线的同一侧;(2)每个内角的度数均小于180°.通常所说的多边形指凸多边形.【类型二】 确定多边形的边数若一个多边形截去一个角后,变成十五边形,则原来的多边形的边数可能为( )A .14或15或16B .15或16C .14或16D .15或16或17解析:一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条,则多边形的边数是14,15或16.故选A. 方法总结:一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条,解决此类问题可以亲自动手画一下.探究点二:多边形的对角线【类型一】 确定多边形的对角线的条数从四边形的一个顶点出发可画________条对角线,从五边形的一个顶点出发可画________条对角线,从六边形的一个顶点出发可画________条对角线,请猜想从七边形的一个顶点出发有________条对角线,从n 边形的一个顶点出发有________条对角线,从而推导出n 边形共有________条对角线.解析:根据n 边形从一个顶点出发可引出(n -3)条对角线.从n 个顶点出发引出n (n -3)条对角线,而每条重复一次,可得答案.解:从四边形的一个顶点出发可画1条对角线,从五边形的一个顶点出发可画2条对角线,从六边形的一个顶点出发可画3条对角线,从七边形的一个顶点出发有4条对角线,从n 边形的一个顶点出发有(n -3)条对角线,从而推导出n 边形共有n (n -3)2条对角线. 方法总结:(1)多边形有n 条边,则经过多边形的一个顶点的对角线有(n -3)条;(2)多边形有n 条边,对角线的条数为n (n -3)2.【类型二】 根据对角线条数确定多边形的边数从一个多边形的任意一个顶点出发都只有5条对角线,则它的边数是( )A .6B .7C .8D .9解析:设这个多边形是n 边形.依题意,得n -3=5,解得n =8.故这个多边形的边数是8.故选C.【类型三】 根据分成三角形的个数,确定多边形的边数连接多边形的一个顶点与其他顶点的线段把这个多边形分成了6个三角形,则原多边形是( )A .五边形B .六边形C .七边形D .八边形解析:设原多边形是n 边形,则n -2=6,解得n =8.故选D.方法总结:从n 边形的一个顶点出发可引出(n -3)条对角线,这(n -3)条对角线把n 边形分成(n -2)个三角形.探究点三:正多边形的有关概念下列图形中,是正多边形的是( )A .等腰三角形B .长方形C .正方形D .五边都相等的五边形解析:根据正多边形的定义:各个角都相等,各条边都相等的多边形叫做正多边形进行解答.正方形四个角相等,四条边都相等,故选C. 方法总结:解答此类问题的关键是要搞清楚正多边形的定义,各个角相等、各条边相等的多边形是正多边形,这两个条件缺一不可.探究点一:多边形的内角和【类型一】利用内角和求边数一个多边形的内角和为540°,则它是( )A.四边形 B.五边形C.六边形 D.七边形解析:熟记多边形的内角和公式(n-2)·180°设它是n边形,根据题意得(n-2)·180=540,解得n=5.故选B.【类型二】求多边形的内角和一个多边形的内角和为1800°,截去一个角后,得到的多边形的内角和为( )A.1620° B.1800°C.1980° D.以上答案都有可能解析:1800÷180=10,∴原多边形边数为10+2=12.∵一个多边形截去一个内角后,边数可能减1,可能不变,也可能加1,∴新多边形的边数可能是11,12,13,∴新多边形的内角和可能是1620°,1800°,1980°.故选D.方法总结:一个多边形截去一个内角后,边数可能减1,可能不变,也可能加1.根据多边形的内角和公式求出原多边形的边数是解题的关键.【类型三】复杂图形中的角度计算如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7=( )A.450° B.540°C.630° D.720°解析:如图,∵∠3+∠4=∠8+∠9,∴∠1+∠2+∠3+∠4+∠5+∠6+∠7=∠1+∠2+∠8+∠9+∠5+∠6+∠7=五边形的内角和=540°,故选B.方法总结:本题考查了灵活运用五边形的内角和定理和三角形内外角关系.根据图形特点,将问题转化为熟知的问题,体现了转化思想的优越性.【类型四】利用方程和不等式确定多边形的边数一个同学在进行多边形的内角和计算时,求得内角和为1125°,当他发现错了以后,重新检查,发现少算了一个内角,问这个内角是多少度?他求的是几边形的内角和?解析:本题首先由题意找出不等关系列出不等式,进而求出这一内角的取值范围;然后可确定这一内角的度数,进一步得出这个多边形的边数.解:设此多边形的内角和为x,则有1125°<x<1125°+180°,即180°×6+45°<x<180°×7+45°,因为x为多边形的内角和,所以它是180°的倍数,所以x=180°×7=1260°.所以7+2=9,1260°-1125°=135°.因此,漏加的这个内角是135°,这个多边形是九边形.方法总结:解题的关键是由题意列出不等式求出这个多边形的边数.探究点二:多边形的外角和【类型一】已知各相等外角的度数,求多边形的边数正多边形的一个外角等于36°,则该多边形是正( )A.八边形 B.九边形C.十边形 D.十一边形解析:正多边形的边数为360°÷36°=10,则这个多边形是正十边形.故选C.方法总结:如果已知正多边形的一个外角,求边数可直接利用外角和除以这个角即可.【类型二】多边形内角和与外角和的综合运用一个多边形的内角和与外角和的和为540°,则它是( )A.五边形 B.四边形C.三角形 D.不能确定解析:设这个多边形的边数为n,则依题意可得(n-2)×180°+360°=540°,解得n =3,∴这个多边形是三角形.故选C.方法总结:熟练掌握多边形的内角和定理及外角和定理,解题的关键是由已知等量关系列出方程从而解决问题.。

2022-2023学年人教版八年级数学上册《第12章全等三角形》期末复习题型分类练习题(附答案)

2022-2023学年人教版八年级数学上册《第12章全等三角形》期末复习题型分类练习题(附答案)

2022-2023学年人教版八年级数学上册《第12章全等三角形》期末复习题型分类练习题(附答案)一.三角形的面积1.等面积法是一种常用的、重要的数学解题方法.(1)如图1,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,AB=5,CD⊥AB,则CD长为;(2)如图2,在△ABC中,AB=4,BC=2,则△ABC的高CD与AE的比是;(3)如图3,在△ABC中,∠C=90°(∠A<∠ABC),点D,P分别在边AB,AC上,且BP=AP,DE⊥BP,DF⊥AP,垂足分别为点E,F.若BC=5,求DE+DF的值.二.全等图形2.下列各组图形中,属于全等图形的是()A.B.C.D.3.如图,已知方格纸中是4个相同的正方形,则∠1与∠2的和为()A.100°B.90°C.60°D.45°三.全等三角形的性质4.如图,已知△ABC≌△DCB,∠A=75°,∠DBC=40°,则∠DCB的度数为()A.75°B.65°C.40°D.30°5.如图,△ABC≌△AED,点E在线段BC上,∠1=56°,则∠AED的大小为()A.34°B.56°C.62°D.68°6.如图,点B,E,C,F在同一直线上,△ABC≌△DEF,BC=8,BF=11.5,则EC的长为()A.5B.4.5C.4D.3.57.如图所示,△ABC≌△AEF.在下列结论中,不正确的是()A.∠EAB=∠F AC B.BC=EF C.CA平分∠BCF D.∠BAC=∠CAF 8.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,若△ABC≌△A′B′C,且点A′恰好落在AB上,则∠ACA′的度数为()A.30°B.45°C.50°D.60°9.如图,△ABC≌△ADE,且AE∥BD,∠BAD=94°,则∠BAC的度数的值为()A.84°B.60°C.48°D.43°10.如图,Rt△AOB≌Rt△CDA,且点A、B的坐标分别为(﹣1,0),(0,2),则OD长是()A.2B.5C.4D.311.如图,△ABC≌△DEF,点A,B分别对应点D,E.若∠A=70°,∠B=50°,则∠1等于()A.50°B.60°C.70°D.80°12.如图,△ACB≌△A′CB',∠BCB'=30°,则∠ACA'的度数为()A.20°B.30°C.35°D.40°四.全等三角形的判定13.如图,AB∥DE,AB=DE,添加下列条件,仍不能判断△ABC≌△DEF的是()A.AC=DF B.BF=CE C.∠A=∠D D.AC∥DF14.下列四个三角形中,与图中的△ABC全等的是()A.B.C.D.15.如图,∠1=∠2,添加下列条件,不能使△ABC≌△BAD的是()A.∠CAB=∠DBA B.AC=BD C.∠C=∠D D.AD=BC16.如图,已知线段AB=40米,MA⊥AB于点A,MA=20米,射线BD⊥AB于B,P点从B点向A运动,每秒走1米,Q点从B点向D运动,每秒走3米,P、Q同时从B出发,则出发x秒后,在线段MA上有一点C,使△CAP与△PBQ全等,则x的值为()A.8B.8或10C.10D.6或1017.工人师傅常常利用角尺构造全等三角形的方法来平分一个角.如图,在∠AOB的两边OA、OB上分别在取OC=OD,移动角尺,使角尺两边相同的刻度分别与点C、D重合,这时过角尺顶点M的射线OM就是∠AOB的平分线,这里构造全等三角形的依据是()A.SSS B.ASA C.AAS D.SAS18.如图,若∠B=∠C,下列结论正确的是()A.△BOE≌△COD B.△ABD≌△ACE C.AE=AD D.∠AEC=∠ADB 19.如图,已知AB=DE,AC=DF,BE=CF.则△ABC≌△DEF的理由是()A.SAS B.ASA C.SSS D.AAS20.在学习完“探索三角形全等的条件”一节后,一同学总结出很多全等三角形的模型,他设计了以下问题给同桌解决:如图,做一个“U”字形框架P ABQ,其中AB=42cm,AP,BQ足够长,P A⊥AB于A,QB⊥AB于点B,点M从B出发向A运动,同时点N从B出发向Q运动,使M,N运动的速度之比3:4,当两点运动到某一瞬间同时停止,此时在射线AP上取点C,使△ACM与△BMN全等,则线段AC的长为()A.18cm B.24cm C.18cm或28cm D.18cm或24cm 21.下列三角形与如图全等的三角形是()A.B.C.D.22.如图,DE⊥BA,DF⊥BC,垂足分别为E,F,DE=DF.则△BDE≌△BDF的依据是()A.SAS B.AAS C.SSS D.HL五.全等三角形的判定与性质23.如图,点E是△ABC的边AC的中点,过点C作CF∥AB,连接FE并延长,交AB于点D,若AB=9,CF=6,则BD的长为()A.2B.2.5C.3D.4.524.如图,AD是△ABC的中线,CE∥AB交AD的延长线于点E,AB=5,AC=7,则AD的取值可能是()A.3B.6C.8D.1225.如图,在△ABC中,AB=AC,点D是△ABC外一点,连接AD、BD、CD,且BD交AC于点O,在BD上取一点E,使得AE=AD,∠EAD=∠BAC,若∠ABC=62°,则∠BDC的度数为()A.56°B.60°C.62°D.64°26.如图,在△ABC中,AD⊥BC于点D,BE⊥AC与点E,BE与AD交于点F,若AD=BD=5,CD=3,则AF的长为()A.3B.3.5C.2.5D.227.如图,∠AOC=∠BOC,点P在OC上,PD⊥OA于点D,PE⊥OB于点E,若OD=4,OP=5,则PE的长为()A.3B.C.4D.28.如图,在正方形OABC中,O是坐标原点,点A的坐标为(1,),则点C的坐标是()A.(﹣,1)B.(﹣1,)C.(﹣,1)D.(﹣,﹣1)29.如图,在△ABD中,AD=AB,∠DAB=90°,在△ACE中,AC=AE,∠EAC=90°,CD,BE相交于点F,有下列四个结论:①∠BDC=∠BEC;②F A平分∠DFE;③DC⊥BE;④DC=BE.其中,正确的结论有()A.①②③④B.①③④C.②③D.②③④30.如图,点E是BC的中点,AB⊥BC,DC⊥BC,AE平分∠BAD,下列结论:①∠AED =90°;②∠ADE=∠CDE;③DE=BE;④AD=AB+CD,四个结论中成立的是()A.①③B.①②③C.②③④D.①②④31.一个三角形的两边长分别为5和9,设第三边上的中线长为x,则x的取值范围是()A.x>5B.x<7C.4<x<14D.2<x<732.如图,E是∠AOB平分线上的一点,EC⊥OA于点C,ED⊥OB于点D,连结CD,若∠ECD=25°,则∠AOB=()A.50°B.45°C.40°D.25°33.如图,点B,E,C,F在一条直线上,AC与DE相交于点O,AB=DE,AB∥DE,BE=CF.(1)求证:AC∥DF;(2)若∠B=65°,∠F=35°,求∠EOC的度数.34.如图1,∠DAB=90°,CD⊥AD于点D,点E是线段AD上的一点,若DE=AB,DC =AE.(1)判断CE与BE的关系是.(2)如图2,若点E在线段DA的延长线上,过点D在AD的另一侧作CD⊥AD,并保持CD=AE,DE=AB,连接CB,CE,BE,试说明(1)中结论是否成立,并说明理由.35.如图,已知AE⊥AB,AF⊥AC.AE=AB,AF=AC,BF与CE相交于点M.求证:(1)EC=BF;(2)EC⊥BF;(3)连接AM,求证:MA平分∠EMF.36.如图,AD、BC相交于点O,AD=BC,∠C=∠D=90°.(1)求证:△ACB≌△BDA;(2)若∠ABC=31°,求∠CAO的度数.37.如图,在四边形ABCD中,AB=AC,BE平分∠CBA,连接AE,若AD=AE,∠DAE =∠CAB.(1)求证:△ADC≌△AEB;(2)若∠CAB=36°,求证:CD∥AB.38.如图,AB=AE,AC=DE,AB∥DE.(1)求证:AD=BC;(2)若∠DAB=70°,AE平分∠DAB,求∠B的度数.39.如图,已知∠C=∠F=90°,BC=EF,AE=DB,BC与EF交于点O.(1)求证:Rt△ABC≌Rt△DEF;(2)若∠A=50°,求∠COE的度数.40.如图,已知AB=AC,点D,E分别是AC,AB的中点,求证:∠B=∠C.41.已知:点A,D,C,B在同一条直线上,DF∥CE,DF=CE,AD=BC.求证:(1)CF=DE;(2)AF∥EB.42.已知:OA=OB,OC=OD.(1)求证:△OAD≌△OBC;(2)若∠O=85°,∠C=25°,求∠BED的度数.43.如图,△ABC中,AD是BC边上的中线,E,F为直线AD上的点,连接BE,CF,且BE∥CF.(1)求证:△BDE≌△CDF;(2)若AE=13,AF=7,试求DE的长.44.如图,在△ABC中,∠B=∠C,点D是边BC上一点,CD=AB,点E在边AC上.(1)若∠ADE=∠B,求证:①∠BAD=∠CDE;②BD=CE;(2)若BD=CE,∠BAC=70°,求∠ADE的度数.45.在直线m上依次取互不重合的三个点D,A,E,在直线m上方有AB=AC,且满足∠BDA=∠AEC=∠BAC=α.(1)如图1,当α=90°时,猜想线段DE,BD,CE之间的数量关系是;(2)如图2,当0<α<180时,问题(1)中结论是否仍然成立?如成立,请你给出证明;若不成立,请说明理由;(3)拓展与应用:如图3,当α=120°时,点F为∠BAC平分线上的一点,且AB=AF,分别连接FB,FD,FE,FC,试判断△DEF的形状,并说明理由.46.问题背景:如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E,F分别是BC,CD上的点,且∠EAF=60°,探究图中线段BE,EF,FD之间的数量关系,小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以70海里/小时的速度前进,舰艇乙沿北偏东50°的方向以90海里/小时的速度,前进2小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.47.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°.(1)当点D在AC上时,如图①,线段BD,CE有怎样的数量关系和位置关系?请证明你的猜想;(2)将图①中的△ADE绕点A顺时针旋转α(0°<α<90°),如图②,线段BD,CE 有怎样的数量关系和位置关系?请说明理由.六.全等三角形的应用48.如图,一块三角形的玻璃打碎成四块,现要到玻璃店去配一块完全一样的玻璃,最简单的办法是()A.只带①去B.带②③去C.带①③去D.只带④去49.如图所示,某工程队欲测量山脚两端A、B间的距离,在山旁的开阔地取一点C,连接AC、BC并分别延长至点D,点E,使得CD=AC,CE=BC,测得DE的长,就是AB的长,那么判定△ABC≌△DEC的理由是()A.SSS B.SAS C.ASA D.AAS七.角平分线的性质50.如图,△ABC的三边AC、BC、AB的长分别是8、12、16,点O是△ABC三条角平分线的交点,则S△OAB:S△OBC:S△OAC的值为()A.4:3:2B.1:2:3C.2:3:4D.3:4:551.如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC的面积是30cm2,AB=13cm,AC=7cm,则DE的长()A.3cm B.4cm C.5cm D.6cm52.某镇要在三条公路围成的一块三角形平地内修建一个砂石场,如图,要使这个砂石场到三条公路的距离相等,则可供选择的地址()A.仅有一处B.有四处C.有七处D.有无数处53.如图,已知△ABC的周长是36cm,∠ABC和∠ACB的角平分线交于点O,OD⊥BC于点D,若OD=3cm,则△ABC的面积是()A.48cm2B.54cm2C.60cm2D.66cm254.如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC的面积是20cm2,AB=15cm,AC=5cm,则DF的长为()A.10cm B.5cm C.4cm D.2cm55.如图,BD为∠ABC的角平分线,DE⊥BC于点E,DE=6,∠A=30°,则AD的长为()A.6B.8C.12D.1656.下列各点中,到∠AOB两边距离相等的是()A.点P B.点Q C.点M D.点N57.如图,BO、CO分别平分∠ABC、∠ACB,OD⊥BC于点D,OD=2,△ABC的周长为28,则△ABC的面积为()A.28B.14C.21D.758.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于点D,如果AC=7cm,DE=3cm,那么AE等于()A.2cm B.3cm C.4cm D.5cm八.等腰三角形的性质59.如图,在四边形ABCD中,∠BAD=α,∠BCD=180°﹣α,BD平分∠ABC.(1)如图1,若α=90°,根据教材中一个重要性质直接可得DA=CD,这个性质是(2)问题解决:如图2,求证AD=CD;(3)问题拓展:如图3,在等腰△ABC中,∠BAC=100°,BD平分∠ABC,求证:BD+AD =BC.九.全等三角形综合题60.如图1,分别以△ABC的两边AB,AC为边作△ABD和△ACE,使得AB=AD,AE=AC,∠DAB=∠EAC.(1)求证:BE=CD;(2)过点A分别作AF⊥CD于点F,AG⊥BE于点G,①如图2,连接FG,请判断△AFG的形状,并说明理由;②如图3,若CD与BE相交于点H,且∠DAB=∠EAC=60°,试猜想AH,CH,HE之间的数量关系,并证明.参考答案一.三角形的面积1.解:(1)如图1中,∵CD⊥AB,∴S△ABC=•AC•BC=•AB•CD,∴CD==;故答案为:;(2)如图2中,∵S△ABC=AB•CD=BC•AE∴,∴2CD=AE,∴CD:AE=1:2;故答案为:1:2;(3)∵S△ABP=,,,∵S△ABP=S△ADP+S△BDP,∴,又∵BP=AP,∴,即DE+DF=BC=5.二.全等图形2.解:根据全等图形的定义可得C是全等图形,故选:C.3.解:在△ABC和△FDE中,,∴△ABC≌△FDE(SAS),∴∠1=∠EDF,∵∠EDF+∠2=90°,∴∠1+∠2=90°,故选:B.三.全等三角形的性质4.解:∵△ABC≌△DCB,∠A=75°,∴∠D=∠A=75°,∵∠DBC=40°,∴∠DCB=180°﹣75°﹣40°=65°,故选:B.5.解:∵△ABC≌△AED,∴∠BAC=∠EAD,AB=AE,∴∠BAE=∠1=56°,∴∠B=∠AEB=(180°﹣56°)=62°,∴∠AED=∠B=62°,故选:C.6.解:∵BC=8,BF=11.5,∴CF=BF﹣BC=3.5,∵△ABC≌△DEF,BC=8,∴EF=BC=8,∴EC=EF﹣CF=8﹣3.5=4.5,故选:B.7.解:∵△ABC≌△AEF,∴∠BAC=∠EAF,∴∠BAC﹣∠EAE=∠EAF﹣∠EAC,∴∠EAB=∠F AC,故A不符合题意;∵△ABC≌△AEF,∴BC=EF,故B不符合题意;∵△ABC≌△AEF,∴AC=AF,∠ACB=∠F,∴∠ACF=∠F=∠ACB,∴CA平分∠BCF,故C不符合题意;∵△ABC≌△AEF,∴∠BAC=∠EAF,∴∠BAC>∠CAF,故D符合题意,故选:D.8.解:∵∠ACB=90°,∠ABC=30°,∴∠A=90°﹣30°=60°,∵△ABC≌△A′B′C,∴CA′=CA,∴△ACA′为等边三角形,∴∠ACA′=60°,故选:D.9.解:∵△ABC≌△ADE,∴∠BAC=∠EAD,AB=AD,∵∠BAD=94°,∴∠ADB=∠ABD=(180°﹣∠BAD)=43°,∵AE∥BD,∴∠EAD=∠ADB=43°,∴∠BAC=∠EAD=43°,故选:D.10.解:∵点A、B的坐标分别为(﹣1,0),(0,2),∴OB=2,OA=1,∵Rt△AOB≌Rt△CDA,∴AD=OB=2,∴OD=OA+AD=1+2=3,故选:D.11.解:在△ABC中,∠A=70°,∠B=50°,则∠C=180°﹣∠A﹣∠B=180°﹣70°﹣50°=60°,∵△ABC≌△DEF,∴∠1=∠C=60°故选:B.12.解:∵△ACB≌△A′CB',∴∠ACB=∠A′CB',∴∠ACB﹣∠A′CB=∠A′CB'﹣∠A′CB,∴∠ACA'=∠BCB'=30°,故选:B.四.全等三角形的判定13.解:∵AB=DE,∵AB∥DE∴∠B=∠E,当AC=DF时,不能判定△ABC≌△DEF,当AB=DE时,且BC=EF,∠B=∠E,由“SAS”可证△ABC≌△DEF,当∠A=∠D时,且BC=EF,∠B=∠E,由“AAS”可证△ABC≌△DEF,当AC∥DF时,∠ACB=∠DFE,∠B=∠E,由“AAS”可证△ABC≌△DEF,故选:A.14.解:△ABC中,∵∠B=72°,∠C=58°,∴∠A=180°﹣∠B﹣∠C=50°,∴根据“SAS”可判断△ABC下面的三角形全等.故选:C.15.解:∵∠1=∠2,AB=BA,∴当添加∠CAB=∠DBA时,根据“ASA”可证明△ABC≌△BAD,所以A选项不符合题意;当添加AC=BD时,不能判断△ABC≌△BAD,所以B选项符合题意;当添加∠C=∠D时,根据“AAS”可证明△ABC≌△BAD,所以C选项不符合题意;当添加AD=BC时,根据“SAS”可证明△ABC≌△BAD,所以D选项不符合题意;故选:B.16.解:当△APC≌△BQP时,AP=BQ,即40﹣x=3x,解得:x=10;当△APC≌△BPQ时,AP=BP=AB=20米,此时所用时间x为20,AC=BQ=60米,不合题意,舍去;综上,出发20后,在线段MA上有一点C,使△CAP与△PBQ全等.故选:C.17.解:由题意可得,OC=OD,MC=MD,又∵OM=OM,∴△OMC≌△OMD(SSS),故选:A.18.解:∵∠B=∠C,∠CAE=∠BAD,∴∠AEC=∠ADB,所以D选项符合题意;∵不能确定BE=CD,AE=AD,∴不能判断△BOE≌△COD、△ABD≌△ACE,所以A、B、C选项不符合题意.故选:D.19.解:∵BE=CF,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SSS),故选:C.20.解:设:BM=3xcm,则BN=4xcm,∵∠A=∠B=90°,(1),当△ACM≌△BNM时,有BM=AM,BN=AC,又AM+BM=42cm,∴3x+3x=42,∴x=7.∴AC=BN=4x=28cm;当△ACM≌△BMN时,有AM=BN,BM=AC,又AM+BM=42cm,∴4x+3x=42,∴x=6,∴AC=BM=18cm;故选:C.21.解:180°﹣51°﹣49°=80°,A.只有两边相等,不符合全等三角形的判定定理,不能推出两三角形全等,故本选项不符合题意;B.只有两边相等,不符合全等三角形的判定定理,不能推出两三角形全等,故本选项不符合题意;C.符合全等三角形的判定定理SAS,能推出两三角形全等,故本选项符合题意;D.只有两边相等,不符合全等三角形的判定定理,不能推出两三角形全等,故本选项不符合题意;故选:C.22.解:∵DE⊥BA,DF⊥BC,∴∠BED=∠BFD=90°,在Rt△BDE和△Rt△BDF中,,∴Rt△BDE≌△Rt△BDF(HL),故选:D.五.全等三角形的判定与性质23.证明:∵CF∥AB,∴∠ADE=∠F,∠FCE=∠A,∵点E为AC的中点,∴AE=CE,在△ADE和△CFE中,,∴△ADE≌△CFE(AAS),∴AD=CF=6,∵AB=9,∴BD=AB﹣AD=9﹣6=3,故选:C.24.解:∵AD是△ABC的中线,∴CD=BD,∵CE∥AB,∴∠DCE=∠DBA,在△CDE和△BDA中,,∴△CDE≌△BDA(SAS),∴EC=AB=5,∵7﹣5<AE<7+5,∴2<2AD<12,∴1<AD<6,故选:A.25.解:∵∠EAD=∠BAC,∴∠BAC﹣∠EAC=∠EAD﹣∠EAC,即:∠BAE=∠CAD;在△ABE和△ACD中,,∴△ABE≌△ACD(SAS),∴∠ABD=∠ACD,∵∠BOC是△ABO和△DCO的外角,∴∠BOC=∠ABD+∠BAC,∠BOC=∠ACD+∠BDC,∴∠ABD+∠BAC=∠ACD+∠BDC,∴∠BAC=∠BDC,∵∠ABC=∠ACB=62°,∴∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣62°﹣62°=56°,∴∠BDC=∠BAC=56°,故选:A.26.解:∵BE⊥AC,AD⊥BC,∴∠AEB=∠ADC=∠BDF=90°,∵∠AFE=∠BFD,∠FBD+∠BDF+∠BFD=180°,∠AEB+∠AFE+∠DAC=180°,∴∠DAC=∠DBF,在△BDF和△ADC中,,∴△BDF≌△ADC(ASA),∴DF=CD=3,∵AF+DF=AD=5,∴AF=2,故选:D.27.解:∵OD=4,OP=5,PD⊥OA,PD=3,∵∠AOC=∠BOC,PD⊥OA,PE⊥OB,∴PE=PD=3.故选:A.28.解:如图,过点C作CD⊥x轴于点D,过点A作AE⊥x轴于点E,在正方形OABC中,∠AOC=90°,AO=CO,∵∠AOC=∠CDO=90°,∴∠COD+∠AOE=∠COD+∠OCD=90°,∴∠OCD=∠AOE,在△OCD和△AOE中,,∴△OCD≌△AOE(AAS),∴CD=OE=1,OD=AE=,∴C(﹣,1).故选:C.29.解:∵△ABD和△ACE都是等腰直角三角形,∴∠ADB=∠AEC=45°,∵∠BDC=∠ADB﹣∠ADC=45°﹣∠ADC,∠BEC=∠AEC﹣∠AEB=45°﹣∠AEB,∵∠ADC和∠AEB不一定相等,∴∠BDC与∠BEC不确定相等;故①错误,∵∠DAB=∠EAC=90°,∴∠DAB+∠BAC=∠EAC+∠BAC,即∠DAC=∠BAE,在△ADC和△ABE中,,∴△ADC≌△ABE(SAS),∴DC=BE,故④正确;过A点作AM⊥DC于M,AN⊥BE于N,如图,∵△ADC≌△ABE,∴AM=AN,∴AF平分∠DFE,所以②正确.∵∠ADC+∠1+∠DAB=∠ABE+∠2+∠BFD,而∠ADC=∠ABE,∠1=∠2,∴∠BFD=∠DAB=90°,∴DC⊥BE,所以③正确;故正确的结论为②③④.故选:D.30.解:过E点作EF⊥AD于F,如图,∵AE平分∠BAD,EF⊥AD,EB⊥AB,∴EF=EB,在Rt△ABE和Rt△AFE中,,∴Rt△ABE≌Rt△AFE(HL),∴AB=AE,∠AEB=∠AEF,∵点E是BC的中点,∴EC=EB,∴EC=EF,在Rt△DEC和Rt△DEF中,,∴Rt△DEC≌Rt△DEF(HL),∴DC=DF,∠DEC=∠DEF,∠FDE=∠CDE,所以②正确;∵∠AED=∠AEF+∠DEF=∠BEF+∠CEF∴∠AED=90°,所以①正确;∵DE>EC,而EC=BE,∴DE>BE,所以③错误;∵AF=AB,DF=DC,∴AD=AF+DF=AB+CD,所以④正确.故选:D.31.解:如图,AB=5,AC=9,AD为BC边的中线,延长AD到E,使AD=DE,连接BE,CE,∵AD=x,∴AE=2x,在△BDE与△CDA中,,∴△ADC≌△EDB(SAS),∴BE=AC=9,在△ABE中,AB+BE>AE,BE﹣AB<AE,即5+9>2x,9﹣5<2x,∴2<x<7,故选:D.32.解:∵OE平分∠AOB,EC⊥OA,ED⊥OB,∴ED=EC,∴∠EDC=∠ECD,∵∠ODE=∠OCE=90°,∴∠ODC=∠OCD,∴OC=OD,∵ED=EC,∴点O与点E都在CD的垂直平分线上,∴OE是CD的垂直平分线,∴∠AOE+∠OCD=90°,∠OCD+∠DCE=90°,∴∠AOE=∠ECD=25°,∴∠AOB=2∠AOE=50°,故选:A.33.证明:(1)∵AB∥DE,∴∠B=∠DEF,∵BE=CF,∴BE+EC=CF+EC,∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴∠ACB=∠F,∴AC∥DF;(2)解:由(1)得∠B=∠DEF,∠ACB=∠F,∴∠DEF=∠B=65°,∠ACB=∠F=35°,在△EOC中,∠DEF+∠ACB+∠EOC=180°,∴∠EOC=180°﹣∠DEF﹣∠ACB=180°﹣65°﹣35°=80°.34.解:(1)CE=BE且CE⊥BE,理由如下:∵CD⊥AD,∴∠CDE=90°,∵∠DAB=90°,∴∠CDE=∠EAB,在△CDE和△EAB中,,∴△CDE≌△EAB(SAS),∴CE=BE,∠CED=∠EBA,∵∠EBA+∠BEA=90°,∴∠CED+∠BEA=90°,∴∠CEB=90°,∴CE⊥BE,∴CE=BE且CE⊥BE.(2)(1)中结论成立,理由如下:∵CD⊥AD,∴∠CDE=90°,∵∠DAB=90°,∴∠CDE=∠EAB,在△CDE和△EAB中,,∴△CDE≌△EAB(SAS),∴CE=BE,∠CED=∠EBA,∵∠EBA+∠BEA=90°,∴∠CED+∠BEA=90°,∴∠CEB=90°,∴CE⊥BE,∴CE=BE且CE⊥BE.35.证明:(1)∵AE⊥AB,AF⊥AC,∴∠BAE=∠CAF=90°,∴∠BAE+∠BAC=∠CAF+∠BAC,即∠EAC=∠BAF,在△ABF和△AEC中,,∴△ABF≌△AEC(SAS),∴EC=BF;(2)设AB与EC的交点为D,∵△ABF≌△AEC,∴∠AEC=∠ABF,∵AE⊥AB,∴∠BAE=90°,∴∠AEC+∠ADE=90°,∵∠ADE=∠BDM,∴∠ABF+∠BDM=90°,在△BDM中,∠BMD=180°﹣∠ABF﹣∠BDM=180°﹣90°=90°,∴EC⊥BF;(3)如图,作AP⊥CE于P,AQ⊥BF于Q,∵△ABF≌△AEC,∴S△AEC=S△ABF,∴EC•AP=BF•AQ,∵EC=BF,∴AP=AQ,∵AP⊥CE于P,AQ⊥BF于Q,∴MA平分∠EMF.36.(1)证明:∵∠D=∠C=90°,∴△ABC和△BAD都是直角三角形,在Rt△ABC和Rt△BAD中,,∴Rt△ABC≌Rt△BAD(HL);(2)解:∵Rt△ABC≌Rt△BAD,∴∠ABC=∠BAD=31°,∵∠C=90°,∴∠BAC=59°,∴∠CAO=∠CAB﹣∠BAD=28°.37.(1)证明:∵∠DAE=∠CAB,∴∠DAE﹣∠CAE=∠CAB﹣∠CAE.∴∠DAC=∠EAB.在△DAC和△EAB中∵∴△DAC≌△EAB(SAS)(2)证明:∵AB=AC,∠CAB=36°,∴∠ABC=∠ACB=(180°−36°)=72°,∵BE平分∠CAB,∴∠ABE=∠ABC=36°.∴∠ABE=∠BAC=36°.∵△DAC≌△EAB,∴∠DCA=∠EBA=36°.∴∠DCA=∠BAC=36°.∴CD∥AB.38.(1)证明:如图,∵AB∥DE,∴∠E=∠CAB.在△ABC与△EAD中.∴△ABC≌△EAD(SAS).∴AD=BC.(2)解:∵∠DAB=70°,AE平分∠DAB,∴∠DAE=∠BAC=35°.由(1)知,△ABC≌△EAD,∴∠B=∠DAE=35°.39.(1)证明:∵AE=DB,∴AE+EB=DB+EB,即AB=DE,∵∠C=∠F=90°,∴△ABC和△DEF是直径三角形,在Rt△ABC和Rt△DEF中,,∴Rt△ABC≌Rt△DEF(HL);(2)解:∵∠C=90°,∠A=50°,∴∠ABC=∠C﹣∠A=90°﹣50°=40°,由(1)知Rt△ABC≌Rt△DEF,∴∠ABC=∠DEF,∴∠DEF=40°,∴∠COE=∠ABC+∠BEF=40°+40°=80°.40.证明:∵AB=AC,点D,E分别是AC,AB的中点,∴AE=AD,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴∠B=∠C.41.证明:(1)∵DF∥CE,∴∠FDC=∠ECD,在△FDC和△ECD中,,∴△FDC≌△ECD(SAS),∴CF=DE;(2)∵△FDC≌△ECD,∴∠FCD=∠EDC,∵AD=BC,∴AD+DC=BC+DC,∴AC=BD,在△F AC和△EBD中,,∴△F AC≌△EBD(SAS),∴∠A=∠B,∴AF∥EB.42.(1)证明:在△OAD和△OBC中,,∴△OAD≌△OBC(SAS);(2)解:∵∠O=85°,∠D=∠C=25°,∴∠OBC=180°﹣85°﹣25°=70°,∴∠BED=∠OBC﹣∠D=70°﹣25°=45°.43.(1)证明:∵AD是BC边上的中线,∴BD=CD,∵BE∥CF,∴∠DBE=∠DCF,在△BDE和△CDF中,,∴△BDE≌△CDF(ASA);(2)解:∵AE=13,AF=7,∴EF=AE﹣AF=13﹣7=6,∵△BDE≌△CDF,∴DE=DF,∵DE+DF=EF=6,∴DE=3.44.(1)证明:①∵在△ABC中,∠BAD+∠B+∠ADB=180°,∴∠BAD=180°﹣∠B﹣∠ADB,又∵∠CDE=180°﹣∠ADE﹣∠ADB,且∠ADE=∠B,∴∠BAD=∠CDE;②由①得:∠BAD=∠CDE,在△ABD与△DCE中,,∴△ABD≌△DCE(ASA),∴BD=CE;(2)解:在△ABD与△DCE中,,∴△ABD≌△DCE(SAS),∴∠BAD=∠CDE,又∵∠ADE=180°﹣∠CDE﹣∠ADB,∴∠ADE=180°﹣∠BAD﹣∠ADB=∠B,在△ABC中,∠BAC=70°,∠B=∠C,∴∠B=∠C=(180°﹣∠BAC)=×110°=55°,∴∠ADE=55°.45.解:(1)DE=BD+CE,理由如下,∵∠BDA=∠BAC=∠AEC=90°,∴∠BAD+∠EAC=∠BAD+∠DBA=90°,∴∠DBA=∠EAC,∵AB=AC,∴△DBA≌△EAC(AAS),∴AD=CE,BD=AE,∴DE=AD+AE=BD+CE,故答案为:DE=BD+CE.(2)DE=BD+CE仍然成立,理由如下,∵∠BDA=∠BAC=∠AEC=α,∴∠BAD+∠EAC=∠BAD+∠DBA=180°﹣α,∴∠DBA=∠EAC,∵AB=AC,∴△DBA≌△EAC(AAS),∴BD=AE,AD=CE,∴DE=AD+AE=BD+CE;(3)△DEF是等边三角形,理由如下,∵α=120°,AF平分∠BAC,∴∠BAF=∠CAF=60°,∵AB=AF=AC,∴△ABF和△ACF是等边三角形,∴F A=FC,∠FCA=∠F AB=∠AFC=60°,同(2)可得,△BDA≌△AEC,∴∠BAD=∠ACE,AD=CE,∴∠F AD=∠FCE,∴△F AD≌△FCE(SAS),∴DF=EF,∠DF A=∠EFC,∴∠DFE=∠DF A+∠AFE=∠EFC+∠AFE=∠AFC=60°,∴△DEF是等边三角形.46.解:问题背景:由题意:△ABE≌△ADG,△AEF≌△AGF,∴BE=DG,EF=GF,∴EF=FG=DF+DG=BE+FD.故答案为:EF=BE+FD.探索延伸:EF=BE+FD仍然成立.理由:如图2,延长FD到点G,使DG=BE,连接AG∵∠B+∠ADC=180°,∠ADG+∠ADC=180°,∴∠B=∠ADG,又∵AB=AD,在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,又∵∠EAF=∠BAD,∴∠F AG=∠F AD+∠DAG=∠F AD+∠BAE=∠BAD﹣∠EAF,=∠BAD﹣∠BAD=∠BAD,∴∠EAF=∠GAF.在△AEF和△AGF中,,∴△AEF≌△AGF(SAS),∴EF=FG,又∵FG=DG+DF=BE+DF,∴EF=BE+FD.实际应用:如图3,连接EF,延长AE,BF相交于点C,在四边形AOBC中,∵∠AOB=30°+90°+20°=140°,∠FOE=70°=∠AOB,又∵OA=OB,∠OAC+∠OBC=60°+120°=180°,符合探索延伸中的条件,∴结论EF=AE+FB成立.即,EF=AE+FB=2×(70+90)=320(海里)答:此时两舰艇之间的距离为320海里.47.证明:(1)延长BD交CE于F,在△EAC和△DAB中,,∴△EAC≌△DAB(SAS),∴BD=CE,∠ABD=∠ACE,∵∠AEC+∠ACE=90°,∴∠ABD+∠AEC=90°,∴∠BFE=90°,即EC⊥BD;(2)延长BD交CE于F,∵∠BAD+∠CAD=90°,∠CAD+∠EAC=90°,∴∠BAD=∠EAC,∵在△EAC和△DAB中,,∴△EAC≌△DAB(SAS),∴BD=CE,∠ABD=∠ACE,∵∠ABC+∠ACB=90°,∴∠CBF+∠BCF=∠ABC﹣∠ABD+∠ACB+∠ACE=90°,∴∠BFC=90°,即EC⊥BD.六.全等三角形的应用48.解:第①块和第②③块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第④块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.应带④去.故选:D.49.证明:在△ABC和△DEC中,,∴△ABC≌△DCE(SAS),故选:B.七.角平分线的性质50.解:∵O是△ABC三条角平分线交点,∴点O到AB、AC、BC的距离相等,设O到AB、AC、BC的距离为h,∴S△OAB:S△OBC:S△OAC=(•h•AB):(•h•BC):(•h•AC)=AB:BC:AC=16:12:8=4:3:2.故选:A.51.解:∵AD为∠BAC的平分线,DE⊥AB,DF⊥AC,∴DE=DF,∴S△ABC=×AB×DE+×AC×DF=30(cm2),即×13×DE+×7×DF=30,解得DE=DF=3cm,故选:A.52.解:∵这个砂石场到三条公路的距离相等,砂石场在三条公路围成的三角形平地内,∴这个砂石场为三条公路所围成的三角形的内角平分线的交点,∴可供选择的地址仅有一处.故选:A.53.解:如图,过点O作OE⊥AC于点E,OF⊥AB于点F,连接OA,∵OB、OC分别平分∠ABC、∠ACB,OD⊥BC,∴OD=OE=OF=3(cm),∴S△ABC=S△AOB+S△BOC+S△AOC=×AB×OF+×BC×OD+×AC×OE=×OD×C△ABC=×3×36=54(cm2).故选:B.54.解:∵AD为∠BAC的平分线,DE⊥AB,DF⊥AC,∴DE=DF,∵△ABC的面积是20cm2,∴•AB•DE+AC•DF=20,即×15×DF+×5×DF=20,解得DF=2.故选:D.55.解:如图所示,过D作DF⊥AB于F,∵BD为∠ABC的角平分线,DE⊥BC,DF⊥AB,∴DE=DF=6,∵∠A=30°,∴AD=2DF=12,故选:C.56.解:由图形可知,点Q在∠AOB的角平分线上,∴点Q到∠AOB两边距离相等,故选:B.57.解:连接OA,作OE⊥AB于点E,作OF⊥AC于点F,∵BO,CO分别平分∠ABC和∠ACB,OD⊥BC于点D,且OD=2,∴OD=OE=OF=2,∴S△ABC=S△OAB+S△OAC+S△OBCAB•OE+AC•OF+BBC•OD=(AB+AC+BC)•OD=×28×2=28,故选:A.58.解:∵BE平分∠ABC,DE⊥AB,∠ACB=90°,∴ED=EC,∴AE=AC﹣EC=AC﹣ED=7﹣3=4(cm),故选:C.八.等腰三角形的性质59.解:(1)∵BD平分∠ABC,∠BAD=90°,∠BCD=90°,∴DA=DC(角平分线上的点到角的两边距离相等),故答案为:角平分线上的点到角的两边距离相等;(2)如图2,作DE⊥BA交BA延长线于E,DF⊥BC于F,∵BD平分∠EBF,DE⊥BE,DF⊥BF,∴DE=DF,∵∠BAD+∠C=180°,∠BAD+∠EAD=180°,∴∠EAD=∠C,在△DEA和△DFC中,∴△DEA≌△DFC(AAS),∴DA=DC;(3)如图,在BC时截取BK=BD,连接DK,∵AB=AC,∠A=100°,∴∠ABC=∠C=40°,∵BD平分∠ABC,∴∠DBK=∠ABC=20°,∵BD=BK,∴∠BKD=∠BDK=80°,即∠A+∠BKD=180°,由(2)的结论得AD=DK,∵∠BKD=∠C+∠KDC,∴∠KDC=∠C=40°,∴DK=CK,∴AD=DK=CK,∴BD+AD=BK+CK=BC.九.三角形综合题60.(1)证明:∵∠DAB=∠EAC,∴∠DAB+∠BAC=∠EAC+∠BAC,∴∠DAC=∠BAE,在△DAC和△BAE中,,∴△DAC≌△BAE(SAS),∴BE=CD;(2)①解:△AFG是等腰三角形,理由如下:∵△ADC≌△ABE,∴∠ADF=∠ABG,∵AF⊥CD,AG⊥BE,∴∠AFD=∠AGB=90°,在△ADF和△ABG中,,∴△ADF≌△ABG(AAS),∴AF=AG,∴△AFG是等腰三角形;②解:HE=AH+CH,理由如下:∵∠DAB=∠EAC,∴∠DAB+∠BAC=∠EAC+∠BAC,∴∠DAC=∠BAE,在△DAC和△BAE中,,∴△DAC≌△BAE(SAS),∴BE=CD,∠ACF=∠AEG,∵AF⊥CD,AG⊥BE,∴∠AFC=∠AGE=90°,在△ACF和△AEG中,,∴△ACF≌△AEG(AAS),∴CF=EG,AF=AG,∵∠CAE+∠AEC+∠ACE=180°,∠ACE+∠HEC+∠HCA+∠CHE=180°,∠AEB=∠ACH,∴∠EHC=60°,∴∠DHE=120°,∵AF=AG,AF⊥CD,AG⊥BE,∴∠AHF=∠AHG=60°,∴∠F AH=∠GAH=30°,∴AH=2FH=2HG,∴FH=HG,∴HE=GE+HG=CF+HG=CH+FH+HG=CH+2HG=CH+AH.。

(完整版)高中数学-解三角形知识点归纳和分类习题测试,推荐文档

(完整版)高中数学-解三角形知识点归纳和分类习题测试,推荐文档

必修五:解三角形知识点一:正弦定理和余弦定理1.正弦定理a b c:si nAsin B si nC J'或变形:a: b:c s iri A:sin B:sin CcosAb 2 2 c2a2bc2 222a2 2b c2bccos AcosB ac b2acb 22 2 a c2accosBcosCb 2 2 a 2 c2 c 2 2 b a 2 •余弦定理:2bacosC 或2ab3. ( 1)两类正弦定理解三角形的问题: 1、已知两角和任意一边,求其他的两边及一角2、已知两角和其中一边的对角,求其他边角(2)两类余弦定理解三角形的问题: 1、已知三边求三角•2、已知两边和他们的夹角,求第三边和其他两角4•判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式运算 女口. sin(A B) sinC,cos(A B)A B C ABC AB C sincos ,cossin ,ta n cot — 2 2 22 225 •解题中利用 ABC 中A B C,以及由此推得的一些基本关系式进行三角变换的cosC, tan(A B) tanC,1.若ABC 的三个内角满足si nA:si nB:si nC 5:11:13,贝U ABC 是( )A. 锐角三角形B•钝角三角形C.直角三角形D.可能是锐角三角形,也可能是钝角三角形•2 .在厶ABC中,角A, B, C所对的边分别为a, b, c,若a2b=2,sinB+cosB= 、 2 ,则角A的大小为( )A - B. _ C - D.—2 3 463.在厶ABC中,a 7,b 4、.3,c.13 ,则最小角为A—B、一 C 、— D 、364124.已知ABC中,AB 4, AC 3, BAC60,则BC ()A. 13B. 13C.5D.10 5•在锐角ABC中,若C 2B,则c的范围()bA. 2, 3 B . 3,2 C . 0,2 D. 2,26.在ABC中,A、B、C所对的边分别是a、b、c,已知a2b2c2-、°ab,则C ()23A. 2B.4C.3D.47.在厶ABC中,A60o,b16,面积S220 .. 3,则cA 10、6 B、75C、55D、4 98.在厶ABC中,(a c)(a c) b(b c), 则AA 30o B、60o C、120o D、150o9.已知ABC中,AB 4,BAC45AC 3.2则ABC的面积为cosB b10.在ABC中,a,b,c分别是角A,B,C的对边,且cosC 2a c ,则角B的大小为11.已知锐角三角形的边长分别是23 x,则x的取值范围是A、1 X 5 B 、、5 x ^13 C 、0 x .5 D 、13x512 . ABC中,AB 1,BC 2则角C的取值范围是__________________知识点二:判断三角形的形状问题C1.在ABC 中,若cos A cos B sin2—,则ABC 是()2A.等边三角形B •等腰三角形C .锐角三角形D.直角三角形A、一定是直角三角形C、可能是锐角三角形tan A3. 已知在△ABC中,tan B a b4. 在ABC 中,若cosA cosBA .等腰直角三角形5. 在△ ABC 中,若2cosBsinA = sinC,y^ ABC 的形状一定是( )A.等腰直角三角形B.直角三角形C.等腰三角形D.等边三角形6. △ ABC 中,B 60°, b2 ac,则厶ABC - -定是( )A 锐角三角形B 钝角三角形C 等腰三角形D 等边三角形7. 若(a+b+c)(b+c —a)=3abc,且sinA=2sinBcosC,那么△ ABC 是()A .直角三角形B.等边三角形C.等腰三角形 D . 等腰直角三角形8.在厶ABC中,已知2ab c2sin A sin BsinC,试判断厶ABC的形状。

四年级下册数学试题-三角形相关知识点复习及题目练习

四年级下册数学试题-三角形相关知识点复习及题目练习

三角形三角形的分类⎪⎩⎪⎨⎧⎩⎨⎧不等边三角形等边三角形等腰三角形等边三角形分)三角形按边(⎪⎩⎪⎨⎧钝角三角形直角三角形锐角三角形三角形(按角分)三角形的边:三角形三边关系:两边之和大于第三边,两边之差小于第三边。

周长等于三边长度之和。

1、三角形三条边长之比是1:2:2,三角形的周长是70厘米,则最短边长( )厘米。

2、一个等腰三角形有两条边分别是3cm 和7cm ,这个三角形的周长是( )。

3、等边三角形一定是等腰三角形。

( )4、一个等腰三角形的两边长分别是10厘米和8厘米,这个三角形的周长是( )。

5、一个等腰三角形的两条边长为2厘米和5厘米,那么这个三角形的周长为9厘米。

( )6、用火柴棒搭一个三角形,搭一个三角形用3根火柴棒,搭2个三角形用5根火柴棒,搭3个三角形用7根火柴棒,照这样的规律搭50个这样的三角形要( )根火柴棒。

面积:ah S 21= 三角形的角:三角形按三个内角中最大角分类三角形的内角和是180°。

三角形作高:7、一个三角形的三个内角度数比是1:4:5,这个三角形是( )8、三角形的内角度数的比是1:2:6,这个三角形是( )三角形。

9、一个三角形的三个内角度数比是1:2:3,那么这个三角形是直角三角形。

( ) 10、等腰直角三角形的一个底角是内角和的( )。

A.21 B.31 C.41 11.在一个三角形中,已知三个角的度数比是2:3:6,这个三角形一定是( )。

A.直角三角形B.锐角三角形C.钝角三角形12.在一个三角形中,三个内角度数比是2:3:5,这个三角形是( )。

A.锐角三角形B.直角三角形C.钝角三角形13.一个直角三角形的三边分别是6厘米、8厘米、10厘米,这个三角形最长边上的高为( )厘米。

A.3.6B.4C.4.8D.5.214、一个直角三角形的三条边分别是3cm,4cm,5cm,这个三角形斜边上的高是( )cm.A.12B.6C.2.415.一个直角三角形的三边分别是6,8,10,这个三角形最长边上的高为( )。

三角形 知识点+考点+典型例题(含答案)

三角形  知识点+考点+典型例题(含答案)

第七章三角形【知识要点】一.认识三角形1.关于三角形的概念及其按角的分类定义:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2.三角形的分类:①三角形按内角的大小分为三类:锐角三角形、直角三角形、钝角三角形。

②三角形按边分为两类:等腰三角形和不等边三角形。

2.关于三角形三条边的关系(判断三条线段能否构成三角形的方法、比较线段的长短)根据公理“两点之间,线段最短”可得:三角形任意两边之和大于第三边。

三角形任意两边之差小于第三边。

3.与三角形有关的线段..:三角形的角平分线、中线和高三角形的角平分线:三角形的一个角的平分线与对边相交形成的线段;三角形的中线:连接三角形的一个顶点与对边中点的线段,三角形任意一条中线将三角形分成面积相等的两个部分;三角形的高:过三角形的一个顶点做对边的垂线,这条垂线段叫做三角形的高。

注意:①三角形的角平分线、中线和高都是线段,不是直线,也不是射线;②任意一个三角形都有三条角平分线,三条中线和三条高;③任意一个三角形的三条角平分线、三条中线都在三角形的内部。

但三角形的高却有不同的位置:锐角三角形的三条高都在三角形的内部;直角三角形有一条高在三角形的内部,另两条高恰好是它两条直角边;钝角三角形一条高在三角形的内部,另两条高在三角形的外部。

④一个三角形中,三条中线交于一点,三条角平分线交于一点,三条高所在的直线交于一点。

(三角形的三条高(或三条高所在的直线)交与一点,锐角三角形高的交点在三角形的内部,直角三角形高的交点是直角顶点,钝角三角形高(所在的直线)的交点在三角形的外部。

)4.三角形的内角与外角(1)三角形的内角和:180°引申:①直角三角形的两个锐角互余;②一个三角形中至多有一个直角或一个钝角;③一个三角中至少有两个内角是锐角。

(2)三角形的外角和:360°(3)三角形外角的性质:①三角形的一个外角等于与它不相邻的两个内角的和;——常用来求角度②三角形的一个外角大于任何一个与它不相邻的内角。

数学中考三角形知识加例题(含答案)

数学中考三角形知识加例题(含答案)

a60第4题图题图NPOA三角形复习★知识点1. 三角形的定义三角形是多边形中边数最少的一种。

它的定义是:由不在同一条直线上的三条线段首尾顺次相接组成的图形叫做三角形。

顺次相接组成的图形叫做三角形。

★知识点2.三角形的分类(1) 按角分类按角分类(2) 按边分类按边分类例:如果三角形的一个外角等于它相邻内角的2倍,且等于它不相邻内角的4倍,那么这个三角形一定是(么这个三角形一定是( )A 、锐角三角形、锐角三角形B 、直角三角形、直角三角形C 、钝角三角形、钝角三角形D 、正三角形、正三角形 解题思路:根据角度来判断是哪一种三角形。

答案B 练习:如图,已知OA =a ,P 是射线ON 上一动点(即P 可在射线ON 上运动),∠AON =600,填空:,填空:(1)当OP = 时,△AOP 为等边三角形;为等边三角形; (2)当OP = 时,△AOP 为直角三角形;为直角三角形; (3)当OP 满足满足 时,△AOP 为锐角三角形;为锐角三角形; (4)当OP 满足满足 时,△AOP 为钝角三角形。

为钝角三角形。

答案:(1)a ;(2)a 2或2a ;(3)2a <OP <a 2;(4)0<OP <2a或OP >a 2 ◆知识点3.三角形三条重要线段三角形中的主要线段有:三角形的角平分线、中线和高线。

这三条线段必须在理解和掌握它的定义的基础上,通过作图加以熟练掌握。

并且对这三条线段必须明确三点:握它的定义的基础上,通过作图加以熟练掌握。

并且对这三条线段必须明确三点:三角形三角形锐角三角形锐角三角形 直角三角形直角三角形钝角三角形钝角三角形三角形三角形 不等边三角形不等边三角形等腰三角形等腰三角形底边和腰不相等的等腰三角等边三角形等边三角形2A 1A 3题图题图DC B A(1)三角形的角平分线、中线、高线均是线段,不是直线,也不是射线。

线、中线、高线均是线段,不是直线,也不是射线。

(2)三角形的角平分线、中线、高线都有三条,角平分线、中线,都在三角形内部。

必修5解三角形知识点和练习题(含答案)

必修5解三角形知识点和练习题(含答案)

解三角形1复习要点 1.正弦定理:2sin sin sin a b c R ABC===或变形:::sin :sin :sin a b c A B C =.2.余弦定理: 2222222222cos 2cos 2cos a b c bc A b a c ac B c b a ba C ⎧=+-⎪=+-⎨⎪=+-⎩ 或 222222222cos 2cos 2cos 2b c a A bc a c b B ac b a cC ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩.3.(1)两类正弦定理解三角形的问题:1、已知两角和任意一边,求其他的两边及一角. 2、已知两角和其中一边的对角,求其他边角. (2)两类余弦定理解三角形的问题:1、已知三边求三角.2、已知两边和他们的夹角,求第三边和其他两角. 4.判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式.5.解题中利用ABC ∆中A B C π++=,以及由此推得的一些基本关系式进行三角变换的运算,如:s in ()s in ,A B C +=c o s ()c o s ,A B C +=-ta n ()ta n ,A B C +=- sincos,cossin,tancot222222A B C A B C A B C +++===.高一数学测试题———正弦、余弦定理与解三角形一、选择题: 1、ΔABC 中,a=1,b=3, ∠A=30°,则∠B 等于( )A .60°B .60°或120°C .30°或150°D .120°2、符合下列条件的三角形有且只有一个的是 ( )A .a=1,b=2 ,c=3B .a=1,b=2 ,∠A=30°C .a=1,b=2,∠A=100°C .b=c=1, ∠B=45°3、在锐角三角形ABC 中,有 ( )A .cosA>sinB 且cosB>sinA B .cosA<sinB 且cosB<sinAC .cosA>sinB 且cosB<sinAD .cosA<sinB 且cosB>sinA4、若(a+b+c)(b+c -a)=3abc,且sinA=2sinBcosC, 那么ΔABC 是 ( )A .直角三角形B .等边三角形C .等腰三角形D .等腰直角三角形5、设A 、B 、C 为三角形的三内角,且方程(sinB -sinA)x 2+(sinA -sinC)x +(sinC -sinB)=0有等根,那么角B ( )A .B>60°B .B ≥60°C .B<60°D .B ≤60°6、满足A=45°,c=6 ,a=2的△ABC 的个数记为m,则a m 的值为( )A .4B .2C .1D .不定8、两灯塔A,B 与海洋观察站C 的距离都等于a(km), 灯塔A 在C 北偏东30°,B 在C 南偏东60°,则A,B 之间的相距 ( )A .a (km)B .3a(km) C .2a(km) D .2a (km)二、填空题:9、A 为ΔABC 的一个内角,且sinA+cosA=127, 则ΔABC 是______三角形.10、在ΔABC 中,A=60°, c:b=8:5,内切圆的面积为12π,则外接圆的半径为_____. 11、在ΔABC 中,若S ΔABC =41 (a 2+b 2-c 2),那么角∠C=______.12、在ΔABC 中,a =5,b = 4,cos(A -B)=3231,则cosC=_______.三、解答题:13、在ΔABC 中,求分别满足下列条件的三角形形状: ①B=60°,b 2=ac ;②b 2tanA=a 2tanB ; ③sinC=BA B A cos cos sin sin ++1、在A B C △中,已知内角A π=3,边23BC =.设内角B x =,周长为y .(1)求函数()y f x =的解析式和定义域;(2)求y 的最大值.2、在A B C 中,角,,A B C 对应的边分别是,,a b c ,若1sin ,2A =3sin 2B =,求::a b c3、在A B C 中,,a b c 分别为,,A B C ∠∠∠的对边,若2sin (cos cos )3(sin sin )A B C B C +=+, (1)求A 的大小;(2)若61,9a b c =+=,求b 和c 的值。

第01讲 认识三角形(7个知识点+17大题型+18道强化训练)(学生) 24-25学年八年级数学上册

第01讲 认识三角形(7个知识点+17大题型+18道强化训练)(学生) 24-25学年八年级数学上册

第01讲认识三角形(7个知识点+17大题型+18道强化训练)知识点01 三角形的概念由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形;记作:△ABC,如图:其中:线段AB,AC,CA 是三角形的边,A,B,C 是三角形的顶点,∠A,∠B,∠C 是相邻两边组成的角,叫做三角形的内角,简称三角形的角.【即学即练1】1.(23-24七年级下·全国·课后作业)下面是一位同学用三根木棒拼成的图形,其中是三角形的是( )A.B.C.D.知识点2 三角形的分类:等腰三角形:在等腰三角形中,相等的两边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。

【即学即练2】2.(23-24七年级下·河北邢台·阶段练习)如图所示,小手盖住了一个三角形的一部分,则这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形知识点3 三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

【拓展:三边关系的运用】①判断三条线段能否组成三角形;②当已知三角形的两边长时,可求第三边的取值范围。

【即学即练3】3.(23-24七年级下·海南海口·期末)如图1是一根细铁丝围成的正方形,其边长为2,现将该细铁丝围成一个三角形(如图2所示),则AB的长可能为()A.3.5B.4C.4.5D.5知识点4 三角形的稳定性①三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

三角形具有稳定性,而四边形没有稳定性。

②三角形的稳定性有广泛的运用:桥梁、起重机、人字形屋顶、桌椅等【即学即练4】4.(23-24七年级下·山西运城·期末)2024年年初,山西省最长的跨黄河大桥——临猗黄河大桥完成合拢任务,如图是桥身的一部分,桥身采用三角形钢结构架,这其中蕴含的数学道理是()A.三线合一B.三角形的稳定性C.垂线段最短D.三角形两边之和大于第三边知识点5 三角形的重要线段【即学即练5】5.(22-23七年级下·湖北恩施·期中)如图,三角形ABC 中,AC BC ^,D 为BC 边上的任意一点,连接AD ,E 为线段AD 上的一个动点,过点E 作EF AB ^点F .6108BC AB AC ===,,,则CE EF +的最小值为( )A .6B .4.8C .2.4D .5【即学即练6】6.(24-25七年级上·山东·随堂练习)如图所示,在ABC V 中,8AB =,6AC =,AD 是ABC V 的中线,则ABD △与ADC △的周长之差为( )A .14B .1C .2D .7知识点6 三角形的内角①三角形内角和定理:三角形三个内角的和等于 180 度。

相似三角形中考复习(知识点+题型分类练习)

相似三角形中考复习(知识点+题型分类练习)

相似三角形一、知识概述1.平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其它直线上截得的线段也相等。

2.平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例。

3.相似三角形的定义对应边成比例、对应角相等的两个三角形叫做相似三角形.4.相似三角形的基本性质①相似三角形的对应边成比例、对应角相等.②相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。

③相似三角形的周长比等于相似比④面积比等于相似比的平方温馨提示:①全等三角形一定是相似三角形,其相似比k=1.所以全等三角形是相似三角形的特例.其区别在于全等要求对应边相等,而相似要求对应边成比例.②相似比具有顺序性.例如△ABC∽△A′B′C′的对应边的比,即相似比为k,则△A′B′C′∽△ABC的相似比,当且仅当它们全等时,才有k=k′=1.③相似比是一个重要概念,后继学习时出现的频率较高,其实质它是将一个图形放大或缩小的倍数,这一点借助相似三角形可观察得出.5. 相似三角形的判定定理①平行于三角形一边的直线和其他两边或其延长线相交,所得的三角形与原三角形相似;②三边对应成比例的两个三角形相似;③两角对应相等的两个三角形相似;④两边对应成比例且夹角相等的两个三角形相似。

温馨提示:(1)判定三角形相似的几条思路:①条件中若有平行,可采用判定定理1;②条件中若有一对角相等(包括隐含的公共角或对顶角),可再找一对角相等或找夹边对应成比例;③条件中若有两边对应成比例,可找夹角相等;但是,在选择利用判定定理2时,一对对应角相等必须是成比例两边的夹角对应相等.④条件中若有等腰关系,可找顶角相等或底角相等,也可找腰和底对应成比例。

(2)在综合题中,注意相似知识的灵活运用,并熟练掌握线段代换、等比代换、等量代换技巧的应用,培养综合运用知识的能力。

(3)运用相似的知识解决一些实际问题,要能够在理解题意的基础上,把它转化为纯数学知识的问题,要注意培养当数学建模的思想。

直角三角形全等的判定(1个知识点+5大题型+18道强化训练)(学生版) 24-25学年八年级数学上册

直角三角形全等的判定(1个知识点+5大题型+18道强化训练)(学生版) 24-25学年八年级数学上册

第09讲 直角三角形全等的判定(1个知识点+5大题型+18道强化训练)知识点01:HL 证明三角形全等定理:在两个直角三角形中,有斜边和一条直角边对应相等的两个直角三角形全等(可以简写成“HL”).要点诠释:(1)“HL”从顺序上讲是“边边角”对应相等,由于其中含有直角这个特殊条件,所以三角形的形状和大小就确定了.(2)判定两个直角三角形全等首先考虑用斜边、直角边定理,再考虑用一般三角形全等的证明方法.(3)应用“斜边、直角边”判定两个直角三角形全等的过程中要突出直角三角形这个条件,书写时必须在两个三角形前加上“Rt”.【即学即练1】1.如图,在ABC V 中,90C Ð=°,D 是AC 上一点,DE AB ^于点E ,BE BC =,连接BD ,若8cm AC =,则AD DE +等于( )A .6cmB .7cmC .8cmD .10cm【即学即练2】2.如图所示,已知在△ABC 中,∠C =90°,AD =AC ,DE ⊥AB 交BC 于点E ,若∠B =28°,则∠AEC =( )A .28°B .59°C .60°D .62°题型01 用HL 证明三角形全等1.如图,O 是BAC Ð内一点,且点O 到AB ,AC 的距离OE OF =,则AEO AFO ≌△△的依据是( )A .HLB .AASC .SSSD .ASA2.如图,AB BC ^,AD DC ^,要根据“HL ”证明Rt Rt ABC ADC ≌△△,还应添加一个条件是( )A .12Ð=ÐB .24ÐÐ=C .AB AD =D .AB AC=3.如图,点B 、F 、C 、E 在一条直线上,90A D Ð=Ð=°,AB DE =,若用“HL ”判定ABC DEF ≌△△,则添加的一个条件是 .4.如图,AC AB ^,AC CD ^,要使得ABC CDA △△≌,若以“HL ”为依据,需添加条件 .5.已知:如图,45ABC Ð=°,AD 为ABC V 的高,E 为AC 上一点,BE 交AD 于F 且有BF AC =.求证:Rt Rt BFD ACD △≌△.题型02 利用直角三角形全等的判定求角度1.如图,已知DB AN ^于点B ,交AE 于点O ,OC AM ^于点C ,且OB OC =.若54ADB Ð=°,则OAB Ð的大小为( )A .15°B .18°C .22°D .30°2.如图,ABC V 中,ABC Ð的平分线与AC 边的垂直平分线交于点D ,过D 作DE BC ^于点E ,连接CD ,若35BAC Ð=°,30ACD Ð=°,则DCE Ð的度数为( )A .45°B .60°C .65°D .70°3.如图,已知PA ON ^于点A ,PB OM ^于点B ,且PA PB =,50MON Ð=°,20OPC Ð=°,则PCA Ð= .4.如图,ABC V 中,AC BC =,且点D 在ABC V 外,D 在AC 的垂直平分线上,连接BD ,若30DBC Ð=°,12ACD Ð=°,则A Ð= °.5.如图,AC 平分BAD Ð,CE AB ^,CF AD ^交AD 的延长线于点F ,在AB 上有一点M ,且CM CD =,(1)若12AF =,4DF =,求AM 的长.(2)试说明CDA Ð与CMA Ð的关系.题型03 利用直角三角形全等的判定求长度1.如图,在Rt ABC △中,90,C BAC Ð=°Ð的平分线AE 交BC 于点,E ED AB ^于点D ,若ABC V 的周长为12,BDE V 的周长为6,则AC =( )A .4B .3C .6D .82.如图,在Rt ABC △中,90C Ð=°,6AC =,8BC =,以点A 为圆心,适当长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,射线AP 与BC 交于点D ,DE AB ^,垂足为E ,则BE 为( )A .3B .4C .4.5D .53.如图,ABC V 的外角DAC Ð的平分线交BC 边的垂直平分线于P 点,PD AB ^于D ,PE AC ^于E .若6cm AB =,10cm AC =,则AD 的长是 .4.如图,在ABC V 中,DE AC ^于点D ,且AD CD =,180ABE CBE Ð+Ð=°,EF BC ^于点F ,若7AB =,1BF =,则BC = .5.已知:如图,BAC Ð角平分线与BC 的垂直平分线DG 交于点D ,DE AB ^,DF AC ^,垂足分别为E 、F .(1)求证:BE CF =;(2)若8AB =,6AC =,求BE 的长.题型04 直角三角形全等证明的常见辅助线添加1.如图,AD 是ABC V 的角平分线,DF AB ^于点F ,且DE DG =,26ADG S =△,18AED S =△,则DEF V 的面积为( )A .2B .3C .4D .62.如图,在四边形ABCD 中,DE BC ^,BD 平分ABC Ð,AD CD =,4BE =,3DE =,1CE =,则ABD △的面积是( )A .4.5B .6C .9D .123.如图,AE 是CAM Ð的角平分线,点B 在射线AM 上,DE 是线段BC 的中垂线交AE 于E ,EF AM ^.若23,21ACB CBE Ð=°Ð=°,则BEF Ð= .4.如图,四边形ABCD 中,AC 平分BAD Ð,BC DC CE AD =^,于点E ,127AD AB ==,,则DE 的长为 .5.如图,CB CD =,180D ABC Ð+Ð=°,CE AD ^于E .(1)求证:AC 平分DAB Ð;(2)若10AE =,4DE =,求AB 的长.题型05 全等的性质和HL 综合1.如图,在ABC V 中,P 为BC 上一点,PR AB ^,垂足为R PS AC ^,,垂足为S AQ PQ PR PS ==,,,下面结论:①AS AR =;②QP AR ∥;③△≌△ARP ASP ,其中正确的是( )A .①②B .②③C .①③D .①②③2.如图,在等边ABC V 中,AD BC ^于D ,延长BC 到E ,使12CE BC =,F 是AC 的中点,连接EF 并延长EF 交AB 于G ,BG 的垂直平分线分别交BG AD ,于点M ,点N ,连接GN CN ,,下列结论:①ACN BCN Ð=Ð;②12GF EF =;③120GNC Ð=°;④GM CN =;⑤EG AB ^,其中正确的个数是( )A .2个B .3个C .4个D .5个3.如图所示,在ABC V 中,P Q ,分别是BC AC ,上的点,作PR AB ^,PS AC ^,垂足分别为点R S ,,若AQ PQ =,PR PS =,QD AP ^.现有下列结论:①AS AR =;②AP 平分BAC Ð;③BRP CSP △≌△;④PQ AR ∥.其中正确的是 (把所有正确结论的序号都选上)4.如图,ABC V 的两条外角平分线AP CP ,相交于点P ,PH AC ^于点H .若60ABC Ð=°,则下面的结论:①30ABP Ð=°;②60APC Ð=°;③2PB PH =;④APH BPC Ð=Ð.其中正确的结论是 .(填序号)5.如图,已知在Rt ABC △中,90ACB Ð=°,4AC =,8BC =,D 是AC 上的一点,32CD =.点P 从B 点出发沿射线BC 方向以每秒1个单位的速度向右运动.设点P 的运动时间为t ,连接AP .(1)当3t =秒时,求AP 的长度;(2)当点P 在线段AB 的垂直平分线上时,求t 的值;(3)过点D 作DE AP ^于点E .在点P 的运动过程中,当t 为何值时,能使DE CD =?请直接写出t 的值.1.如图,在ABC V 中,AC BC =,90C Ð=°,AD 是ABC V 的角平分线,DE AB ^于点E .若1CD =,则AB 的长为( )A B .1C .2D .22.如图,在ABC V 中,90C Ð=°,AC BC =,AD 平分CAB Ð,交BC 于点D ,DE AB ^于点E ,且6cm AB =,则DEB V 的周长为( )A .4cmB .6cmC .8cmD .10cm 3.如图, 在Rt ABC V 中,90C Ð=°,BAC Ð的平分线AE 交BC 于点E ,ED AB ^于点 D , 若 ABC V 的周长为12,则 BDE V 的周长为 4 ,则AC 为 ( )A .3B .4C .6D .84.如图,ABC V 中,ABC Ð的平分线与AC 边的垂直平分线交于点D ,过D 作DE BC ^于点E ,连接CD ,若35BAC Ð=°,30ACD Ð=°,则DCE Ð的度数为( )A .45°B .60°C .65°D .70°5.如图,在ABC V 中,延长BA 到点E ,延长BC 到点F .,ABC EAC ÐÐ的角平分线,BP AP 交于点P ,过点P 分别作,PM BE PN BF ^^,垂足为,M N ,则下列结论正确的有( )①CP 平分ACF Ð;②2180ABC APC Ð+Ð=°;③2ACB APB =∠∠;④PAC MAP NCP S S S +=△△△.A .1个B .2个C .3个D .4个6.如图,CA AB ^,垂足为点A ,8AB =,4AC =,射线BM AB ^,垂足为点B ,一动点E 从A 点出发以2/秒的速度沿射线AN 运动,点D 为射线BM 上一动点,随着E 点运动而运动,且始终保持ED CB =,当点E 运动t 秒时,DEB V 与BCA V 全等.则符合条件的t 值有( )个A .2B .3C .4D .57.如图,在ABC V 中,90ACB Ð=°,1,AC BC AD ==是BAC Ð的平分线且交BC 于点D ,DE AB ^于点E ,则BDE V 的周长为 .8.如图,在四边形ABCD 中,BD 平分ABC Ð,AD CD =,DE BC ^,垂足为点E ,ABD △的面积为38,BCD △的面积为50,则CDE V 的面积为 .9.如图,ABC V 中,90ACB Ð=°,222AC BC AB +=,点D ,E 分别在边BC ,AC 上,DE DB =,DEC B Ð=Ð,若3CE =,15AB =,则四边形ABDE 的面积是 .10.如图,在ABC V 中,D 为AB 中点,DE AB ^,180ACE BCE Ð+Ð=°,EF BC ^交BC 于F ,8AC =,12BC =,那么BF = .11.如图,在ABC V 中,AB AC =,过点A 作AD BC ∥,连接DC ,点E 是AB 边上一点,DE DC =,过点D 作DF AC ^于F ,若6BE =,则AF = .12.如图,ABC V 中,AC BC =,且点D 在ABC V 外,D 在AC 的垂直平分线上,连接BD ,若30DBC Ð=°,12ACD Ð=°,则A Ð= °.13.如图,CB CD =,180D ABC Ð+Ð=°,CE AD ^于E .(1)求证:AC 平分DAB Ð;(2)若10AE =,4DE =,求AB 的长.14.如图,180CB CD D ABC CE AD =Ð+Ð=°^,,于E ,CF AB ^交AB 的延长线于点F .(1)求证:AC 平分DAB Ð;(2)若82AE DE ==,,求AB 的长.15.如图,四边形ABDC 中,90D ABD Ð=Ð=°,点O 为BD 的中点,且OA 平分BAC Ð.(1)求证:OC 平分ACD Ð;(2)求证:OA OC ^;(3)猜想AB 、CD 与AC 的关系,并说明理由.16.如图,四边形ABCD 中,90B Ð=°,连接对角线AC ,且AC AD =,点E 在边BC 上,连接DE ,过点A作AF D E ^,垂足为F ,若AB AF =.(1)求证:①DAC FAB ÐÐ=;②DF CE EF =+;(2)若AB BC =,20CDE Ð=°,求CAF Ð的度数.17.图,已知CD BE =,DG BC ^于点G ,EF BC ^于点F ,且DG EF =.(1)求证:DGC EFB ≌△△;(2)OB OC =吗?请说明理由;(3)若30B Ð=°,ADO △是什么三角形?18.已知:点P 为EAF Ð平分线上一点,PB AE ^于B ,PC AF ^于C ,点M 、N 分别是射线AE 、AF 上的点,且PM PN =.(1)当点M 在线段AB 上,点N 在线段AC 的延长线上时(如图1).求证:BM CN =;(2)在(1)的条件下,求证:2AM AN AC +=;(3)当点M 在线段AB 的延长线上时(如图2),若:2:1AC PC =,4PC =,则四边形ANPM 的面积为_______.。

解三角形题型分类讲解

解三角形题型分类讲解

解三角形知识点总结及题型分类讲解一、 知识点复习 1、正弦定理及其变形 2、正弦定理适用情况: 1已知两角及任一边2已知两边和一边的对角需要判断三角形解的情况 已知a ,b 和A ,求B 时的解的情况:如果B A sin sin ≥,则B 有唯一解;如果1sin sin <<B A ,则B 有两解; 如果1sin =B ,则B 有唯一解;如果1sin >B ,则B 无解. 3、余弦定理及其推论 4、余弦定理适用情况: 1已知两边及夹角;2已知三边. 5、常用的三角形面积公式1高底⨯⨯=∆21ABC S ; 2B ca A bc C ab S ABC sin 21sin 21sin 21===∆两边夹一角.6、三角形中常用结论1,,(a b c b c a a c b +>+>+>即两边之和大于第三边,两边之差小于第三边); 2sin sin (ABC A B a b A B ∆>⇔>⇔>在中,即大边对大角,大角对大边). 3在△ABC 中,π=++C B A ,所以C B A sin )sin(=+;C B A cos )cos(-=+;C B A tan )tan(-=+.42sin 2cos ,2cos 2sin C B A C B A =+=+.二、典型例题题型1、计算问题边角互换例1、在ABC ∆中,若7:5:3sin :sin :sin =C B A ,则角C 的度数为 答案:=C 23π 例2、已知∆ABC 中,∠A 60=︒,3a =,则sin sin sin a b cA B C++++=.答案:2例3、在锐角△ABC 中,内角A,B,C 的对边分别为a,b,c,且2asinB=b .求角A 的大小; 答案:π3题型2、三角形解的个数例1.在△ABC 中,已知b=40,c=20,C=60。

,则此三角形的解的情况是 A. 有一解 B. 两解 C. 无解 D.有解但个数不确定 例2.在ABC ∆中,分别根据下列条件解三角形,其中有两解的是 A 、7=a ,14=b ,︒=30A ; B 、25=b ,30=c ,︒=150C ; C 、4=b ,5=c ,︒=30B ;D 、6=a ,3=b ,︒=60B ;例3. 在△ABC 中,b sin A <a <b ,则此三角形有 A.一解B .两解C.无解D.不确定例4,在ABC ∆中,a=x, b=2, B=45°,若三角形ABC 有两个解,则x 的取值范围____________.例5.在ABC ∆中有几个?则满足此条件的三角形,45),0(3,a o A b =∠>==λλλ 题型3、判断三角形形状例1 在ABC ∆中,已知2222()sin()()sin()a b A B a b A B +⋅-=-⋅+,判断该三角形的形状;答案:等腰三角形或直角三角形例2 △ABC 中,sin 2A =sin 2B +sin 2C ,则△ABC 为A.直角三角形B.等腰直角三角形C.等边三角形D.等腰三角形例3. △ABC 中,a,b,c 分别为角A,B,C 的对边,若πsin π=πcos π=πcos π,则△ABC 为 A.锐角三角形 B.等腰直角三角形C.等边三角形D.任意三角形例4. 在ABC ∆中,已知3b =2√3πsin π,且cos π=cos π,角A 是锐角,则ABC ∆的形状是_________________.例5. 在ABC ∆中,若sin π=2sin πcos π,且sin π2=sin π2+sin π2, 则ABC ∆的形状是_________________.点拨判断三角形形状问题,一是应用正弦定理、余弦定理将已知条件转化为边与边之间的关系,通过因式分解等方法化简得到边与边关系式,从而判断出三角形的形状;角化边二是应用正弦定理、余弦定理将已知条件转化为角与角之间三角函数的关系,通过三角恒等变形以及三角形内角和定理得到内角之间的关系,从而判断出三角形的形状;边化角题型4、求范围或最值问题例1、在锐角ABC ∆中,BC=1,B=2A,则ππcos π的值等于______,AC 的取值范围为________.例2、在ABC ∆中,∠A 60=︒,BC=3,则ABC ∆的两边AC+AB 的取值范围是____________.例3、在ABC ∆中,∠B 60=︒,AC=√3,,则AB+2BC 的最大值————————. 例4、在ABC ∆中,∠B 60=︒,AC=√3,则ABC ∆的周长的最大值为_________________.例5、△ABC 中,a,b,c 分别为角A,B,C 的对边,且a cos π+12π=π. 1.求角A 的大小2若a=1,求三角形ABC 的周长l 的取值范围. 题型5、面积问题例1、ABC ∆的一个内角为0201,并且三边构成公差为4的等差数列,则ABC ∆的面积为 答案:15√3例2.设在ABC ∆的内角,,A B C 所对边的长分别是,,a b c ,且b=3,c=1, △ABC 的面积为2,求cosA 与a 的值;例3:在ABC ∆中,角,,A B C 的对边分别为,,,3a b c B π=,4cos ,35A b ==; Ⅰ求sin C 的值;Ⅱ求ABC ∆的面积.例4:C ∆AB 的内角A ,B ,C 所对的边分别为a ,b ,c .向量π⃗⃗⃗⃗ =(π,√3π)与π⃗⃗⃗⃗ =(cos π,sin π)平行. I 求A ;II 若7a =,2b =求C ∆AB 的面积例5.在ABC ∆中,角A,B,C 所对的边分别为a,b,c 且满足 1求△ABC 的面积;2若c =1,求a 的值.例6.在锐角△ABC 中,内角A,B,C 的对边分别为a,b,c,且2asinB=b .Ⅰ求角A 的大小;Ⅱ若a=6,b+c=8,求△ABC 的面积.例7:ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知2cos (cos cos ).C a B+b A c =I 求C ;II 若c ABC △=求ABC △的周长. 题型六、边化角,角化边注意点:①换完第一步观察是否可以约分,能约分先约分②怎么区分边化角还是角化边呢 若两边都是正弦首先考虑角化边,若sin,cos 都存在时首先考虑边化角例1:在△ABC 中,角A,B,C 所对的边分别为a,b,c,且满足csinA=acosC . Ⅰ求角C 的大小;例2在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .若3a =2b ,则错误!的值为_____________.例3 已知△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,a sin A +c sin C -错误!a sin C =b sin B .1求B ;2若A =75°,b =2,求a ,c .例4在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且cos cos sin A B Ca b c+=. I 证明:sin sin sin A B C =;II 若22265b c a bc +-=,求tan B .例5在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c . 已知b +c =2a cos B. I 证明:A =2B ;II 若△ABC 的面积2=4a S ,求角A 的大小.例6ABC ∆的内角C B A ,,所对的边分别为c b a ,,. I 若c b a ,,成等差数列,证明:()C A C A +=+sin 2sin sin ; II 若c b a ,,成等比数列,求B cos 的最小值. 题型七、三角变换与解三角形的综合问题 例1. 在△ABC 中,AC=6, cos π=45 ,π=π4 (1) 求AB 的长(2) 求cos (π−π6)的值变式练习. 在ABC ∆中,角C B A ,,所对的边分别为c b a ,,.且b sin 2π=πsin π 1,求角C2.若sin (π−π3)=35 ,求sin π的值2. 在ABC ∆中,角C B A ,,所对的边分别为c b a ,,,且tan π=2 ,tan π=3 1.求角A 的大小 2若c=3,求b 的长.题型八、解三角形与平面向量结合例1. 在ABC ∆中,角C B A ,,所对的边分别为c b a ,,,且ABC ∆的面积为S, 3ππ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ππ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =2π. 1求sin π的值 2若C=π4 ππ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ππ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =16 求b 的值变式练习1.在锐角ABC ∆中,向量m =(cos (π+π3),sin (π+π3)),π=(cos π,sin π),且π⊥π 1.求A-B 的值2.若cos π=35,ππ=8,求ππ的长2. 在ABC ∆中,角C B A ,,所对的边分别为c b a ,,,且m =(π−π,π+π),π=(π−π,π),且π∥π 1求B2若b =√13, cos (π+π6)=3√3926,求a.题型九、以平面图形为背景的解三角形问题例1.在ABC ∆中,角C B A ,,所对的边分别为c b a ,,,a =b (sin π+cos π). 1.求∠ABC2若∠A=π2,D 为三角形ABC 外一点,DB=2, DC=1,求四边形ABCD 面积的最大值;变式练习.如图,在平面四边形ABCD 中,DA ⊥AB, DE=1, EC=√7, EA=2,∠ADC =2π3,且∠CBE, ∠BEC,∠BCE 成等差数列. 1求sin ∠πππ 2 求BE 的长4、如图,在梯形ABCD 中,已知A D∥BC,AD=1,BD=2√10,∠πππ=π4,tan ∠ADC=-2,求: 1CD 的长 2三角形BCD 的面积课时达标训练1、在锐角ABC ∆中,角C B A ,,所对的边分别为c b a ,,1.设ππ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ππ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =ππ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ππ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ,求证三角形ABC 是等腰三角形2.设向量S=(2sin π,−√3),π=(cos 2π ,cos π),且π∥π,sin π=13,求sin (π3−π)的值.2、在ABC ∆中,角C B A ,,所对的边分别为c b a ,,.已知a>b,a=5,c=6,sin π=35. 1求b 和sin π的值 2求sin (2π+π4)的值3、在ABC ∆中,角C B A ,,所对的边分别为c b a ,,.a =mb cos π,π为常数. 1若m=2,且cos π=√1010,求cos π的值;2若m=4,求tan (π−π)的最大值.4、如图,在梯形ABCD 中,已知A D∥BC,AD=1,BD=2√10,∠πππ=π4,tan ∠ADC=-2,求: 1CD 的长 2三角形BCD 的面积 5、已知函数fx=√32πππ2π−cos π−121求fx 的最小值,并写出取得最小值时自变量x 的取值集合;2设ABC ∆中,角C B A ,,所对的边分别为c b a ,,,且c=√3,π(π)=0,若ππππ=2ππππ,求a,b 的值;6. 在锐角ABC ∆中,角C B A ,,所对的边分别为c b a ,,,已知2cosB=2c-b. 1若cosA+C=5√314,求cosC 的值;2若b=5,ππ⃗⃗⃗⃗⃗⃗⃗⃗⃗ ππ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =−5,求三角形ABC 的面积; 3若O 是三角形ABC 外接圆的圆心,且cos πsin πππ⃗⃗⃗⃗⃗⃗⃗⃗⃗ +cos πsin πππ=πππ⃗⃗⃗⃗⃗⃗⃗⃗⃗ , 求π的值⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗⃗ .解三角形基础练习1、满足︒=45A ,6=c ,2=a 的ABC ∆的个数为m ,则m a 为 .2、已知35,5==b a ,︒=30A ,解三角形;3、在ABC ∆中,已知4=a cm ,x b =cm ,︒=60A ,如果利用正弦定理解三角形有两解,则x 的取值范围是A 、4>xB 、40≤<xC 、3384≤≤x D 、3384<<x 4、在ABC ∆中,若),(41222c b a S -+=则角=C . 5、设R 是ABC ∆外接圆的半径,且B b a C A R sin )2()sin (sin 222-=-,试求ABC ∆面积的最大值;6、在ABC ∆中,D 为边BC 上一点,33=BD ,135sin =B ,53cos =∠ADC ,求AD . 7、在ABC ∆中,已知,,a b c 分别为角C B A ,,的对边,若cos cos a Bb A=,试确定ABC ∆形状;8、在ABC ∆中,,,a b c 分别为角C B A ,,的对边,已知cos 2cos 2cos A C c aB b--=1求sin sin C A;2若1cos ,2,4B b ==求ABC ∆的面积;1、在ABC ∆中,若bc a c b c b a 3))((=-+++,且C B A cos sin 2sin =,则ABC ∆是A 、等边三角形B 、钝角三角形C 、直角三角形D 、等腰直角三角形2、ABC ∆中若面积S=)(41222c b a -+则角=C3、清源山是国家级风景名胜区,山顶有一铁塔AB ,在塔顶A 处测得山下水平面上一点C 的俯角为α,在塔底B 处测得点C 的俯角为β,若铁塔的高为h m ,则清源山的高度为 m ; A 、)sin(cos sin βαβα-hB 、)sin(sin cos βαβα-hC 、)sin(sin sin βαβα-hD 、)sin(cos cos βαβα-h4、ABC ∆的三个内角为A B C 、、,求当A 为何值时,cos 2cos 2B CA ++取得最大值,并求出这个最大值;5、在ABC ∆中,,,a b c 分别为角A B C 、、的对边,且满足sin cos c A a C = 1求角C 的大小2cos()4A B π-+的最大值,并求取得最大值时角B A ,的大小;正弦定理、余弦定理水平测试题一、选择题1.在△ABC中,角A、B、C的对边分别为a、b、c,若a2+c2-b2=错误!ac,则角B的值为或错误!或错误!2.已知锐角△ABC的面积为3错误!,BC=4,CA=3,则角C的大小为A.75° B.60° C.45°D.30°3.2010·上海高考若△ABC的三个内角满足sin A∶sin B∶sin C=5∶11∶13,则△ABCA.一定是锐角三角形B.一定是直角三角形C.一定是钝角三角形D.可能是锐角三角形,也可能是钝角三角形4.如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为5.2010·湖南高考在△ABC中,角A,B,C所对的边长分别为a,b,c,若∠C=120°,c=错误!a,则A.a>b B.a<b C.a=b D.a与b大小不能确定二、填空题6.△ABC中,a、b、c分别是角A、B、C所对的边,已知a=错误!,b=3,C=30°,则A=7.2010·山东高考在△ABC中,角A,B,C所对的边分别为a,b,c.若a=错误!,b=2,sin B+cos B=错误!,则角A的大小为________.8.已知△ABC的三个内角A,B,C成等差数列,且AB=1,BC=4,则边BC上的中线AD的长为________.三、解答题9.△ABC中,内角A、B、C的对边长分别为a、b、c.若a2-c2=2b,且sin B =4cos A sin C,求b.10.在△ABC中,已知a2+b2=c2+ab.1求角C的大小;2又若sin A sin B=错误!,判断△ABC的形状.11.2010·浙江高考在△ABC中,角A,B,C所对的边分别为a,b,c,设S为△ABC的面积,且S=错误!a2+b2-c2.1求角C的大小;2求sin A+sin B的最大值.12.2015高考新课标2,理17本题满分12分ABC∆中,D是BC上的点,AD平分BAC∠,ABD∆面积是ADC∆面积的2倍.Ⅰ求sinsinBC∠∠;Ⅱ若1AD=,DC=求BD和AC的长.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角形章节复习
全章知识点梳理:
一.三角形基本槪念
L三角形的概念
由不在同一条直线上的三条线段首尾依次相接所组成的图形叫做三角形。

2.三角形按边分类
3.三角形三边的关系(重点)
三角形的任意两边之和大于第三边。

三角形的任意两边之差小于第三边。

(这两个条件满足其中一个I!卩可)用数学表达式表达就是:记三角形三边长分别是a. b, c,则3+»(或c-b<ao
已知三角形两边的长度分别为a. b,求第三边长度的范帀:a-b|VcVa+b
解题方法:
①数三角形的个数方法:分类,不要重复或者多余。

②给出三条线段的长度或者三条线段的比值,要求判断这三条线段能否组成三角形方法:最小边+较小边>最大边不用比较三遍,只需比较一遍即可
③给出多条线段的长度,要求从中选择三条线段能够组成三角形方法:从所给线段的最大边入手,依次寻找较小边和最小边:直到找完为止,注意不要找重,也不要漏
④已知三角形两边的长度分别为a, b.求第三边长度的范用
方法J第三边长度的范围J a—b!<c<a+b
⑤给出等腰三角形的两边长度,要求等腰三角形的底边和腰的长
方法:因为不知逍这两边哪条边是底边,哪条边是腰,所以要分类讨论,讨论完后要写“综上",将上 而讨论的结果做个总结。

二. 三角形的髙、中线与角平分线
L 三角形的高
从△ABC 的顶点向它的对边BC 所在的直线画垂线,垂足为D.那么线段AD 叫做△ABC 的边BC 上的离。

三角形的三条高的交于一点,这一点叫做“三角形的垂心”.
2.三角形的中线
连接△ABC 的顶点A 和它所对的对边BC 的中点D,所得的线段AD 叫做△ABC 的边BC 匕的中线。

三角形三条中线的交于一点,这一点叫做“三角形的重心”。

三角形的中线可以将三角形分为而积相等的两个小三角形。

3.三角形的角平分线
ZA 的平分线打对边BC 交于点D,那么线段AD 叫做三角形的角平分线。

要区分三角形的“角平分线"与“角的平分线",其区别是:三角形的角平分线是条线段:角的平分线 是条射线。

三角形三条角平分线的交于一点,这一点叫做“三角形的内心” O
要求会的题型:
① 已知三角形中两条高和其所对的底边中的三个长度,求幷中未知的高或者底边的长度
三、三角形的稳定性
方法是将多边形分成多个三角形,这样多边形就具有稳;性了。

四、与三角形有关的角 L 三角形的内角
①三角形的内角和宦理三角形的内角和为180° ,与三角形的形状无关。

② 直角三角形的两个锐角互余(相加为90° ) O 有两个角互余的三角形是直角三角形。

方法:利用“等积法",
将三角形的面积用两种方式表达,求出未知量。

1.三角形具有稳泄性
2.四边形及多边形不具有稳世性
要使多边形具有稳定性,
2.三角形的外角
①三角形外角的意义三角形的一边与另一边的延长线组成的角叫做三角形的外角。

②三角形外角的性质三角形的一个外角等于与它不相邻的两个内角之和。

三角形的一个外角大于与它不柑邻的任何一个内角。

③ 五个基本图形
三角形的复习题型分类讲解
考点一:三角形三边关系的考査:
【基本应用】
1.(2013-宜昌〉下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是( 2, 6 2•图中共有(
【能力提高】
5.等腰三角形两边长分别为4和8,则这个等腰三角形的周长为.
3.
6•若三条线段中a=3, b=5, c 为奇数.那么由/ b, C 为边组成的三角形共有(
7. (2012 -义乌中考)如果三角形的两边长分别为3和5,第三边长是偶数,则第三边长可以是 8•已知a. b 、c 是三角形的三边,化简a+b-c-a ・b-c ・
2.长为11. 8, 6, 4的四根木条,选英中三根组成三角形有
种选法,它们分别是
2. C •无数多个
D.无法确定
7. 9.
10•若a, b, c分别为三角形的三边,化简;|a—b—c| + |b — c — a| + |c — a + b|.
考点.三角形角的考査
【基本应用】
1•一个三角形中最多有个内角是钝角,最多可有个角是锐角.
2.若ZA : ZB : ZC=1 : 2 : 3,则ZA=
3. (2010山东济宁)若一个三角形三个内角度数的比为2: 3 : 4,那么这个三角形是(
A.直角三角形
B.锐角三角形
C.钝角三角形
D.等边三角形
4•在Rt^ABC 中,ZC=90° , ZA=5ZB.则ZA=
5•在△ABC中.ZA=55° , ZB比ZC大25° ,则ZB的度数为
6■如图,在△ABC 中,ZA=36° , ZC=72° , BD 平分ZABC,求ZDBC 的度数.
【能力提高】
1-如图,ZA=40" ,Z1+Z2+ Z3+Z4 =
2.在一个三角形中, 有一个角等于另外两个角的和,则这个三角形一企是(
A.锐角三角形B-直角三角形C・钝角三角形D・等腰三角形
Z2的大小关系是(
4•如图,AABC中,ZA=5(r •点D・E分別在AB, AC上,则Zl+Z2的大小为(
9•已知等腰三角形的一个外角为150° ,则它的底角为.
13•如图,在△ABC中,ZACB=90° , CD是边AB上的高。

那么图中与ZA相等的角是()
考点二.三角形中线、角平线.高的考査
【基本应用】
1•对下面每个三角形, 过顶点A画出中线,角平分线和高•
C B C
A- ZA>Z1>Z2 B・ Z2>Z1>ZA C・ ZA>Z2>Z1 D. Z2>ZA>Z1
A. 130° B・230° C. 180° D. 310°
5•已知等腰三角形的一个外角是120° ,则它是()
A.等腰宜角三角形B・一般的等腰三角形 C.等边三角形
7.已知三角形的三个外角的度数比为2 : 3 : 4,则它的最大内角的度数
A. 90°
B. 110"
C. 100"
【等腰钝角三角形
A. ZB
B. ZACD
C. ZBCD
D.
ZBDC
B
8
K U. 1ZO'
X
第13题
2•下列说法错误的是(
A.三角形的三条高一世在三角形内部交于一点
B.三角形的三条中线一圧在三角形内部交于一点
C.三角形的三条角平分线一定在三角形内部交于一点
D.三角形的三条高可能柑交于外部一点
【能力提高】
1.三角形的下列线段中能将三角形的面积分成相等的两部分是()
A.中线
B.角平分线 D.中位线
2•如图,已知在△ABC中,ZABC与ZACB的平分线相交于点0,若ZB0C=140° ,求ZA的度数.
3.如图,在△ABC 中,AD 是ZBAC 的平分线,ZB=54° , ZC=76°
⑴求ZADB和ZADC的度数.
⑵若DE丄AC,求ZEDC的度数.。

相关文档
最新文档