4×4矩阵键盘原理及其在单片机中的简单应用(基Proteus仿真)
实验四4×4键盘输入
实验四: 4 × 4键盘输入实验一、实验目的:1.学习非编码键盘的工作原理和键盘的扫描方式。
2.学习键盘的去抖方法和键盘应用程序的设计。
二、实验原理:键盘是单片机应用系统接受用户命令的重要方式。
单片机应用系统一般采用非编码键4*4矩阵盘,需要由软件根据键扫描得到的信息产生键值编码,以识别不同的键。
本板采用键盘,行信号分别为P1.0-P1.3 ,列信号分别为P1.4-P1.7 。
具体电路连接见下图对于键的识别一般采用逐行(列)扫描查询法,判断键盘有无键按下,由单片机I/O口向键盘送全扫描字,然后读入列线状态来判断。
程序及流程图:ORG 0000HAJMP MAINORG 0000HAJMP MAINORG 0030HMAIN:MOV P2,#0F7HMOV P1,#0F0HMOV R7,#100DJNZ R7,$MOV A,P1ANL A,#0F0HXRL A,#0F0HJZ MAINLCALL D10MSMOV A,#00HMOV R0,AMOV R1,AMOV R2,#0FEH SKEY0:MOV A,R2MOVP1,AMOVR7,#10DJNZ R7,$MOVA,P1ANLA,#0F0HXRLA,#0F0HJNZ LKEYINC R0MOVA,R2RL AMOVR2,AMOVA,R0CJNE A,#04H,SKEY0AJMP MAIN LKEY:JNB ACC,4,NEXT1MOVA,#00HMOVR1,AAJMP DKEYNEXT1:JNB ACC.5,NEXT2MOVA,#01HMOVR1,AAJMP DKEYNEXT2:JNB ACC.6,NEXT3MOVA,#02HMOVR1,AAJMP DKEYNEXT3:JNB ACC.7,MAINMOVA,#03HMOVR1,AAJMP DKEY DKEY:MOV A,R0MOVB,#04HMULABADDA,R1AJMP SQRSQR:MOVDPTR,#TABMOVC A,@A+DPTRMOVP0,AAJMP MAINTAB:DB0C0H,0F9H,0A4H,0B0H,99H, 92H, 82H, 0F8H DB 80H, 90H, 88H, 83H, 0C6H,0A1H,86H, 8EH D10MS:MOV R6,#10L1:MOV R5,#248DJNZ R5,$DJNZ R6,L1RETEND流程图:结束三、思考题:总结 FPGA是如何识别按键的?与单片机读取键值有何不同?答:FPGA的所有 I/O 控制块允许每个 I/O 引脚单独配置为输入口 , 不过这种配置是系统自动完成的。
(整理)自己写的单片机矩阵键盘显示程序及仿真
Protues 电路连接图如下所示:PS:矩阵键盘说明——4×4矩阵从左到右依次编码为1,,3,4,5,6,7,8,9,10,11,12,13,14,15,16 按下某一按键,Led数码管就会显示相应的数字。
Keil C51 程序如下:有点不足望改进。
O(∩_∩)O谢谢!!!////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// #include <reg51.h>#define uchar unsigned char //宏的定义变量类型uchar 代替unsigned char#define uint unsigned int //宏的定义变量类型uint 代替unsigned intuchar dis_buf; //显示缓存uchar temp;uchar l,h,j; //定义行列void delay0(uchar x); //x*0.14MS// 此表为LED 的字模0 1 2 3 4 5 6 78 9uchar code LED7Code[] = {0xc0,0xf9,~0x5B,~0x4F,~0x66,~0x6D,~0x7D,~0x07,~0x7F,~0x6F};/************************************************************** ** 延时子程序** * *************************************************************/void delay(uchar x){ uchar j;while((x--)!=0) //CPU执行x*12次,x=10{ for(j=0;j<50;j++){;}}}/************************************************************* * * * 键扫描子程序(4*4的矩阵) P1.4 P1.5 P1.6 P1.7为行** P1.0 P1.1 P1.2 P1.3为列** * *************************************************************/void keyscan(void){ temp=0;P1=0xF0; //高四位输入行为高电平列为低电delay(3); //延时temp=P1; //读P1口temp=temp&0xF0;//屏蔽低四位temp=~((temp>>4)|0xF0); //高四位取反无键按下取反应为0xf0if(temp==1) //0001 [1,1] 被拉低h=1;else if(temp==2) //0010[2,1] 被拉低h=2;else if(temp==4) //0100[3,1] 被拉低h=3;else if(temp==8) //1000[4,1] 被拉低h=4;dis_buf = h;dis_buf = (dis_buf<<4) & 0xf0; //行信息现存在第四位delay(10);P1=0x0F; //低四位输入列为高电平行为低电平delay(3); //延时temp=P1; //读P1口temp=temp&0x0F; //屏蔽高四位temp=~(temp|0xF0); //取反if(temp==1) //1列被拉低l=1;else if(temp==2) //2列被拉低l=2;else if(temp==4) //3列被拉低l=3;else if(temp==8) //4列被拉低l=4;l= l & 0x0f;delay(3);dis_buf= l | dis_buf;}/************************************************************** **判断键是否按下** **************************************************************/void keydown(void){P2=0xF0; //显示00P3=0xf0;//将高4位全部置1 低四位全部置0if(P1!=0xF0) //判断按键是否按下如果按钮按下会拉低P1其中的一个端口{keyscan(); //调用按键扫描程序}}void display( ){j=50;while(j){P2= 0x80;P0= LED7Code[0];delay(50);P2=0x01;P0= LED7Code[1];delay(50);P0=0xff;j--;}}void display1( ){j=50;while(j){P2= 0x80;P0= LED7Code[2];delay(50);P2=0x01;P0= LED7Code[1];delay(50);P0=0xff;j--;}}void display2( ){j=50;while(j){P2= 0x80;P0= LED7Code[3];delay(50);P2=0x01;P0= LED7Code[1];delay(50);P0=0xff;j--;}}void display3( ){j=50;while(j){P2= 0x80;P0= LED7Code[4];delay(50);P2=0x01;P0= LED7Code[1];delay(50);P0=0xff;j--;}}void display4( ){j=50;while(j){P2= 0x80;P0= LED7Code[5];delay(50);P2=0x01;P0= LED7Code[1];delay(50);P0=0xff;j--;}}void display5( ){j=50;while(j){P2= 0x80;P0= LED7Code[6];delay(50);P2=0x01;P0= LED7Code[1];delay(50);P0=0xff;j--;}}/************************************************************* * * * 主程序* * * *************************************************************/ void main(){P0=0xc0;delay(20); //延时while(1){ keydown(); //调用按键判断检测程序switch( dis_buf){case 0x11 : P2=0x80; P0= LED7Code[1]; break;case 0x12 : P2=0x80; P0= LED7Code[2]; break;case 0x13 : P2=0x80; P0= LED7Code[3]; break;case 0x14 : P2=0x80; P0= LED7Code[4]; break;case 0x21 : P2=0x80; P0= LED7Code[5]; break;case 0x22 : P2=0x80; P0= LED7Code[6]; break;case 0x23 : P2=0x80; P0= LED7Code[7]; break;case 0x24 : P2=0x80; P0= LED7Code[8]; break;case 0x31 : P2=0x80; P0= LED7Code[9]; break;case 0x32 : display();break;case 0x33 : P2 = LED7Code[1]; P0= LED7Code[1]; break;case 0x34 : display1(); break;case 0x41 : display2(); break;case 0x42 : display3();; break;case 0x43 : display4();; break;case 0x44 : display5();; break;}delay(250);}}//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////。
基于msc51单片机实现的四位4乘4矩阵键盘计算器的C语言程序及其PROTUES电路和仿真
单片机原理及接口技术课程设计报告设计题目:计算器设计学号:100230205姓名:费博文指导教师:张扬信息与电气工程学院二零一三年七月计算器设计单片机体积小,功耗小,价格低,用途灵活,无处不在,属专用计算机。
是一种特殊器件,需经过专门学习方能掌握应用,应用中要设计专用的硬件和软件。
近年来,单片机以其体积小、价格廉、面向控制等独特优点,在各种工业控制、仪器仪表、设备、产品的自动化、智能化方面获得了广泛的应用。
与此同时,单片机应用系统的可靠性成为人们越来越关注的重要课题。
影响可靠性的因素是多方面的,如构成系统的元器件本身的可靠性、系统本身各部分之间的相互耦合因素等。
其中系统的抗干扰性能是系统可靠性的重要指标。
数学是科技进步的重要工具,数据的运算也随着科技的进步越发变得繁琐复杂,计算器的出现可以大大解放人在设计计算过程中的工作量,使计算的精度、速度得到改善,通过msc51单片机,矩阵键盘和LED数码管可以实现简单的四位数的四则运算和显示,并当运算结果超出范围时予以报错。
注:这一部分主要描述题目的背景和意义,对设计所采取的主要方法做一下简要描述。
字数不要太多,300-500字。
另注:本文要当做模板使用,不要随意更改字体、字号、行间距等,学会使用格式刷。
文中给出的各项内容都要在大家的报告中体现,可采用填空的方式使用本模板。
1. 设计任务结合实际情况,基于AT89C51单片机设计一个计算器。
该系统应满足的功能要求为:(1) 实现简单的四位十进制数字的四则运算;(2) 按键输入数字,运算法则;(3) LED数码管移位显示每次输入的数据和运算结果;(4) 当运算结果超出范围时实现报错。
主要硬件设备:AT89C51单片机、LED数码管、矩阵键盘。
注:这一部分需要写明系统功能需求,用到的主要硬件(参考实验箱的说明书)。
2. 整体方案设计计算器以AT89C51单片机作为整个系统的控制核心,应用其强大的I/O功能和计算速度,构成整个计算器。
单片机c语言程序设计---矩阵式键盘实验报告
单片机c语言程序设计---矩阵式键盘实验报告课程名称:单片机c语言设计实验类型:设计型实验实验项目名称:矩阵式键盘实验一、实验目的和要求1.掌握矩阵式键盘结构2.掌握矩阵式键盘工作原理3.掌握矩阵式键盘的两种常用编程方法,即扫描法和反转法二、实验内容和原理实验1.矩阵式键盘实验功能:用数码管显示4*4矩阵式键盘的按键值,当K1按下后,数码管显示数字0,当K2按下后,显示为1,以此类推,当按下K16,显示F。
(1)硬件设计电路原理图如下仿真所需元器件(2)proteus仿真通过Keil编译后,利用protues软件进行仿真。
在protues ISIS 编译环境中绘制仿真电路图,将编译好的“xxx.hex”文件加入AT89C51。
启动仿真,观察仿真结果。
操作方完成矩阵式键盘实验。
具体包括绘制仿真电路图、编写c源程序(反转法和扫描法)、进行仿真并观察仿真结果,需要保存原理图截图,保存c源程序,总结观察的仿真结果。
完成思考题。
三、实验方法与实验步骤1.按照硬件设计在protues上按照所给硬件设计绘制电路图。
2.在keil上进行编译后生成“xxx.hex”文件。
3.编译好的“xxx.hex”文件加入AT89C51。
启动仿真,观察仿真结果。
四、实验结果与分析void Scan_line()//扫描行{Delay(10);//消抖switch ( P1 ){case 0x0e: i=1;break;case 0x0d: i=2;break;case 0x0b: i=3;break;case 0x07: i=4;break;default: i=0;//未按下break;}}void Scan_list()//扫描列{Delay(10);//消抖switch ( P1 ){case 0x70: j=1;break;case 0xb0: j=2;break;case 0xd0: j=3;break;case 0xe0: j=4;break;default: j=0;//未按下break;}}void Show_Key(){if( i != 0 && j != 0 ) P0=table[ ( i - 1 ) * 4 + j - 1 ];else P0=0xff;}五、讨论和心得。
4乘4矩阵式键盘使用
4乘4矩阵式键盘在单片机中的应用--C语言下图为4*4键盘的结果图,用单片机的P1口接4×4矩阵键盘,接法如图所示,用数码管显示按键的值,按下键S1,数码管显示0,按下S2,数码管显示1,按下S16,显示F。
先看程序代码:#include<reg51.h>#include<intrins.h>#define uint unsigned int#define uchar unsigned charuchar code table[16] = {0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71};//八段数码管对应0—F值。
void Delay_1ms(uint i)//1ms延时{uchar x, j;for(j=0;j<i;j++)for(x=0;x<=148;x++);}void delay()//消除按键抖动延时{int i,j;for(i=0; i<=10; i++)for(j=0; j<=2; j++);}uchar Keyscan(void){uchar i,j, temp, Buffer[4] = {0xfe, 0xfd, 0xfb, 0xf7};for(j=0; j<4; j++){P1 = Buffer[j];delay();temp = 0x10;for(i=0; i<4; i++){if(!(P1 & temp)){return (i+j*4);}temp <<= 1;}}}void Main(void){uchar Key_V alue; //读出的键值while(1){P1 = 0xf0;if(P1 != 0xf0){Delay_1ms(15); //按键消抖if(P1 != 0xf0){Key_Value = Keyscan();}}P0 = table[Key_V alue];//P0口输出数据到数码管}}代码分析:程序从Main开始执行,Key_V alue用来存放Keyscan();的返回值,Key_V alue为1,则数码管会显示1。
基于51单片机4乘4矩阵键盘的设计
case 0x7d:KEY=7;break;
case 0xeb:KEY=8;break;
case 0xdb:KEY=9;break;
case 0xbb:KEY=10;break;
case 0x7b:KEY=11;break;
case 0xe7:KEY=12;break;
控制任务:
编程实现4乘4的矩阵键盘控制连接在P0口和P1口上的16个LED,当按下某键并释放后只有对应的LED灯亮,例如按S0后D0亮,按S1后D1亮。
程序及仿真:
#include<reg51.h>
unsigned char code led[]={0xfe,0xfd,0xfb,0xf7,0xef,0xdf,0xbf,0x7f};
b=P2;
a=a|b;
switch(a)
{
case 0xee:KEY=0;break;
case 0xde:KEY=1;break;
case 0xbe:KEY=2;break;
case 0x7e:KEY=3;break;
case 0xed:KEY=4;break;
case 0xdd:KEY=5;break;
{
P0=0xff;
P1=led[n-8];
}}
int main(void)
{
whilsplay(KEY);
}
return 0;
}
更多资源,请关注微博“风竹弈星”,私聊。
unsigned char KEY=0xff;
void keyscan(void)
{
unsigned char a,b;
P2=0xf0;//高四位作为输入(高电平),低四位输出低电平
自己写的单片机矩阵键盘显示程序及仿真
Protues 电路连接图如下所示:PS:矩阵键盘说明——4×4矩阵从左到右依次编码为1,,3,4,5,6,7,8,9,10,11,12,13,14,15,16按下某一按键,Led数码管就会显示相应的数字。
Keil C51 程序如下:有点不足望改进。
O(∩_∩)O谢谢!!!/////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////#include <reg51.h>#define uchar unsigned char //宏的定义变量类型 uchar 代替 unsigned char#define uint unsigned int //宏的定义变量类型 uint 代替 unsigned intuchar dis_buf; //显示缓存uchar temp;uchar l,h,j; //定义行列void delay0(uchar x); //x*0.14MS// 此表为 LED 的字模 0 1 2 3 4 5 6 78 9uchar code LED7Code[] = {0xc0,0xf9,~0x5B,~0x4F,~0x66,~0x6D,~0x7D,~0x07,~0x7F,~0x6F};/************************************************************* * ** 延时子程序 ** **************************************************************/void delay(uchar x){ uchar j;while((x--)!=0) //CPU执行x*12次,x=10{ for(j=0;j<50;j++){;}}}/************************************************************* * * * 键扫描子程序 (4*4的矩阵) P1.4 P1.5 P1.6 P1.7为行 * * P1.0 P1.1 P1.2 P1.3为列 ** * *************************************************************/void keyscan(void){ temp=0;P1=0xF0; //高四位输入行为高电平列为低电delay(3); //延时temp=P1; //读P1口temp=temp&0xF0;//屏蔽低四位temp=~((temp>>4)|0xF0); //高四位取反无键按下取反应为0xf0if(temp==1) //0001 [1,1] 被拉低h=1;else if(temp==2) //0010[2,1] 被拉低h=2;else if(temp==4) //0100[3,1] 被拉低h=3;else if(temp==8) //1000[4,1] 被拉低h=4;dis_buf = h;dis_buf = (dis_buf<<4) & 0xf0; //行信息现存在第四位delay(10);P1=0x0F; //低四位输入列为高电平行为低电平delay(3); //延时temp=P1; //读P1口temp=temp&0x0F; //屏蔽高四位temp=~(temp|0xF0); //取反if(temp==1) //1列被拉低l=1;else if(temp==2) //2列被拉低l=2;else if(temp==4) //3列被拉低l=3;else if(temp==8) //4列被拉低l=4;l= l & 0x0f;delay(3);dis_buf= l | dis_buf;}/************************************************************** **判断键是否按下 ** **************************************************************/void keydown(void){P2=0xF0; //显示00P3=0xf0;//将高4位全部置1 低四位全部置0if(P1!=0xF0) //判断按键是否按下如果按钮按下会拉低P1其中的一个端口{keyscan(); //调用按键扫描程序}}void display( ){j=50;while(j){P2= 0x80;P0= LED7Code[0];delay(50);P2=0x01;P0= LED7Code[1];delay(50);P0=0xff;j--;}}void display1( ){j=50;while(j){P2= 0x80;P0= LED7Code[2];delay(50);P2=0x01;P0= LED7Code[1];delay(50);P0=0xff;j--;}}void display2( ){j=50;while(j){P2= 0x80;P0= LED7Code[3];delay(50);P2=0x01;P0= LED7Code[1];delay(50);P0=0xff;j--;}}void display3( ){j=50;while(j){P2= 0x80;P0= LED7Code[4];delay(50);P2=0x01;P0= LED7Code[1];delay(50);P0=0xff;j--;}}void display4( ){j=50;while(j){P2= 0x80;P0= LED7Code[5];delay(50);P2=0x01;P0= LED7Code[1];delay(50);P0=0xff;j--;} }void display5( ){j=50;while(j){P2= 0x80;P0= LED7Code[6];delay(50);P2=0x01;P0= LED7Code[1];delay(50);P0=0xff;j--;}}/************************************************************** ** 主程序 ** **************************************************************/ void main(){P0=0xc0;delay(20); //延时while(1){ keydown(); //调用按键判断检测程序switch( dis_buf){case 0x11 : P2=0x80; P0= LED7Code[1]; break;case 0x12 : P2=0x80; P0= LED7Code[2]; break;case 0x13 : P2=0x80; P0= LED7Code[3]; break;case 0x14 : P2=0x80; P0= LED7Code[4]; break;case 0x21 : P2=0x80; P0= LED7Code[5]; break;case 0x22 : P2=0x80; P0= LED7Code[6]; break;case 0x23 : P2=0x80; P0= LED7Code[7]; break;case 0x24 : P2=0x80; P0= LED7Code[8]; break;case 0x31 : P2=0x80; P0= LED7Code[9]; break;case 0x32 : display();break;case 0x33 : P2 = LED7Code[1]; P0= LED7Code[1]; break;case 0x34 : display1(); break;case 0x41 : display2(); break;case 0x42 : display3();; break;case 0x43 : display4();; break;case 0x44 : display5();; break;}delay(250);}}/////////////////////////////////////////////////////////////////////////////// ///////////////////////////////////////////////////////////////(注:本资料素材和资料部分来自网络,仅供参考。
Proteus使用笔记之51单片机4x4矩阵按键
uchar key; while(1) { key=keyscan(); delayMS(50); } } void delayMS(unsigned int z) { unsigned i,j; for(i=z;i>;0;i--) for(j=122;j>;0;j--); } uchar keyscan(void) { uchar scode,scode1,scode2,k; P1=0xf0;
Proteus 使用笔记之 51 单片机 4x4 矩阵按 键
采用反转法判断按键坐标,即行号与列号获得按键码。 写完后发现 Proteus 一个问题:直接使用这样的 if(P1&0xf0!=0xf0)语句时,调不出来,当用了一个中间 变量过渡时,就调出来了,害我花了一个上午的时间,现 在暂时不知道 Proteus 为什么要这样,实际中是不需要的。
case 0x42: k=10;break; case 0x44: k=11;break; case 0x48: k=12;break; case 0x81: k=13;break; case 0x82: k=14;break; case 0x84: k=15;break; case 0x88: k=16;break; default: k=0;break; }
scode1=P1&0xf0; if(scode1!=0xf0) { delayMS(10); scode1=P1&0xf0; if(scode1!=0xf0) { scode1=P1^0xf0; //行号 P1=0x0f; scode2=P1^0x0f; //列号 scode=scode1+scode2; switch(scode) { case 0x11: k=1;break; case 0x12: k=2;break; case 0x14: k=3;break; case 0x18: k=4;break; case 0x21: k=5;break; case 0x22: k=6;break; case 0x24: k=7;break; case 0x28: k=8;break; case 0x41: k=9;break;
5数码管显示4×4键盘矩阵按键实验
5数码管显示4×4键盘矩阵按键实验数码管显示4×4键盘矩阵按键实验一、实验目的、原理及方法键盘在单片机应用系统中能实现向单片机输入数据、传送命令等功能,是人工干预单片机的主要手段。
该实验的目的在于了解键盘的工作原理,键盘按键的识别过程及识别方法,键盘与单片机的接口技术和编程。
键盘实质上是一组按键开关的集合。
通常,键盘开关利用了机械触点的合、断作用。
键的闭合与否,反映在行线输出电压上就是呈高电平或低电平,如果高电平表示键断开,低电平则表示键闭合,反之也可。
通过对行线电平高低状态的检测,便可确认按键按下与否。
为了确保CPU对一次按键动作只确认一次按键有效,还必须消除抖动。
当按键较多时会占用更多的控制器端口,为减少对端口的占用,可以使用行列式键盘接口,本实验中采用的4×4键盘矩阵可以大大减少对单片机的端口占用,但识别按键的代码比独立按键的代码要复杂一些。
在识别按键时使用了不同的扫描程序代码,程序运行时数码管会显示相应按键的键值0~F。
本实验中P1端口低4位连接是列线,高4位连接的是行线。
二、实验步聚及注意事项1、使用Proteus IS 7 Professional应用程序,建立一个.DSN文件2、在“库”下拉菜单中,选中“拾取元件”(快捷键P),分别选择以下元件:AT89C51、RX8、7SEG-COM-ANGRN、BUTTON。
3、构建仿真电路4、创建一个Keil应用程序:新建一个工程项目文件;为工程选择目标器件(AT89C51);为工程项目创建源程序文件并输入程序代码;保存创建的源程序项目文件;把源程序文件添加到项目中。
5、把用户程序经过编译后生成的HEX文件添加到仿真电路中的处理器中(编辑元件→文件路径)三、实验仪器电脑一台,并装载软件:Proteus IS 7 Professional应用程序Keil应用程序四、数据记录及处理#include<reg< p="">51.h>#define uint unsigned int#define uchar unsigned charUchar code dsy_code[]={0xC0,0xF9,0xA4,0xB0,0x99,0x92,0x82,0xF8,0x80,0x90,0x88,0x83,0xc6,0xa1,0x 86,0x8e,0xFF};uchar Pre_keyno=16,keyno=16;void delayMS(char x){uchar i;while(x--)for(i=0;i<120;i++) ;}void keys_scan(){uchar tmp;P1=0x0f;delayMS(1);tmp=P1^0x0f;switch(tmp){case 1:keyno=0;break;case 2:keyno=1;break;case 4:keyno=2;break;case 8:keyno=3;break;default:keyno=16;}P1=0xf0;delayMS(1);tmp=P1>>4^0x0f;switch(tmp){case 1:keyno+=0;break;case 2:keyno+=4;break;case 4:keyno+=8;break;case 8:keyno+=12;break;}}main(){P0=0xff;while(1){P1=0xf0;if(P1!=0xf0)keys_scan();if(Pre_keyno!=keyno){P0=dsy_code[keyno];Pre_keyno=keyno;}delayMS(50);}}五、结果分析(自行填写,如:功能是否实现;整个过程中存在哪些问题;如何解决的….)</reg<>。
4×4矩阵键盘的工作原理与编程
4×4矩阵键盘的工作原理与编程ME300B单片机学习开发系统应用之三---4×4矩阵键盘的工作原理与编程作者:山西太原贵国庆本文介绍如何在ME300B型51/AVR单片机学习开发系统上使用数码管显示4×4矩阵键盘的键值。
一、硬件工作原理的简单介绍该实验使用ME300B上的8位数码管显示电路和4×4矩阵键盘电路。
现将这二部分的电路工作原理进行简单的介绍:1、4×4矩阵键盘的工作原理矩阵键盘又称为行列式键盘,它是用4条I/O线作为行线,4条I/O线作为列线组成的键盘。
在行线和列线的每一个交叉点上,设置一个按键。
这样键盘中按键的个数是4×4个。
这种行列式键盘结构能够有效地提高单片机系统中I/O口的利用率。
图1为ME300B矩阵键盘电路图,行线接P1.4-P1.7,列线接P1.0-P1.3。
地显示。
图3 数码管电路数码管不同位显示的时间间隔可以通过调整延时程序的延时长短来完成。
数码管显示的时间间隔也能够确定数码管显示时的亮度,若显示的时间间隔长,显示时数码管的亮度将亮些,若显示的时间间隔短,显示时数码管的亮度将暗些。
若显示的时间间隔过长的话,数码管显示时将产生闪烁现象。
所以,在调整显示的时间间隔时,即要考虑到显示时数码管的亮度,又要数码管显示时不产生闪烁现象。
在ME300B单片机开发系统中使用数码管来显示信息时,要将JP2的2、3端短接。
见图3二、演示程序的编程方法1、4×4矩阵键盘的编程方法:1.1、先读取键盘的状态,得到按键的特征编码。
先从P1口的高四位输出低电平,低四位输出高电平,从P1口的低四位读取键盘状态。
再从P1口的低四位输出低电平,高四位输出高电平,从P1口的高四位读取键盘状态。
将两次读取结果组合起来就可以得到当前按键的特征编码。
使用上述方法我们得到16个键的特征编码。
举例说明如何得到按键的特征编码:假设“1”键被按下,找其按键的特征编码。
单片机4×4矩阵键盘设计方案
1、设计原理(1)如图14.2所示,用单片机的并行口P3连接4×4矩阵键盘,并以单片机的P3.0-P3.3各管脚作输入线,以单片机的P3.4-P3.7各管脚作输出线,在数码管上显示每个按键“0-F”的序号。
(2)键盘中对应按键的序号排列如图14.1所示。
2、参考电路图14.24×4矩阵式键盘识别电路原理图3、电路硬件说明(1)在“单片机系统”区域中,把单片机的P3.0-P3.7端口通过8联拨动拨码开关JP3连接到“4×4行列式键盘”区域中的M1-M4,N1-N4端口上。
(2)在“单片机系统”区域中,把单片机的P0.0-P0.7端口连接到“静态数码显示模块”区域中的任何一个a-h端口上;要求:P0.0对应着a,P0.1对应着b,……,P0.7对应着h。
4、程序设计内容(1)4×4矩阵键盘识别处理。
(2)每个按键都有它的行值和列值,行值和列值的组合就是识别这个按键的编码。
矩阵的行线和列线分别通过两并行接口和CPU通信。
键盘的一端(列线)通过电阻接VCC,而接地是通过程序输出数字“0”实现的。
键盘处理程序的任务是:确定有无键按下,判断哪一个键按下,键的功能是什么?还要消除按键在闭合或断开时的抖动。
两个并行口中,一个输出扫描码,使按键逐行动态接地;另一个并行口输入按键状态,由行扫描值和回馈信号共同形成键编码而识别按键,通过软件查表,查出该键的功能。
5、程序流程图(如图14.3所示)6、汇编源程序;;;;;;;;;;定义单元;;;;;;;;;;COUNTEQU30H;;;;;;;;;;入口地址;;;;;;;;;;ORG0000HLJMPSTARTORG0003HRETIORG000BHRETIORG0013HRETIORG001BHRETIORG0023HRETIORG002BHRETI;;;;;;;;;;主程序入口;;;;;;;;;;ORG0100HSTART:LCALLCHUSHIHUALCALLPANDUANLCALLXIANSHILJMPSTART;;;;;;;;;;初始化程序;;;;;;;;;; CHUSHIHUA:MOVCOUNT,#00HRET;;;;;;;;;;判断哪个按键按下程序;;;;;;;;;; PANDUAN:MOVP3,#0FFHCLRP3.4MOVA,P3ANLA,#0FHXRLA,#0FHJZSW1LCALLDELAY10MSJZSW1MOVA,P3ANLA,#0FHCJNEA,#0EH,K1MOVCOUNT,#0LJMPDKK1:CJNEA,#0DH,K2MOVCOUNT,#4 LJMPDKK2:CJNEA,#0BH,K3 MOVCOUNT,#8 LJMPDKK3:CJNEA,#07H,K4 MOVCOUNT,#12K4:NOPLJMPDKSW1:MOVP3,#0FFH CLRP3.5MOVA,P3ANLA,#0FH XRLA,#0FHJZSW2 LCALLDELAY10MS JZSW2MOVA,P3ANLA,#0FH CJNEA,#0EH,K5 MOVCOUNT,#1LJMPDKK5:CJNEA,#0DH,K6 MOVCOUNT,#5 LJMPDKK6:CJNEA,#0BH,K7 MOVCOUNT,#9 LJMPDKK7:CJNEA,#07H,K8 MOVCOUNT,#13K8:NOPLJMPDKSW2:MOVP3,#0FFH CLRP3.6MOVA,P3ANLA,#0FH XRLA,#0FHJZSW3 LCALLDELAY10MS JZSW3MOVA,P3ANLA,#0FHCJNEA,#0EH,K9 MOVCOUNT,#2 LJMPDKK9:CJNEA,#0DH,KA MOVCOUNT,#6 LJMPDKKA:CJNEA,#0BH,KB MOVCOUNT,#10 LJMPDKKB:CJNEA,#07H,KC MOVCOUNT,#14 KC:NOPLJMPDKSW3:MOVP3,#0FFH CLRP3.7MOVA,P3ANLA,#0FH XRLA,#0FHJZSW4 LCALLDELAY10MS JZSW4ANLA,#0FHCJNEA,#0EH,KD MOVCOUNT,#3LJMPDKKD:CJNEA,#0DH,KE MOVCOUNT,#7LJMPDKKE:CJNEA,#0BH,KF MOVCOUNT,#11LJMPDKKF:CJNEA,#07H,KG MOVCOUNT,#15KG:NOPLJMPDKSW4:LJMPPANDUANDK:RET;;;;;;;;;;显示程序;;;;;;;;;; XIANSHI:MOVA,COUNT MOVDPTR,#TABLEMOVCA,@A+DPTRLCALLDELAYSK:MOVA,P3ANLA,#0FHXRLA,#0FHJNZSKRET;;;;;;;;;;10ms延时程序;;;;;;;;;; DELAY10MS:MOVR6,#20D1:MOVR7,#248DJNZR7,$DJNZR6,D1RET;;;;;;;;;;200ms延时程序;;;;;;;;;; DELAY:MOVR5,#20LOOP:LCALLDELAY10MSDJNZR5,LOOPRET;;;;;;;;;;共阴码表;;;;;;;;;;TABLE:DB3FH,06H,5BH,4FH,66H,6DH,7DH,07H DB7FH,6FH,77H,7CH,39H,5EH,79H,71H7、C语言源程序#includeunsignedcharcodetable[]={0x3f,0x66,0x7f,0x39,0x06,0x6d,0x6f,0x5e,0x5b,0x7d,0x77,0x79,0x4f,0x07,0x7c,0x71};voidmain(void){unsignedchari,j,k,key;while(1){P3=0xff;//给P3口置1//P3_4=0;//给P3.4这条线送入0//i=P3;i=i&0x0f;//屏蔽低四位//if(i!=0x0f)//看是否有按键按下//{for(j=50;j>0;j--)//延时//for(k=200;k>0;k--);if(i!=0x0f)//再次判断按键是否按下//{switch(i)//看是和P3.4相连的四个按键中的哪个// {case0x0e:key=0;break;case0x0d:key=1;break;case0x0b:key=2;break;case0x07:key=3;break;}P0=table[key];//送数到P0口显示//}}P3=0xff;P3_5=0;//读P3.5这条线//i=P3;i=i&0x0f;//屏蔽P3口的低四位//if(i!=0x0f)//读P3.5这条线上看是否有按键按下// {for(j=50;j>0;j--)//延时//for(k=200;k>0;k--);i=P3;//再看是否有按键真的按下//i=i&0x0f;if(i!=0x0f){switch(i)//如果有,显示相应的按键// {case0x0e:key=4;break;case0x0d:key=5;break;case0x0b:key=6;break;case0x07:key=7;break;}P0=table[key];//送入P0口显示//}}P3=0xff;P3_6=0;//读P3.6这条线上是否有按键按下// i=P3;i=i&0x0f;if(i!=0x0f){for(j=50;j>0;j--)for(k=200;k>0;k--);i=P3;i=i&0x0f;if(i!=0x0f){switch(i){case0x0e:key=8;break;case0x0d:key=9;break;case0x0b:key=10;break;case0x07:key=11;}P0=table[key];}}P3=0xff;P3_7=0;//读P3.7这条线上是否有按键按下// i=P3;i=i&0x0f;if(i!=0x0f){for(j=50;j>0;j--)for(k=200;k>0;k--);i=P3;i=i&0x0f;if(i!=0x0f){switch(i){case0x0e:key=12;break;case0x0d:key=13;case0x0b:key=14;break;case0x07:key=15;break;}P0=table[key];}}}}8、注意事项在硬件电路中,要把8联拨动拨码开关JP2拨下,把8联拨动拨码开关JP3拨上去。
4×4矩阵键盘在单片机中的应用(Proteus)
4×4矩阵键盘原理及其在单片机中的简单应用基于Proteus仿真1、4×4矩阵键盘的工作原理如下图所示,4×4矩阵键盘由4条行线和4条列线组成,行线接P3.0-P3.3,列线接P3.4-P3.7,按键位于每条行线和列线的交叉点上。
按键的识别可采用行扫描法和线反转法,这里采用简单的线反转法,只需三步。
第一步,执行程序使X0~X3均为低电平,此时读取各列线Y0~Y3的状态即可知道是否有键按下。
当无键按下时,各行线与各列线相互断开,各列线仍保持为高电平;当有键按下时,则相应的行线与列线通过该按键相连,该列线就变为低电平,此时读取Y0Y1Y2Y3的状态,得到列码。
第二步,执行程序使Y0~Y3均为低电平,当有键按下时,X0~X3中有一条行线为低电平,其余行线为高电平,读取X0X1X2X3的状态,得到行码。
第三步,将第一步得到的列码和第二步得到的行码拼合成被按键的位置码,即Y0Y1Y2Y3X0X1X2X3(因为行线和列线各有一条为低电平,其余为高电平,所以位置码低四位和高四位分别只有一位低电平,其余为高电平)。
当0键按下时,行线X0和列线Y0为低电平,其余行列线为高电平,于是可以得到0键的位置码Y0Y1Y2Y3X0X1X2X3为0111 0111,即0X77。
当5键按下时,行线X1和列线Y1为低电平,其余行列线为高电平,于是可得到5键的位置码Y0Y1Y2Y3X0X1X2X3为1011 1011,即0XBB。
全部矩阵键盘的位置码如下:2、4×4矩阵键盘在单片机的简单应用举例(一)如下图所示,运行程序时,按下任一按键,数码管会显示它在矩阵键盘上的序号0~F,并且蜂鸣器发出声音,模拟按键的声音。
此处采用线反转法识别按键。
C程序如下:#include<reg51.h>#define uchar unsigned char#define uint unsigned intsbit buzzer=P1^0;uchar code dis[]= //0~9,A~F的共阳显示代码{0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0X88,0X83,0XC6,0XA1,0X86,0X8E};uchar code tab[]= //矩阵键盘按键位置码{0x77,0xb7,0xd7,0xe7,0x7b,0xbb,0xdb,0xeb,0x7d,0xbd,0xdd,0xed,0x7e,0xbe,0xde,0xee};void delay(uint x) //延时函数{uchar i;while(x--)for(i=0;i<120;i++);}uchar scan() //矩阵键盘扫描函数,得到按键号,采用线反转法{uchar a,b,c,i;P3=0XF0; //P3口输出11110000a=P3; //读取列码delay(10); //防抖延时10msP3=0X0F; //P3口输出00001111b=P3; //读取行码c=a+b; //得到位置码for(i=0;i<16;i++)if(c==tab[i])return i; //查表得到按键序号并返回return -1; //无按键,则返回-1}void beep() //蜂鸣器发出声音,模拟按键的声音{ uchar i;for(i=0;i<100;i++){buzzer=~buzzer;delay(1);}buzzer=0;}void main(){uchar key;buzzer=0; //关闭蜂鸣器while(1){key=scan(); //得到按键号if(key!=-1) //有按键则显示,并且蜂鸣器发出声音{P0=dis[key];beep();delay(100);}}}Proteus仿真运行结果如下:3、4×4矩阵键盘在单片机的简单应用举例(二)如下图所示,运行程序时,按下的按键键值越大,点亮的LED灯越多,例如,按下1号键时,点亮一只LED灯,按下2号键时,点亮两只LED灯,按下16号键时,点亮全部LED 灯。
基于单片机4X4矩阵键盘控制数码管显示的Proteus仿真
P0.0/AD0 P0.1/AD1 P0.2/AD2 P0.3/AD3 P0.4/AD4 P0.5/AD5 P0.6/AD6 P0.7/AD7
P2.0/A8 P2.1/A9 P2.2/A10 P2.3/A11 P2.4/A12 P2.5/A13 P2.6/A14 P2.7/A15
P3.0/RXD P3.1/TXD P3.2/INT0 P3.3/INT1
P3.4/T0 P3.5/T1 P3.6/WR P3.7/RD
39 38 37 36 35 34 33 32
21 22 23 24 25 26 27 P2.6 28 P2.7
10 11 12 13 14 15 16 17
K0
K1
K4
K5
K8
K9
KC
KD
图 3-2:当按下 K4 键时,数码管显示数字‘4’
软件设计方面,我感觉到在编写循环嵌套程序时非常容易出错,需要反复的查错 和耐心的调试。我虽然能够编写出程序,其可读性却有待于提高。
经过这次仿真设计,我对 51 系统的单片机内部构造的了解认识有了一定程度的提 高。我体会到做设计是一项细致的工作,必须要投入时间及精力,要有耐心有韧性。
我相信这几次的仿真设计会为我以后的发展打下一定的基础,我会更加努力,争取 自己在单片机的开发上有更深层次的提高,与此同时经过此次仿真,锻炼了团队协作 能力。
P3.4/T0 P3.5/T1 P3.6/WR P3.7/RD
39 38 37 36 35 34 33 32
21 22 23 24 25 26 27 P2.6 28 P2.7
10 11 12 13 14 15 16 17
K0
K1
K2
K3
K4
4x4矩阵键盘扫描原理
4x4矩阵键盘扫描原理
4x4矩阵键盘扫描原理是一种常用的键盘扫描方法,也称为矩阵键盘扫描。
它可以将多个按键连接在一起并使用较少的引脚来检测按键的状态。
4x4矩阵键盘由4行和4列组成,共有16个按键。
通常使用单片机或电路来进行扫描,以下是简要的原理:
1. 行扫描:首先,将行引脚设置为输出,同时将列引脚设置为输入,并将其上拉或下拉。
所有行引脚中只有一个为低电平,其余为高电平。
然后逐行检测按键状态。
2. 列检测:对于每一行,将对应的行引脚置为低电平后,检测列引脚的电平状态。
如果有按键按下,则相应的列引脚会变为低电平。
通过读取列引脚的状态,可以确定按键的位置。
3. 组合键:由于只能一次检测一行,因此当同时按下多个按键时,可能会导致误检。
为了解决这个问题,可以在检测到按键按下时,延迟一段时间,并再次检测按键的状态。
如果在第二次检测时仍然检测到按键按下,则确认按键有效。
4. 反向扫描:为了检测按键的释放状态,可以将行引脚设置为输入,列引脚设置为输出,并将其置为低电平。
然后逐列检测行引脚的电平状态,如果有按键释放,则相应的行引脚会变为高电平。
通过不断地循环扫描所有的行和列,可以实时检测按键的状态,并根据需要进行相应的处理。
4×4矩阵按键模拟编程及控制仿真(汇编+C语言)
4×4矩阵按键模拟编程及控制仿真(汇编+C语言)4×4矩阵按键模拟编程及控制仿真(中级实验)实验介绍:利用单片机控制一组矩阵按键(4×4)以及一个数码管,当按键按下后,数码管会显示按下按键的序号。
共16个按键,序号从0开始,一直到F。
(矩阵按键较独立按键更节省I/O口,例如在本例中,共有16个按键,仅仅需要8个I/O 口,而采用独立按键则需要16个I/O 口。
在I/O口使用较多,且按键较多的情况下可以采用。
但是矩阵按键的程序要比独立按键复杂。
)实验目的:通过本次实验,理解矩阵按键的结构以及工作原理。
能够根据使用需求,独立设计矩阵按键的电路图,能够编程实现对矩阵按键的控制。
通过与独立按键的对比,理解矩阵按键与独立按键的硬件及软件的区别。
通过对比的方式,理解各自的优缺点。
仿真原理图:使用Proteus仿真软件搭建仿真原理图如下图所示。
图1图2使用仿真软件Proteus搭建的原理图参考如图1所示。
(注意事项:一般情况下,采用矩阵按键的形式来控制单片机时,按键数量较多,所以在摆放按键的时候要成行成列的防止,一方面是比较美观,另外一方面是便于编程控制。
另外矩阵按键电路比较复杂,电路连线往往比较多,为了让电路看起来更加简洁,可以采用“Terminal Label”的方式进行连线。
如图2所示,电路连接简化很多。
)编程思路:对于独立按键,编程过程较为简单,按照顺序逐个编写就行。
主要分为两种编程控制方法:按键扫描的方式以及中断的方式。
按键扫描的方式需要实时扫描每个按键是否按下。
编程时,首先通过单片机实时判断第一个按键是否按下,如果按下就执行相应的程序。
只要编制出来第一个按键的程序,其他按键的程序基本相同,只要稍作修改即可。
也可以使用中断的方式实现,这种方式一般需要配合外部的电路来实现。
掌握外部中断控制的读者,可以使用。
矩阵按键的编程思路一般为:实时判断按键的按下情况,首先将连接每一行按键的单片机引脚设置为低电平(每一列按键的单片机引脚设置为输入状态即高电平),判断哪一列按键有按下。
基于Proteus软件的4x4矩阵键盘设计与仿真
基于Proteus软件的4x4矩阵键盘设计与仿真4*4矩阵键盘仿真摘要单片机自20世纪70年代问世以来,以其极高的性能价格比,受到人们的重视和关注,应用很广、发展很快。
单片机体积小、重量轻、抗干扰能力强、环境要求不高、价格低廉、可靠性高、灵活性好、开发较为容易。
由于具有上述优点,在我国,单片机已广泛地应用在工业自动化控制、自动检测、智能仪器仪表、家用电器、电力电子、机电一体化设备等各个方面,而51单片机是各单片机中最为典型和最有代表性的一种。
单片机系统的开发过程中,程序设计语言的选择尤为重要。
C51提供高效的代码,结构化的编程和丰富的操作符,多被采用。
C51是一种编译型程序设计语言,它兼顾了多种高级语言的特点,并具备汇编语言的功能,而且可以直接实现对硬件的控制。
本毕业设计以AT89S51芯片为核心,程序设计采用汇编语言,辅以必要的电路,并运用proteus软件设计了4*4矩阵键盘仿真。
目录前言 (1)第一章单片机的概述.................................................................. 2 1.1什么是单片机.......................................................................................2 1.2MCS-51单片机内部结构............................................................ 2 1.3单片机的应用领域 (3)1.4 AT89C51简介.......................................................................................4 第二章软件的介绍及使用............................................................ 7 2.2 Proteus软件的介绍和使用.................................................................. 7 2.1Keil uVision2软件的介绍和使用............................................................ 9 第三章系统总体设计..................................................................14 3.1 系统原理.......................................................................................... 14 3.2电路组成.......................................................................................... 14 3.2.1键盘部分..........................................................................................14 3.2.2LED显示.......................................................................................... 15 3.2.3晶振电路..........................................................................................16 3.3系统功能和原理图................................................................................. 16 3.3.1实现功能....................................................................................... 16 3.3.2硬件电路原理图.............................................................................. 16 3.4系统与硬件的连接................................................................................. 17 第四章系统软件设计........................................................................... 18 4.1程序流程图.......................................................................................... 18 4.2源程序................................................................................................ 18 第五章程序的编译调试与仿真............................................................... 21 5.1程序的编译 (21)5.2调试与仿真 (22)第六章结束语………………………………………………………………………………24 6.1论文总结…………………………………………………………………………………24 6.2工作展望.............................................................................................24 参考文献 (25)致谢 (25)前言随着人们生活水平的提高,19世纪兴起的数字电路以其先天的便捷、稳定的优点在现代电子技术电路中占有越来越重要的地位。
基于51单片机-STC-4X4矩阵键盘-实验-Proteus仿真-程序
矩阵键盘显示调试实训
一、实训目的
1.学会使用I/O口的基本输入、输出功能。
2.了解矩阵键盘接口技术及编程方法。
二、原理图
图16-1 DA402矩阵键盘模块
三、实训模块
DA001 MCS51主机、DA102六位动态数码管显示、DA402矩阵键盘模块、DA701电源模块。
四、实训步骤
1.用8P扁平数据排线将“DA001 MCS51主机”的P0.0~P0.7(JD1口)、P
2.0~P2.7(JD3口)连接到“DA102 六位动态数码管显示”的A~DP(JD1口)、DIG1~DIG6(JD2口),“DA001 MCS51主机”的P1.0~P1.7(JD2口)连接到“DA402矩阵键盘模块”的JD1口。
2.接上各模块的电源。
3.将仿真器接头插到“DA001 MCS51主机”上的40P仿真接口(J10)中(注意方向)。
4.打开“V系列仿真器集成调试软件”,在软件中打开文件“…\THETDA-3 型实训程序\16 矩阵键盘\矩阵键盘.asm”。
5.将程序下载到仿真器中,全速运行程序。
6.现象:按下“DA402矩阵键盘模块”相应的按键,“DA102 六位动态数码管显示”显示相应数字。
7.也可以将编译生成的可执行文件用ISP烧录器烧录到89S52芯片中运行(ISP烧录器的使用查看附录1)。
4×4矩阵键盘原理及其在单片机中的简单应用(基Proteus仿真)
4×4矩阵键盘原理及其在单片机中的简单应用基于Proteus仿真1、4×4矩阵键盘的工作原理如下图所示,4×4矩阵键盘由4条行线和4条列线组成,行线接P3.0-P3.3,列线接P3.4-P3.7,按键位于每条行线和列线的交叉点上。
按键的识别可采用行扫描法和线反转法,这里采用简单的线反转法,只需三步。
第一步,执行程序使X0~X3均为低电平,此时读取各列线Y0~Y3的状态即可知道是否有键按下。
当无键按下时,各行线与各列线相互断开,各列线仍保持为高电平;当有键按下时,则相应的行线与列线通过该按键相连,该列线就变为低电平,此时读取Y0Y1Y2Y3的状态,得到列码。
第二步,执行程序使Y0~Y3均为低电平,当有键按下时,X0~X3中有一条行线为低电平,其余行线为高电平,读取X0X1X2X3的状态,得到行码。
第三步,将第一步得到的列码和第二步得到的行码拼合成被按键的位置码,即Y0Y1Y2Y3X0X1X2X3(因为行线和列线各有一条为低电平,其余为高电平,所以位置码低四位和高四位分别只有一位低电平,其余为高电平)。
也就是说,当某个键按下时,该键两端所对应的行线和列线为低电平,其余行线和列线为高电平。
比如,当0键按下时,行线X0和列线Y0为低电平,其余行列线为高电平,于是可以得到0键的位置码Y0Y1Y2Y3X0X1X2X3为01110111,即0X77。
当5键按下时,行线X1和列线Y1为低电平,其余行列线为高电平,于是可得到5键的位置码Y0Y1Y2Y3X0X1X2X3为10111011,即0XBB。
全部矩阵键盘的位置码如下:2、4×4矩阵键盘在单片机的简单应用举例(一)如下图所示,运行程序时,按下任一按键,数码管会显示它在矩阵键盘上的序号0~F,并且蜂鸣器发出声音,模拟按键的声音。
此处采用线反转法识别按键。
C程序如下:#include<reg51.h>#define uchar unsigned char#define uint unsigned intsbit buzzer=P1^0;uchar code dis[]= //0~9,A~F的共阳显示代码{0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0X88,0X83,0XC6,0XA1,0X86,0X8E};uchar code tab[]= //矩阵键盘按键位置码{0x77,0xb7,0xd7,0xe7,0x7b,0xbb,0xdb,0xeb,0x7d,0xbd,0xdd,0xed,0x7e,0xbe,0xde,0xee};void delay(uint x) //延时函数{uchar i;while(x--)for(i=0;i<120;i++);}uchar scan() //矩阵键盘扫描函数,得到按键号,采用线反转法{uchar a,b,c,i;P3=0XF0; //P3口输出11110000a=P3; //读取列码delay(10); //防抖延时10msP3=0X0F; //P3口输出00001111b=P3; //读取行码c=a+b; //得到位置码for(i=0;i<16;i++)if(c==tab[i])return i; //查表得到按键序号并返回return -1; //无按键,则返回-1}void beep() //蜂鸣器发出声音,模拟按键的声音{ uchar i;for(i=0;i<100;i++){buzzer=~buzzer;delay(1);}buzzer=0;}void main(){uchar key;buzzer=0; //关闭蜂鸣器while(1){key=scan(); //得到按键号if(key!=-1) //有按键则显示,并且蜂鸣器发出声音{P0=dis[key];beep();delay(100);}}}Proteus仿真运行结果如下:3、4×4矩阵键盘在单片机的简单应用举例(二)如下图所示,运行程序时,按下的按键键值越大,点亮的LED灯越多,例如,按下1号键时,点亮一只LED灯,按下2号键时,点亮两只LED灯,按下16号键时,点亮全部LED 灯。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4×4矩阵键盘原理及其在单片机中的简单应用
基于Proteus仿真
1、4×4矩阵键盘的工作原理
如下图所示,4×4矩阵键盘由4条行线和4条列线组成,行线接P3.0-P3.3,列线接P3.4-P3.7,按键位于每条行线和列线的交叉点上。
按键的识别可采用行扫描法和线反转法,这里采用简单的线反转法,只需三步。
第一步,执行程序使X0~X3均为低电平,此时读取各列线Y0~Y3的状态即可知道是否有键按下。
当无键按下时,各行线与各列线相互断开,各列线仍保持为高电平;当有键按下时,则相应的行线与列线通过该按键相连,该列线就变为低电平,此时读取Y0Y1Y2Y3的状态,得到列码。
第二步,执行程序使Y0~Y3均为低电平,当有键按下时,X0~X3中有一条行线为低电平,其余行线为高电平,读取X0X1X2X3的状态,得到行码。
第三步,将第一步得到的列码和第二步得到的行码拼合成被按键的位置码,即Y0Y1Y2Y3X0X1X2X3(因为行线和列线各有一条为低电平,其余为高电平,所以位置码低四位和高四位分别只有一位低电平,其余为高电平)。
也就是说,当某个键按下时,该键两端所对应的行线和列线为低电平,其余行线和列线为高电平。
比如,当0键按下时,行线X0和列线Y0为低电平,其余行列线为高电平,于是可以得到0键的位置码Y0Y1Y2Y3X0X1X2X3为01110111,即0X77。
当5键按下时,行线X1和列线Y1为低电平,其余行列线为高电平,于是可得到5键的位置码Y0Y1Y2Y3X0X1X2X3为10111011,即0XBB。
全部矩阵键盘的位置码如下:
2、4×4矩阵键盘在单片机的简单应用举例(一)
如下图所示,运行程序时,按下任一按键,数码管会显示它在矩阵键盘上的序号0~F,并且蜂鸣器发出声音,模拟按键的声音。
此处采用线反转法识别按键。
C程序如下:
#include<reg51.h>
#define uchar unsigned char
#define uint unsigned int
sbit buzzer=P1^0;
uchar code dis[]= //0~9,A~F的共阳显示代码
{0xc0,0xf9,0xa4,0xb0,
0x99,0x92,0x82,0xf8,
0x80,0x90,0X88,0X83,
0XC6,0XA1,0X86,0X8E};
uchar code tab[]= //矩阵键盘按键位置码
{
0x77,0xb7,0xd7,0xe7,
0x7b,0xbb,0xdb,0xeb,
0x7d,0xbd,0xdd,0xed,
0x7e,0xbe,0xde,0xee
};
void delay(uint x) //延时函数
{uchar i;
while(x--)
for(i=0;i<120;i++);
}
uchar scan() //矩阵键盘扫描函数,得到按键号,采用线反转法{uchar a,b,c,i;
P3=0XF0; //P3口输出11110000
a=P3; //读取列码
delay(10); //防抖延时10ms
P3=0X0F; //P3口输出00001111
b=P3; //读取行码
c=a+b; //得到位置码
for(i=0;i<16;i++)
if(c==tab[i])return i; //查表得到按键序号并返回
return -1; //无按键,则返回-1
}
void beep() //蜂鸣器发出声音,模拟按键的声音
{ uchar i;
for(i=0;i<100;i++)
{
buzzer=~buzzer;
delay(1);
}
buzzer=0;
}
void main()
{uchar key;
buzzer=0; //关闭蜂鸣器
while(1)
{key=scan(); //得到按键号
if(key!=-1) //有按键则显示,并且蜂鸣器发出声音
{P0=dis[key];
beep();
delay(100);
}
}
}
Proteus仿真运行结果如下:
3、4×4矩阵键盘在单片机的简单应用举例(二)
如下图所示,运行程序时,按下的按键键值越大,点亮的LED灯越多,例如,按下1号键时,点亮一只LED灯,按下2号键时,点亮两只LED灯,按下16号键时,点亮全部LED 灯。
这里仍然采用线反转法识别按键。
C程序如下:
#include<reg51.h>
#define uchar unsigned char
#define uint unsigned int
uchar code tab[]= //矩阵键盘按键位置码
{
0x77,0xb7,0xd7,0xe7,
0x7b,0xbb,0xdb,0xeb,
0x7d,0xbd,0xdd,0xed,
0x7e,0xbe,0xde,0xee
};
void delay(uint x) //延时函数
{uchar i;
while(x--)
for(i=0;i<120;i++);
}
uchar scan() //矩阵键盘扫描函数,得到按键号,采用线反转法{uchar a,b,c,i;
P1=0XF0;
a=P1;
delay(10);
P1=0X0F;
b=P1;
c=a+b;
for(i=0;i<16;i++)
if(c==tab[i])return i; //有按键,则返回按键号
return -1; //无按键,则返回-1
}
void main()
{uchar key,i,led3,led2;
while(1)
{key=scan();
if(key!=-1)
{led3=0xff;
led2=0xff;
for(i=0;i<=key;i++) //这里假设key=3,因为key是从0开始算起,所以是4号键,应该{if(i<8) //点亮4只LED灯,执行4次for循环后,led3=00001111,所以点亮led3>>=1; //了4只LED灯。
else
led2>>=1;
}
P2=led2;
P3=led3;
}
}
}
Proteus仿真运行结果如下:
4、参考文献
[1]彭伟.单片机C语言程序设计实训100例.北京:电子工业出版社.2009
[2]贾振国,许琳.智能化仪器仪表原理及应用.北京:中国水利水电出版
社.2011。