等强度箱形截面悬臂梁近似解析法

合集下载

课程设计(等截面悬臂梁静应变测试与分析)

课程设计(等截面悬臂梁静应变测试与分析)

太原科技大学课程说明书目录设计任务 (2)设计仪表及器材 (2)DH3818静态电阻应变仪介绍 (4)设计原理 (8)设计过程 (13)原始数据记录 (14)数据处理分析 (17)参考文献 (23)心得体会 (23)一、课题设计名称等截面悬臂梁静应变测试与分析二、设计任务1、掌握电阻应变片的选用原则和方法。

2、学习电阻应变片粘贴技术。

3、掌握静态电阻应变仪单点测量的基本原理。

4、固应力分析的概念,学会对构件的受力分析和应变测量。

三、设计仪表及器材DH3818静态电阻应变仪、常温用电阻应变片、悬臂梁(等截面梁)、万用电表、砝码一套、粘贴剂、清洗剂、引线若干、电烙铁及其他工具。

四、DH3818静态电阻应变仪介绍(一)、概述DH3818静态应变测量仪由数据采集箱、微型计算机及支持软件组成。

可自动、准确、可靠、快速测量大型结构、模型及材料应力试验中多点的静态应变(应力)值。

广泛应用于机械制造、土木工程、桥梁建设、航空航天、国防工业、交通运输等领域。

若配接适当的应变式传感器,也可对多点静态的力、压力、扭矩、位移、温度等物理量进行测量。

特点:手控状态时,大屏数码管显示测量通道和输入应变量,且可通过功能键设置显示通道、修正系数及平衡操作;自动平衡:内置120Ω标准电阻, 1/4桥(公用补偿)、半桥、全桥连接方便。

(二)、技术指标1、测量点数:有可测10点和20点两种,每台计算机可控制十六台静态应变测量仪;2、程控状态下采样速率:10测点/秒;3、测试应变范围:±19999με;4、分辨率:1με;5、系统不确定度:不大于0.5%±3με;6、零漂:≤4με/2h(程控状态);7、自动平衡范围:±15000με,灵敏度系数K=2.00,120Ω应变计阻值误差的±1.5%;8、测量结果修正系数范围:0.0000~9.9999(手动状态);9、适用应变计电阻值: 50~10000Ω;10、应变计灵敏度系数: 1.0~3.0可进行任意修正;长导线电阻修正范围:0.0~100Ω;11、交流电源电压: 220V±10%, 50Hz±2%;12、仪器功率:约15W ;(三)、工作原理测量原理:以1/4桥、120Ω桥臂电阻为例对测量原理加以说明。

箱形截面弯梁的受力特点及梁格计算方法

箱形截面弯梁的受力特点及梁格计算方法

箱形截面弯梁的受力特点及梁格计算方法摘要:随着城市道路立交的发展,现代化的公路和高等级公路在线形方面的要求越来越高,使得弯梁的应用也非常普遍,尤其是在城市互通式立交桥的设计中应用更为广泛,箱梁因其独特的受力特点在弯梁桥中受到了广泛的应用。

本文就箱型截面弯梁的受力特点及梁格计算方法进行了分析研究。

关键词:箱型截面;弯梁桥;梁格法;沉降;1 受力特点1.1箱型截面的特点(1)截面抗扭刚度大,结构在施工与使用过程中具有良好的稳定性;(2)顶面和底面都具有较大的混凝土面积,能有效地抵抗正负弯矩,并满足配筋的要求,适应具有正负弯矩的结构,如连续梁等;(3)适应现代化施工方法的要求,如悬臂施工法、顶推法等,这些施工方法要求截面必须具备较厚的底板;(4)承重结构与传力结构相结合,使各部件共同受力,达到经济效果,同时截面效率高,并适合预应力混凝土结构空间布束,更能达到经济效果;(5)对于宽桥,由于抗扭刚度大,跨中无需设置横隔板就能获得满意的荷载横向分布;(6)适合修建曲线桥,具有较大适应性,能很好适应布置管线等公共设施。

1.2弯梁桥的受力特点(1)梁体的弯扭耦合作用。

曲线梁较直线梁而言,最大的特点就是曲线梁在外荷载的作用下,产生弯矩的同时必然产生扭矩,产生扭矩的同时也必然产生弯矩,并且互相影响,协同作用使梁截面处于弯扭耦合作用的状态,其截面主拉应力往往比相应的直梁桥大得多。

曲线弯梁桥由于受到强大的扭矩作用,产生扭转变形,其曲线外侧的竖向挠度大于同跨径的直桥;由于弯扭耦合作用,在梁端可能出现翘曲;当梁端横桥向约束较弱时,梁体有向弯道外侧“爬移”的趋势。

(2)在结构的自重作用下,除支点截面外,弯梁桥外边缘的挠度一般大于内边缘的挠度,而且曲线半径越小这个差异越明显。

(3)对于两端均有抗扭支座的弯梁桥,其外弧侧的支座反力一般大于内侧弧,曲率半径R较小时,内弧侧还可能出现负反力。

(4)弯桥的中横梁,是保持全桥稳定的重要构件,与直线桥相比,其刚度一般较大;横梁的变形在主梁间大多呈直线变化。

变截面悬臂梁的 Pro/Mechanica有限元法设计

变截面悬臂梁的 Pro/Mechanica有限元法设计

变截面悬臂梁的 Pro/Mechanica有限元法设计李润【摘要】Cantilever beam used to bear uniform load in project with equal cross-sectional area is not economy.So Pro/Mechanica is used to analyze cantilever beam with variable cross-sectional area under the uniform load and design for equal strength.Minimal mass of the rectangular cross -section beam is obtained when the strength is permitted.Materials are avoided to waste.It is valuable and signif-icant in real project.%由于工程中所使用的承受均布载荷的等截面积悬臂梁并不经济,使用Pro/Mechanica对受均布载荷的变截面矩形悬臂梁进行等强度分析设计,使得矩形截面梁的质量在强度允许范围内达到最小,从而可以避免材料的浪费,有工程的实用价值和现实意义。

【期刊名称】《工业仪表与自动化装置》【年(卷),期】2014(000)006【总页数】4页(P64-66,69)【关键词】均布载荷;变截面悬臂梁;有限元法;Pro/Mechanica【作者】李润【作者单位】兰州石化职业技术学院机械工程系,兰州730060【正文语种】中文【中图分类】O340 引言悬臂梁结构是工程上一种较为常用的结构,尤其在机械设计、建筑设计中更是常见。

悬臂梁结构在实际的使用过程中,经常要承受各种集中载荷、分布载荷、弯矩和扭矩的作用,在梁的任意一处都有可能产生较大的应力和变形,从而使得悬臂梁结构破坏或失效。

钻井平台悬臂梁强度试验分析

钻井平台悬臂梁强度试验分析

钻井平台悬臂梁强度试验分析摘要:悬臂梁结构是钻井平台中的重要设备,保障其强度尤为重要。

本文主要针对钻井平台悬臂梁强度的试验展开了分析,概述了国内的研究概况,详细介绍了悬臂梁结构与作业工况,并系统分析了悬臂梁数值,以期能为有关方面的需要提供有益的参考和借鉴。

关键词:钻井平台;悬臂梁;强度试验1 概述钻井平台由于其具有着适应水域广和可重复使用等优点,在海洋油气资源钻探开发中得到了广泛的应用。

而悬臂梁结构作为钻井平台中的重要设备,它在提高钻井平台日常作业灵活性上发挥着重要的作用。

因此,确保悬臂梁的强度,有利于钻井平台更好的进行油气资源的钻探开发作业。

基于此,本文就钻井平台悬臂梁强度的试验进行了分析,相信对有关方面的需要能有一定的帮助。

2 研究概况钻井平台在发展初期是没有悬臂梁的,钻井作业基本是在平台甲板所覆盖的范围内进行,其功能主要是完成勘探井作业或部分生产开发预钻作业。

悬臂梁结构的出现,极大地提高了钻井平台的作业能力,它能实现在生产平台上实施钻完井作业、修井作业和钻调整井作业。

3 悬臂梁结构与设计工况JU2000E悬臂梁位于该钻井平台艉部甲板上,是钻塔、钻台、钻台塔底座等的承载结构,由悬臂梁支座将其与主船体结构连在一起。

3.1 悬臂梁结构悬臂梁结构包括两条主梁、主梁底部滑板、爬行梁、管支架甲板、下甲板及连接他们的平台和桁架,其长度为55.6米,宽度为18.27米,高度为8.53米,其结构重量约1400吨,舾装件重量约400吨,总体重量在1800吨左右。

在其使用过程中,要求它能承载包括钻塔等钻井设备重量及风载荷,其最大外伸22.86米,钻台左右横向移动各4.57米。

它要求的最低设计环境温度为-20℃。

3.2 悬臂梁设计工况根据钻井平台所处的状态,悬臂梁的设计工况可分为拖航和作业两类。

拖航状态下,悬臂梁处于完全收回状态,由平台主船体完全支撑,仅受悬臂梁及其以上结构自重、风载以及拖航加速度引起的惯性力作用;作业状态下,悬臂梁需滑移出平台主船体以外,最大外伸可达22.86米,受风载荷作用的同时,还要承受巨大的钻井可变载荷作用,对悬臂梁的结构提出了较高的强度要求。

基于ANsYs的铝合金箱型截面悬臂梁模态分析

基于ANsYs的铝合金箱型截面悬臂梁模态分析
寸如图l 所示。 由米尺测得试样 的长度/ 4 . m,横截面上各 尺寸及壁厚 由游标 - 1m 4 2 卡尺测得 。通过电子秤测得试样的质量m 7 . g = 32 。 9
12 数 据 处理 .
图2纯弯曲测弹性模量实验装置示意冈 经过推导得到测试原理如下式 :
E 盟 :
( 1 】
2 1 4
理 论 研 究 苑
2 第期 科年 1 0 7 1 西 1
基 于A YS NS 的铝合金箱型截 面悬臂 梁模 态分析
苏蕴荃 ,韩光旭 ,董轩成
( 西南交通大学力学 与丁程学院 ,四川成都 6 1 5 17 6)
摘 要 通过A S S 具有复杂 约束条件的铝合 金箱型截 面悬臂梁进 行 了模态分 析 ,并将结 果 与高精度 的实验结 果进行 比较分 析 ,验证 了 NY对
桥 接法 ,应变片 分别接各 自通道的一个桥路 ,另一桥路 接温度补 ,
偿片。
1 AN Y 必 要数 据准 备 SS
11试样 类型及相关数据 . 试样是某种型号的铝合金箱型截面梁,试样一端打有两个孑 洞 ,通 L
过螺丝安装在试验 台上 , 使其成为悬臂梁。试样的安装构造及横截面尺
24 实 验 结 果 .
按上述步骤 , 测得的该未知型号铝合金试样的弹性模量E 6G a =8P。
3 AN Y 数值 求解 S S
31 NS 求 解 过 程 . A YS
对于模态分析问题 ,基于A S S N Y 的求解过程 ,主要分为以下几步 :
1) 型 的 建立 。 模
2) 加载及求解 。 3) 展 模 态 。 扩 4) 处 理 。 后
所使 用的模 态分析方法 的正确性及 可行 性 ,为解 决相似 问题提 供 了一 种新 方法和新思 路。

工程力学中的悬臂梁受力和弯曲变形问题的分析与计算方法总结

工程力学中的悬臂梁受力和弯曲变形问题的分析与计算方法总结

工程力学中的悬臂梁受力和弯曲变形问题的分析与计算方法总结悬臂梁是工程力学中常见的结构,其受力和弯曲变形问题一直是研究的焦点。

本文将对悬臂梁受力和弯曲变形问题的分析与计算方法进行总结。

一、悬臂梁的受力分析在工程实践中,悬臂梁常常承受着外部力的作用,因此对其受力进行准确的分析至关重要。

悬臂梁的受力分析主要包括弯矩和剪力的计算。

1. 弯矩的计算悬臂梁在受力时会产生弯矩,弯矩的计算可以通过弯矩方程进行。

弯矩方程是基于力的平衡原理和材料的本构关系推导出来的,通过对悬臂梁上各点的力平衡和材料的应力-应变关系进行分析,可以得到弯矩的表达式。

2. 剪力的计算悬臂梁在受力时还会产生剪力,剪力的计算同样可以通过力的平衡原理和材料的本构关系进行推导。

剪力方程可以通过对悬臂梁上各点的力平衡和材料的剪切应力-剪切应变关系进行分析得到。

二、悬臂梁的弯曲变形分析除了受力分析外,悬臂梁的弯曲变形也是需要考虑的重要问题。

弯曲变形是指悬臂梁在受力作用下产生的弯曲形变,主要表现为悬臂梁的中性面发生偏移和悬臂梁上各点的位移。

1. 弯曲形变的计算弯曲形变的计算可以通过弯曲方程进行。

弯曲方程是基于力的平衡原理和材料的本构关系推导出来的,通过对悬臂梁上各点的力平衡和材料的应力-应变关系进行分析,可以得到弯曲形变的表达式。

2. 中性面的偏移和位移的计算中性面的偏移和位移是悬臂梁弯曲变形的重要表现形式。

中性面的偏移可以通过弯曲方程和几何关系进行计算,位移可以通过位移方程进行计算。

通过这些计算,可以得到悬臂梁上各点的位移和中性面的偏移情况。

三、悬臂梁的计算方法总结为了更准确地分析和计算悬臂梁的受力和弯曲变形问题,工程力学中提出了一系列计算方法。

常见的计算方法包括静力学方法、力学性能方法和有限元方法等。

1. 静力学方法静力学方法是最常用的计算方法之一,它基于力的平衡原理和材料的本构关系进行分析和计算。

通过对悬臂梁上各点的力平衡和材料的应力-应变关系进行分析,可以得到悬臂梁的受力和弯曲变形情况。

阐述预应力箱梁受力中的解析法和数值法原理

阐述预应力箱梁受力中的解析法和数值法原理

阐述预应力箱梁受力中的解析法和数值法原理1前言箱型截面主要优点是截面抗弯、抗扭刚度大,结构在施工和使用过程中都具有良好的稳定性;顶板和底板都具有较大的混凝土面积,能有效抵抗正负弯矩,满足配筋的构造要求,并能很好适应管线等公共设施的布置;同时,箱形截面适应现代化施工方法的要求,如悬臂施工法、顶推法等,这些施工方法要求截面必须具备较厚的底板;而且,箱形截面承重结构和传力结构相结合,使各部件共同受力,截面效率高,并适合预应力混凝土结构空间布束,达到经济效果。

其中箱梁由于具有较大的截面抗扭强度及抗弯强度、弯曲应力图形合理、剪应力小、稳定性好、行车平稳舒适、施工速度快和造价低等优点,能够很好的满足高等级公路行车高速、平稳、舒适的要求。

在国内外得到了十分迅速的发展和广泛的应用。

预应力混凝土的研究已有一百余年的历史。

近三十年来,预应力混凝土桥梁的发展速度异常迅猛,不但在跨径上己跻身于大跨径之列,而且在建桥数量上亦遥遥领先,有关预应力的研究也愈来愈成熟。

预应力混凝土连续钢构箱梁桥一般采用空间受力分析法,概括起来,主要是解析法和数值法。

2 解析法在预应力箱梁受力分析中的原理及应用解析法是为了把问题简化,往往采用一些假定和近似处理方法。

如将作用于箱形梁的偏心荷分解成对称荷载与反对称荷载。

对称荷载作用时,按梁的弯曲理论求解;反对称荷载作用时,按薄壁杆件扭转理论分析;然后将二者计算结果叠加而得。

扭转分析又根据截面的刚度区分为截面不变形(刚性扭转)和截面变形(畸变)两种不同情况。

通过这些荷载分解,就单项问题进行较深入的探讨。

采用若干假定,是解析法的另一特点,如对位移模式的假定等。

箱形梁剪力滯的分析方法有“加劲板”理论、比拟杆法以及Eleissnen根据能量原理的分析方法等。

关于箱形梁的扭转分析,前苏联学者符拉索夫和乌曼斯基在这方面建立了完整的理论。

对于箱形梁的畸变应力分析,有广义坐标法、等代梁法、弹性地基梁比拟法等。

弹性地基梁比拟法具有物理概念清晰、受力分析明确、计算简便等特点,所以得到普遍推广应用。

等强度悬臂梁应变参数测定

等强度悬臂梁应变参数测定

等强度悬臂梁应变参数测定等强度悬臂梁是指材料性质相同的不同形状的悬臂梁,在受到相同载荷作用下,其内部的应力分布相同。

该构件的应变参数测定是为了确定其内部的应力状态,从而进一步分析结构的安全性能。

本文介绍等强度悬臂梁应变参数测定的方案和步骤。

一、实验原理等强度悬臂梁应变参数测定采用电阻应变计技术,该技术是通过将电阻应变计粘贴在试件表面,利用应变对电阻值的影响来测量试件表面的应变值。

电阻应变计输出的电信号经过放大、滤波、放大等处理后,可以转换为应变值。

二、实验设备1、等强度悬臂梁试件。

2、电阻应变计、导线、接线盒、数据采集器等实验设备。

3、剪应变仪用于提取试件应变计的标定参考值。

4、计算机和数据处理软件用于数据采集和分析。

三、实验步骤1、试件准备a、选取长度满足悬臂梁学理论的尺寸,并确保试件材料性质相同。

b、试件表面进行粗糙度处理,以加强应变计的黏贴效果。

c、将电阻应变计粘贴在试件表面,然后按照厂家提供的说明书将应变计连接到数据采集仪器上。

2、标定应变计a、使用剪应变仪沿着悬臂梁的不同位置进行剪应变测量,以确定应变计的标定值。

3、加载试件a、安装荷载装置并调整荷载值,可通过观察数据采集软件中实时显示的应变数据和轴向变形等数据,检查试件是否出现应力分布不均、剪切振动等复杂情况。

b、根据需要,调整荷载值,当达到最大荷载时,记录其伴随的应变和变形等参数。

4、数据采集和分析a、将数据采集仪器中记录的数值转存到计算机上。

b、对数据进行去噪、滤波、放大等处理。

c、按照悬臂梁学理论,利用测量得到的应变等参数计算出应力和变形等参数。

d、通过对比试验结果,检查等强度悬臂梁的应力分布是否均匀,从而确认结构安全性。

四、实验注意事项1、确保温度和湿度稳定,避免影响应变计的工作效果。

3、应变计的标定值要准确,避免测量误差对试验结果的影响。

4、严格控制荷载速度和大小,避免试验过程中试件的破坏。

5、应及时对试件进行维护和保养,以确保其长期的使用寿命和测试精度。

悬臂拼装连续梁桥拆除关键技术分析研究优秀毕业论文

悬臂拼装连续梁桥拆除关键技术分析研究优秀毕业论文
目前,针对桥梁拆除方案和拆除过程中梁体受力状态的研究依然较少,实际工程 中多依靠工程经验指导拆除施工,因此时而发生事故。为了确保连续梁桥拆除施工的 安全性,很有必要对拆除方案进行深入分析研究。
本文以苏州老兴贤桥拆除工程为背景,依据以往成功的桥梁拆除方法,进行相关 受力分析,提出了适合该悬臂拼装预应力混凝土连续梁桥的初步拆除方案,借助有限 元软件 ANSYS 对初步方案进行仿真分析,依据初步分析结果和连续梁桥受力特点,对 初步方案进行优化后得到拆除优化方案,再用工程设计计算软件 MIDAS/Civil、 Dr.Bridge 对优化方案进一步计算分析,最后开展施工监测,用实测数据验证了该优 化方案的可行性、计算分析方法的正确性。
苏州科技学院硕士学位论文
摘要
摘要
预应力混凝土连续梁桥以其诸多的优点,已被广泛采用。但是,由于多种原因, 很多连续梁桥在运营不久后便暴露出各种病害,严重威胁了行车安全,有的甚至不具 备加固价值而被迫拆除。另外还有一些老桥由于其桥面通行能力无法满足日益增长的 交通量需求,或桥下净空限制了航道的发展等原因而需要拆除。
The reserches about bridge demolition programs and stress state of the girder during the removal construction is still less at present. In many cases, the demolition construction relys on the guidance of the engineering experiences. Therefore, some accidents happend occassionally. In order to ensure safety during the demolition of continuous beam bridges, it is neccary to conduct in-depth study about the dismantle programs.

等强度箱形截面悬臂梁近似解析法

等强度箱形截面悬臂梁近似解析法
张少勇, 等: 等 强度 箱 形 截 面 悬臂 梁 近 似 解 析 法
等 强 度箱 形截 面 悬臂 梁 近似 解 析 法
张 少勇 陈梅 珠 冷新 中 费建伟
( 杭 州 恒 达 钢 构 股份 有 限 公 司 , 杭 州 3 1 的 悬臂 梁 为 等 截 面构 件 , 荷 载作 用 下 , 其 弯 曲应 力 和 构 件 挠 度 计 算 比较 简 单 , 但 等 截 面 悬臂 梁 没 有 充
分 发 挥 材 料 的 力 学性 能 , 若 将 构 件 做 成 变截 面 , 可 实现 等 强 度 , 达 到 结 构 优 化 设 计 的 目的 。 基 于 悬臂 梁 各 截 面 弯 曲
强 度 应 力相 等 原 则 , 推导矩形截 面、 箱 形 截 面 高度 随 构 件 长 度 的 变化 函数 , 得 到非线性 方程 , 但很 难得到 解析解 , 通
图乘 法 通 过 积 分 运 算 得 到 。 关键词 : 非线性方程 ; 拟 合 ;曲率 ;剪切 变 形
DOI : 1 0 . 1 3 2 0 6 / j . 鲥g 2 0 1 5 0 5 0 0 5
A P P R OX I MA T E A NA L Y T I C A L ME T HOD OF E QU AL S T RE N GT H B OX - S E Ct I ON C A NT Ⅱ , E R B E A M
ma t e r i a l s .I f c o mp o n e n t s o f v a r i a b l e c r o s s — s e c t i o n c a n a c h i e v e e q u a I s t r e n g t h ,t h e n,t h e o p t i ma l d e s i g n o f t h e

等强度梁悬臂梁宽度计算

等强度梁悬臂梁宽度计算

等强度梁悬臂梁宽度计算【原创实用版】目录1.等强度梁的概念及特点2.悬臂梁的概念及分类3.等强度梁悬臂梁宽度的计算方法4.计算示例及结果分析5.结论正文一、等强度梁的概念及特点等强度梁是指梁在弯曲时,梁的各个截面上的应力分布均匀,即各截面上的应力相等。

这种梁在受力情况下具有较好的抗弯性能,广泛应用于建筑、桥梁等结构中。

等强度梁的主要特点是强度分布均匀,能够充分发挥材料的性能。

二、悬臂梁的概念及分类悬臂梁是指一端固定,另一端自由的梁。

根据梁的材料和截面形状,悬臂梁可以分为不同的类型,如钢悬臂梁、混凝土悬臂梁、矩形截面悬臂梁、圆形截面悬臂梁等。

三、等强度梁悬臂梁宽度的计算方法等强度梁悬臂梁的宽度计算需要考虑梁的材料性能、截面形状、边界条件等因素。

一般情况下,可以采用以下步骤进行计算:1.确定梁的材料性能,如弹性模量、抗拉强度等。

2.根据梁的边界条件,确定梁的约束情况,如固定梁的一端或两端。

3.确定梁的截面形状,如矩形、圆形等。

4.利用弹性力学原理,计算梁在受力情况下的弯曲正应力。

5.根据等强度梁的特点,使弯曲正应力在梁的各个截面上均匀分布,从而得到梁的宽度。

四、计算示例及结果分析假设一梁的材料性能如下:弹性模量 E=2.0×10^5 MPa,抗拉强度f=200 MPa。

梁的截面为矩形,宽度为 b,高度为 h。

梁的一端固定,另一端受力 F。

根据弹性力学原理,可得梁在受力情况下的弯曲正应力公式为:σ = F*x/I其中,x 为梁的位移,I 为梁的惯性矩。

对于矩形梁,其惯性矩 I=b*h^3/12。

设梁的宽度为 b,高度为 h,则有:σ = F*x/(b*h^3/12)化简得:b = 12*F*x/h^3由此可得,等强度梁悬臂梁的宽度与受力 F、位移 x、高度 h 有关。

五、结论等强度梁悬臂梁的宽度计算需要考虑梁的材料性能、截面形状、边界条件等因素。

通过弹性力学原理,可以得到等强度梁悬臂梁宽度的计算公式。

工程力学中的悬臂梁受力和弯曲变形问题的分析与计算方法总结和应用

工程力学中的悬臂梁受力和弯曲变形问题的分析与计算方法总结和应用

工程力学中的悬臂梁受力和弯曲变形问题的分析与计算方法总结和应用悬臂梁是工程力学中常见的结构,广泛应用于桥梁、楼房等建筑物中。

在设计和施工过程中,了解悬臂梁的受力和弯曲变形问题是非常重要的。

本文将对悬臂梁的受力和弯曲变形进行分析,并总结计算方法的应用。

首先,我们来看悬臂梁的受力问题。

悬臂梁在受到外力作用时,会产生弯矩和剪力。

弯矩是指梁上各截面的内力矩,剪力则是指梁上各截面的内力。

悬臂梁的受力分析可以通过力的平衡条件和应力应变关系来进行。

在计算弯矩时,可以采用弯矩图的方法。

首先,根据悬臂梁的几何形状和受力情况,确定悬臂梁上各截面的受力状态。

然后,根据悬臂梁的几何形状和受力情况,绘制出悬臂梁的弯矩图。

弯矩图可以直观地反映出悬臂梁上各截面的弯矩大小和分布情况。

通过弯矩图,可以计算出悬臂梁上任意一点的弯矩值。

在计算剪力时,可以采用剪力图的方法。

剪力图是指悬臂梁上各截面的剪力大小和分布情况。

通过剪力图,可以计算出悬臂梁上任意一点的剪力值。

剪力图的绘制方法与弯矩图类似,只需要将受力状态和几何形状绘制在图上即可。

其次,我们来看悬臂梁的弯曲变形问题。

悬臂梁在受到外力作用时,会发生弯曲变形。

弯曲变形是指悬臂梁在受力作用下,横截面发生的变形。

悬臂梁的弯曲变形可以通过应力应变关系和位移分析来进行。

在计算弯曲变形时,可以采用弹性力学理论中的梁的弯曲理论。

根据梁的弯曲理论,可以得到悬臂梁上各截面的弯曲曲率和弯曲角。

通过弯曲曲率和弯曲角,可以计算出悬臂梁上任意一点的位移值。

位移值可以用来评估悬臂梁在受力作用下的变形情况。

除了受力和弯曲变形问题的分析,我们还可以应用计算方法来解决实际工程问题。

例如,在桥梁设计中,我们可以通过计算方法来确定悬臂梁的截面尺寸和材料选择。

在楼房设计中,我们可以通过计算方法来评估悬臂梁的受力和变形情况,从而确定合适的结构方案。

总之,悬臂梁的受力和弯曲变形问题是工程力学中的重要内容。

通过分析和计算方法的应用,我们可以更好地理解悬臂梁的受力和变形规律,为实际工程问题的解决提供理论依据和技术支持。

工程力学中的悬臂梁受力分析方法研究

工程力学中的悬臂梁受力分析方法研究

工程力学中的悬臂梁受力分析方法研究悬臂梁是工程力学中常见的结构形式,其受力分析方法对于工程设计和结构安全至关重要。

本文将探讨工程力学中悬臂梁受力分析的方法研究,包括静力学方法、力方法和位移方法。

静力学方法是最常用的悬臂梁受力分析方法之一。

在静力学方法中,我们可以利用受力平衡条件来确定悬臂梁的受力情况。

首先,我们需要确定悬臂梁的支座反力,然后利用受力平衡条件来求解悬臂梁上的内力和弯矩。

通过这种方法,我们可以得到悬臂梁在各个截面上的受力情况,进而评估结构的安全性。

力方法是另一种常用的悬臂梁受力分析方法。

在力方法中,我们将悬臂梁视为一个杆件系统,通过分析杆件系统的受力平衡条件来确定悬臂梁的受力情况。

具体而言,我们可以采用受力法、位移法和力法等方法来求解悬臂梁上的内力和弯矩。

通过力方法,我们可以更加直观地理解悬臂梁的受力分布,并进一步优化结构设计。

位移方法是一种更为精确的悬臂梁受力分析方法。

在位移方法中,我们通过分析悬臂梁的位移和变形来确定其受力情况。

位移方法的核心思想是利用悬臂梁上的位移和变形关系,求解出内力和弯矩。

通过位移方法,我们可以更加准确地评估悬臂梁的受力情况,并进行结构的优化设计。

除了上述三种常用的悬臂梁受力分析方法外,还有一些其他的方法和技术可以用于悬臂梁的受力分析。

例如,有限元方法可以通过将悬臂梁划分为多个小单元,利用数值计算方法求解出悬臂梁上的内力和弯矩。

这种方法在复杂结构和非线性问题的分析中具有很大的优势。

此外,还有一些基于实验的方法,如应变测量和应力分析等,可以用于验证和修正理论分析结果。

总之,工程力学中的悬臂梁受力分析方法研究是一个重要的课题。

静力学方法、力方法和位移方法是常用的分析方法,可以帮助我们理解和评估悬臂梁的受力情况。

此外,还有其他方法和技术可以用于悬臂梁的受力分析,如有限元方法和实验方法等。

通过不断研究和应用这些方法,我们可以更好地设计和分析悬臂梁结构,确保工程的安全性和可靠性。

基于ANSYS的铝合金箱型截面悬臂梁模态分析

基于ANSYS的铝合金箱型截面悬臂梁模态分析

基于ANSYS的铝合金箱型截面悬臂梁模态分析摘要通过ANSYS对具有复杂约束条件的铝合金箱型截面悬臂梁进行了模态分析,并将结果与高精度的实验结果进行比较分析,验证了所使用的模态分析方法的正确性及可行性,为解决相似问题提供了一种新方法和新思路。

关键词ANSYS;模态分析;铝合金;悬臂梁;固有频率振动问题广泛存在于航空航天、机械动力、交通运输及军事国防工业等国民经济的各个领域。

模态分析是在振动测量中求解振动物体固有频率的重要方法。

通过模态分析,可以得到振动系统比较精确的固有频率、模态振型和模态刚度,从而为进一步解决振动问题打下重要基础。

但是在解决某些复杂约束情况下的模态分析问题时,由于无法较好地模拟真实的约束情况而使得求解结果误差很大,缺乏可信度。

本文通过使用ANSYS对一处于复杂约束情况下的实例进行数值模拟,得到了较精确的结果,为解决相似问题提供了新的思路和方法。

1ANSYS必要数据准备1.1试样类型及相关数据试样是某种型号的铝合金箱型截面梁,试样一端打有两个孔洞,通过螺丝安装在试验台上,使其成为悬臂梁。

试样的安装构造及横截面尺寸如图1所示。

由米尺测得试样的长度l=441.2mm,横截面上各尺寸及壁厚m由游标卡尺测得。

通过电子秤测得试样的质量m=73.29g。

1.2数据处理由试样长度和质量可求得试样的线密度,即ρ=m/l=0.166kg/m。

计算图1中所示试样横截面对x轴的惯性矩Ix的值。

试样壁厚存在不均匀性,为计算简便,设横截面上的坐标原点位于外矩形的形心,上下左右四个小矩形的惯性矩分别为I上、I下、I左、I右,由惯性矩计算公式及移轴定理,可得横截面对x轴的惯性矩Ix,即:Ix=I上+I下+I左+I右=2579.7mm4。

2弹性模量的测量弹性模量是分析材料力学性能的一个极为重要的固有属性。

在使用ANSYS 对试样进行模态分析时,弹性模量E是极其重要的,故下面来测定试样的弹性模量。

2.1测量方案由于没有对应的夹具,所以无法直接在拉伸试验机上进行该铝合金试样的拉伸试验,故给出以下两种测量其弹性模量的方案。

06-悬臂梁分析

06-悬臂梁分析

6. 悬臂梁分析概述两个不同截面构成的悬臂梁以实体单元和梁单元来建模后,比较因竖向荷载和横向荷载产生的弯矩和弯曲应力。

图 6.1 分析模型实体单元梁单元 单位:m材料混凝土抗压强度 : 270 kgf/cm2截面形状 : 实腹长方形截面大小 : B×H 3500×2500 mm1000×2500 mm荷载1. 竖向荷载 : 1.0 tonf2. 水平荷载 : 1.0 tonf设定基本环境打开新文件以‘悬臂梁.mgb’为名存档。

单位体系定义为‘m’和‘tonf’。

文件 / 新文件文件 / 保存( 悬臂梁 )工具 / 单位体系长度 > m ; 力 > tonf图 6.2 设定单位体系定义材料以及截面选择悬臂梁的材料为混凝土(设计基准压缩刚度270 kgf/cm2),定义梁单元的截面。

模型 / 特性 / 材料类型 > 混凝土规范> GB-Civil(RC) ; 数据库 > 30↵模型 / 特性 / 截面数据库 / 用户截面号( 1 ) ; 名称( R-1 )截面形状 > 实腹长方形截面 ; 用户H ( 2.5 ) ; B ( 3.5 )截面号( 2 ) ; 名称( R-2 )截面形状>实腹长方形截面 ; 用户H ( 2.5 ) ; B ( 1 ) ↵图 6.3 定义材料图 6.4 定义截面建立单元模型 1是首先建立悬臂梁的底面板单元,然后用扩展板单元建立实体单元生成的。

用板建模助手功能先建立板单元。

顶面,捕捉点 (关), 捕捉轴线 (关)捕捉点格 (开), 捕捉单元 (开), 自动对齐(开)模型 / 结构建模助手 / 板输入类型 1> ; B ( 10 ) ; H ( 3.5 )材料( 1 ) ; 厚度( 1 )编辑类型 2> ; 分割数量 (开)m ( 20 ) ; n ( 7 ) ; 显示辅助尺寸(开)插入插入点( 0, 0, 0)旋转>Alpha ( -90 ), Beta ( 0 ), Gamma ( 0 )显示号 (开)图 6.5 板建模助手对话框建完底面的板单元后,根据悬臂梁的形状删除不必要的板单元部分。

箱型梁的梁格分析法c

箱型梁的梁格分析法c

文章编号:100926825(2005)0420033202箱型梁的梁格分析法收稿日期:2004211226作者简介:王光林(19702),男,1993年毕业于长沙铁道学院桥梁工程专业,工程师,深圳市西伦土木结构有限公司,广东深圳 518029王光林摘 要:介绍了箱型梁的梁格分析法,从梁格单元的划分、各单元截面特性的计算等方面进行了论述,指出该箱型梁梁格分析法简单易行,分析的精度可达到一般工程设计的要求。

关键词:箱型梁,梁格法,截面,梁格模型中图分类号:U448.213文献标识码:A 近年来随着国内高速公路的飞速发展,箱型梁桥因其良好的力学性能及经济优越性,获得了桥梁工程师和投资者的双重青睐。

当跨径超过30m 时,箱型断面几乎是工程师们的首选。

同时各种综合性的桥梁分析程序也可以对一般外形较为规则的箱型公路梁桥提供较为全面的分析。

但是,当受地形限制,线路平面线型在小范围内剧烈变化,或是行车道宽度发生变化及分叉时,不得不把桥面的外形设计成各种不规则的形状,即平常所说的异型梁,对这些形状各异的异型梁,一些综合计算程序往往不能给出较为满意的结果。

此时虽然可以运用有限元方法分析得到准确的结果,但过程复杂,工作量大,往往会耗费工程师大量的精力。

下面举例说明一种易于理解又较为简便的分析方法———梁格分析法,一般可用于弯斜桥及宽桥的分析。

箱型断面可以看成是几个顶底板相连的工字型断面的组合,当桥面很宽或不规则时,或因为车道的分叉等导致不规则加载时,会使各个工字梁的内力产生差异,此时为了得到各梁较为准确的内力,可以用很多纵向单元来模拟工字梁,同时加入一些横向单元来模拟各工字梁之间的横向连接,有时为了加载的方便还会引入一些虚拟单元,从而形成一个平面网格,如图1所示。

如此用一系列相互交叉的单元组成的平面网格结构来进行箱梁的受力分析,即梁格法。

梁格法的最基本原则是:在相同荷载作用下,梁格模型和它所模拟的箱梁具有相同的变形,并且每个梁格单元的内力就是它所代表的那部分梁体应力的积分。

工程力学中的悬臂梁受力和弯曲变形分析方法

工程力学中的悬臂梁受力和弯曲变形分析方法

工程力学中的悬臂梁受力和弯曲变形分析方法工程力学是一门研究物体受力和变形规律的学科,它在工程设计和结构分析中起着重要的作用。

悬臂梁作为一种常见的结构形式,在工程中广泛应用。

本文将介绍悬臂梁受力和弯曲变形的分析方法。

首先,我们来了解悬臂梁的基本概念。

悬臂梁是指一端固定,另一端悬空的梁结构。

在实际工程中,悬臂梁常见于桥梁、起重机械等场合。

悬臂梁的受力和变形分析是工程设计中的重要环节。

悬臂梁的受力分析是指确定悬臂梁各个部位受力大小和受力方向的过程。

在受力分析中,我们需要考虑悬臂梁的自重、外力和支座反力等因素。

一般来说,悬臂梁受力主要包括弯矩、剪力和轴力。

弯矩是指悬臂梁在外力作用下产生的弯曲力矩,剪力是指悬臂梁在外力作用下产生的剪切力,轴力是指悬臂梁在外力作用下产生的轴向力。

通过受力分析,我们可以计算出悬臂梁各个部位的受力大小和受力方向,为工程设计提供依据。

悬臂梁的弯曲变形分析是指确定悬臂梁在受力作用下产生的弯曲变形大小和变形形态的过程。

弯曲变形是指悬臂梁在外力作用下产生的横向位移。

在弯曲变形分析中,我们需要考虑悬臂梁的几何形状、材料特性和外力大小等因素。

一般来说,悬臂梁的弯曲变形可以通过弯曲方程进行计算。

弯曲方程是描述悬臂梁弯曲变形规律的数学方程,它可以通过假设悬臂梁为一根弹性梁材料,利用力学原理推导得出。

通过弯曲变形分析,我们可以了解悬臂梁在受力作用下的变形情况,为工程设计提供参考。

在悬臂梁的受力和弯曲变形分析中,我们常用的方法有解析法和数值法。

解析法是指通过数学分析和推导,得出悬臂梁受力和变形的解析解。

解析解可以直接给出悬臂梁各个部位的受力大小和变形情况,具有较高的精度和准确性。

数值法是指通过数值计算和近似方法,得出悬臂梁受力和变形的数值解。

数值解可以通过计算机模拟和数值计算得到,具有较高的效率和灵活性。

在实际工程中,我们可以根据具体情况选择解析法或数值法进行悬臂梁的受力和弯曲变形分析。

总之,悬臂梁受力和弯曲变形分析是工程力学中的重要内容。

求解等截面连续梁的一种解析法

求解等截面连续梁的一种解析法

求解等截面连续梁的一种解析法
陈兆民;李建成
【期刊名称】《西北纺织工学院学报》
【年(卷),期】1990(000)003
【摘要】本文利用Heaviside Sfep函数H(t)停到了梁的内力及变形的通用方程,在此基础上导出了计算等截面连续梁支反力的一种解析法,由于不需要解方程组,从而大大减少了运算次数。

在求出了支反力后,根据内力及变形的通用方程,就可以求出梁上任一点处的内力及变形。

【总页数】7页(P91-97)
【作者】陈兆民;李建成
【作者单位】不详;不详
【正文语种】中文
【中图分类】TU323.301
【相关文献】
1.等截面连续梁内力影响线求解的能量法 [J], 张征文;王巍
2.求解圆柱壳弯曲振动声辐射问题的一种近似解析法 [J], 夏齐强;陈志坚;艾海峰;张朋涛
3.基于计算机求解弯曲变形问题的一种新解析法(一)——复杂载荷作用下的静定梁问题 [J], 李银山;徐秉业;李树杰
4.求解非饱和土堤初始浸润线的一种解析法 [J], 朱伟;秦建设;高玉峰
5.一种更准确地求解Km值的方法——回归解析法 [J], 范业鹏;宛文涵
因版权原因,仅展示原文概要,查看原文内容请购买。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等强度箱形截面悬臂梁近似解析法
摘要:常见的悬臂梁为等截面构件,荷载作用下,其弯曲应力和构件挠度计算比较简单,但等截面悬臂梁没有充分发挥材料的力学性能,若将构件做成变截面,可实现等强度,达到结构优化设计的目的。

基于悬臂梁各截面弯曲强度应力相等原则,推导矩形截面、箱形截面高度随构件长度的变化函数,得到非线性方程,但很难得到解析解,通过在悬臂梁上选取关键控制点,求解关键点处函数值,将各关键点通过拟合得到高度变化函数。

分别计算悬臂梁的弯曲变形和剪切变形,弯曲变形根据各截面弯曲曲率相等的特性,由曲率与变形的几何关系得到,而剪切变形由图乘法通过积分运算得到。

关键词:非线性方程;拟合;曲率;剪切变形
1 概述
悬臂梁结构是工程上一种较为常用的结构。

悬臂梁结构在实际使用过程中[1],一般承受弯矩较为常见,而弯矩沿构件轴向呈二次抛物线式分布,如采用等截面梁是很不经济的。

可采用变截面梁,使各截面上的弯曲应力相等,即等强度梁。

梁的等强度设计是一种体积最小且满足强度条件的最优化设计,在实际应用上具有重要的意义[2]。

2 等强度悬臂梁近似解析法
从简单的矩形截面入手,分析等强度条件下截面高度函数。

基于构件制作因素,将悬臂构件做成等宽,高度沿构件长度变化的变截面梁,很有现实意义。

2.1 矩形变截面悬臂梁
某矩形变截面悬臂梁示意见图1。

任意截面的弯矩为
,截面宽度为b,高度为h(x),两端截面高度分别为0,h;两端截面惯性矩分别为。


x,任意截面的惯性矩为
,截面模量为
,强度应力为
,故矩形截面可实现变截面等强度悬臂梁设计。

图1 矩形变截面悬臂梁示意
2.2 箱形变截面悬臂梁等强分析
任意截面的弯矩为,截面宽度为b,高度为h(x),厚度为t,悬臂梁根部截面高度为h;截面惯性矩为
,因工程中常用截面是H形截面,因此当截面为H形时,其惯性矩表达式只需将b-2t 改成b-tw即可,推导过程类似箱形截面。

则截面模量和端部截面强度应力分别为:
(1a)
(1b)
任意截面模量为W(x),强度应力为:
(2)
则:
(3a)
任意截面的截面模量又为:
(3b)
则:
(3c)
即:
(3d)
1)当t较小时,可考虑h-2t≈h,h(x)-2t≈h(x),则式(3d)简化为:
(4)
即:
(5)
2)若按精确计算,假设某悬臂梁的b=h=500 mm,t=14 mm,则式(3d)简化为:。

相关文档
最新文档