九年级上册数学第一次月考试题(含答案)

合集下载

九年级数学第一次月考试题(含答案)

九年级数学第一次月考试题(含答案)

九年级数学上册第一次月考试题姓名:_______________班级:_______________考号:_______________一、填空题(每空3 分,共30 分)1、函数中,自变量x 的取值范围是________;函数y =中,自变量x 的取值范围是____________。

2、观察下列各式:,…,请你将猜想到的规律用含自然数n (n ≥l)的代数式表示出来_____________________.3、已化简的和是同类二次根式,则 。

4、若,则 。

5、的平方根是一4、m ,则= 。

6、已知一元二次方程的一个根为,则.7、设一元二次方程的两个实数根分别为和,则,.8、家家乐奥运福娃专卖店今年3月份售出福娃3600个,5月份售出4900个,设每月平均增长率为x ,根据题意,列出关于x 的方程为 .二、选择题(每题3 分,共30分)9、下列计算结果正确的是:( )(A)(B)(C)(D)10、下列根式中不是最简二次根式的是()A. B. C. D.11、下列式子,正确的是()A. B.C. D.12、使式子有意义的的值是()A. B.C. D.13、设,,用含、的式子表示,则下列表示正确的是()A. B. C. D.14、方程组的解是()A.B.C.D.15、若关于x 的一元二次方程的常数项为0,则m的值等于()A.1 B.2 C.1或2 D.016、方程的根是( )A. B . C . D .17、已知代数式的值为9,则的值为()A.18 B.12 C.9 D.718、关于x的一元二次方程的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实数根 D.无法确定三、计算题(19-25每题5分,26-27每题7分,27题11分,共60 分)19、计算: 20、计算:21、计算: 22、解方程:23、解方程:. 24、解方程:25、用配方法解一元二次方程:. 26、已知,求关于的方程的解。

2024-2025学年辽宁省大连市名校联盟九年级(上)第一次月考数学试卷(含答案)

2024-2025学年辽宁省大连市名校联盟九年级(上)第一次月考数学试卷(含答案)

2024-2025学年辽宁省大连市名校联盟九年级(上)第一次月考数学试卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.以下是回收、绿色包装、节水、低碳四个标志,其中为中心对称图形的是( )A. B. C. D.2.用配方法解方程x2+8x+7=0,则配方正确的是( )A. (x+4)2=9B. (x−4)2=9C. (x−8)2=16D. (x+8)2=573.若关于x的一元二次方程kx2−6x+9=0有实数根,则k的取值范围是( )A. k<1B. k≤1C. k<1且k≠0D. k≤1且k≠04.抛物线y=−(x+2)2−3的顶点坐标是()。

A. (−2,−3)B. (2,−3)C. (2,3)D. (−2,3)5.关于函数y=−3(x+1)2−2,下列描述错误的是( )A. 开口向下B. 对称轴是直线x=−1C. 函数最大值是−2D. 当x>−1时,y随x的增大而增大6.反比例函数y=−1的图象位于( )xA. 第一、三象限B. 第二、四象限C. 第一、四象限D. 第二、三象限7.如图,点P是反比例函数y=k(k≠0,x<0)图象上一点,过点P作PA⊥y轴于点A,x点B是点A关于x轴的对称点,连接PB,若△PAB的面积为18,则k的值为( )A. 18B. 36C. −18D. −368.如图,将含有30°角的直角三角板OAB如图放置在平面直角坐标系中,OB在x轴上,若OA=2.将三角板绕原点O顺时针旋转75°,则点A的对应点A′的坐标为( )A. (3,−1)B. (1,−3)C. (2,−2)D. (−2,2)9.如图,D 是△ABC 边AB 上一点,添加一个条件后,仍不能使△ACD ∽△ABC 的是( )A. ∠ACD =∠BB. ∠ADC =∠ACBC. AD AC =CD BCD. AC 2=AD ⋅AB10.如图,正方形ABCD ,点F 在边AB 上,且AF :FB =1:2,CE ⊥DF ,垂足为M ,且交AD 于点E ,AC 与DF 交于点N ,延长CB 至G ,使BG =12BC ,连接GM ,有如下结论:①DE =AF ;②AN = 24AB ;③∠ADF =∠GMF ;④S △ANF :S 四边形CNFB =1:8.上述结论中,正确的个数是( )A. 1个B. 2个C. 3个D. 4个二、填空题:本题共5小题,每小题3分,共15分。

九年级(上)第一次月考数学试卷(含答案)

九年级(上)第一次月考数学试卷(含答案)

九年级(上)第一次月考数学试卷、选择题(每小题3分,共24分在下列各个小题中,均给出了四个答案,其中有且只有一个正确答案,将正确答案代号填入括号内)1.下列方程是二次方程的是()A. B.C. D.2.如果A. B. C. D.3.如右图所示,折叠矩形,使点落在边的点处, 为折痕,已知C. D.4.一"兀.二次方程的解是(A. B.C. D.5.若代数式与代数式的值相等,则的值是(A. 或B.或C.D.或6.方程的左边配成完全平方后所得方程为()12.方程的根是则该三角形的周长是(二、填空题(每小题 3分,共24分)9.根据下列表格的对应值,判断取值范围是绕点逆时针旋转 ,得11.已知是关于的方程 的一个根,则A. B.C.D.以上答案都不对7 .关于的 二次方程 的一根为A.B. C. D.8 .三角形两边的长分别是边的长是 次方程的一个实数根,A.B.或C.D.或为常数)的一个解的13.已知是方程的根,求- -的值为_____________14.关于的方程后两个相等的实根,则.15.已知是方程的一个根,则代数式的值是____________16.某种药品经过两次降价,由每盒元调至元,若设平均每次降价的百分率为题意可列方程为三、解答题(第17-20题28分,21题8分24题8分,25题10分共54分)17.解方程:(配方法).18.解方程:19.解方程:(分解因式法).20.解方程21.如图,在中,一/ ,点从点开始沿以的速度匀速移动,同时另一点由点开始以的速度沿着匀速移动, 的面积等于边向点几秒时,22.如图,是一张边长为的正方形纸片,,分别为,的中点,沿过点的折痕将角翻折,使得点落在上的点处,折痕交于点,则23. 在方格中的位置如图所示.请在方格纸上建立平面直角坐标系,使得、两点的坐标分别为、.并求出点的坐标;作出关于横轴对称的,再作出以坐标原点为旋转中心、旋转后的,并写出,两点的坐标.四、解答题24.李大妈加盟了“红红”全国烧烤连锁店,该公司的宗旨是“薄利多销”,经市场调查发现,当羊肉串的单价定为角时,每天能卖出串,在此基础上,每加价角李大妈每天就会少卖出串,考虑了所有因素后李大妈的每串羊肉串的成本价为角,若李大妈每天销售这种羊肉串想获得利润是元,那么请问这种羊肉串应怎样定价?25.如图甲,在中,/ 为锐角.点为射线上一动点,连接,以为一边且在的右侧作正方形解答下列问题:如果,/ .①当点在线段上时(与点不重合),如图乙,线段、之间的位置关系为数量关系为②当点在线段的延长线上时,如图丙,①中的结论是否仍然成立,为什么?如果,/ ,点在线段上运动.试探究:当满足一个什么条件时,(点、重合除外)?画出相应图形,并说明理由. (画图不写作法)26.阅读下面的例题,范例:解方程解:当时,原方程化为,解得:,(不合题意,舍去)当时,原方程化为,解得:,(不合题意,舍去)原方程的根是,请参照例题解方程.答案1.【答案】 B【解析】本题根据一元二次方程的定义求解.一元二次方程必须满足三个条件:是整式方程;含有一个未知数,且未知数的最高次数是;二次项系数不为.以上三个条件必须同时成立,据此即可作出判断.【解答】解:、不是方程,错误;、符合一元二次方程的定义,正确;、原式可化为,是一元四次方程,错误;、是分式方程,错误.故选.2.【答案】 C【解析】先把原式的右边利用完全平方公式展开,再利用等式的对应项的系数相等可求【解答】解:故选3.【答案】 A【解析】由为折痕,可得,由矩形,可得设出的长,在直角三角形中利用勾股定理列出方程,通过解方程可得答案.【解答】解:设,则,「矩形,为折痕,中,,解得.故选.4.【答案】 C【解析】观察发现方程的两边同时加后,左边是一个完全平方式,即,即原题转化为求的平方根.【解答】解:移项得:,,即 , .故选:.5.【答案】 B【解析】由两个代数式的值相等,可以列出一个一元二次方程,分析方程的特点,用分组分解法进行因式分解,求出方程的两个根.【解答】解:因为这两个代数式的值相等,所以有:或,或.故选.6.【答案】 A【解析】把方程变形得到,方程两边同时加上一次项的系数一半的平方,两边同时加上即可.【解答】解:••故选.7.【答案】 A【解析】根据一元二次方程解的定义把代入方程求,然后根据一元二次方程的定义确定满足条件的的值.【解答】解:把代入方程得,解得,而,所以故选.8. 【答案】 C【解析】由于第边的长是一元二次方程的根就可以求出三角形的周长.【解答】解:•,的一个实数根,那么求出方程或,时,三角形的三边分别为、和,,该三角形的周长是;时,三角形的三边分别为、和,而,,三角形不成立.故三角形的周长为.故选.9. 【答案】【解析】根据上面的表格,可得二次函数程的解,当时,数【解答】解:..・当时,当时,;轴的交点的横坐标应在的图象与轴的交点坐标即为方时,;则二次函和之间.方程的一个解的范围是: 故答案为:.10. 【答案】【解析】直接利用旋转的性质求解.【解答】解: 绕点逆时针旋转,得故答案为.11.【答案】【解析】根据一元二次方程解的定义把代入得到关于的方程,然后解关于的方程即可.【解答】解:把代入得,解得故答案为.12.【答案】或【解析】原方程的左边是两个一次因式乘积的形式,而方程的右边为,可令每个一次因式的值为,得到两个一元一次方程,解这两个一元一次方程即可求出原方程的解.【解答】解:,或,解得或13.【答案】-【解析】把方程的解代入方程,两边同时除以,可以求出代数式的值.【解答】解:把代入方程有:两边同时除以有:- -故答案是:一.14.【答案】方程即可得出结论. 【解答】解:.••方程 有两个相等的实根,解得: 故答案为: 15. 【答案】 【解析】二次方程的根就是 二次方程的解,就是能够使方程左右两边相等的未知数的值. 代入方程故本题答案为 【解析】本题可设平均每次降价的百分率是 ,则第一次降价后药价为元,第二次在元的基础之又降低,变为元,进而可列出方进而可列出方 程,求出答案. 【解答】解:设平均每次降价的百分率是 ,则第二次降价后的价格为元,根据题意得: 故答案为: 17.【答案】解:: 【解析】先移项得到得到,然后利用直接开平方法求解.【解答】解:•,,即,18.【答案】解:由原方程,得--- ,或解得,,或【解析】将原方程转化为一般形式,然后利用因式分解法解方程即可. 【解答】解:由原方程,得--- ,或解得,,或19.【答案】解:,或【解析】先移项,然后利用平方差公式分解因式,这样转化为两个一元一次方程,解一元一次方程即可.【解答】解:••1• ,或,* * ) .,则有20.【答案】解:解得,或①当时,②当时,【解,然后解关于的方程,最后再来求设,则原方程变为析】的值.【解答】解:,则有解得,或①当时,②当时,21.【答案】解:设秒后,的面积等于平方米,或应舍去,所以当秒时面积平方米.【解析】根据勾股定理先求出的长,然后根据运动速度,设秒后, 平方米,从而可列方程求解.[解答]解:设秒后,的面积等于平方米,或应舍去,所以当秒时面积平方米.22.【答案】一【解析】由是一张边长为的正方形纸片,,分别为,, ,由翻折可得‘,’'中,利用勾股定理可求得答案.【解答】解:: 是一张边长为的正方形纸片,、分别为的面积等于的中点,可得,在, 的中点,为折痕,中,’ ’ ,.•・' 一,'中,设,则’,・・・,_ ,解得一故答案为:.23.【答案】::v :: V/::;r- * "1 T 4 --B -T T r T ・i ,■•・・■・,一;•* 1A p. * A 1■i i Ci 力i i i八::::。

人教版九年级上册数学第一次月考试卷含答案

人教版九年级上册数学第一次月考试卷含答案

人教版九年级上册数学第一次月考试题一、单选题1.下列方程中,属于一元二次方程的是()A 0=B .2x +1=0C .20y x +=D .21x =12.方程(x+3)(x-4)=0的根是()A .123,4x x =-=B .123,4x x ==C .1234,x x ==-D .123,4x x =-=-3.已知关于x 的方程260--=x kx 的一个根为x=4,则实数k 的值为()A .25B .52C .2D .54.用配方法解方程2250x x --=时,原方程应变形为()A .()216x +=B .()216x -=C .()229x +=D .()229x -=5.已知方程2380x x --=的两个解分别为12,x x ,则1212,x x x x +⋅的值分别是()A .3,-8B .-3,-8C .-3,8D .3,86.某种药品原价为36元/盒,经过连续两次降价后售价为25元/盒.设平均每次降价的百分率为x ,根据题意所列方程正确的是()A .236(1)3625x -=-B .236(12)25x -=C .236(1)25x -=D .225(1)36x -=7.抛物线22(2)1y x =-+的顶点坐标是()A .()2,1B .()2,1-C .()1,2D .()1,2-8.抛物线2y ax bx c =++的图象如图所示,则一元二次方程20ax bx c ++=的解是()A .x=-1B .x=3C .x=-1或x=3D .无法确认9.将抛物线y=4x 2向右平移1个单位,再向上平移3个单位,得到的抛物线是()A .y=4(x+1)2+3B .y=4(x ﹣1)2+3C .y=4(x+1)2﹣3D .y=4(x ﹣1)2﹣310.二次函数2(2)1y x =+-的图像大致为()A .B .C .D .二、填空题11.将方程()()3152x x x -=+化为一元二次方程的一般式______.12.一元二次方程x 2﹣4=0的解是_________.13.已知关于x 的一元二次方程22(2)(21)10m x m x -+++=有两个不相等的实数根,则m 的取值范围是______14.函数243y x x =-++有_____(填“最大”或“最小”),所求最值是_______15.抛物线2y ax bx c =++与x 轴的交点坐标为(1,0)-和(3,0),则这条抛物线的对称轴是x =______.16.已知二次函数23(1)y x k =-+的图象上三点1(2,)A y ,2(3,)B y ,3(4,)C y -,则1y 、2y 、3y 的大小关系是_____.17.将抛物线247y x x =++沿竖直方向平移,使其顶点在x 轴上,且过点A (m ,n ),B (m+10,n ),则n=________三、解答题18.解方程:(1)2410x x --=(2)()255x x-=-19.已知抛物线y=4x 2-11x-3.(1)求它的对称轴;(2)求它与x 轴,y 轴的交点坐标.20.已知关于x 的方程(1)若该方程的一个根为,求的值及该方程的另一根;(2)求证:不论取何实数,该方程都有两个不相等的实数根.21.如图,抛物线2y x bx c =-++经过坐标原点,并与x 轴交于点A (2,0).(1)求此抛物线的解析式:(2)设抛物线的顶点为B ,求∆OAB 的面积S .22.如图,某农场要建一个长方形的养鸡场,鸡场的一边靠墙,墙长25m ,另外三边木栏围着,木栏长40m .(1)若养鸡场面积为200m 2,求鸡场靠墙的一边长.(2)养鸡场面积能达到250m 2吗?如果能,请给出设计方案,如果不能,请说明理由23.已知抛物线()2114y a x =-+与直线21y x =+的一个交点的横坐标是2(1)求a 的值;(2)请在所给的坐标系中,画出函数21(1)4y a x =-+与21y x =+的图象,并根据图象,直接写出12y y ≥时x 的取值范围24.大润发超市以每件30元的价格购进一种商品,试销中发现每天的销售量y (件)与每件的销售价x (元)之间满足一次函数1623y x=-(1)写出超市每天的销售利润w (元)与每件的销售价x (元)之间的函数关系式;(2)如果超市每天想要获得销售利润420元,则每件商品的销售价应定为多少元?(3)如果超市要想获得最大利润,每件商品的销售价定为多少元最合适?最大销售利润为多少元?25.如图所示,抛物线2y x mx n =-++经过点A (1,0)和点C (4,0),与y 轴交于B(1)求抛物线所对应的解析式.(2)连接直线BC ,抛物线的对称轴与BC 交于点E ,F 为抛物线的顶点,求四边形AECF 的面积.(3)x 轴上是否存在一点P ,使得PB+PE 的值最小,若存在,请求出P 点坐标,若不存在,请说明理由.参考答案1.B 2.A 3.B 4.B 5.A 6.C 7.A 8.C 9.B 10.D11.238100x x --=12.x=±213.34m >且2m ≠14.最大715.116.123y y y <<17.2518.(1)2x =±,(2)5x =或4x =19.(1)x=118(2)该抛物线与x 轴的交点坐标为(3,0),1-,04⎛⎫⎪⎝⎭;该抛物线与y 轴的交点坐标为(0,-3).20.(1)m=1;0(2)见解析21.(1)y =−x 2+2x ;(2)122.(1)20m .(2)不能达到250m 2,理由见解析.23.(1)a=-1;(2)图见解析,-1≤x≤224.(1)w=-32x +252x -4860;(2)40或44;(3)42元,432元25.(1)254y x x =-+-;(2)458;(3)存在,P (2011,0)。

沪科版九年级上册数学第一次月考试卷含答案

沪科版九年级上册数学第一次月考试卷含答案

沪科版九年级上册数学第一次月考试题一、单选题1.已知反比例函数k y x =的图象经过点()1,2A -,那么,(k =)A .2B .2-C .12D .12-2.函数()211m y m x+=+是二次函数,则m 的值是()A .±1B .1C .-1D .以上都不对3.把一根长为50cm 的铁丝弯成一个长方形,设这个长方形的一边长为x (cm ),它的面积为y (cm 2),则y 与x 之间的函数关系式为()A .y=-x 2+50xB .y=x 2-50xC .y=-x 2+25xD .y=-2x 2+254.如果点()1,2同时在函数y ax b =+与x b y a -=的图象上,那么a ,b 的值分别为()A .a=-3,b=-1B .a=-3,b=1C .a=1,b=-3D .a=-1,b=35.二次函数2y ax b =+与反比例函数ab y x=在同一平面直角坐标系中的图象可能是()A .B .C .D .6.抛物线2(1)2y x =-+的顶点坐标是()A .(﹣1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(1,2)7.如果矩形的面积为6cm 2,那么它的长ycm 与宽xcm 之间的函数关系用图象表示大致是()A .B .C .D .8.如图,在Rt ABC 中,90ACB ∠= ,CD AB ⊥于点D .3AC =,6AB =,则(AD =)A .32B .3C .92D .339.二次函数2y ax bx c =++的图象如图所示,则下列结论:①0abc <;②240b ac ->;③20a b +>;④0a b c ++<;⑤220ax bx c +++=的解为0x =,其中正确的有()A .5个B .4个C .3个D .2个10.如图,在直角坐标系中,有菱形OABC ,A 点的坐标是()10,0,双曲线(0)k y x x=>经过点C ,且160OB AC ⋅=,则k 的值为()A .40B .48C .64D .80二、填空题11.以原点O 为位似中心,将ABC 缩小,使变换后得到的111A B C 与ABC 对应边的比为1:2.请在网格内画出111A B C ,并写出点1A 的坐标________.12.方程2123x x x-+=的实根的个数为________个.13.结合二次函数224233y x x =-++的图象图回答:() 1当x =________时,()02y =当________时,()03y >当________时,0y <.14.若37a b =,则a b a b+=-________.15.函数2241y x x =++,当x ________时,y 随x 的增大而减小.16.如图,ABC 是一块锐角三角形材料,边6BC cm =,高4AD cm =,要把它加工成一个矩形零件,使矩形的一边在BC 上,其余两个顶点分别在AB 、AC 上,要使矩形EGFH 的面积最大,EG 的长应为________cm .17.已知数3,6,请写出一个数,使这三个数中的一个数是另外两个数的比例中项,这个数是____________.(填写一个即可)18.已知抛物线212y x bx =+经过点()4,0A .设点()1,3C -,请在抛物线的对称轴上确定一点D ,使得AD CD -的值最大,则D 点的坐标为________.19.下列函数中________是反比例函数.①1y x x =+,②231x y x +=,③12x y -=,④32y x=.20.如图,线段AB 、CD 相交于E ,//AD BC ,若:1:2AE EB =,1ADE S = ,则AEC S 等于________.三、解答题21.如图,抛物线223y x x =--+于x 轴交于()1,0A ,()3,0B -两点,交y 轴于点()0,3C ;在抛物线上是否存在点H ,使得BCH 为直角三角形.22.已知两个相似三角形的一对对应边长分别是35cm 和14cm()1已知他们的周长相差60cm ,求这两个三角形的周长.() 2已知它们的面积相差2588cm ,求这两个三角形的面积.23.如图,在矩形ABCD 中,6AB cm =,12BC cm =,点P 沿边AB 从点A 向点B 以1/cm s 的速度移动;同时,点Q 从点B 沿边BC 向点C 以2/cm s 的速度移动,设点P 、Q 移动的时间为t s .问:() 1当t 为何值时PBQ 的面积等于28cm() 2当t 为何值时DPQ 是直角三角形?() 3是否存在t 的值,使DPQ 的面积最小,若存在,求此时t 的值及此时的面积;若不存在,请说明理由.24.随着某市近几年城市建设的快速发展,对花木的需求量逐年提高,某园林专业户计划投资种植花卉及树木.根据市场调查与预测,种植树木的利润y 1与投资量x 成正比例关系,如图①所示;种植花卉的利润y 2与投资量x 成二次函数关系,如图②所示(注:利润与投资量的单位:万元).(1)分别求出利润y 1与y 2关于投资量x 的函数关系式;(2)如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润?他能获取的最大利润是多少?25.如图,是小亮晚上在广场散步的示意图,图中线段AB 表示站立在广场上的小亮,线段PO 表示直立在广场上的灯杆,点P 表示照明灯的位置.()1在小亮由B 处沿BO 所在的方向行走到达O 处的过程中,他在地面上的影子长度越来越________(用“长”或“短”填空);请你在图中画出小亮站在AB 处的影子BE ;()2当小亮离开灯杆的距离 3.6OB m =时,身高为1.6m 的小亮的影长为1.2m ,①灯杆的高度为多少m ?②当小亮离开灯杆的距离6OD m =时,小亮的影长变为多少m ?26.如图1,抛物线23y x x =--与直线22y x =--交于A 、B 两点,过A 作//AC x 轴交抛物线于点C ,直线AB 交x 轴于点D .()1求A 、B 、C 三点的坐标;()2若点H 是线段BD 上的一个动点,过H 作//HE y 轴交抛物线于E 点,连接OE 、OH ,当310HE AC =时,求OEH S 的值;()3如图2,连接BO ,CO 及BC ,设点F 是BC 的中点,点P 是线段CO 上任意一点,将BFP 沿边PF 翻折得到GPF ,求当PC 为何值时,GPF 与CFP 重叠部分的面积是BCP 面积的14.参考答案1.B2.B3.C4.D5.B6.D7.C8.A9.C10.B11.()1,412.113.1-或313x -<<1x <-或3x >.14.52-15.1<-16.217.或1.5或1218.()2,6-19.④20.221.在抛物线上存在使BCH 为直角三角形的点H .22.(1)较大的三角形的周长为100cm ,较小的三角形的周长为40cm ;(2)较大的三角形的面积为2700cm ,较小的三角形的面积为2112cm .23.(1)当2t s =或4t s =时,PBQ 的面积等于28cm ;(2)当t 的值为0秒或32秒或6秒时,DPQ 是直角三角形;(3)存在,当3t =时,DPQ S 有最小值27.24.(1)利润y 1关于投资量x 的函数关系式是y 1=2x (x≥0),利润y 2关于投资量x 的函数关系式是y=12x 2(x≥0);(2)当x=8时,z 的最大值是32.25.(1)短,画图见解析;(2)①x=6.4;②小亮的影长是2米.26.(1)点A 坐标()1,4-,点B 坐标()2,2-,点C 坐标()4,4--;(2)3338OEH S +=;(3)当PC =时,GPF 与CFO 重叠部分的面积是BCP 面积的14.。

河北省邢台市威县第三中学2023-2024学年九年级上学期第一次月考数学试题(含答案)

河北省邢台市威县第三中学2023-2024学年九年级上学期第一次月考数学试题(含答案)

2023~2024学年九年级第一学期第一次学情评估数学(人教版)本试卷共8页,总分120分,考试时间120分钟.三题号一二20212223242526得分注意事项:1.仔细审题,工整作答,保持卷面整洁.2.考生完成试卷后,务必从头到尾认真检查一遍.一、选择题(本大题共16个小题,共38分.1~6小题各3分,7~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.把一元二次方程化成一般形式后,一次项的系数为( )A. B.8C.1D.2.关于二次函数的最值,下列说法正确的是( )A.最小值为 B.最小值为4C.最大值为1D.最大值为43.用配方法解方程时,此方程可变形为的形式,则b 的值为( )A.4B.5C.6D.74.已知一元二次方程的判别式,那么这个方程( )A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.只有一个实数根5.如图,,点P 在线段上(点P 不与点A ,B 重合),以为边作正方形.设,,正方形的面积为S ,则y 与x ,S 与x 满足的函数关系分别是( )A.一次函数关系,二次函数关系B.二次函数关系,二次函数关系C.一次函数关系,一次函数关系D.二次函数关系,一次函数关系6.下列方程最适合用公式法求解的是( )A. B. C. D.7.已知,为抛物线上的两点,则与的大小关系是( )A. B. C. D.298x x -=8-9-()214y x =-++1-225x x -=()2x a b +=()200ax bx c a ++=≠240b ac -=10AB =AB BP BCDP BP x =AP y =BCDP ()232x -=210250x x -+=250x x +=22310x x +-=()11,A y ()24,B y ()23y x =--1y 2y 12y y >12y y <12y y ≤12y y =8.若是关于x的一元二次方程的解,则a的值为()A. B.1 C.1或 D.09.在平面直角坐标系中,如果把抛物线向右平移3个单位长度得到一条新抛物线,下列关于这两条抛物线的描述不正确的是()A.开口方向相同B.对称轴不同C.顶点的横坐标相同D.顶点的纵坐标相同10.下表是小明通过计算得到的函数的几组对应值,则方程的一个实数根可能是()xy0.51 1.51A. B. C. D.11.甲、乙、丙三人解方程的过程如图所示,则下列判断正确的是()甲乙丙两边同时除以得,方程的解为.整理得.,,,.方程有两个不相等的实数根,即,移项得,因式分解得,于是得,或,,A.只有甲的解法正确B.只有乙的解法正确C.只有丙的解法正确D.三人的解法均不对12.在第十九届亚运会中国国家象棋队选拔赛的第一阶段中,采用分组单循环(每两人之间都只进行一场比赛)制,每组x人.若每组共需进行15场比赛,则根据题意可列方程为()A B. C. D.13.二次函数的图象可能是()A. B. C. D.14.定义:对于一元二次方程,若满足,则称这个方程为“和谐”方程;若满足,则称这个方程为“友善”方程.若关于x的方程既是“和0x=()22110a x x a-++-=1-1-22y x=25y x x=--250x x--=1.5- 1.7- 1.9- 2.1-1.25-0.41-1.6x≈- 1.8x≈- 1.95x≈- 2.2x≈-()()323x x x-=-()3x-2x=∴2x=256x x-=-1a=5b=-6c=-24490b ac∴∆=-=>572x±=11x=-26x=()()3230x x x---=()()320x x--=30x-=20x-=13x∴=22x= ()11152x x-=()11152x x+=()115x x-=()115x x+=2y x bx b=-+()200ax bx c a++=≠0a b c-+=a b c++=()200ax bx c a++=≠谐”方程,又是“友善”方程,则下列判断正确的是( )A.该方程有两个相等的实数根 B.该方程的两个根互为相反数C.该方程的两根之积为0D.该方程无实数根15.在圆形喷水池的中央竖直安装一根水管,其顶端安一喷头,喷出水流的高度y (m )与水平距离x (m )之间满足,如图所示,当时,水流达到最高点,当时,.若喷出的水流没有落在池外,则喷水池的半径不少于( )A. B. C. D.16.题目:“已知抛物线,点,.若该抛物线与线段只有一个公共点,求a 的取值范围.”对于其答案,甲答:,乙答:,丙答:,则正确的是( )A.只有甲答的对B.甲、丙答案合在一起才完整C.乙、丙答案合在一起才完整D.三人答案合在一起才完整二、填空题(本大题共3个小题,共10分,17小题2分,18~19小题各4分,每空2分)17.已知某抛物线的开口向下,且该抛物线的对称轴为y 轴,经过原点O ,请写出一个满足条件的抛物线的解析式:_____________.18.受益于国家对高新技术企业的大力扶持,某新材料公司的利润逐年增高,据统计,该公司2020年的利润为3亿元,2022年的利润为3.63亿元.(1)该企业从2020年至2022年利润的年平均增长率为____________%;(2)若2023年保持前两年利润的年平均增长率不变,则该企业2023年的利润___________(填“能”或“不能”)超过4亿元.19.已知抛物线(a 为常数).(1)当时,y 随x 的增大而增大,则a 的取值范围为___________;(2)嘉嘉发现,在同一平面直角坐标系中,无论a 为何值,该抛物线的顶点始终在一条抛物线C 上,则抛物线C 的函数解析式为___________.三、解答题(本大题共7个小题,共72分.解答应写出文字说明、证明过程或演算步骤)20.(第(1)题4分,第(2)题5分,共计9分)用适当的方法解下列方程.(1);(2).21.(本小题满分9分)已知二次函数,,且的图象如图所示.274y ax bx =++32x =2x =154y =3m 3.2m 3.5m 4m()()1y x a x =--()1,0A -()2,0B AB 1a <-2a >1a =()221y x a a =--+-12x -<<223x x -=22520x x -+=2y x =265y x x =-+2y x =(1)用配方法将化成的形式是_____________;(2)在图中画出的图象;(3)的图象经过平移可得到的图象,请写出一种平移方案.22.(本小题满分9分)已知关于x 的一元二次方程.(1)若是方程的一个解,求k 的值和该方程的另一个解;(2)若该方程有两个实数根,求正数k 的取值范围.23.(本小题满分10分)在平面直角坐标系中,点,在抛物线上.(1)写出该抛物线与y 轴的交点坐标;(2)已知.①求a ,b 满足的数量关系;②已知点在该抛物线上,当时,求y 的取值范围.24.(本小题满分10分)在足够大的空地上有一段长为32米的旧墙,王爷爷要利用旧墙和60米的木栏围成中间有一道木栏的矩形菜园,其中,如图所示,设米.(1)的长为________米(用含x 的式子表示);(2)若所围成的矩形菜园的面积为300平方米,求x 的值;(3)嘉嘉说:“当矩形菜园的面积为297平方米时,有两种围法.”请你判断嘉嘉的说法是否正确,并通过计算说明.25.(本小题满分12分)计划在某试验田种植一种新型农作物,经过调查发现,种植x 亩的总成本y (万元)由三部分组成,分别是农机成本、管理成本和其他成本:其中农机成本固定不变为10万元,管理成本(万元)与x 成正比例,其他成本(万元)与x 的平方成正比例,在生产过程中,获得如下表所示的数据.265y x x =-+()2y x h k =-+265y x x =-+2y x =265y x x =-+()24100kx x k ++=≠1x =-()1,m ()3,n ()220y ax bx a =++≠m n =()1,7-14x <<MN EF ABCD AD MN ≤AB x =BC ABCD ABCDx (单位:亩)13y (单位:万元)1634(1)求y 与x 之间的函数解析式;(2)已知每亩的平均成本为12万元,求种植新型农作物的亩数是多少?(3)若每亩的收益为17万元,当x 为何值时,试验田总利润最大?并求出最大利润.[注:总利润总收益总成本]26.(本小题满分13分)某数学兴趣小组设计了一个弹珠投箱游戏:将无盖正方体箱子放在水平地面上,从箱外向箱内投弹珠,并建立了如图所示的平面直角坐标系(正方形为箱子截面图,x 轴经过箱子底面中心,并与其一组对边平行)某同学将弹珠从点处抛出,弹珠的飞行轨迹为抛物线(单位长度为)的一部分,且抛物线经过.已知.(1)求抛物线的解析式和顶点坐标;(2)请通过计算说明该同学抛出的弹珠能投入箱子;(3)若在自变量x 的值满足的情况下,与其对应的函数值y的最大值为3.5,直接写出m 的值;(4)若弹珠投入箱子后立即向右上方弹起,沿与抛物线L 形状相同的抛物线M 运动,且无阻挡时弹珠最大高度可达,请判断弹珠能否弹出箱子,并说明理由.=-ABCD ()0,3P 2:L y x bx c =-++1m 115,24⎛⎫⎪⎝⎭2m OA AB AD ===()104m x m m ≤≤+>3m2023—2024学年九年级第一学期第一次学情评估数学(人教版)参考答案评分说明:1.本答案仅供参考,若考生答案与本答案不一致,只要正确,同样得分.2.若答案不正确,但解题过程正确,可酌情给分.一、(1~6小题每题3分,7~16小题每题2分,共计38分)题号12345678910111213141516答案ADCBADBACBCADBCD二、(17小题2分,18~19小题各4分,每空2分,共10分)17.(写成形式,即可)18.(1)10;(2)不能19.(1);(2)三、20.解:(1)方程的解为,;(4分)(2)方程的解为,.(5分)21.解:(1);(3分)(2)如图;(3分)(3)的图象可看作是由的图象向右平移3个单位长度,再向下平移4个单位长度得到.(答案不唯一,正确即可)(3分)22.解:(1)将代入,解得,,解得,,即k 的值为3,该方程的另一个解为;(6分)(2)方程有两个实数根,,解得,正数k 的取值范围是.(3分)23.解:(1)该抛物线与y 轴的交点坐标为;(2分)(2)①,点和点关于该抛物线的对称轴对称,2y x =-2y ax =0a <2a ≥21y x =-13x =21x =-12x =212x =()334y x =--265y x x =-+2y x =1x =-2410kx x ++=3k =23410x x ∴++=113x =-21x =-13x =- 2410kx x ++=241640b ac k ∴∆=-=-≥4k ≤∴04k <≤()0,2m n = ∴()1,m ()3,n该抛物线的对称轴为直线,即,,即a ,b 满足的数量关系为;(5分)②将点代入中,得,再与联立后,解得,抛物线的解析式为.,当时,y 的最小值为.结合图象,当时,y 的最大值为2,的取值范围是.(3分)24.解:(1);(2分)(2)根据题意可得,整理得,解得,即x 的值为10;(4分)(3)嘉嘉的说法不正确;(1分)理由:,,解得.根据题意可得,整理得,解得,(舍),当矩形菜园的面积为297平方米时,只有一种围法,嘉嘉的说法不正确.(3分)25.解:(1)根据题意设.将,代入,解得,与x 之间的函数解析式为;(5分)(2)根据题意可得,整理得,解得,,即种植新型农作物的亩数是2亩或5亩;(4分)(3)设试验田总利润为w 万元,根据题意得.,当时,试验田总利润最大,最大利润为26万元.(3分)∴2x =22ba-=40a b ∴+=40a b +=()1,7-22y ax bx =++27a b -+=40a b +=14a b =⎧⎨=-⎩∴()224222y x x x =-+=--10> ∴2x =2-4x =y ∴22y -≤<()603x -()360030x x =-2201000x x -+=1210x x ==AD MN ≤ 060332x ∴<-≤28203x ≤<()603297x x -=220990x x -+=111x =29x =∴ABCD ∴210y ax bx =++()1,16()3,34210y ax bx =++15a b =⎧⎨=⎩y ∴2510y x x =++251012x x x ++=27100x x -+=12x =25x =()22171210626w x y x x x =-=-+-=--+10-< ∴6x =26.解:(1)将,代入,解得,抛物线的解析式为;,顶点坐标为;(4分)(2),.令,,解得,(舍).,该同学抛出的弹珠能投入箱子;(4分)(3)m;(2分)解析:若,即,在此情况下,当时,,解得,(舍);若,在此情况下,当时,,解得.综上所述,m(4)弹珠能弹出箱子;(1分)理由:当时,,解得,(舍),抛物线L 与x 轴正半轴的交点为.根据题意设抛物线M 的解析式为.把点代入,解得,.又抛物线M 的对称轴在直线的右侧,,抛物线M 的解析式为:.当时,,弹珠能弹出箱子.(2分)()0,3115,24⎛⎫⎪⎝⎭2y x bx c =-++23bc =⎧⎨=⎩∴223y x x =-++()222314yx x x =-++=--+∴()1,42OA AB ==4OB ∴=2y =2232x x ∴-++=11x =21x =214<+< ∴114m +<304m <<14x m =+2114 3.54y m ⎛⎫=-+-+= ⎪⎝⎭1m =2m =1m >x m =()214 3.5y m =--+=3m =4m =0y =2230x x -++=13x =21x =-∴()3,0()23y x h =--+()3,0()23y x h =--+13h =+23h =- 3x =3h ∴=∴(233y x =---+ 4x =12y =>∴。

2024-2025学年九年级上学期第一次月考数学试题(9月)[含答案]

2024-2025学年九年级上学期第一次月考数学试题(9月)[含答案]

九年级数学(考试时间:60分钟,满分:100分)一、选择题(本大题共5小题,每小题2分,共10分).1.已知O e 的半径为4,平面内有一点M .若5OM =,则点M 与O e 的位置关系是( ).A .在圆内B .在圆上C .在圆外D .不能确定2.已知x=2是关于x 的一元二次方程x 2+ax=0的一个根,则a 的值为( )A .-2B .2C .12D .12-3.如图,AB 是半圆的直径,O 为圆心,C 是半圆上的点,D 是 AC 上的点.连接AC ,若20BAC =°∠,则D Ð的度数为( ).A .100°B .110°C .120°D .130°4.某商品经过连续两次降价,销售单价由原来200元降到160元.设平均每次降价的百分率为x ,根据题意可列方程为( )A .200(1-x )2=160B .200(1+x )2=160C .160(1+x )2=200D .160(1-x )2=2005.如图,四边形ABCD 内接于O e ,AE CB ^交CB 的延长线于点E ,若BA 平分DBE Ð,6AD =,4CE =,则AE 的长为( ).A .2B .3C .D .二、填空题(本大题共10小题,每小题3分,共30分)6.方程230x x -=的根为 .7.用配方法解方程2250x x --=时,原方程应变形为__________.8.写一个一元二次方程,使得它的两个根为1-,3,该方程为 .9.如图,等边△ABC 内接于⊙O ,AD 是直径,则∠CBD= °.10.如图,C 为O e 的劣弧AB 上一点,若124AOB Ð=o ,则ACB =∠ .11.若1x 、2x 是一元二次方程2210x x +-=的两个实数根,则12122x x x x +-的值为 .12.如图,圆O 的直径AB 垂直于弦CD ,垂足是E ,22.54A OC CD Ð=°=,,的长为 .13.若关于x 的方程20ax bx c ++=的解为11x =-,23x =,则方程()2(2)20a xb xc -+-+=的解为 .14.已知O e 的半径1OA =,弦AB ,若在O e 上找一点C ,则BCA Ð= °.15.如图,线段AB 、BC 的垂直平分线1l 、2l 相交于点O ,若142Ð=°,则AOC Ð= °.三、解答题(本大题共7小题,共60分)16.解下列方程(1)2316x x-=(2)2(21)63x x -=-.17.已知关于x 的方程x 2+kx -2=0.(1)求证:不论k 取何实数,该方程总有两个不相等的实数根;(2)若该方程的一个根为2,求它的另一个根.18.如图,AD 、BC 是O e 的弦,且AD BC =,AC 是直径,求证:四边形ABCD 是矩形.19.已知关于x 的方程20(,x px q p q ++=为常数)有两个实数根12,x x .(1)若2,8p q =-=-,则24p q -的值是 ,方程的解是 ;(2)若123,2x x ==-,求24p q -的值;(3)用含12,x x 的代数式表示24p q -,下列结论中正确的是( )A. 22124()p q x x -=+B. 22124()p q x x -=C. 22124()p q x x -=- D. 2212124()p q x x x x -=++20.某商店经销的某种商品,每件成本为40元.调查表明,这种商品的售价为50元时,可售出200件;售价每增加5元,其销售量将减少50件.为了实现2000元的销售利润,这种商品的售价应定为多少元?21.如图,已知点A 、B 是平面内两点,线段a 长度一定,在平面内作O e 使得它过点A 、B 且半程长为a (尺规作图,保留作图痕迹,写出必要的作图说明).22.如图,四边形ABCD 是O e 的内接四边形,AC BD ^,OF AB ^,垂足分别是E 、F .(1)直接写出OF 与CD 的数量关系__________,并证明你的结论;(2)若AB AC ==8BC =.求CD 的长.1.C【分析】本题考查了点与圆的位置关系:设圆的半径为r ,点P 到圆心的距离OP 为d ,当d r >时,则点P 在圆外;当d r =时,点P 在圆上;当d r <时,点P 在圆内,根据点P 与圆的位置关系的判定方法对点M 与O e 位置关系进行判断.【详解】解:∵O e 的半径为4,5OM =∴点M 到圆心的距离大于圆的半径,∴点M 在圆外.故选:C .2.A【分析】把x=2代入x 2+ax=0,即可求解.【详解】∵x=2是关于x 的一元二次方程x 2+ax=0的一个根,∴2220a +=,解得:a=-2.故选A.【点睛】本题主要考查一元二次方程的根的定义,理解方程的根的定义,是解题的关键.3.B【分析】本题考查了圆周角定理,连接BD ,根据圆周角定理求出ADB Ð及BDC Ð的度数,进而可得出结论,根据题意作出辅助线,构造出圆周角是解题的关键.【详解】解:连接BD ,∵AB 是半圆的直径,∴90ADB Ð=°,∵20BAC =°∠,∴20BDC BAC Ð=Ð=°,∴9020110ADC ADB BDC Ð=Ð+Ð=°+°=°,故选:B .4.A【分析】根据某商品经过连续两次降价,销售单价由原来200元降到160元,平均每次降价的百分率为x ,可以列出相应的方程,本题得以解决.【详解】解:由题意可得,200(1-x )2=160,故选:A .【点睛】本题考查由实际问题抽象出一元二次方程,解题的关键是明确题意,找出题目中的等量关系,列出相应的方程.5.D【分析】连接AC ,根据圆内接四边形对角互补得到ABE ADC Ð=Ð,根据 AD AD =得到ABD ACD Ð=Ð结合角平分线得到ABE ABD Ð=Ð,即可得到:ADC ACD Ð=Ð,从而得到AC AD =,结合勾股定理即可得到答案;【详解】解:连接AC ,∵四边形ABCD 内接于O e ,∴180ADC ABC Ð+Ð=°,∵180ABE ABC Ð+Ð=°,∴ABE ADC Ð=Ð,∵ AD AD =,∴ABD ACD Ð=Ð,∵BA 平分DBE Ð,∴ABE ABD Ð=Ð,∴ADC ACD Ð=Ð,∴AC AD =,∵AE CB ^,6AD =,4CE =,∴6AC =∴AE ==故选:D .【点睛】本题考查勾股定理及圆内接四边形对角互补,同弧所对的圆周角相等,等角对等边等知识,掌握这些知识是解题的关键.6.120,3x x ==【详解】解:x (x -3)=0 ,解得:x 1=0,x 2=3.故答案为:x 1=0,x 2=3.7.()216x -=【分析】把常数项﹣5移项后,应该在左右两边同时加上一次项系数﹣2的一半的平方.【详解】移项得:x 2﹣2x =5,配方得:x 2﹣2x +1=5+1,即(x ﹣1)2=6.故答案为(x ﹣1)2=6.【点睛】本题考查了用配方法解一元二次方程.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.8.2230x x --=(答案不唯一)【分析】本题主要考查一元二次方程的根与系数的关系,根据一元二次方程的根与系数的关系可得出122b x x a +=-=,123c x x a ×==-,令1a =,则2b =-,3c =-则可得出一个符合条件的一个一元二次方程.【详解】解:∵一元二次方程的两个根为1-,3,∴122b x x a+=-=,123c x x a ×==-,令1a =,则2b =-,3c =-∴符合条件的一个一元二次方程为:2230x x --=,故答案为:2230x x --=.9.30°.【详解】解:∵△ABC 是等边三角形,∴∠ABC=∠C=∠BAC =60°,根据圆周角定理得:∠D=∠C=60°,∵AD 为直径,∴∠ABD=90°,∴∠BAD=30°∴∠CAD=∠BAC-∠BAD=90°-60°=30°∴∠CBD=∠CAD=30°.故答案为:30°10.118°【分析】本题考查了圆周角定理和圆内接四边形性质的应用,能正确作辅助线是解此题的关键.作圆周角ADB Ð,根据圆周角定理求出D Ð的度数,根据圆内接四边形性质求出C Ð即可.【详解】解:如图作圆周角ADB Ð,使D 在优弧上,124AOB Ð=°Q ,1622D AOB \Ð=Ð=°,A Q 、D 、B 、C 四点共圆,180ACB D \Ð+Ð=°,118ACB \Ð=°,故答案为:118°.11.0【分析】根据一元二次方程根与系数的关系求得1212,x x x x +的值,代入代数式即可求解.【详解】解:解:∵1x 、2x 是一元二次方程2210x x +-=的两个实数根,∴122x x +=-,121x x =-.∴12122x x x x +-()2210=--´-=,故答案为:0.【点睛】本题考查了一元二次方程根与系数的关系:若12,x x 是一元二次方程()200ax bx c a ++=¹的两根,12b x x a +=-,12c x x a=.12.【分析】本题考查了垂径定理,等腰直角三角形的性质和圆周角定理.解题的关键是熟练掌握以上知识点,根据圆周角定理得245BOC A Ð=Ð=°,由于圆O 的直径AB 垂直于弦CD ,根据垂径定理得CE DE =,且可判断OCE △为等腰直角三角形,所以CE ==然后利用2CD CE =进行计算.【详解】解:∵22.5A Ð=°,∴245BOC A Ð=Ð=°,∵圆O 的直径AB 垂直于弦CD ,∴CE DE =,则OCE △为等腰直角三角形,∵OC∴CE ==∴2CD CE ==.故答案为:13.11x =,25x =【分析】本题考查一元二次方程的解的概念,将第二个方程中的()2x -看成一个整体,则由第一个方程的解可知,21x -=-或3,从而可得出答案.【详解】解:∵关于x 的方程20ax bx c ++=的解为11x =-,23x =,∴方程()2(2)20a x b x c -+-+=的解为21x -=-或3,解得:11x =,25x =,故答案为:11x =,25x =.14.45°或135°.【分析】本题考查了圆周角定理,圆内接四边形的性质,勾股定理逆定理,先由勾股定理逆定理求出90AOB Ð=°,分别在优弧 AB 和劣弧 AB 取点1C 和2C ,连接1AC ,1BC ,2AC ,2BC ,则145BC A Ð=°,然后根据圆内接四边形的性质可求出2135BC A Ð=°,掌握知识点的应用是解题的关键.【详解】解:∵1OA OB ==,AB =,∴222OA OB AB +=,∴90AOB Ð=°,如图,分别在优弧 AB 和劣弧 AB 取点1C 和2C ,连接1AC ,1BC ,2AC ,2BC ,∴145BC A Ð=°,∵四边形12AC BC 是圆内接四边形,∴12180BC A BC A Ð+Ð=°,∴2135BC A Ð=°,故答案为:45°或135°.15.84【分析】本题主要考查线段的垂直平分线的性质,多边形内角和定理,三角形外角的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.连接BO ,并延长BO 到P ,根据线段的垂直平分线的性质得AO OB OC ==,90BDO BEO Ð=Ð=°,根据四边形的内角和为360°得180DOE ABC +=°∠∠,根据外角的性质得AOP A ABO COP C OBC Ð=Ð+ÐÐ=Ð+Ð,,相加可得结论.【详解】解:连接BO ,并延长BO 到P ,∵线段AB 、BC 的垂直平分线1l 、2l 相交于点O ,∴AO OB OC ==,90BDO BEO Ð=Ð=°,∴180DOE ABC +=°∠∠,∵1180DOE +=°∠∠,∴142ABC Ð=Ð=°,∵AO OB OC ==,∴A ABO Ð=Ð,OBC C Ð=Ð,∵AOP A ABO Ð=Ð+Ð,COP C OBC Ð=Ð+Ð,∴24284AOC AOP COP A ABC C Ð=Ð+Ð=Ð+Ð+Ð=´°=°;故答案为:84.16.(1)11x =21x =(2)112x =,22x =.【分析】本题考查了解一元二次方程.(1)根据配方法解一元二次方程;(2)先移项,然后根据因式分解法解一元二次方程,即可求解.【详解】(1)解:2316x x -=,2361x x -=,2123x x -=,24213x x -+=,()2413x -=,1x -=11x =21x =(2)解:2(21)63x x -=-,()()2213210x x ---=,()()212130x x ---=,∴210x -=或240x -=,∴112x =,22x =.17.(1)见解析;(2)它的另一个根为-1.【分析】(1)求判别式b 2-4ac =k 2+8>0即可证明;(2)利用根与系数的关系即可求解.【详解】(1) ∵a =1 ,b =k ,c =-2 ,∴b 2-4ac =k 2+8 ,∵不论k 取何实数,k 2≥0 ,∴k 2+8>0即b 2-4ac >0 ,∴不论k 取何实数,该方程总有两个不相等的实数根;(2) ∵a =1 ,c =-2, x 1=2,∴ x 1g x 2=-2,2x 2=-2,∴ x 2=-1,∴另一个根为-1.【点睛】本题考查一元二次方程的根与系数的关系,熟练掌握一元二次方程的根存在性的判别方法及一元二次方程的根与系数的关系是解题的关键.18.见详解【分析】本题主要考查了直径所对的圆周角等于90度,矩形的判定,勾股定理,根据直径所对的圆周角等于90度,可得出90D B Ð=Ð=°,根据勾股定理可得出2222AB BC CD AD +=+,再由AD BC =即可得出AB CD =.进而可得出四边形ABCD 是平行四边形,结合90D Ð=°即可证明.【详解】证明:∵AC 为O e 的直径,∴90D B Ð=Ð=°,在Rt ABC △中,222AB BC AC +=,在Rt ADC V 中,222CD AD AC +=,∴2222AB BC CD AD +=+,由∵AD BC =,∴AB CD =,∴四边形ABCD 是平行四边形,又∴90D Ð=°,∴四边形ABCD 是矩形.19.(1)36,124,2x x ==-(2)25(3)C【分析】(1)先把2,8p q =-=-,代入24p q -,可得2436p q -=,再代入原方程,再利用因式分解法,即可求解;(2)根据一元二次方程根与系数的关系,即可求解;(3)根据一元二次方程根与系数的关系,再利用完全平方公式的变形,即可求解.【详解】(1)解:∵2,8p q =-=-,∴()()22424836p q -=--´-=,∴方程为228=0x x --,∴()()420x x -+= ,解得:124,2x x ==-;(2)解:∵关于x 的方程20(,x px q p q ++=为常数)有两个实数根12,x x ,∴1212,x x p x x q +=-×=,∵123,2x x ==-,∴()()32,32p q -=+-=´- ,∴1,6p q ==- ,∴()22414625p q -=-´-=;(3)解:∵关于x 的方程20(,x px q p q ++=为常数)有两个实数根12,x x ,∴1212,x x p x x q +=-×=,∴()()()222222221212112212112212444242p q p q x x x x x x x x x x x x x x x x -=--=+-×=+×+-×=-×+=-.故选:C【点睛】本题主要考查了解一元二次方程和一元二次方程根与系数的关系,熟练掌握一元二次方程的解法和一元二次方程根与系数的关系是解题的关键.20.这种商品的售价应定为50元或60元.【分析】本题考查了一元二次方程的应用,解题的关键是找准等量关系,正确列出方程.设这种商品的售价应定为x 元,利用销售总利润等于每件利润乘以销售数量,即可得出关于x 的一元二次方程,解方程即可得到答案.【详解】解:设这种商品的售价应定为x 元,根据题意列方程得:50(40)2005020005x x éù-æö--=ç÷êúèøëû 整理得:2x 110x 30000-+=解得:150x =,260x =,答:这种商品的售价应定为50元或60元.21.见详解【分析】本题主要考查了作图,画圆,作线段垂直平分线,连接AB ,作AB 的垂直平分线CD ,以点A 为圆心线段a 为半径画弧交CD 于点O ,再以点O 为圆心线段AO 为半径作圆即为所求.【详解】解:如下图:O e 即为所求:22.(1)12OF CD =,证明见详解(2)【分析】(1)连接AO 并延长交O e 于点G ,连接BG ,证明OF 是ABG V 的中位线,则有12OF BG =,再根据同弧所对的圆周角相等可得AGB ECB Ð=Ð,直径所对的圆周角是直角可得90ABG Ð=°,则有90BAG AGB Ð+Ð=°,根据AC BD ^,90ECB EBC Ð+Ð=°,从而可得BAG EBC Ð=Ð,BG CD =,继而可得12OF CD =;(2)先证明AG BC ^,由等腰三角形三线合一的性质得出142BH HC BC ===,再由勾股定理求出AH ,再证明AHC BHG ∽V V ,由相似三角形的判定以及性质即可得出答案.【详解】(1)解:12OF CD =,证明如下:连接AO 并延长交O e 于点G ,连接BG ,∵OF AB ^,∴AF BF =,∵AO GO =,∴OF 是ABG V 的中位线,∴12OF BG =,∵AG 是O e 的直径,∴90ABG Ð=°,∴90BAG AGB Ð+Ð=°,∵AC BD ^,∴90CEB Ð=°,∴90ECB EBC Ð+Ð=°,∵ AB AB =,∴AGB ECB Ð=Ð,∴BAG EBC Ð=Ð,∴BG CD =,∴12OF CD =;(2)∵AB AC =,∴ACB ABC Ð=Ð,∵ACB AGB Ð=Ð,∴ABC AGB Ð=Ð,∵90ABC CBG AGB GBC Ð+Ð=Ð+Ð=°∴AG BC ^,∵AB AC =,8BC =,∴142BH HC BC ===,∴8AH ===,∵ACB HGB Ð=Ð,AHC BHG Ð=Ð,∴AHC BHG ∽V V ,AH BH,84=,∴BG =∴CD BG ==.【点睛】本题主要考查了直径所对的圆周角是90°,同弧所对的圆周角相等,三角形中位线的判定以及性质,等腰三角形的性质,相似三角形的判定以及性质,勾股定理等知识, 掌握这些性质以及判定是解题的关键.。

九年级数学上册月考试题及答案

九年级数学上册月考试题及答案

九年级上册第一次月考一.选择题(每小题3分,共36分) 四个答案中有且只有一个答案是正确的.1、下列计算正确的是……………………………………………………………………… 【 】 A.145454522=-⨯+=- B.145452222=-=- C.694)9)(4(=-⨯-=-- D.694)9)(4(=⨯=--2、方程x(x-2)= x 的根是………………………………………………………………… 【 】 A.x=0 B.x=2 C. x 1=0,x 2=3 D.x 1=0,x 2=23.对于二次根式92+x ,以下说法不正确的是 ………………………………… 【 】 A .它是一个正数 B .是一个无理数 C .是最简二次根式 D .它的最小值是34、若a-b+c=0,则方程ax 2+bx+c=0(a 0≠)必有一个根是………………………… 【 】A .0B 、1C .-1D 、ba-5.下列式子化为最简二次根式后和2是同类二次根式的为……………………………… 【 】A. 27B. 18C. 12D.946.关于x 的一元二次方程(m -1)x 2 +x +m 2-1=0的一个根是0,则m 的值为【 】A .1 B. -1 C. -1或1 D. 217、对于任意实数x ,多项式x 2-6x+10的值是一个…………………………………… 【 】. A. 负数 B. 非正数 C. 正数 D. 无法确定正负的数8、使分式2561x x x --+的值等于零的x 是………………………………………………… 【 】.A.6B.-1或6C.-1D.-69. 用配方法解方程2250x x --=时,原方程应变形为……………………………………【 】A .()216x += B .()216x -=C .()229x +=D .()229x -=10、已知一次函数b ax y +=随x 的增大而减小,且与y 轴的正半轴相交,则关于x 的方程022=+-b x ax 的根的情况是……………………………………………………………………………………………………【 】 A 、有两个不相等的实数根 B 、有两个相等的实数根 C 、没有实数根 D 、无法确定 11、如图所示,某小区规划在一个长为40 m 、宽为26 m 的矩形场地ABCD 上修建三条同样宽的道路,使其中两条与AB 平行,另一条与AD 平行,其余部分种草.若使每一块草坪的面积为144 m 2,求道路的宽度.若设道路的宽度为x m ,则x 满足的方程为 【 】 A 、6144)26)(40(⨯=--x x B 、614426402640⨯=--⨯x x C 、614422624026402⨯=+⨯--⨯x x x D 、6144)226)(240(⨯=--x x12.方程29180x x -+=的两个根是等腰三角形的底和腰,则这个三角形的周长为( )A .12B .12或15C .15D .不能确定二、填空题(每小题3分,共18分)请将最后答案直接填在题中横线上.)13.在二次根式31-+x x 中,x 的取值范围是_____________. 14、若01=++-y x x ,则20132012y x +的值为 .15、方程2230x ax -+=有一个根是1,则另一根为 ,a 的值是16.若关于x 的一元二次方程0235)1(22=+-++-m m x x m 的常数项为0,则m 的值等于 .17.将4个数a,b,c,d 排成2行、2列,两边各加一条竖直线记成a b c d称为二阶行列式,定义a b ad bc c d=-,若11611x x x x +-=-+,则x=_____18.已知△ABC 的三边a 、b 、c 满足a 2+b+21--c =10a+24-b -22,则△ABC 的形状是 。

江苏省宿迁市钟吾初级中学2024-2025学年九年级上学期数学第一次月考试题(含详解)

江苏省宿迁市钟吾初级中学2024-2025学年九年级上学期数学第一次月考试题(含详解)

江苏省宿迁市钟吾初级中学2024-2025学年初中九上数学第一次月考试题一.选择题(共6小题)1.抛物线y=﹣x2+2x﹣c过A(﹣1,y1),B(2,y2),C(5,y3)三点.则将y1,y2,y3,从小到大顺序排列是( )A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y2<y3<y12.一元二次方程x2+4x﹣3=0的两根为x1、x2,则x1•x2的值是( )A.4B.﹣4C.3D.﹣33.某厂一月份生产某机器200台,计划第一季度共生产1800台.设二、三月份每月的平均增长率为x,根据题意列出得方程是( )A.200(1+x)2=1800B.200(1+x)+200(1+x)2=1800C.200(1﹣x)2=1800D.200+200(1+x)+200(1+x)2=18004.若关于x的方程m(x+h)2+k=0(m、h、k均为常数,m≠0)的解是x1=﹣3,x2=2,则方程m(x+h﹣3)2+k=0的解是( )A.x1=﹣6,x2=﹣1B.x1=0,x2=5C.x1=﹣3,x2=5D.x1=﹣6,x2=25.如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为x 米,则可列方程为( )A.100×80﹣100x﹣80x=7644B.(100﹣x)(80﹣x)+x2=7644C.(100﹣x)(80﹣x)=7644D.100x+80x=3566.已知二次函数y=ax2+bx+c图象的对称轴为x=1,其图象如图所示,现有下列结论:①abc>0,②b﹣2a<0,③a﹣b+c>0,④a+b>n(an+b),(n≠1),⑤2c<3b.正确的是( )A.①③B.②⑤C.③④D.④⑤二.填空题(共11小题)7.如果抛物线y=2x2+4x+m的顶点在x轴上,则m= .8.若a:b=3:4,且a+b=14,则2a﹣b的值是 .9.如图,函数y=ax2+bx+c(a,b,c为常数,且a≠0)经过点(﹣1,0)、(m,0),且1<m<2,下列结论:①abc<0;②0<﹣<;③若点A(﹣2,y1),B(2,y2)在抛物线上,则y1<y2;④ax2+bx+c=0,必有两个不相等的实数根.其中结论正确的有 .(填序号)10.对于实数a、b,定义运算“*”;,关于x的方程(2x)*(x﹣1)=t+3恰好有三个不相等的实数根,则t的取值范围是 .11.一元二次方程(a+1)x2﹣ax+a2﹣1=0的一个根为0,则a= .12.已知实数a、b满足(a2+b2)2﹣2(a2+b2)=8,则a2+b2的值为 .13.已知点A(﹣5,y1),B(2,y2)在抛物线y=﹣(x+1)2+2上,则y1和y2的大小关系是 .(用“>”连接).14.若x1,x2方程x2﹣4x﹣2021=0的两个实数根,则代数式x12﹣2x1+2x2的值等于 .15.关于x的方程kx2+3x﹣1=0有实数根,则k的取值范围是 .16.已知二次函数y=x2+2x﹣n,当自变量x的取值在﹣2≤x≤1的范围时,函数的图象与x 轴有且只有两个公共点,则n的取值范围是 .17.如图,抛物线y=x2﹣8x+15与x轴交于A、B两点,对称轴与x轴交于点C,点D(0,﹣2),点E(0,﹣6),点P是平面内一动点,且满足∠DPE=90°,M是线段PB的中点,连接CM.则线段CM的最大值是 .三.解答题(共7小题)18.已知二次函数y=﹣x2+2mx+1.(1)求证:无论m取任何值,二次函数的图象与x轴总有两个不同的交点;(2)若此函数图象的顶点为D点,与y轴的交点于点C,直线CD与x轴相交于点A,抛物线的对称轴与x轴相交于点B,求证:BC⊥AD.19.如图,抛物线y=与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.点D在y轴正半轴上,直线AD:y=x+b与抛物线交于点E.(1)求线段BC的长度;(2)如图2,点P是线段AE上的动点,过点P作y轴的平行线交抛物线于点Q,求的最大值;(3)如图3,将抛物线y=向左平移4个单位长度,将△DCA沿直线BC 平移,平移后的△DCA记为ΔD'C'A',在新抛物线的对称轴上找一点M,当△A'C'M是以点A'为直角顶点的等腰直角三角形时,请直接写出所有符合条件的点M的坐标.20.已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC 三边的长;(1)若a=b=c,试求这个一元二次方程的根;(2)若方程有两个相等的实数根,试判断△ABC的形状,并说明理由.21.如图1,有长为24米的篱笆,一面利用墙(墙的最大可用长度为a为15米),围成中间隔有一道篱笆的长方形花圃.(1)如果要围成面积为45平方米的花圃,AB的长是多少米?(2)如图2,如果在平行于墙面的篱笆上开两道1米宽的门,如果要围成面积为56平方米的花圃,AB的长是多少米?(3)在(1)的条件下,能围成面积比45平方米更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.22.如图,二次函数y=﹣x2+2x+3的图象过点A(﹣1,0)、点B(0,3).(1)该二次函数的顶点是 ;(2)点C为点B关于抛物线对称轴的对称点,直线y=mx+n经过A、C两点,满足ax2+bx+c>mx+n的x的取值范围是 .(3)在对称轴上找一点M,使|MA﹣MC|取得最大值,求出此时M的坐标.23.2022年冬奥会在北京召开,某网络经销商购进了一批以冬奥会为主题的文化衫进行销售,文化衫的进价每件40元,每月销售量y(件)与销售单价x(元)之间的函数关系如图所示.(1)直接写出每月的销售量y(件)与销售单价x(元)之间的函数关系式 .(2)设每月获得的利润为W(元),当销售单价为多少元时,销售这款文化衫每月所获得的利润最大,最大利润为多少元?(3)该网店的营销部结合上述情况,提出了A,B两种营销方案:方案A:销售单价高于进价且不超过进价20元.方案B:每月销售量不少于220件,且每件文化衫的利润至少为35元.请比较哪种方案的最大利润更高,并说明理由24.已知:抛物线l1:y=﹣x2+2x+3交x轴于点A,B(点A在点B的左侧),交y轴于点C ,抛物线l2经过点A,与x轴的另一个交点为E(6,0),交y轴于点D(0,﹣3).(1)求抛物线l2的函数表达式;(2)如图,N为抛物线l1上一动点,过点N作直线MN∥y轴,交抛物线l2于点M,点N自点A运动至点B的过程中,求线段MN长度的最大值.(3)P为抛物线l1的对称轴上一动点,Q为抛物线l2上一动点,是否存在P、Q两点,使得B、D、P、Q为顶点的四边形是平行四边形?若存在,求出P、Q的坐标,若不存在,请说明理由.参考答案与试题解析一.选择题(共6小题)1.【解答】解:∵y=﹣x2+2x﹣c=﹣(x﹣1)2+1﹣c,∴图象的开口向下,对称轴是直线x=1,∴当x>1时,y随x的增大而减小,∵A(﹣1,y1)关于直线x=1的对称点是(3,y1),且1<2<3<5,∴y2>y1>y3,即y3<y1<y2.故选:C.2.【解答】解:x1•x2=﹣3.故选:D.3.【解答】解:二月份的生产量为200×(1+x),三月份的生产量为200×(1+x)(1+x),那么200+200(1+x)+200(1+x)2=1800.故选:D.4.【解答】解:解方程m(x+h)2+k=0(m、h、k均为常数,m≠0)得,x=﹣h±,∵此方程解是x1=﹣3,x2=2,∴﹣h﹣=﹣3,﹣h+=2,∵方程m(x+h﹣3)2+k=0的解是x=3﹣h±,∴x1=3﹣3=0,x2=3+2=5,故选:B.5.【解答】解:设道路的宽应为x米,由题意有(100﹣x)(80﹣x)=7644,故选:C.6.【解答】解:①由图象可知:a<0,b>0,c>0,abc<0,故①错误;②由于a<0,所以﹣2a>0.又b>0,所以b﹣2a>0,故②错误;③当x=﹣1时,y=a﹣b+c<0,故③错误;④当x=1时,y的值最大.此时,y=a+b+c,而当x=n时,y=an2+bn+c,所以a+b+c>an2+bn+c,故a+b>an2+bn,即a+b>n(an+b),故④正确;⑤当x=3时函数值小于0,y=9a+3b+c<0,且该抛物线对称轴是直线x=﹣=1,即a=﹣,代入得9(﹣)+3b+c<0,得2c<3b,故⑤正确;故④⑤正确.故选:D.二.填空题(共11小题)7.【解答】解:∵抛物线y=2x2+4x+m的顶点在x轴上,∴b2﹣4ac=0,即16﹣8m=0,解得m=2,故答案为2.8.【解答】解:设a=3k,b=4k,(k≠0),∵a+b=14,∴3k+4k=14,解得:k=2,∴a=6,b=8,∴2a﹣b=2×6﹣8=4.故答案为:4.9.【解答】解:∵抛物线的开口方向向上,∴a>0,∵抛物线的对称轴在y轴的右侧,∴>0,∴b<0,∵抛物线与y轴交于负半轴,∴c<0,∴abc>0.∴①的结论不正确;∵函数y=ax2+bx+c(a,b,c为常数,且a≠0)经过点(﹣1,0)、(m,0),∴抛物线的对称轴为直线x=,∵1<m<2,∴0<<.∵抛物线的对称轴为直线x=﹣,∴0<﹣<.∴②的结论正确;∵点A(﹣2,y1),B(2,y2)在抛物线上,A(﹣2,y1)到抛物线的对称轴的距离大于B(2,y2)到抛物线的对称轴的距离,∴y1>y2,∴③的结论不正确;∵抛物线y=ax2+bx+c与x轴有两个交点,∴方程ax2+bx+c=0,必有两个不相等的实数根,∴④的结论正确,结论正确的有:②④,故答案为:②④.10.【解答】解:由新定义的运算可得关于x的方程为:当2x≤x﹣1时,即x≤﹣1时,有(2x)2﹣2x(x﹣1)=t+3,即:2x2+2x﹣t﹣3=0(x≤﹣1),其根为:是负数,当2x>x﹣1时,即x>﹣1,时,有(x﹣1)2﹣2x(x﹣1)=t+3,即:x2=﹣t﹣2(x>﹣1),要使关于x的方程(2x)*(x﹣1)=t+3恰好有三个不相等的实数根,则x2=﹣t﹣2(x>﹣1)和2x2+2x﹣t﹣3=0(x≤﹣1)都必须有解,∴,∴,(1)当﹣t﹣2=0时,即t=﹣2时,方程x2=﹣t﹣2(x>﹣1)只有一个根x=0,∵当t=﹣2时,,∴,,∴此时方程2x2+2x﹣t﹣3=0(x≤﹣1)只有一个根符合题意,∴t=﹣2不符合题意;(2)当﹣3<t<﹣2时,方程x2=﹣t﹣2(x>﹣1)的两个根﹣1<x<1都符合题意,∵当﹣3<t<﹣2时,,∴,,∴方程2x2+2x﹣t﹣3=0(x≤﹣1)只有一个根符合题意,∴当﹣3<t<﹣2时,(2x)*(x﹣1)=t+3恰好有三个不相等的实数根;(3)∵当时,方程x2=﹣t﹣2(x>﹣1)的一个根≥1,另外一个根≤﹣1,∴此时方程x2=﹣t﹣2(x>﹣1)只有一个根符合题意,∵,,∴当时,方程2x2+2x﹣t﹣3=0(x≤﹣1)最多有一个根符合题意,∴当时(2x)*(x﹣1)=t+3不可能有三个不相等的实根;综上分析可知,t的取值范围是﹣3<t<﹣2.故答案为:﹣3<t<﹣2.11.【解答】解:∵一元二次方程(a+1)x2﹣ax+a2﹣1=0的一个根为0,∴a+1≠0且a2﹣1=0,∴a=1.故答案为:1.12.【解答】解:设y=a2+b2,原式化为y2﹣2y﹣8=0,即(y﹣4)(y+2)=0,可得y﹣4=0或y+2=0,解得:y1=4,y2=﹣2,∵a2+b2>0,∴a2+b2=4.故答案为:4.13.【解答】解:∵抛物线y=﹣(x+1)2+2,∴抛物线开口向下,对称轴为直线x=﹣1,∴B(2,y2)关于对称轴的对称点为(﹣4,y2),∵﹣5<﹣4<﹣1,∴y1<y2.故答案为:<.14.【解答】解:∵x1,x2是方程x2﹣4x﹣2021=0的两个实数根,∴x1+x2=4,x12﹣4x1﹣2021=0,即x12﹣4x1=2021,则原式=x12﹣4x1+2x1+2x2=x12﹣4x1+2(x1+x2)=2021+2×4=2021+8=2029.故答案为:2029.15.【解答】解:当k=0,方程变形为3x﹣1=0,此一元一次方程的解为x=;当k≠0,Δ=9﹣4k×(﹣1)≥0,解得k≥﹣,即k≥﹣且k≠0时,方程有两个实数根,综上所述实数k的取值范围为k≥﹣.故答案为:k≥﹣.16.【解答】解:依照题意画出图象,如图所示.观察函数图象可知:,解得:﹣1<n≤0.故答案为:﹣1<n≤0.17.【解答】解:解方程x2﹣8x+15=0得x1=3,x2=5,则A(3,0),∵抛物线的对称轴与x轴交于点C,∴C点为AB的中点,∵∠DPE=90°,∴点P在以DE为直径的圆上,圆心Q点的坐标为(0,﹣4),AQ==5,⊙Q的半径为2,延长AQ交⊙Q于F,此时AF最大,最大值为2+5=7,连接AP,∵M是线段PB的中点,∴CM为△ABP为中位线,∴CM=AP,∴CM的最大值为.故答案为:.三.解答题(共7小题)18.【解答】(1)证明:∵Δ=(2m)2﹣4×(﹣1)×1=4m2+4>0,∴方程﹣x2+2mx+1=0有两个不同的实数解,即无论m取任何值,二次函数的图象与x轴总有两个不同的交点.(2)证明:∵二次函数y=﹣x2+2mx+1,∴对称轴的直线为,顶点D点的坐标为(m,m2+1),点C(0,1),∵对称轴的直线x=m与x轴相交于点B,∴B(m,0),∴BC2=m2+12=m2+1,BD2=(m2+1)2=m4+2m2+1,CD2=m2+(m2+1﹣1)2=m4+m2,∵BC2+CD2=m2+1+m4+m2=m4+2m2+1,∴BC2+CD2=BD2,∴△BCD是直角三角形,∠BCD=90°,∴BC⊥AD.19.【解答】解:(1)令y=0,则=0,解得x=6或x=﹣4,∴A(﹣4,0),B(6,0),令x=0,则x=﹣3,∴C(0,﹣3),∴BC=3;(2)将点A(﹣4,0)代入y=x+b,∴﹣4+b=0,解得b=4,∴y=x+4,∴D(0,4),联立方程组,解得或,∴E(14,18),设P(t,t+4)(﹣4<t<14),∵PQ∥y轴,∴Q(t,t2﹣t﹣3),∴PQ=t+4﹣(t2﹣t﹣3)=﹣t2+t+7,∵CD=7,∴=﹣t2+t+1=﹣(t﹣5)2+,∴当t=5时,有最大值;(3)∵y==﹣(x﹣1)2﹣,∴平移后的抛物线解析式为y=﹣(x+3)2﹣,∴抛物线的对称轴为x=﹣3,设M(﹣3,m),∵A(﹣4,0),C(0,﹣3),∴AC=5,∴A'C'=5,∵△A'C'M是以点A'为直角顶点的等腰直角三角形,∴A'M=5,设△ACD沿x轴向左平移2a个单位长度,则沿y轴向下平移a个单位长度,∴A'(﹣4﹣2a,﹣a),C'(﹣2a,﹣3﹣a),∴=5①,C'M=,∵C'M=A'C',∴=5②,联立①②可得或,∴M(﹣3,3)或(﹣3,﹣2).20.【解答】解:(1)∵a=b=c,∴原方程为x2+x=0,即x(x+1)=0,解得:x1=0,x2=﹣1.(2)∵方程(a+c)x2+2bx+(a﹣c)=0有两个相等的实数根,∴Δ=(2b)2﹣4(a+c)(a﹣c)=4b2﹣4a2+4c2=0,∴a2=b2+c2.∵a、b、c分别为△ABC三边的长,∴△ABC为直角三角形.21.【解答】解:(1)设AB的长为x米,则BC的长为(24﹣3x)米,根据题意得:x(24﹣3x)=45,解得x1=3,x2=5,当x=3时,BC=24﹣3x=15,符合题意,当x=5时,BC=24﹣3x=9,符合题意,∴AB的长是3米或5米;(2)设AB的长为m米,则BC的长为(24﹣3m+1+1)米,根据题意得:m(24﹣3m+1+1)=56,解得m1=,m2=4,当m=时,BC=24﹣3m+1+1=12,符合题意,当m=4时,BC=24﹣3m+1+1=14,符合题意;∴AB的长是米或4米;(3)能围成面积比45平方米更大的花圃,理由如下:设AB的长为x米,围成面积为w平方米,∵墙的最大可用长度为a为15米,∴24﹣3x≤15,解得x≥3,根据题意得w=x(24﹣3x)=﹣3x2+24x=﹣3(x﹣4)2+48,∵﹣3<0,x≥3,∴x=4时,w取最大值,最大值为48平方米,此时24﹣3x=24﹣3×4=12,答:当AB=4,BC=12时,能围成面积比45平方米更大的花圃,最大面积是48平方米.22.【解答】解:(1)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴二次函数的顶点坐标为(1,4),故答案为:(1,4),(2)由(1)得,二次函数的对称轴为直线x=1,B(0,3),点C与点B关于该二次函数图象的对称轴对称,∴点C(2,3),由图象可知,不等式ax2+bx+c>mx的x的取值范围:﹣1<x<2.故答案为:﹣1<x<2.(3)函数的对称轴为直线x=1,点C与点B关于该二次函数图象的对称轴对称,如图所示,|AM1﹣M1C|=|AM1﹣BM1|≤AB,连接AB与对称轴交于点M,此时|MA﹣MC|=|MA﹣MB|=AB,∴|MA﹣MC|的最大值为AB;设AB直线解析式为y=kx+b的图象经过A,B两点,∴,解得,∴直线AB解析式为y=3x+3,把x=1代入得,y=3×1+3=6,∴M的坐标为(1,6).23.【解答】解:(1)由题意:设y与x之间的函数关系式为:y=kx+b(k≠0),将(40,600),(80,200)代入得:,解得:,故答案为:y=﹣10x+1000;(2)由题意得:W=(x﹣40)y=(x﹣40)(﹣10x+1000)=﹣10x2+1400x﹣40000=﹣10(x﹣70)2+9000,∵a=﹣10<0,∴当x=70时,W有最大值,W最大值=9000(元).∴销售单价为70元时,销售这款文化衫每天所获得的利润最大,最大利润为9000元;(3)选择方案B,理由:方案A:由题意,40<x≤60,方案B:由y≥220,可得x≤78,∴75≤x≤78,∵a=﹣10<0,且对称轴为直线x=70,∵75﹣70<70﹣60,∴当x=75时,最大利润最高,∴选择方案B.24.【解答】解:(1)设抛物线l2的函数表达式为y=ax2+bx+c,当y=0时,由﹣x2+2x+3=0得x1=﹣1,x2=3,∴A(﹣1,0),B(3,0),把A(﹣1,0)、D(0,﹣3)、E(6,0)代入y=ax2+bx+c,得,解得,∴抛物线l2的函数表达式为y=x2﹣x﹣3.(2)如图1,设点N的横坐标为x(﹣1<x≤3),∴N(x,﹣x2+2x+3),M(x,x2﹣x﹣3),∴MN=(﹣x2+2x+3)﹣(x2﹣x﹣3)=﹣x2+x+6=﹣(x﹣)2+,∵<0,且﹣1<<3,∴当x=时,MN的最大值为.(3)存在,如图2,设抛物线l1的顶点为点R,作RQ⊥y轴交抛物线l2于点Q,∵y=﹣x2+2x+3=y=﹣(x﹣1)2+4,∴抛物线l1的对称轴为直线x=1,顶点为R(1,4),过点Q作PQ∥DB交直线x=1于点P,作四边形PQDB,BD交直线x=1于点H,抛物线y=x2﹣x﹣3,当y=4时,则x2﹣x﹣3=4,解得x1=﹣2,x2=7,∴Q(﹣2,4),∵∠QPR=∠BHP=∠BDO,∠PRQ=∠DOB=90°,RQ=OB=3,∴△PRQ≌△DOB(AAS),∴PQ=DB,∴四边形PQDB是平行四边形,∵PR=DO=3,∴P(1,7);如图3,设直线x=1交抛物线l2于点G,抛物线l2:y=x2﹣x﹣3,当x=1时,y=﹣﹣3=﹣5,∴G(1,﹣5),设抛物线l2与抛物线l1的另一个交点为点Q,由得,,∴Q(4,﹣5),作QP∥BD交直线x=1于点P,作四边形PQBD,BD交直线x=1于点H,连接GQ,则GQ∥x轴,且GQ=3,∴∠GPQ=∠RHB=∠ODB,∠PGQ=∠DOB=90°,GQ=OB=3,∴△PGQ≌△DOB(AAS),∴QP=BD,∴四边形PQBD是平行四边形,∵GP=OD=3,∴P(1,﹣8);如图4,平行四边形PBQD以BD为对角线,设点F是BD的中点,则F(,﹣),∴点Q与点P关于BD的中点F成中心对称,在(2)的条件下,直线MN为x=,∵B(3,0),∴直线x=平分OB,∴直线x=也平分BD,∴直线x=经过点F(,﹣),∴点Q与点P到直线MN的距离相等,∴点Q的横坐标为+(﹣1)=2,抛物线y=x2﹣x﹣3,当x=2时,y=×4﹣×2﹣3=﹣6,∴Q(2,﹣6),作DK∥x轴,作QK⊥DK交DK于点K,设DQ交直线x=1于点J,直线x=1交x轴于点I,则K(2,﹣3),∵∠DQK=∠DJI=∠BPI,∠K=∠PIB=90°,KD=IB=2,∴△PDK≌△PBI(AAS),∴QK=PI=3,∴P(1,3),综上所述,P(1,7),Q(﹣2,4)或P(1,﹣8),Q(4,﹣5)或P(1,3),Q(2,﹣6).。

2023-2024学年九年级(上)第一次月考数学试卷-(含答案)

2023-2024学年九年级(上)第一次月考数学试卷-(含答案)

2023-2024学年九年级(上)第一次月考数学试卷一.选择题(共10小题,共30分)1.(3分)用配方法解一元二次方程2x 2﹣3x ﹣1=0,配方正确的是()A .(x ﹣)2=B .(x ﹣)2=C .(x ﹣)2=D .(x ﹣)2=2.(3分)下列说法不正确的是()A .一组同旁内角相等的平行四边形是矩形B .一组邻边相等的菱形是正方形C .有三个角是直角的四边形是矩形D .对角线相等的菱形是正方形3.(3分)若关于x 的一元二次方程x 2﹣2x +kb +1=0有两个不相等的实数根,则一次函数y =kx +b 的大致图象可能是()A .B .C .D .4.(3分)如图,在菱形ABCD 中,CE ⊥AB 于点E ,E 点恰好为AB 的中点,则菱形ABCD 的较大内角度数为()A .100°B .120°C .135°D .150°5.(3分)某市“菜篮子工程”蔬菜基地2022年产量为100吨,预计到2024年产量可达121吨.设该基地蔬菜产量的年平均增长率为x ,则可列方程为()A.100(1+x)2=121B.121(1﹣x)2=100C.100(1+2x)=121D.100(1+x2)=1216.(3分)如图,在菱形ABCD中,∠A=60°,点E、F分别为AD、DC上的动点,∠EBF =60°,点E从点A向点D运动的过程中,AE+CF的长度()A.逐渐增加B.逐渐减小C.保持不变且与EF的长度相等D.保持不变且与AB的长度相等7.(3分)四边形ABCD的对角线AC,BD相交于点O,能判定它是矩形的是()A.AO=CO,BO=OD B.AB=BC,AO=COC.AO=CO,BO=DO,AC⊥DB D.AO=CO=BO=DO8.(3分)如图,平行四边形ABCD中,对角线AC,BD相交于点O,下列条件:(1)∠1+∠DBC=90°;(2)OA=OB;(3)∠1=∠2,其中能判定平行四边形ABCD是菱形的条件有()A.0个B.1个C.2个D.3个9.(3分)如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE ⊥AC,交AD于点E,过点E作EF⊥BD,垂足为F,则OE+EF的值为()A.B.C.D.10.(3分)如图,在正方形ABCD中,对角线AC,BD交于点O,AG平分∠BAC交BD于G,DE⊥AG于点H.下列结论:①AD=2AE:②FD=AG;③CF=CD:④四边形FGEA是菱形;⑤OF=BE,正确的有()A.2个B.3个C.4个D.5个二.填空题(共5小题,共15分)11.(3分)一元二次方程x2=5x的根.12.(3分)如图,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,则线段DH 的长为.13.(3分)若关于x的方程(k﹣1)x2+4x+1=0有实数解,则k的取值范围是.14.(3分)如图,在边长为2的正方形ABCD中,点E,F分别是边AB,BC的中点,连接EC,FD,点G,H分别是EC,FD的中点,连接GH,则GH的长度为.15.(3分)如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为.三.解答题(共8小题,共75分)16.(16分)用恰当的方法解下列方程:(1)x2+4x﹣2=0;(2)4x2﹣25=0;(3)(2x+1)2+4(2x+1)+4=0;(4)(x﹣1)(x﹣3)=8.17.(8分)如图,在四边形ABCD中,AD∥BC,对角线BD的垂直平分线与边AD、BC分别相交于点M、N.(1)求证:四边形BNDM是菱形;(2)若BD=24,MN=10,求菱形BNDM的周长.18.(8分)关于x的一元二次方程2﹣3+=0有实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程(﹣1)2++﹣3=0与方程2﹣3+=0有一个相同的根,求此时m的值.19.(8分)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC至F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)若AC=10,∠ABC=60°,则矩形AEFD的面积是.20.(8分)某旅行社的一则广告如下:甲公司想分批组织员工到延安红色旅游学习.(1)如果第一批组织40人去学习,则公司应向旅行社交费元;(2)如果公司计划用29250元组织第一批员工去学习,问这次旅游学习应安排多少人参加?21.(8分)如图,在菱形ABCD中,AB=3,∠DAB=60°,点E是AD边的中点,点M 是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为时,四边形AMDN是矩形;②当AM的值为时,四边形AMDN是菱形.22.(8分)阅读探究:“任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半?”(完成下列空格)(1)当已知矩形A的边长分别为6和1时,小亮同学是这样研究的:设所求矩形的两边分别是x和y,由题意得方程组,消去y化简得:2x2﹣7x+6=0,∵b2﹣4ac=49﹣48>0,∴x1=,x2=,∴满足要求的矩形B存在.(2)如果已知矩形A的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B.(3)如果矩形A的边长为m和n,请你研究满足什么条件时,矩形B存在?23.(11分)四边形ABCD是正方形,△BEF是等腰直角三角形,∠BEF=90°,BE=EF,连接DF,G为DF的中点,连接EG,CG,EC.(1)问题发现如图1,若点E在CB的延长线上,直接写出EG与GC的位置关系及的值;(2)操作探究将图1中的△BEF绕点B顺时针旋转至图2所示位置,请问(1)中所得的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)解决问题将图1中的△BEF绕点B顺时针旋转,若BE=1,AB=,当E,F,D三点共线时,请直接写出CE的长.参考答案与试题解析一.选择题(共10小题,共30分)1.(3分)用配方法解一元二次方程2x2﹣3x﹣1=0,配方正确的是()A.(x﹣)2=B.(x﹣)2=C.(x﹣)2=D.(x﹣)2=【分析】化二次项系数为1后,把常数项﹣右移,应该在左右两边同时加上一次项系数﹣的一半的平方.【解答】解:由原方程,得x2﹣x=,x2﹣x+=+,(x﹣)2=,故选:A.2.(3分)下列说法不正确的是()A.一组同旁内角相等的平行四边形是矩形B.一组邻边相等的菱形是正方形C.有三个角是直角的四边形是矩形D.对角线相等的菱形是正方形【分析】利用正方形的判定、平行四边形的性质,菱形的性质,矩形的判定分别判断后即可确定正确的选项.【解答】解:A、一组同旁内角相等的平行四边形是矩形,正确;B、一组邻边相等的菱形是正方形,错误;C、有三个角是直角的四边形是矩形,正确;D、对角线相等的菱形是正方形,正确.故选:B.3.(3分)若关于x的一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,则一次函数y =kx+b的大致图象可能是()A.B.C.D.【分析】根据一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,得到根的判别式大于0,求出kb的符号,对各个图象进行判断即可.【解答】解:∵x2﹣2x+kb+1=0有两个不相等的实数根,∴△=4﹣4(kb+1)>0,解得kb<0,A.k>0,b=0,即kb=0,故A不正确;B.k>0,b<0,即kb<0,故B正确;C.k>0,b>0,即kb>0,故C不正确;D.k<0,b<0,即kb>0,故D不正确.故选:B.4.(3分)如图,在菱形ABCD中,CE⊥AB于点E,E点恰好为AB的中点,则菱形ABCD 的较大内角度数为()A.100°B.120°C.135°D.150°【分析】连接AC,证明△ABC是等边三角形,得出∠B=60°,则∠D=60°,∠BAD =∠BCD=120°,即可得出答案.【解答】解:连接AC,如图:∵四边形ABCD是菱形,∴AB=BC,∠BAD=∠BCD,∠B=∠D,AD∥BC,∴∠BAD+∠B=180°,∵CE⊥AB,点E是AB中点,∴BC=AC=AB,∴△ABC是等边三角形,∴∠B=60°,∴∠D=60°,∠BAD=∠BCD=120°;即菱形ABCD的较大内角度数为120°;故选:B.5.(3分)某市“菜篮子工程”蔬菜基地2022年产量为100吨,预计到2024年产量可达121吨.设该基地蔬菜产量的年平均增长率为x,则可列方程为()A.100(1+x)2=121B.121(1﹣x)2=100C.100(1+2x)=121D.100(1+x2)=121【分析】利用增长后的量=增长前的量×(1+增长率),设平均每次增长的百分率为x,根据“从100吨增加到121吨”,即可得出方程.【解答】解:由题意知,设该基地蔬菜产量的年平均增长率为x,根据2022年产量为100吨,则2023年蔬菜产量为100(1+x)吨,2024年蔬菜产量为100(1+x)(1+x)吨,预计2024年产量可达121吨,即:100(1+x)(1+x)=121或100(1+x)2=121.故选:A.6.(3分)如图,在菱形ABCD中,∠A=60°,点E、F分别为AD、DC上的动点,∠EBF =60°,点E从点A向点D运动的过程中,AE+CF的长度()A.逐渐增加B.逐渐减小C.保持不变且与EF的长度相等D.保持不变且与AB的长度相等【分析】证明△ABE≌△DBF(AAS),可得AE=DF,根据线段的和可知:AE+CF=AB,是一定值,可作判断.【解答】解:连接BD,∵四边形ABCD是菱形,∴AB=AD=CD,∵∠A=60°,∴△ABD是等边三角形,∴AB=BD,∠ABD=60°,∵DC∥AB,∴∠CDB=∠ABD=60°,∴∠A=∠CDB,∵∠EBF=60°,∴∠ABE+∠EBD=∠EBD+∠DBF,∴∠ABE=∠DBF,在△ABE和△DBF中,∵,∴△ABE≌△DBF(AAS),∴AE=DF,∴AE+CF=DF+CF=CD=AB,故选:D.7.(3分)四边形ABCD的对角线AC,BD相交于点O,能判定它是矩形的是()A.AO=CO,BO=OD B.AB=BC,AO=COC.AO=CO,BO=DO,AC⊥DB D.AO=CO=BO=DO【分析】根据平行四边形的判定,矩形的判定,菱形的判定逐个判断即可.【解答】解:A、∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,不能推出四边形ABCD是矩形,故本选项不符合题意;B、根据AB=BC,AO=CO不能推出四边形ABCD是矩形,故本选项不符合题意;C、∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,∵AC⊥BD,∴平行四边形ABCD是菱形,不能推出四边形ABCD是矩形,故本选项不符合题意;D、∵OA=OB=OC=OD,∴OA=OC,OB=OD,AC=BD,∴四边形ABCD是平行四边形,∵AC=BD,∴四边形ABCD是矩形,故本选项符合题意;故选:D.8.(3分)如图,平行四边形ABCD中,对角线AC,BD相交于点O,下列条件:(1)∠1+∠DBC=90°;(2)OA=OB;(3)∠1=∠2,其中能判定平行四边形ABCD是菱形的条件有()A.0个B.1个C.2个D.3个【分析】由平行四边形的性质、菱形的判定、矩形的判定即可得出结论.【解答】解:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,AD∥BC,∴∠1=∠BCO,若∠1+∠DBC=90°时,则∠BCO+∠DBC=90°,∴∠BOC=90°,∴AC⊥BD,∴四边形ABCD是菱形;(1)能判定平行四边形ABCD是菱形;若OA=OB,则AC=BD,∴四边形ABCD是矩形;(2)不能判定平行四边形ABCD是菱形;若∠1=∠2,则∠2=∠BCO,∴AB=CB,∴四边形ABCD是菱形;(3)能判定平行四边形ABCD是菱形;故选:C.9.(3分)如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE ⊥AC,交AD于点E,过点E作EF⊥BD,垂足为F,则OE+EF的值为()A.B.C.D.=S△AOE+S△DOE,【分析】依据矩形的性质即可得到△AOD的面积为12,再根据S△AOD 即可得到OE+EF的值.【解答】解:∵AB=6,BC=8,∴矩形ABCD的面积为48,AC==10,∴AO=DO=AC=5,∵对角线AC,BD交于点O,∴△AOD的面积为12,∵EO⊥AO,EF⊥DO,=S△AOE+S△DOE,即12=AO×EO+DO×EF,∴S△AOD∴12=×5×EO+×5×EF,∴5(EO+EF)=24,∴EO+EF=,故选:C.10.(3分)如图,在正方形ABCD中,对角线AC,BD交于点O,AG平分∠BAC交BD于G,DE⊥AG于点H.下列结论:①AD=2AE:②FD=AG;③CF=CD:④四边形FGEA是菱形;⑤OF=BE,正确的有()A.2个B.3个C.4个D.5个【分析】①根据正方形的性质和角平分线的定义得:∠BAG=∠CAG=22.5°,由垂直的定义计算∠AED=90°﹣22.5°=67.5°,∠EAD=∠EAD=22.5°,得ED是AG的垂直平分线,则AE=EG,△BEG是等腰直角三角形,则AD=AB>2AE,可作判断;②证明△DAF≌△ABG(ASA),可作判断;③分别计算∠CDF=∠CFD=67.5°,可作判断;④根据对角线互相平分且垂直的四边形是菱形可作判断;⑤设BG=x,则AF=AE=x,表示OF和BE的长,可作判断.【解答】解:①∵四边形ABCD是正方形,∴∠BAD=90°,∠BAC=45°,∵AG平分∠BAC,∴∠BAG=∠CAG=22.5°,∵AG⊥ED,∴∠AHE=∠EHG=90°,∴∠AED=90°﹣22.5°=67.5°,∴∠ADE=22.5°,∵∠ADB=45°,∴∠EDG=22.5°=∠ADE,∵∠AHD=∠GHD=90°,∴∠DAG=∠DGA,∴AD=DG,AH=GH,∴ED是AG的垂直平分线,∴AE=EG,∴∠EAG=∠AGE=22.5°,∴∠BEG=45°=∠ABG,∴∠BGE=90°,∴AE=EG<BE,∴AD=AB>2AE,故①不正确;②∵四边形ABCD是正方形,∴AD=AB,∠DAF=∠ABG=45°,∵∠ADF=∠BAG=22.5°,∴△DAF≌△ABG(ASA),∴DF=AG,故②正确;③∵∠CDF=45°+22.5°=67.5°,∠CFD=∠AFE=90°﹣22.5°=67.5°,∴∠CDF=∠CFD,∴CF=CD,故③正确;④∵∠EAH=∠FAH,∠AHE=∠AHF,∴∠AEF=∠AFE,∴AE=AF,∴EH=FH,∵AH=GH,AG⊥EF,∴四边形FGEA是菱形;故④正确;⑤设BG=x,则AF=AE=x,由①知△BEG是等腰直角三角形,∴BE=x,∴AB=AE+BE=x+x=(+1)x,∴AO==,∴OF=AO﹣AF=﹣x=,∴==,∴OF=BE;故⑤正确;本题正确的结论有:②③④⑤;故选:C.二.填空题(共5小题,共15分)11.(3分)一元二次方程x2=5x的根x1=0,x2=5.【分析】先移项,然后通过提取公因式x对等式的左边进行因式分解.【解答】解:由原方程,得x2﹣5x=0,则x(x﹣5)=0,解得x1=0,x2=5.故答案是:x1=0,x2=5.12.(3分)如图,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,则线段DH的长为.【分析】直接利用菱形的性质得出AO,DO的长,再利用三角形面积以及勾股定理得出答案.【解答】解:∵四边形ABCD是菱形,AC=24,BD=10,=×AC×BD=120,AO=12,OD=5,AC⊥BD,∴S菱形ABCD∴AD=AB==13,∵DH⊥AB,∴AO×BD=DH×AB,∴12×10=13×DH,∴DH=.故答案为:.13.(3分)若关于x的方程(k﹣1)x2+4x+1=0有实数解,则k的取值范围是k≤5.【分析】分k﹣1=0和k﹣1≠0两种情况,其中k﹣1≠0时根据题意列出关于k的不等式求解可得.【解答】解:当k﹣1=0时,方程为4x+1=0,显然有实数根;当k﹣1≠0,即k≠1时,△=42﹣4×(k﹣1)×1≥0,解得k≤5且k≠1;综上,k≤5.故答案为:k≤5.14.(3分)如图,在边长为2的正方形ABCD中,点E,F分别是边AB,BC的中点,连接EC,FD,点G,H分别是EC,FD的中点,连接GH,则GH的长度为1.【分析】方法一:连接CH并延长交AD于P,连接PE,根据正方形的性质得到∠A=90°,AD∥BC,AB=AD=BC=2,根据全等三角形的性质得到PD=CF=,根据勾股定理和三角形的中位线定理即可得到结论.方法二:设DF,CE交于O,根据正方形的性质得到∠B=∠DCF=90°,BC=CD=AB,根据线段中点的定义得到BE=CF,根据全等三角形的性质得到CE=DF,∠BCE=∠CDF,求得DF⊥CE,根据勾股定理得到CE=DF==,点G,H分别是EC,FD的中点,根据相似三角形的判定和性质定理即可得到结论.【解答】解:方法一:连接CH并延长交AD于P,连接PE,∵四边形ABCD是正方形,∴∠A=90°,AD∥BC,AB=AD=BC=2,∵E,F分别是边AB,BC的中点,∴AE=CF=×2=,∵AD∥BC,∴∠DPH=∠FCH,∵∠DHP=∠FHC,∵DH=FH,∴△PDH≌△CFH(AAS),PD=CF=,∴AP=AD﹣PD=,∴PE===2,∵点G,H分别是EC,FD的中点,∴GH=EP=1;方法二:设DF,CE交于O,∵四边形ABCD是正方形,∴∠B=∠DCF=90°,BC=CD=AB,∵点E,F分别是边AB,BC的中点,∴BE=CF,∴△CBE≌△DCF(SAS),∴CE=DF,∠BCE=∠CDF,∵∠CDF+∠CFD=90°,∴∠BCE+∠CFD=90°,∴∠COF=90°,∴DF⊥CE,∴CE=DF==,∵点G,H分别是EC,FD的中点,∴CG=FH=,∵∠DCF=90°,CO⊥DF,∴∠DCO+∠FCO=∠DCO+∠CDO=90°,∴∠FCO=∠CDO,∵∠DCF=∠COF=90°,∴△COF∽△DOC,∴=,∴CF2=OF•DF,∴OF===,∴OH=,OD=,∵∠COF=∠COD=90°,∴△COF∽△DOC,∴,∴OC2=OF•OD,∴OC==,∴OG=CG﹣OC=﹣=,∴HG===1,故答案为:1.15.(3分)如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为16或4.【分析】根据翻折的性质,可得B′E的长,根据勾股定理,可得CE的长,根据等腰三角形的判定,可得答案.【解答】解:(i)当B′D=B′C时,过B′点作GH∥AD,则∠B′GE=90°,当B′C=B′D时,AG=DH=DC=8,由AE=3,AB=16,得BE=13.由翻折的性质,得B′E=BE=13.∴EG=AG﹣AE=8﹣3=5,∴B′G===12,∴B′H=GH﹣B′G=16﹣12=4,∴DB′===4(ii)当DB′=CD时,则DB′=16(易知点F在BC上且不与点C、B重合).(iii)当CB′=CD时,则CB=CB′,由翻折的性质,得EB=EB′,∴点E、C在BB ′的垂直平分线上,∴EC垂直平分BB′,由折叠,得EF也是线段BB′的垂直平分线,∴点F与点C重合,这与已知“点F是边BC上不与点B,C重合的一个动点”不符,故此种情况不存在,应舍去.综上所述,DB′的长为16或4.故答案为:16或4.三.解答题(共8小题,共75分)16.(16分)用恰当的方法解下列方程:(1)x2+4x﹣2=0;(2)4x2﹣25=0;(3)(2x+1)2+4(2x+1)+4=0;(4)(x﹣1)(x﹣3)=8.【分析】(1)利用公式法求解可得;(2)利用直接开平方法求解可得;(3)利用换元法求解可得;(4)整理成一般式,再利用公式法求解可得.【解答】解:(1)∵a=1,b=4,c=﹣2,∴△=42﹣4×1×(﹣2)=24>0,则x==﹣2±,即x1=﹣2+,x2=﹣2﹣;(2)∵4x2=25,∴x2=,解得x1=,x2=﹣;(3)令2x+1=a,则a2+4a+4=0,∴(a+2)2=0,解得a=﹣2,∴2x+1=﹣2,解得x1=x2=﹣1.5;(4)方程整理为一般式,得:x2﹣4x﹣5=0,解得:(x﹣5)(x+1)=0,则x﹣5=0或x+1=0,解得x1=5,x2=﹣1.17.(8分)如图,在四边形ABCD中,AD∥BC,对角线BD的垂直平分线与边AD、BC分别相交于点M、N.(1)求证:四边形BNDM是菱形;(2)若BD=24,MN=10,求菱形BNDM的周长.【分析】(1)证△MOD≌△NOB(AAS),得出OM=ON,由OB=OD,证出四边形BNDM 是平行四边形,进而得出结论;(2)由菱形的性质得出BM=BN=DM=DN,OB=BD=12,OM=MN=5,由勾股定理得BM=13,即可得出答案.【解答】(1)证明:∵AD∥BC,∴∠DMO=∠BNO,∵MN是对角线BD的垂直平分线,∴OB=OD,MN⊥BD,在△MOD和△NOB中,,∴△MOD≌△NOB(AAS),∴OM=ON,∵OB=OD,∴四边形BNDM是平行四边形,∵MN⊥BD,∴四边形BNDM是菱形;(2)解:∵四边形BNDM是菱形,BD=24,MN=10,∴BM=BN=DM=DN,OB=BD=12,OM=MN=5,在Rt△BOM中,由勾股定理得:BM===13,∴菱形BNDM的周长=4BM=4×13=52.18.(8分)关于x的一元二次方程2﹣3+=0有实数根.(1)求k的取值范围;(2)如果k是符合条件的最大整数,且一元二次方程(﹣1)2++﹣3=0与方程2﹣3+=0有一个相同的根,求此时m的值.【分析】(1)利用判别式的意义得到△=(﹣3)2﹣4k≥0,然后解不等式即可;(2)先确定k=2,再解方程2﹣3+2=0,解得x1=1,x2=2,然后分别把x=1和x=2代入元二次方程(﹣1)2++﹣3=0可得到满足条件的m的值.【解答】解:(1)根据题意得△=(﹣3)2﹣4k≥0,解得k≤;(2)满足条件的k的最大整数为2,此时方程2﹣3+=0变形为方程2﹣3+2=0,解得x1=1,x2=2,当相同的解为x=1时,把x=1代入方程(﹣1)2++﹣3=0得m﹣1+1+m﹣3=0,解得m=;当相同的解为x=2时,把x=2代入方程(﹣1)2++﹣3=0得4(m﹣1)+2+m﹣3=0,解得m=1,而m﹣1≠0,不符合题意,舍去,所以m的值为.19.(8分)如图,在菱形ABCD中,对角线AC,BD交于点O,过点A作AE⊥BC于点E,延长BC至F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)若AC=10,∠ABC=60°,则矩形AEFD的面积是25.【分析】(1)根据菱形的性质得到AD∥BC且AD=BC,等量代换得到BC=EF,推出四边形AEFD是平行四边形,根据矩形的判定定理即可得到结论;(2)根据全等三角形的判定定理得到Rt△ABE≌Rt△DCF(HL),求得矩形AEFD的面积=菱形ABCD的面积,根据等腰三角形的性质得到结论.【解答】(1)证明:∵四边形ABCD是菱形,∴AD∥BC,AD=BC,∵CF=BE,∴BC=EF,∴AD∥EF,AD=EF,∴四边形AEFD是平行四边形,∵AE⊥BC,∴∠AEF=90°,∴平行四边形AEFD是矩形;(2)解:∵AB=CD,BE=CF,∠AEB=∠DFC=90°,∴Rt△ABE≌Rt△DCF(HL),∴矩形AEFD的面积=菱形ABCD的面积,∵∠ABC=60°,∴△ABC是等边三角形,∵AC=10,∴AE=AC=5,AB=10,BO=5,∵AD=EF=10,∴矩形AEFD的面积=菱形ABCD的面积=×10×10=50,故答案为:50.20.(8分)某旅行社的一则广告如下:甲公司想分批组织员工到延安红色旅游学习.(1)如果第一批组织40人去学习,则公司应向旅行社交费28000元;(2)如果公司计划用29250元组织第一批员工去学习,问这次旅游学习应安排多少人参加?【分析】(1)首先表示出40人是平均每人的费用,进而得出总费用;(2)表示出每人平均费用为:800﹣10(x﹣30),进而得出等式求出答案.【解答】解:(1)∵人数多于30人,那么每增加1人,人均收费降低10元,∴第一批组织40人去学习,则公司应向旅行社交费:40×[800﹣(40﹣30)×10]=28000(元);故答案为:28000;(2)设这次旅游应安排x人参加,∵30×800=24000<29250,∴x>30,根据题意得:x[800﹣10(x﹣30)]=29250,整理得,x2﹣110x+2925=0,解得:x1=45,x2=65∵800﹣10(x﹣30)≥500,∴x≤60.∴x=45.答:这次旅游应安排45人参加.21.(8分)如图,在菱形ABCD中,AB=3,∠DAB=60°,点E是AD边的中点,点M 是AB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM的值为 1.5时,四边形AMDN是矩形;②当AM的值为3时,四边形AMDN是菱形.【分析】(1)求出△DNE≌△AME,根据全等及时向的性质得出NE=ME,根据平行四边形的判定得出即可;(2)①根据等边三角形的判定得出△ABD是等边三角形,根据等边三角形的性质求出DM⊥AB,根据矩形的判定得出即可;②求出△ABD是等边三角形,求出M和B重合,根据菱形的判定得出即可..【解答】(1)证明:∵点E是AD边的中点,∴AE=DE,∵四边形ABCD是菱形,∴DC∥AB,∴∠DNE=∠AME,在△DNE和△AME中,∴△DNE≌△AME(AAS),∴NE=ME,∵AE=DE,∴四边形AMDN是平行四边形;(2)解:①当AM=1.5时,四边形AMDN是矩形,理由是:连接BD,∵四边形ABCD是菱形,∴AD=AB=3,∵∠DAB=60°,∴△ADB是等边三角形,∴AD=BD=3,∵AM=1.5,AB=3,∴AM=BM,∴DM⊥AB,即∠DMA=90°,∵四边形AMDN是平行四边形,∴四边形AMDN是矩形,即当AM=1.5时,四边形AMDN是矩形,故答案为:1.5;②当AM=3时,四边形AMDN是菱形,理由是,此时AM=AB=3,即M和B重合,∵由①知:△ABD是等边三角形,∴AM=MD,∵四边形AMDN是平行四边形,∴四边形AMDN是菱形,故答案为:3.22.(8分)阅读探究:“任意给定一个矩形A,是否存在另一个矩形B,它的周长和面积分别是已知矩形周长和面积的一半?”(完成下列空格)(1)当已知矩形A的边长分别为6和1时,小亮同学是这样研究的:设所求矩形的两边分别是x和y,由题意得方程组,消去y化简得:2x2﹣7x+6=0,∵b2﹣4ac=49﹣48>0,∴x1=,x2=2,∴满足要求的矩形B存在.(2)如果已知矩形A的边长分别为2和1,请你仿照小亮的方法研究是否存在满足要求的矩形B.(3)如果矩形A的边长为m和n,请你研究满足什么条件时,矩形B存在?【分析】(1)利用求根公式即可求出方程的两根;(2)仿照(1)找准关于x的一元二次方程,由根的判别式△=﹣7<0,可得出方程无解,即不存在满足要求的矩形B;(3)仿照(1)找准关于x的一元二次方程,由根的判别式△≥0,可找出m、n之间的关系.【解答】解:(1)利用求根公式可知:x1==,x2==2.故答案为:;2.(2)设所求矩形的两边分别是x和y,根据题意得:,消去y化简得:2x2﹣3x+2=0.∵b2﹣4ac=(﹣3)2﹣4×2×2=﹣7<0,∴该方程无解,∴不存在满足要求的矩形B.(3)设所求矩形的两边分别是x和y,根据题意得:,消去y化简得:2x2﹣(m+n)x+mn=0.∵矩形B存在,∴b2﹣4ac=[﹣(m+n)]2﹣4×2mn≥0,∴(m﹣n)2≥4mn.故当m、n满足(m﹣n)2≥4mn时,矩形B存在.23.(11分)四边形ABCD是正方形,△BEF是等腰直角三角形,∠BEF=90°,BE=EF,连接DF,G为DF的中点,连接EG,CG,EC.(1)问题发现如图1,若点E在CB的延长线上,直接写出EG与GC的位置关系及的值;(2)操作探究将图1中的△BEF绕点B顺时针旋转至图2所示位置,请问(1)中所得的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)解决问题将图1中的△BEF绕点B顺时针旋转,若BE=1,AB=,当E,F,D三点共线时,请直接写出CE的长.【分析】(1)过G作GH⊥EC于H,推出EF∥GH∥DC,求出H为EC中点,根据梯形的中位线求出EG=GC,GH=(EF+DC)=(EB+BC),推出GH=EH=BC,根据直角三角形的判定推出△EGC是等腰直角三角形即可;(2)延长EG到H,使EG=GH,连接CH,过E作BC的垂线EQ,证△EFG≌△HDG,推出DH=EF=BE,∠FEG=∠DHG,求出∠EBC=∠HDC,证出△EBC≌△HDC,推出CE=CH,∠BCE=∠DCH,求出△ECH是等腰直角三角形,即可得出答案;(3)分两种情况:①CE在BC的上方,如图3,作辅助线,构建等腰直角三角形,求出cos∠DBE=,推出∠DBE=60°,证明△GDC≌△EBC(ASA),则EC=CG,DG=EB=1,从而得结论;②CE在BC的下方,如图4,同理可得结论.【解答】解:(1)EG⊥CG,;理由是:如图1,过G作GH⊥EC于H,∵∠FEB=∠DCB=90°,∴EF∥GH∥DC,∵G为DF中点,∴H为EC中点,∴EG=GC,GH=(EF+DC)=(EB+BC)=CE,即GH=EH=HC,∴∠EGC=90°,即△EGC是等腰直角三角形,;(2)结论还成立,理由是:如图2,延长EG到H,使EG=GH,连接CH,过E作BC的垂线EQ,延长CB交EQ于R,延长CD,交EH于N,在△EFG和△HDG中,,∴△EFG≌△HDG(SAS),∴DH=EF=BE,∠FEG=∠DHG,∴EF∥DH,同理得ER∥CD,∴∠1=∠2,∴∠1=∠2=90°﹣∠3=∠4,∴∠EBC=180°﹣∠4=180°﹣∠1=∠HDC,在△EBC和△HDC中,,∴△EBC≌△HDC(SAS).∴CE=CH,∠BCE=∠DCH,∴∠ECH=∠DCH+∠ECD=∠BCE+∠ECD=∠BCD=90°,∴△ECH是等腰直角三角形,∵G为EH的中点,∴EG⊥GC,,即(1)中的结论仍然成立;(3)分两种情况:①如图3,连接BD,过C作CG⊥EC,交ED的延长线于G,∵AB=,正方形ABCD,∴BD=2,Rt△BED中,cos∠DBE=,∴∠DBE=60°,∠BDF=30°∵tan∠BDE==,∴DE=BE=,∵∠ABD=45°,∴∠ABE=60°﹣45°=15°,∴∠EBC=90°+15°=105°,∵∠EDC=∠BDE+∠CDB=30°+45°=75°,∴∠CDG=180°﹣75°=105°,∴∠CDG=∠CBE,∵∠ECG=∠BCD=90°,∴∠DCG=∠BCE,∵BC=CD,∴△GDC≌△EBC(ASA),∴EC=CG,DG=EB=1,∴△ECG是等腰直角三角形,∴EG=CE,∵EG=ED+DG=+1,∴CE==;②如图4,连接BD,过C作CH⊥EC,交ED于H,同理得△DHC≌△BEC(ASA),∴EC=CH,DH=EB=1,同理可知:DE=,∴EH=DE﹣DH=﹣1,∵△ECH是等腰直角三角形,∴EH=CE,∴CE==;综上,CE的长为.。

2024-2025学年山东省青岛市胶州市瑞华实验中学九年级(上)第一次月考数学试卷(含答案)

2024-2025学年山东省青岛市胶州市瑞华实验中学九年级(上)第一次月考数学试卷(含答案)

2024-2025学年胶州市瑞华实验中学九年级(上)第一次月考数学试卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.方程−5x2=1的一次项系数是( )A. 3B. 1C. −1D. 02.下列命题中,真命题是( )A. 对角线相等的四边形是矩形B. 对角线互相垂直的平行四边形是菱形C. 对角线相等的四边形是平行四边形D. 对角线互相垂直平分的四边形是正方形3.如图,两张等宽的纸条交叉叠放在一起,重合部分构成一个四边形ABCD,在其中一张纸条转动的过程中,下列结论一定成立的是( )A. AD=CDB. 四边形ABCD面积不变C. AC=BDD. 四边形ABCD周长不变4.如图,在Rt△ABC中,∠ACB=90°,AB=5,AC=4,D为AB的中点,AE//CD,CE//AB,则四边形ADCE的对角线ED的长为( )B. 3C. 4D. 5A. 1255.关于x的方程(m−3)x2−4x−2=0有两个不相等的实数根,则实数m的值可以是( )A. −1B. 0C. 2D. 36.如图,在四边形ABCD中,点E、F、G、H分别是边和对角线的中点,得四边形EFGH,要使四边形EFGH为菱形,应添加的条件是( )A. AB//DCB. AB=DCC. AC⊥BDD. AC=BD7.某新能源汽车销售公司,在国家减税政策的支持下,原价25万元每辆的纯电动新能源汽车两次下调相同费率后售价为16万元,求每次下调的百分率.设每次下调的百分率为x,则可列方程为( )A. 16(1+x)2=25B. 16(1+x2)=25C. 25(1−x2)=16D. 25(1−x)2=168.某初中毕业班的每一个同学都将自己的相片向全班其他同学各送一张表示留念,全班共送了2550张相片,如果全班有x名学生,根据题意,列出方程为( )A. x(x+1)=2550B. x(x−1)=2550C. 2x(x+1)=2550D. x(x−1)=2550×29.已知正方形ABCD的边长是10cm,△APQ是等边三角形,点P在BC上,点Q在CD上,则BP的边长是( )A. 55cmB. 2033cm C. (20−103)cm D. (20+103)cm10.如图,将图①中的菱形纸片沿对角线剪成4个直角三角形,拼成如图②所示的四边形ABCD(相邻纸片之间不重叠,无缝隙).设直角三角形的较短直角边为a,较长直角边为b,若(a+b)2=25,四边形ABCD的面积为13,则中间空白处的四边形EFGH的面积为( )A. 1B. 2C. 3D. 4二、填空题:本题共6小题,每小题3分,共18分。

2024-2025学年湖北省部分学校九年级(上)第一次月考数学试卷(含解析)

2024-2025学年湖北省部分学校九年级(上)第一次月考数学试卷(含解析)

2024-2025学年湖北省部分学校九年级(上)第一次月考数学试卷一、选择题:本题共10小题,每小题3分,共30分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.一元二次方程4x2+x−3=0中一次项系数、常数项分别是( )A. 2,−3B. 0,−3C. 1,−3D. 1,02.解方程(x+1)2=3(1+x)的最佳方法是( )A. 直接开平方法B. 配方法C. 公式法D. 因式分解法3.抛物线y=−3x2+2x−1与y轴的交点为( )A. (0,1)B. (0,−1)C. (−1,0)D. (1,0)4.若关于x的一元二次方程(k−1)x2+x+1=0有实数根,则k的取值范围是( )A. k≥54B. k>54C. k>54且k≠1 D. k≤54且k≠15.若关于x的方程x2−kx−3=0的一个根是x=3,则k的值是( )A. −2B. 2C. −12D. 126.关于x的方程|x2−2x−3|=a有且仅有两个实数根,则实数a的取值范围是( )A. a=0B. a=0或a=4C. a>4D. a=0或a>47.在手拉手学校联谊活动中,参加活动的每个同学都要给其他同学发一条励志短信,总共发了110条,设参加活动的同学有x个,根据题意,下面列出的方程正确的是( )A. 12x(x+1)=110 B. 12x(x−1)=110 C. x(x+1)=110 D. x(x−1)=1108.已知函数y=ax2+bx+c的图象如图,那么关于x的方程ax2+bx+c+2=0的根的情况是( )A. 无实数根B. 有两个相等实数根C. 有两个同号不等实数根D. 有两个异号实数根9.二次函数y=ax2+bx+c,若ab<0,a−b2>0,点A(x1,y1),B(x2,y2)在该二次函数的图象上,其中x1<x2,x1+x2=0,则( )A. y1=−y2B. y1>y2C. y1<y2D. y1、y2的大小无法确定10.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列4个结论:①abc<0;②b>a+c;③2a−b=0;④b2−4ac<0.其中正确的结论个数是( )A. 1个B. 2个C. 3个D. 4个二、填空题:本题共5小题,每小题3分,共15分。

2024-2025学年九年级上册数学第一次月考试卷02【人教版】

2024-2025学年九年级上册数学第一次月考试卷02【人教版】

2024-2025学年九年级上册数学第一次月考试卷02【人教版】数学(人教版)注意事项:1.你拿到的试卷满分150分,考试时间为120分钟.2.本试卷包括“试题卷”和“答题卷”两部分.“试题卷”共4页,“答题卷”共6页.3.请务必在“答题卷”上答题,在“试题卷”上答题是无效的.4.考试结束后,请将“试题卷”和“答题卷”一并交回.一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A 、B 、C 、D 四个选项,其中只有一个是正确的.1.一元二次方程212302x x --=的一次项系数是()A.2B.12C.12-D.-32.对于二次函数()253y x =+的图象,下列说法不正确的是()A.开口向上B.对称轴是直线3x =-C.顶点坐标为()3,0- D.当3x <-时,y 随x 的增大而增大3.关于x 的一元二次方程224(41)0x m x m +++=有实数根,则m 的最小整数值为()A.1B.0C.-1D.-24.二次函数()220y ax ax c a =-+≠的图象过点()3,0,方程220ax ax c -+=的解为()A.123,1x x =-=-B.121,3x x =-=C.121,3x x == D.123,1x x =-=5.2023年4月23是第28个世界读书日,读书已经成为很多人的一种生活方式,城市书院是读书的重要场所之一,据统计,某书院对外开放的第一个月进书院600人次,进书院人次逐月增加,到第三个月末累计进书院2850人次,若进书院人次的月平均增长率为x ,则可列方程为()A.600(12)2850x += B.2600(1)2850x +=C.2600600(1)600(1)2850x x ++++= D.22850(1)600x -=6.若点()13,A y -,()21,B y ,()32,C y 是抛物线22y x x =-+上的三点,则1y ,2y ,3y 的大小关系为()A.123y y y >> B.231y y y >> C.321y y y >> D.213y y y >>7.二次函数()20y ax bx c a =++≠的图象如图所示,则一次函数y bx a =+的图象不经过()A.第四象限B.第三象限C.第二象限D.第一象限8.如图,在平面直角坐标系中,点A 、E 在抛物线2y ax =上,过点A 、E 分别作y 轴的垂线,交抛物线于点B 、F ,分别过点E 、F 作x 轴的垂线交线段AB 于两点C 、D .当点()24E ,,四边形CDFE 为正方形时,则线段AB 的长为()A.4B.C.5D.9.如图,四边形ABCD 是边长为5的菱形,对角线AC BD ,的长度分别是一元二次方程2240x mx ++=的两实数根,DH 是AB 边上的高,则DH 值为()A.1.2B.2.4C.3.6D.4.810.已知,0ab >,420a b c ++=,420a b c -+>,则下列结论成立的是()A.0a >,24b ac≥ B.0a >,24b ac< C.0<a ,24b ac< D.0<a ,24b ac>二、填空题(本大题共4小题,每小题5分,满分20分)11.已知关于x 的一元二次方程()221210m x x m -++-=有一个根是0,则m 的值是________.12.将二次函数22y x x =+的图象向右平移1个单位长度,再向上平移2个单位长度,平移后的二次函数的图象的顶点坐标是________.13.非零实数m ,()n m n ≠满足220m m --=,220n n --=,则11m n+=______.14.在平面直角坐标系中,设二次函数()()1y x a x a =+--,其中0a ≠.(1)此二次函数的对称轴为直线x =______;(2)已知点(),P t m 和()1,Q n 在此函数的图象上,若m n ≤,则t 的取值范围是______;三、(本大题共2小题,每小题8分,满分16分)15.解方程(1)2x 2+4x +1=0(配方法)(2)x 2+6x =5(公式法)16.已知二次函数2y ax bx c =++的图象经过()1,5A ,()0,3B ,()1,3C --三点.(1)求这个函数的解析式;(2)用配方法求出这个二次函数图象的顶点坐标.四、(本大题共2小题,每小题8分,满分16分)17.在平面直角坐标系xOy 中,已知点()1,m -,()2,n 在二次函数23y x bx =+-的图象上.(1)当m n =时,求b 的值;(2)在(1)的条件下,当32x -<<时,求y 的取值范围.18.定义:如果关于x 的一元二次方程()200ax bx c a ++=≠满足0a b c -+=,那么我们称这个方程为“黄金方程”.(1)判断一元二次方程22530x x ++=是否为黄金方程,并说明理由.(2)已知230x ax b -+=是关于x 的黄金方程,若a 是此黄金方程的一个根,求a 的值.五、(本大题共2小题,每小题10分,满分20分)19.已知关于x 的方程()23260x k x k +--=.若等腰三角形ABC 的一边6a =,另两边长b ,c 恰好是这个方程的两个根,求ABC 的周长.20.某社区在开展“美化社区,幸福家园”活动中,计划利用如图所示的直角墙角(阴影部分,两边足够长),用50米长的篱笆围成一个矩形花园ABCD (篱笆只围AB ,AD 两边).(1)若花园的面积为400米2,求AB 的长;(2)若在直角墙角内点P 处有一棵桂花树,且与墙BC ,CD 的距离分别是10米,30米,要将这棵树围在矩形花园内(含边界,不考虑树的粗细),则花园的面积能否为625米2?若能,求出AB 的值;若不能,请说明理由.六、(本题满分12分)21.在平面直角坐标系中,抛物线()2220y x mx m m x =-+-+≥的顶点为A ,与y 轴相交于点B .(1)点A 的坐标为________,点B 的坐标为________;(用含m 的式子表示)(2)设抛物线()2220y x mx m m x =-+-+≥的函数图象最高点的纵坐标为n .①当1m =时,n =________;当1m =-时,n =________;②写出n 关于m 的函数解析式及自变量m 的取值范围.七、(本题满分12分)22.已知关于x 的一元二次方程22210x kx k k -+++=有两个实数根.(1)试求k 的取值范围;(2)若221210x x +=,求k 的值;(3)若此方程的两个实数根为1x ,2x ,且满足122x x +=,试求k 的值.八、(本题满分14分)23.如图,抛物线2y x bx c =-++的图象与x 轴交于点()30A -,和点C ,与y 轴交于点()0,3B .(1)求抛物线的解析式;(2)设点P 为抛物线的对称轴上一动点,当PBC 的周长最小时,求点P 的坐标;的面积最大?若存在,求出点Q的坐标;若(3)在第二象限的抛物线上,是否存在一点Q,使得ABQ不存在,请说明理由.2024-2025学年九年级上册数学第一次月考试卷02【人教版】数学(人教版)注意事项:1.你拿到的试卷满分150分,考试时间为120分钟.2.本试卷包括“试题卷”和“答题卷”两部分.“试题卷”共4页,“答题卷”共6页.3.请务必在“答题卷”上答题,在“试题卷”上答题是无效的.4.考试结束后,请将“试题卷”和“答题卷”一并交回.一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A 、B 、C 、D 四个选项,其中只有一个是正确的.1.一元二次方程212302x x --=的一次项系数是()A.2 B.12C.12-D.-3【答案】C 【解析】【分析】根据一元二次方程的一般形式,即可解答.【详解】解:一元二次方程212302x x --=的一次项系数是12-,故选:C .【点睛】本题考查了一元二次方程的一般形式及其概念,熟练掌握和运用一元二次方程的一般形式及其概念是解决本题的关键.2.对于二次函数()253y x =+的图象,下列说法不正确的是()A.开口向上B.对称轴是直线3x =-C.顶点坐标为()3,0- D.当3x <-时,y 随x 的增大而增大【答案】D 【解析】【分析】根据二次函数的表达式,可得出抛物线的开口方向,对称轴,顶点坐标及增减性,据此可解决问题.【详解】解:因为二次函数的表达式为25(3)y x =+,所以抛物线的开口向上,故A 说法正确;又抛物线的对称轴是直线3x =-,故B 说法正确;因为抛物线的顶点坐标为()3,0-,故C 说法正确;因为抛物线对称轴为直线3x =-,且开口向上,所以当3x <-时,y 随x 的增大而减小.故D 说法不正确;故选:D .【点睛】本题考查二次函数的图象和性质,能根据所给函数表达式得出开口向下、对称轴、顶点坐标和增减性是解题的关键.3.关于x 的一元二次方程224(41)0x m x m +++=有实数根,则m 的最小整数值为()A.1B.0C.-1D.-2【答案】B 【解析】【分析】根据判别式24b ac ∆=-用含有m 的式子将∆表示出来,再根据有实数根,则可知0∆≥,列出不等式即可解决问题.【详解】解: 224(41)0x m x m +++=,∴()2222411616811681m m m m m m ∆=+-=++-=+,有实数根,∴810m +≥,∴18m ≥-,∴最小整数值为0.故选:B .【点睛】本题考查了根据一元二次方程根的情况求参数,解决本题的关键是熟记根的情况与判别式的关系.4.二次函数()220y ax ax c a =-+≠的图象过点()3,0,方程220ax ax c -+=的解为()A.123,1x x =-=-B.121,3x x =-=C.121,3x x ==D.123,1x x =-=【答案】B 【解析】【分析】首先求出二次函数的对称轴,然后根据二次函数的对称性得到抛物线与x 轴的另一个交点坐标为()3,0,进而利用二次函数与一元二次方程的关系即可求解.【详解】解:抛物线的对称轴为直线212ax a-=-=,∵抛物线与x 轴的一个交点坐标为()3,0,且1(31)1--=-,∴抛物线与x 轴的另一个交点坐标为()1,0-,∴方程220ax ax c -+=的解为:121,3x x =-=.故选:B .【点睛】本题考查了抛物线与x 轴的交点:把求二次函数2y ax bx c =++(a ,b ,c 是常数,0a ≠)与x 轴的交点坐标问题转化为解关于x 的一元二次方程.也考查了二次函数的性质.5.2023年4月23是第28个世界读书日,读书已经成为很多人的一种生活方式,城市书院是读书的重要场所之一,据统计,某书院对外开放的第一个月进书院600人次,进书院人次逐月增加,到第三个月末累计进书院2850人次,若进书院人次的月平均增长率为x ,则可列方程为()A.600(12)2850x += B.2600(1)2850x +=C.2600600(1)600(1)2850x x ++++= D.22850(1)600x -=【答案】C 【解析】【分析】先分别表示出第二个月和第三个月的进馆人次,再根据第一个月的进馆人次加第二和第三个月的进馆人次等于2850,列方程即可.【详解】解:设进馆人次的月平均增长率为x ,则由题意得:2600600(1)600(1)2850x x ++++=.故选:C .【点睛】本题属于一元二次方程的应用题,列出方程是解题的关键.本题难度适中,属于中档题.6.若点()13,A y -,()21,B y ,()32,C y 是抛物线22y x x =-+上的三点,则1y ,2y ,3y 的大小关系为()A.123y y y >>B.231y y y >> C.321y y y >> D.213y y y >>【答案】B 【解析】【分析】根据二次函数的性质得到抛物线22y x x =-+的开口向下,对称轴为直线1x =,然后根据三个点离对称轴的远近判断函数值的大小.【详解】解:∵抛物线22y x x =-+,∴抛物线开口向下,对称轴为直线()2121x =-=⨯-,而()13,A y -离直线1x =的距离最远,()21,B y 在直线1x =上,∴231y y y >>.故选:B .【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.7.二次函数()20y ax bx c a =++≠的图象如图所示,则一次函数y bx a =+的图象不经过()A.第四象限B.第三象限C.第二象限D.第一象限【答案】C 【解析】【分析】先根据二次函数图象与系数的关系得到a<0,0b >,再根据一次函数图象与系数的关系求解即可.【详解】解:∵二次函数开口向下,对称轴在y 轴右侧,∴002ba a<>-,,∴0b >,∴一次函数y bx a =+的图象经过第一、三、四象限,不经过第二象限,故选C .【点睛】本题主要考查了一次函数图象与系数的关系,二次函数图象与系数的关系,正确推出a<0,0b >是解题的关键.8.如图,在平面直角坐标系中,点A 、E 在抛物线2y ax =上,过点A 、E 分别作y 轴的垂线,交抛物线于点B 、F ,分别过点E 、F 作x 轴的垂线交线段AB 于两点C 、D .当点()24E ,,四边形CDFE 为正方形时,则线段AB 的长为()A.4B.C.5D.【答案】B 【解析】【分析】通过待定系数法求出函数解析式,然后设点A 横坐标为m ,则4CD CE ==,从而得出()8A m ,,将点坐标代入解析式求解.【详解】解:把点()24E ,代入2y ax =中得44a =,解得1a =,∴2y x =,∵点()24E ,,四边形CDFE 为正方形,∴4CD CE EF ===,设点A 横坐标为m ,则()8A m ,,代入2y x =得28m =,解得m =或m =-.∴2AB m ==.故选:B .【点睛】本题考查二次函数与正方形的结合,解题关键是利用待定系数法求得函数解析式.9.如图,四边形ABCD 是边长为5的菱形,对角线AC BD ,的长度分别是一元二次方程2240x mx ++=的两实数根,DH 是AB 边上的高,则DH 值为()A.1.2B.2.4C.3.6D.4.8【答案】B【解析】【分析】根据对角线AC BD ,的长度分别是一二次方程2240x mx ++=的两实数根,得到24AC BD ⨯=,根据菱形的面积公式得到1122ABCD S AC BD =⨯=菱形,再根据ABCD S AB DH =⨯菱形得到12 2.45DH ==.【详解】解:∵对角线AC BD ,的长度分别是一二次方程2240x mx ++=的两实数根,∴24AC BD ⨯=,∴1122ABCD S AC BD =⨯=菱形,∵ABCD S AB DH =⨯菱形,∴12AB DH ⨯=,∴12 2.45DH ==,故选:B .【点睛】本题考查了菱形的面积和一元二次方程根与系数的关系的应用,掌握菱形面积的计算方法是解题的关键.10.已知,0ab >,420a b c ++=,420a b c -+>,则下列结论成立的是()A.0a >,24b ac≥ B.0a >,24b ac < C.0<a ,24b ac < D.0<a ,24b ac >【答案】D【解析】【分析】设2y ax bx c =++,由0ab >,420a b c ++=,420a b c -+>可得二次函数过(2,0),(2,)t -()0t >,且其对称轴在x 轴负半轴,即可求解.【详解】解:设2y ax bx c =++,∵420a b c ++=,420a b c -+>,∴二次函数过(2,0),(2,)t -()0t >,∵0ab >,∴二次函数对称轴<02b x a=-,二次函数的大致图象如下:由图象可知0<a ,∵二次函数与x 轴有2个交点,∴240b ac ∆=->,即24b ac >,故选:D .【点睛】本题考查二次函数的图象与性质.由题意确定二次函数经过的点和其对称轴的特点是解答本题的关键.二、填空题(本大题共4小题,每小题5分,满分20分)11.已知关于x 的一元二次方程()221210m x x m -++-=有一个根是0,则m 的值是________.【答案】1-【解析】【分析】把0x =代入方程进行计算,结合一元二次方程的二次项系数不为0,即可得到答案.【详解】解:把0x =代入方程,得:210m -=,∴1m =±,∵10m -≠,∴1m ≠,∴1m =-;故答案为:1-.【点睛】本题考查了解一元二次方程,以及方程的解,解题的关键是熟练掌握解一元二次方程的方法,利用方程的解正确求出参数.12.将二次函数22y x x =+的图象向右平移1个单位长度,再向上平移2个单位长度,平移后的二次函数的图象的顶点坐标是________.【答案】()0,1【解析】【分析】按照“左加右减,上加下减”的规律解答.【详解】解:()22211y x x x =+=+- ,∴二次函数22y x x =+的图象的顶点坐标是()11--,,图象向右平移1个单位,再向上平移2个单位,得到函数图象的顶点坐标是()0,1.故答案为:()0,1.【点睛】此题主要考查了二次函数图象与几何变换,关键是掌握平移的规律.13.非零实数m ,()n m n ≠满足220m m --=,220n n --=,则11m n+=______.【答案】12-##0.5-【解析】【分析】根据已知判断出m ,n 是方程220x x --=的两实数根,然后利用根与系数关系即可求解.【详解】解:∵实数m ,()n m n ≠满足等式220m m --=,220n n --=,∴m ,n 是方程220x x --=的两实数根,∴1m n +=,mn 2=-,∴111122m n m n mn ++===--,故答案为:12-.【点睛】本题考查了方程的解以及一元二次方程的根与系数关系,能熟练利用方程解的定义得到m ,n 是方程220x x --=的两实数根是解题的关键.14.在平面直角坐标系中,设二次函数()()1y x a x a =+--,其中0a ≠.(1)此二次函数的对称轴为直线x =______;(2)已知点(),P t m 和()1,Q n 在此函数的图象上,若m n ≤,则t 的取值范围是______;【答案】①.12##0.5②.01t ≤≤【解析】【分析】(1)根据二次函数()()1y x a x a =+--,经过(),0a -和()1,0a +,是对称点,算出对称轴即可;(2)根据对称轴为直线12x =,点(),P t m 和()1,Q n 在二次函数()()1y x a x a =+--的图象上,画出函数图象,点Q 关于对称轴的对称点Q ',分析图象,写出t 的取值范围即可.【详解】(1) 二次函数()()1y x a x a =+--,∴函数经过(),0a -和()1,0a +,是对称点,∴对称轴为直线1122a a x -++==,故答案为:12(2) 二次函数()()1y x a x a =+--,∴二次项系数为10>,∴函数图象开口向上,又(),P t m 和()1,Q n 在此函数的图象上,对称轴为直线12x =,∴画出图象如下图,点Q 关于对称轴的对称点Q '横坐标12102=⨯-=,m n ≤ ,∴点P 应在线段QQ '下方部分的抛物线上(包括点Q 、Q '),01t ∴≤≤,故答案为:01t ≤≤【点睛】本题考查了二次函数的图象和性质,画出图象数形结合是解题的关键.三、(本大题共2小题,每小题8分,满分16分)15.解方程(1)2x 2+4x +1=0(配方法)(2)x 2+6x =5(公式法)【答案】(1)121122x x =-+=--(2)13x =-+,23x =-.【解析】【分析】(1)配方法求解可得;(2)公式法求解可得.【小问1详解】(1)解:2x 2+4x =﹣1,x 2+2x =﹣12,x 2+2x +1=﹣12+1,即(x +1)2=12,∴x +1=±22,则x =﹣1±2∴121122x x =-+=--【小问2详解】解:x 2+6x ﹣5=0,∵a =1,b =6,c =﹣5,∴△=36﹣4×1×(﹣5)=56,则x =62142-±=﹣313x =-+,23x =-.【点睛】本题考查了公式法和配方法解一元二次方程,熟悉用公式法和配方法解一元二次方程的解题步骤是解题的关键.16.已知二次函数2y ax bx c =++的图象经过()1,5A ,()0,3B ,()1,3C --三点.(1)求这个函数的解析式;(2)用配方法求出这个二次函数图象的顶点坐标.【答案】(1)二次函数的解析式为2243y x x =-++(2)顶点坐标是()1,5【解析】【分析】(1)将点()1,5A 、()0,3B 、()1,3C --代入二次函数的解析式2y ax bx c =++,利用待定系数法求得这个二次函数的解析式;(2)利用(1)的结果,将二次函数的解析式转化为顶点式,然后根据解析式求这个二次函数的顶点坐标.【小问1详解】解:将()1,5A 、()0,3B 、()1,3C --代入二次函数2y ax bx c =++,得533a b c c a b c ++=⎧⎪=⎨⎪-+=-⎩,解得243a b c =-⎧⎪=⎨⎪=⎩.∴二次函数的解析式为2243y x x =-++.【小问2详解】解:∵()22243215y x x x =-++=--+,∴顶点坐标是()1,5.【点睛】本题考查了待定系数法求二次函数的解析式、二次函数的三种形式.将二次函数的一般解析式转化为顶点式时,采用了“配方法”.四、(本大题共2小题,每小题8分,满分16分)17.在平面直角坐标系xOy 中,已知点()1,m -,()2,n 在二次函数23y xbx =+-的图象上.(1)当m n =时,求b 的值;(2)在(1)的条件下,当32x -<<时,求y 的取值范围.【答案】(1)1b =-(2)1394y -≤<【解析】【分析】(1)将点()1,m -,()2,n 代入23y xbx =+-可得2m b =--,12n b =+,结合m n =,再建立方程求解即可;(2)由22113324y x x x ⎛⎫=--=-- ⎪⎝⎭可得函数最小值,再分别计算3x =-,2x =时的函数值,从而可得答案.【小问1详解】解:将点()1,m -,()2,n 代入23y xbx =+-,得2m b =--,12n b =+,∵m n =,∴212b b --=+,∴1b =-.【小问2详解】∵22113324y x x x ⎛⎫=--=-- ⎪⎝⎭,∴当12x =时,最小值134y =-,当3x =-时,9y =,当2x =时,1y =-,∴当32x -<<时,y 的取值范围为1394y -≤<.【点睛】本题考查的是利用待定系数法求解二次函数的解析式,二次函数的图象与性质,熟练的利用图象性质求解函数值的取值范围是解本题的关键.18.定义:如果关于x 的一元二次方程()200ax bx c a ++=≠满足0a b c -+=,那么我们称这个方程为“黄金方程”.(1)判断一元二次方程22530x x ++=是否为黄金方程,并说明理由.(2)已知230x ax b -+=是关于x 的黄金方程,若a 是此黄金方程的一个根,求a 的值.【答案】(1)一元二次方程22530x x ++=是黄金方程,理由见解析(2)1a =-或32a =【解析】【分析】(1)根据黄金方程的定义进行求解即可;(2)根据黄金方程的定义得到3b a =--,则原方程为2330x ax a ---=,再由a 是此黄金方程的一个根,得到2230a a --=,解方程即可.【小问1详解】解:一元二次方程22530x x ++=是黄金方程,理由如下:由题意得,253a b c ===,,,∴2350a b c -+=+-=,∴一元二次方程22530x x ++=是黄金方程;【小问2详解】解:∵230x ax b -+=是关于x 的黄金方程,∴()30b a +--=,∴3b a =--,∴原方程为2330x ax a ---=,∵a 是此黄金方程的一个根,∴22330a a a ---=,即2230a a --=,∴()()1230a a +-=,解得1a =-或32a =.【点睛】本题主要考查了解一元二次方程,一元二次方程解的定义,正确理解题意是解题的关键.五、(本大题共2小题,每小题10分,满分20分)19.已知关于x 的方程()23260x k x k +--=.若等腰三角形ABC 的一边6a =,另两边长b ,c 恰好是这个方程的两个根,求ABC 的周长.【答案】周长为14【解析】【分析】当0∆≥时,求出k 值,进而找出方程的根,再进行分类讨论从而得出三角形的周长.【详解】解:∵22224(32)4(6)9124(32)0b ac k k k k k ∆=-=--⋅-=++=+≥,∴无论k 取何值,方程总有实数根.①若6a =为底边,则b ,c 为腰长,则b c =,则Δ0=,∴()2320k +=,解得23k =-.此时原方程化为2440x x -+=,∴122x x ==,即2b c ==.此时ABC 三边为6,2,2,不能构成三角形,舍去;②若6a =为腰,则b ,c 中一边为腰,不妨设6b a ==,将6x =代入方程,得()2663260k k +--=,解得2k =-,则原方程化为28120x x -+=,∴12x =,26x =,即6b =,2c =,此时ABC 三边为6,6,2,能构成三角形.综上所述,ABC 三边为662,,,∴周长为66214++=.【点睛】本题考查了根的判别式、三角形的三边关系以及等腰三角形的性质,掌握根的判别式是解题的关键.20.某社区在开展“美化社区,幸福家园”活动中,计划利用如图所示的直角墙角(阴影部分,两边足够长),用50米长的篱笆围成一个矩形花园ABCD (篱笆只围AB ,AD 两边).(1)若花园的面积为400米2,求AB 的长;(2)若在直角墙角内点P 处有一棵桂花树,且与墙BC ,CD 的距离分别是10米,30米,要将这棵树围在矩形花园内(含边界,不考虑树的粗细),则花园的面积能否为625米2?若能,求出AB 的值;若不能,请说明理由.【答案】(1)10米或40米(2)不能,见解析【解析】【分析】(1)设AB 的长为x 米,则BC 的长为()50x -米,由矩形的面积公式列出方程,解方程即可得到答案;(2)设AB 的长为x 米,则BC 的长为()50x -米,由矩形的面积公式列出方程,解方程即可得到答案.【小问1详解】解:设AB 的长为x 米,则BC 的长为()50x -米,由题意得:()50400x x -=,解得:121040x x ==,,即AB 的长为10米或40米;【小问2详解】解:花园的面积不能为625米2,理由如下:设AB 的长为x 米,则BC 的长为()50x -米,由题意得:()50625x x -=,解得:1225x x ==,当25x =时,50502525BC x =-=-=,即当25AB =米,25BC =米<30米,∴花园的面积不能为625米2.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.六、(本题满分12分)21.在平面直角坐标系中,抛物线()2220y x mx m m x =-+-+≥的顶点为A ,与y 轴相交于点B .(1)点A 的坐标为________,点B 的坐标为________;(用含m 的式子表示)(2)设抛物线()2220y x mx m m x =-+-+≥的函数图象最高点的纵坐标为n .①当1m =时,n =________;当1m =-时,n =________;②写出n 关于m 的函数解析式及自变量m 的取值范围.【答案】(1)(),m m ,()20,m m -+(2)①1,2-;②2,0,0m m n m m m ≥⎧=⎨-+<⎩【解析】【分析】(1)首先将抛物线转化成顶点式,即可求出A 点坐标,然后将0x =代入即可求出B 点坐标;(2)①首先将抛物线转化成顶点式,分别将1m =或1m =-代入求解即可;②首先将抛物线转化成顶点式,然后根据二次函数的性质求解即可.【小问1详解】∵()2222y x mx m m x m m =-+-+=--+,∴(),A m m ,令0x =,则2222y x mx m m m m =-+-+=-+,∴()20,B m m -+.故答案为:(),m m ,()20,m m -+;【小问2详解】()()22220y x mx m m x m m x =-+-+=--+≥.①当1m =时,()()2110y x x =--+≥,则函数的最高点为()1,1;当1m =-时,()()2110y x x =-+-≥,则函数的最高点为()0,2-,故答案为:1,2-.②()2222y x mx m m x m m =-+-+=--+,则抛物线的对称轴为x m =.当0m ≥时,()()20y x m m x =--+≥的图象过顶点(),m m ,则n m =;当0m <时,()()20y x m m x =--+≥的图象都在对称轴的右侧,y 随x 的增大而减小,所以函数的最高点为()20,m m -+,则2n m m =-+,综上,2,0,0m m n m m m ≥⎧=⎨-+<⎩.【点睛】此题考查了二次函数的性质,解题的关键是熟练掌握二次函数的性质.七、(本题满分12分)22.已知关于x 的一元二次方程22210x kx k k -+++=有两个实数根.(1)试求k 的取值范围;(2)若221210x x +=,求k 的值;(3)若此方程的两个实数根为1x ,2x ,且满足122x x +=,试求k 的值.【答案】(1)1k ≤-(2)2k =-(3)1k =-【解析】【分析】(1)根据方程的系数结合根的判别式0∆≥,即可得出关于k 的一元一次不等式,解之即可得出k 的取值范围;(2)由根与系数的关系可得出122x x k +=,2121x x k k =++,结合221210x x +=可得出关于k 的方程,解之即可得出k 的值;(3)由(2)可知:122x x k +=,2121x x k k =++,根据22131024k k k ⎛⎫++=++> ⎪⎝⎭,可得120x x >,即由122x x +=,可得22112224x x x x ++=,进而可得22112224x x x x ++=,则有()2124x x +=,即()224k =,问题得解.【小问1详解】∵关于x 的一元二次方程22210x kx k k -+++=有两个实数根,∴()()222Δ424110b ac k k k =-=--⨯⨯++≥,解得:1k ≤-;【小问2详解】∵方程22210x kx k k -+++=的两个实数根为1x ,2x ,∴122x x k +=,2121x x k k =++,∵221210x x +=,∴222121212()210x x x x x x +=+-=,∴()22(2)2110k k k -++=,整理得:260k k --=,解得:3k =或者2k =-,∵根据(1)有1k ≤-,即2k =-;【小问3详解】由(2)可知:122x x k +=,2121x x k k =++,∵22131024k k k ⎛⎫++=++> ⎪⎝⎭,∴120x x >,∵122x x +=,∴()2124x x +=,∴22112224x x x x ++=,∵120x x >,∴22112224x x x x ++=,∴()2124x x +=,∴()224k =,∴1k =±,∵根据(1)有1k ≤-,即1k =-.【点睛】本题考查了一元二次方程根的判别式,一元二次方程根与系数的关系,熟练掌握一元二次方程根的判别式和根与系数的关系,灵活运用完全平方公式的变形是解题的关键.八、(本题满分14分)23.如图,抛物线2y x bx c =-++的图象与x 轴交于点()30A -,和点C ,与y 轴交于点()0,3B .(1)求抛物线的解析式;(2)设点P 为抛物线的对称轴上一动点,当PBC 的周长最小时,求点P 的坐标;(3)在第二象限的抛物线上,是否存在一点Q ,使得ABQ 的面积最大?若存在,求出点Q 的坐标;若不存在,请说明理由.【答案】(1)抛物线的解析式为223y x x =--+(2)点P 坐标为()1,2-(3)存在,点Q 的坐标为315,24⎛⎫-⎪⎝⎭【解析】【分析】(1)利用待定系数法求解即可;(2)易得抛物线的对称轴为1x =-,又可求出()1,0C .连接AB 与对称轴1x =-的交点即为所求点P .利用待定系数法即可求出直线AB 的解析式,令=1x -,则2y =,即点P 坐标为()1,2-;(3)设()2,23Q x x x --+是第二象限的抛物线上一点,过点Q 作QD x ⊥轴交直线AB 于点E ,则点E 的坐标为(),3x x +,从而可求出23QE x x =--,再根据ABQ BQE AQE S S S =+△△△,结合二次函数的性质即可求解.【小问1详解】解:∵抛物线2y x bx c =-++的图象经过点()30A -,和点()0,3B ,∴0933b c c =--+⎧⎨=⎩,解得23b c =-⎧⎨=⎩,∴抛物线的解析式为223y x x =--+;【小问2详解】解:()222314y x x x =--+=-++,∴抛物线的对称轴为1x =-,令2230y x x =--+=,解得:13x =-,21x =,∴()1,0C .∵点C 与点A 关于直线1x =-对称,∴连接AB 与对称轴1x =-的交点即为所求点P .设直线AB 的解析式为y kx m =+,∴303k m m -+=⎧⎨=⎩,解得:13k m =⎧⎨=⎩,∴直线AB 的解析式为3y x =+;当=1x -时,2y =,∴点P 坐标为()1,2-;【小问3详解】存在.设()2,23Q x x x --+是第二象限的抛物线上一点,过点Q 作QD x ⊥轴交直线AB 于点E ,∴点E 的坐标为(),3x x +,∴2223(3)3QE x x x x x =--+-+=--,∴()22133327322228ABQ BQE AQES S S QE OA x x x ⎛⎫=+=⋅=-+=-++ ⎪⎝⎭△△△,∴当32x =-时,ABQ S △取得最大值,此时215234y x x =--+=,∴315,24Q ⎛⎫- ⎪⎝⎭.综上,在第二象限的抛物线上,存在一点Q ,使得ABQ 的面积最大,且点Q 的坐标为315,24⎛⎫- ⎪⎝⎭.【点睛】本题为二次函数综合题,考查利用待定系数法求函数解析式,二次函数的图象和性质等知识.利用数形结合的思想是解题关键.。

重庆市第八中学2023-2024学年九年级上学期第一次月考数学试题及参考答案

重庆市第八中学2023-2024学年九年级上学期第一次月考数学试题及参考答案

重庆八中2023—2024学年上期初三年级第一学月考试数学试题(全卷共四个大题,满分150分,考试时间120分钟)一、选择题:(本大题10个小题,每小题4分,共40分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上题号右侧正确答案所对应的方框涂黑.1.tan45°的值为( )A.1B.1−2.下列图案中是中心对称图形的是( )A. B. C. D.3.估计的值在( ) A.3到4之间B.4到5之间C.5到6之间D.6到7之间4.如图,AF 是BAC ∠的角平分线,DF AC ,若60BDF ∠=°,则1∠的度数为( )A.20°B.25°C.30°D.45°5.一辆汽车的速度()km /h 与时间()min 之间的变化关系如图所示,则下列说法正确的是( )A.速度是自变量,时间是因变量B.汽车在3min 加时,行驶的路程为30kmC.汽车在3~8min 加应时停止运动D.汽车最快的速度是30km /h6.如图,在平面直角坐标系中,已知()12,8A ,()6,4D ,()2,3E ,ABC △与DEF △位似,原点O 是位似中心,则B 点的坐标是( )A.()4,5B.()4,6C.()5,6D.()5,57.二次函数()20y ax bx c a ++≠的顶点坐标为()1,m ,其部分图象如图所示.以下结论错误的是( )A.0a >B.0abc >C.240ac b −<D.30a c +<8.下列图形都是由相同的小正方形按照一定规律摆放而成的,照此规律排列下去,第1个图形中小正方形的个数是3个,第2个图形中小正方形的个数是8个,第3个图形中小正方形的个数是15个,则第5个图形中小正方形的个数是( )A.24B.30C.35D.489.如图,ABC △为等腰直角三角形,BD AB ⊥于点B ,CE AD ⊥于点E ,连接BE ,设CAE x ∠=,若2CE AE =,则ABE ∠可表示为( )A.12x B.152x+°C.45x −°D.60x °−10.数和形是数学的两个主要研究对象,我们经常运用数形结合、数形转化的方法解决一些数学问题,比如12x x −表示在数轴上数1x ,2x 对应的点之间的距离.现定义一种“F 运算”,对于若干个数,先将每两个数作差,再将这些差的绝对值进行求和.例如:对1−,1,2进行“F 运算”,得1112126−−+−−+−=.下列说法:①对m ,1−进行“F 运算”的结果是3,则m 的值是2;②若2x y <<,对于2,x ,y 进行“F 运算”的结果是8,则y 的值是8; ③对a ,a ,b ,c 进行“F 运算”,化简的结果可能存在6种不同的表达式. 其中正确的个数为( ) A.0B.1C.2D.3二、填空题:(本大题8个小题,每小题4分,共32分)请将每小题的答案直接填在答题卡中对应的横线上.11.计算:01−=______. 12.从六边形ABCDEF 的顶点A 出发,可以画出______条对角线。

九年级上册数学第一次月考试卷含答案

九年级上册数学第一次月考试卷含答案

九年级上册数学第一次月考试卷含答案选择题 (每题4分,共40分)1. 在数轴上, 表示 -2/3 数点处的有理数是:A. -2B. -1C. 0D. 12. 若 a 是大于 0 的实数,那么 a 的倒数是:A. -aB. 1/aC. aD. -1/a3. 已知正整数 a, b 满足 a^b = 3^2. 则 a = _____ b = ______.A. 3, 2B. 2, 3C. 9, 1D. 1, 94. 当 x = 3 时,方程 4x - 5 = 7 - 3x 的解是:A. 5B. 2C. -2D. -55. 若 a 和 b 是正整数且 a:b = 5:3, 则 a + b 是 _______.A. 5:3B. 3:5C. 8:3D. 8:5...简答题 (每题10分,共50分)1. 用各自的最大公约数来判断下列各对分数是否互为约简分数,若是,写“是”,如果不是,写“否”。

A. 9/27, 4/6B. 12/18, 2/3C. 5/15, 20/60答案:A. 否B. 是C. 否2. 已知正整数 a, b 满足 a + b = 35, a - b = 11. 求 a 和 b 的值。

答案:a = 23,b = 123. 解下列方程组:3x + 2y = 7x - 2y = -5答案:x = -1, y = 34. 如果直接投放到垃圾箱的生活垃圾为 x,一桶放生垃圾的容量为 y,那么 x 与 y 的关系图象是什么样的?答案:直线...计算题 (共10分)1. 已知一组数据:4,7,9,10,11,15,18. 求这组数据的平均数。

答案:64/72. 按秒计的1分钟是多少秒?答案:60秒...。

人教版九年级上第一次月考数学试题(含答案)

人教版九年级上第一次月考数学试题(含答案)

上学期九年级第一次月考数学试卷一、选择题(每题3分共30分)1、下列选项中一定是关于x 的一元二次方程的是( )(A )221xx +(B )bx ax +2(C )()()121=+-x x (D )052322=--y xy x 2、设a=19-1,a 在两个相邻整数之间,则这两个整数是( )A .1和2B .2和3C .3和4D .4和53、下列运算正确的是( ) A.25=±5 B.43-27=1 C.18÷2=9 D.24·32=6 4、方程(x +1)(x -2)=x +1的解是( )(A )2 (B )3 (C )-1,2 (D )-1,35、关于x 的方程ax 2-2x +1=0中,如果a<0,那么根的情况是( )(A )有两个相等的实数根 (B )有两个不相等的实数根(C )没有实数根 (D )不能确定6、已知关于x 的方程x 2+bx +a =0有一个根是-a (a≠0),则a -b 的值为( )A .-1B .0C .1D .2 7、下列二次根式中,最简二次根式是( ).(A) . 8、下列各式中,正确的有( )个3- 3=-3± (-2)2的算术平方根是±2 A 、1 B 、2 C 、3 D 、4 9.已知关于x 的一元二次方程(a -1)x 2-2x+1=0有两个不相等的实数根,则a 的取值范围是( )A.a<2 B,a>2 C.a<2且a ≠1 D.a<-2·10、某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均2x 11的结果是12、如果代数式有意义,那么x 的取值范围是13、若方程013)2-(||=++mx x m m 是关于x 的一元二次方程,则m 的值为14、计算的结果是15、用配方法解方程22250x x --=时,将原方程化为的形式,应变为16、若x=2是关于x 的方程2250x x a --+=的一个根,则的a 为___17、以-2和3为根,且二次项系数为1的关于x 的一元二次方程为18、若方程042=+-mx x 有两个相等的实数根,则m = ,两个根分别为19、若分式1322+--x x x 的值为0,则x 的值为 20、已知a 、b 是一元二次方程x 2-2x -1=0的两个实数根,则代数式(a -b )(a +b -2)+ab 的值等于________.三、解答题(60分)21、计算下列各题(每题3分,共6分)221-631+80(3)1--22、(每题4分,共8分)下列一元二次方程(1) 3x 2–4x –1=0 (2) 4x 2–8x +1=0(用配方法)23、(本题6分)方程+bx+c=0两根分别是23+,23-,b,c 的值24、(本题7分)一次函数2y x =+与反比例函数k y x =,其中一次函数2y x =+的图象经过点P (k ,5).①试确定反比例函数的表达式;②若点Q 是上述一次函数与反比例函数图象在第三象限的交点,求点Q 的坐标25、(本题7分)方程0)1(2)13(2=+++-a x a ax 有两个不相等的实根1x 、2x ,且有=+ax--1xxx,求a的值121226、(本题7分)一元二次方程x2+2x+k-1=0的实数解是x1和x2.(1)求k的取值范围;(2)如果y=+-x 1x2,求y的最小值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级上册数学第一次月考试题(含答案)
班级__________姓名___________ 记分______
一、选择题(每小题3分,共30分)
1.四个数-5,-0.1,2
1
,3中为无理数的是( )
A. -5
B. -0.1
C. 2
1
D. 3
2.已知□ABCD 的周长为32,AB=4,则BC=( )
A. 4
B. 12
C. 24
D. 28
3. 下列式子中,x 的取值范围是x ≥3的是( ) (A )3
1
-=
x y (B )3
1-=x y
(C )3-=x y (D )3-=x y
4、下列图形中,既是轴对称图形,又是中心对称图形的是 ( )
( A ) ( B ) ( C ) ( D )
5.从下列四张印有汽车品牌标志图案的卡片中是中心对称称图形的卡片是( )
(A) (B) (C) (D)
6.下列运算正确的是( ) A .-3(x -1)=-3x -1 B .-3(x -1)=-3x +1 C .-3(x -1)=-3x -3 D .-3(x -1)=-3x +3
7.在△ABC 中,D 、E 分别是边AB 、AC 的中点,若BC =5,则DE 的长是( ) A .2.5 B .5 C .10 D .15 8.若a <1,化简2(1)1a --=( )
A .a ﹣2
B .2﹣a
C .a
D .﹣a
9. ⊙O 的半径为R ,点P 到圆心O 的距离为d ,并且d≥R ,则P 点 〔 〕 A.在⊙O 内或圆周上 B.在⊙O 外
C.在圆周上
D.在⊙O 外或圆周上
10.若a<c<0<b ,则abc 与0的大小关系是( )
A. abc<0
B. abc=0
C. abc>0
D. 无法确定
二、填空补缺(每题3分)
1、在⊙O 中,弦AB 垂直并且平分一条半径,则劣弧AB 的度数等于________
2、直线a 上有一点到圆心O 的距离等于⊙O 的半径,则直线a 与⊙O 的位置关系是_____
3、若方程x 2+x+k=0的根的判别式的值为5,则k 的值是_________
4、已知两圆的圆心距是9,两圆的半径是方程x 2-12x+35=0的两根, 则两圆有______条切线。

5、如果等腰梯形有一个内切圆并且它的中位线等于20cm ,则梯形的腰长为________
6、x 1、x 2是3x 2+6x+3=0的两个根,则x 1+x 2 是________,x 1 × x 2是____________
7.、由一已知点P 到圆上各点的最大距离为5,最小距离为1,则圆的半径为________
8
的倒数是
9、方程(2)0x x +=的根是______________
10.、请你写几个你熟悉的既是中心对称,又是轴对称的图形:__________。

三、计算、化简、解答题(每题5分) 1、
()()2
2
921+ 2、
18148-⨯
3、
)5(93
1
-⨯ 4、)28(8-÷-
5、8
20
3122⨯ 6、5
2
1312321⨯÷
7、如图,实数a 、b 在数轴上的位置,化简
8、关于x 的一元二次方程)0(012
≠=++a bx ax 有两个相等的实数根,求4
)2(222
-+-b a ab
四、解方程(1——5每题4分,6题5分)
1、9x 2 = 16
2、x 2+6x = 7
3、X 2 - 8x + 15 = 0
4、x (x – 4)= - 3
5(2x + 1)2+ 15 = 8(2x + 1) 6、(3x – 5)(x – 2)= 1
五、应用题(每题5分)1、用100m 的铁条能围成600m 2的矩形框吗?为什么?
2、某服装店销售衣服每件可盈利10元,每天可售出500件,如果每件涨1元,每天销量会减少20件,商店为盈利6000元,同时又要让顾客得到实惠,那么每件应该涨多少元?
3、某次同学聚会互送礼品共420件,有多少同学参加聚会?
4、如图,在R t △ABC 中,内切圆⊙O 分别与AB 、AC 、BC 相切,且AB=5,AC=13,求内切圆的半径。

5、关于x 的一元二次方程2x 2+3x+m=0的两个实数根的倒数之和为3,求实数m 的值。

九年级上册数学第一次月考试题答案
一、1、D 2、B 3、D 4、B 5、C 6、D 7、A 8、D 9、D 10、C
二、1、120° 2、相切 3、k=-1 4、两 5、20cm
9、0,-2 10、矩形、棱形、圆
6、-2,1
7、4
8、
3
三、1、30 2、3、4、
7
5、6、1 7、-2b 8、4
四、1、4
±2、-7 3、3,5 4、1,3 5、1,2 6
3
五、1、20,30 2、5,10(舍去)3、21,-20(舍去)4、2 5、-1。

相关文档
最新文档