圆与扇形.题库练习

合集下载

圆和扇形单元测试题

圆和扇形单元测试题

圆和扇形单元练习题一、填空1、圆的半径为4厘米, 它的周长是________厘米2、圆的周长是9.42cm, 则它的半径是________3、圆的直径为5cm, 则它的面积是________4、若36°的圆心角所对的弧长为12.56cm, 则此弧所对的圆的半径为_________cm5、一弧长为18.84cm, 这弧的半径为4cm, 则弧所对的圆心角为_______度6、圆心角为45°, 半径为8厘米的扇形, 它的周长是________厘米7、已知圆心角为120°的扇形弧长为12.56厘米, 则扇形的面积是________一条弧长是圆周长的, 则此弧所对的圆心角是_________度10、一个圆环的面积是小圆面积的8倍, 则大圆半径是小圆半径的_________倍11.甲圆的半径是乙圆半径的, 那么乙圆面积是甲圆面积的________12.一段弧长是12.56厘米, 占圆周长的, 则这段弧所在圆的周长是__________13.一个圆的面积扩大到原来的9倍, 那么圆的周长扩大到原来的_________倍14、一个扇形的面积是15.7平方厘米, 圆心角是90°, 则这个扇形所在圆的面积是_______平方厘米。

15.把一个圆分成两个不等的扇形, 且大扇形的面积是小扇形面积的倍, 则小扇形的圆心角是________16.在一个面积为10平方厘米的正方形纸上剪下一个最大的圆, 这个圆的面积是______17、一半圆的周长为10.28m, 则半圆的面积为_______三、简答题1.如图, 已知r=2cm;求阴影部分的周长及面积2.已知一个扇形的面积为37.68平方厘米, 这个扇形的圆心角为270度, 这个扇形的半径和周长各是多少?3.如图, 已知OC=4cm,OD=2cm;∠AOC=60°,求阴影部分的周长和面积。

4.正方形的边长为4cm , 求阴影部分的周长及面积5.求阴影部分的周长和面积6如图, 图中长方形面积和圆面积相等, 已知圆周长为9.42cm, 求阴影部分的周长及面积。

小学奥数 几何类 曲线图形 圆与扇形(一).题库版

小学奥数  几何类  曲线图形 圆与扇形(一).题库版

研究圆、扇形、弓形与三角形、矩形、平行四边形、梯形等图形组合而成的不规则图形,通过变动图形的位置或对图形进行分割、旋转、拼补,使它变成可以计算出面积的规则图形来计算它们的面积.圆的面积2πr =;扇形的面积2π360nr =⨯;圆的周长2πr =;扇形的弧长2π360nr =⨯.一、跟曲线有关的图形元素:①扇形:扇形由顶点在圆心的角的两边和这两边所截一段圆弧围成的图形,扇形是圆的一部分.我们经常说的12圆、14圆、16圆等等其实都是扇形,而这个几分之几表示的其实是这个扇形的圆心角占这个圆周角的几分之几.那么一般的求法是什么呢?关键是360n.比如:扇形的面积=所在圆的面积360n⨯;扇形中的弧长部分=所在圆的周长360n⨯扇形的周长=所在圆的周长360n⨯+2⨯半径(易错点是把扇形的周长等同于扇形的弧长) ②弓形:弓形一般不要求周长,主要求面积.一般来说,弓形面积=扇形面积-三角形面积.(除了半圆)③”弯角”:如图:弯角的面积=正方形-扇形④”谷子”:如图: “谷子”的面积=弓形面积2⨯二、常用的思想方法:①转化思想(复杂转化为简单,不熟悉的转化为熟悉的) ②等积变形(割补、平移、旋转等) ③借来还去(加减法)④外围入手(从会求的图形或者能求的图形入手,看与要求的部分之间的”关系”)板块一 平移、旋转、割补、对称在曲线型面积中的应用【例 1】 如图,圆O 的直径AB 与CD 互相垂直,AB =10厘米,以C 为圆心,CA 为半径画弧。

求月牙形例题精讲圆与扇形ADBEA (阴影部分)的面积。

D【考点】圆与扇形 【难度】3星 【题型】解答 【关键词】2006年,第11届,华杯赛,决赛,第9题,10分【解析】 ①月牙形ADBEA (阴影部分)的面积=半圆的面积+△ABC 的面积-扇形CAEBC 的面积②月牙形ADBEA 的面积=211π525π502524⨯⨯+-⨯⨯=(平方厘米),所以月牙形ADBEA 的面积是25平方厘米。

圆与扇形专练(答案版)

圆与扇形专练(答案版)

圆与扇形专练1、如,求阴影部分的面积。

(单位:㎝)【参考答案】3.14×3×3÷4+3.14×2×2÷4-3×2=4.205(平方厘米)答:阴影部分的面积为4.205平方厘米。

2、求下列图形中阴影部分的面积(单位:㎝)【参考答案】1×2=2(平方厘米)答:阴影部分的面积为2平方厘米。

3、已知正方形的面积为12平方厘米,求阴影部分的面积。

【参考答案】3.14×12×3/4 =28.26(平方厘米)答:阴影部分的面积为28.26平方厘米4、已经半圆的直径为9㎝,求阴影部分的面积。

6÷2=3(cm)3.14×3×3÷2-6×3÷2=5.13(cm)5.13×2=10.26(平方厘米)答:阴影部分的面积是10.26平方厘米。

5、如图3,求阴影部分的面积。

(单位:㎝)(12+8)÷2=10(cm)12÷2=6(cm)8÷2=4(厘米)阴影部分的面积:3.14×102×1/2-3.14×62×1/2+3.14×42×1/2=157-56.52+25.12=125.6(平方厘米)答:阴影部分面积是125.6平方厘米。

6、图中阴影部分甲的面积比阴影部分乙的面积大57平方厘米,AB=20厘米,CB 垂直于AB,求BC的长。

解:(S甲+S空白)-(S乙+S空白)=57S△ABC=157-57=100(平方厘米)100×2÷20=10(厘米)答:BC的长是10厘米。

7、下图三角形ABC是直角三角形,阴影①的面积比阴影②的面积小23平方厘米,求BC的长。

1/2 ×3.14 ×10 ×10=157 (平方厘米)(157+23)×2÷20=18 (平方厘米)答:BC的长是18平方厘米。

圆与扇形(24套).doc

圆与扇形(24套).doc

圆与扇形练习题(一)1、下图中每一个小正方形的面积是1平方厘米,那么格线部分的面积是多少平方厘米?2、下图中每一个小正方形的面积是1平方厘米,那么格线部分的面积是多少平方厘米?3、如图,在18 8的方格纸上,画有1,9,9,8四个数字.那么,图中的阴影面积占整个方格纸面积的几分之几?4、在4×7的方格纸板上面有如阴影所示的”6”字,阴影边缘是线段或圆弧.问阴影面积占纸板面积的几分之几?5、(人大附中分班考试题)如图,正方形边长为1,正方形的4个顶点和4条边分别为4个圆的圆心和半径,求阴影部分面积.(π取3.14)6、图中的4个圆的圆心是正方形的4个顶点,它们的公共点是该正方形的中心.如果每个圆的半径都是1厘米,那么阴影部分的总面积是多少平方厘米?圆与扇形练习题(二)1.如右图,有8个半径为1厘米的小圆,用它们的圆周的一部分连成一个花瓣图形,图中的黑点是这些圆的圆心.则花瓣图形的面积是多少平方厘米? (π取3)42.如图中三个圆的半径都是5cm,三个圆两两相交于圆心.求阴影部分的面积和.(圆周率取3.14)3.如图,大圆半径为小圆的直径,已知图中阴影部分面积为1S ,空白部分面积为2S ,那么这两个部分的面积之比是多少?(圆周率取3.14)4.计算图中阴影部分的面积(单位:分米).A5、如图,阴影部分的面积是多少?6、请计算图中阴影部分的面积.圆与扇形练习题(三)1、 求图中阴影部分的面积.2、求如图中阴影部分的面积.(圆周率取3.14)(2)ba(1)10343、求下列各图中阴影部分的面积.4、求下列各图中阴影部分的面积(图中长度单位为cm ,圆周率按3计算):5、 如图,ABCD 是正方形,且1FA AD D E ===,求阴影部分的面积.(取π3=)6、求图中阴影部分的面积(单位:cm ).2圆与扇形练习题(四)1、 如图,长方形ABCD 的长是8cm ,则阴影部分的面积是 2cm .(π 3.14=)5cm 7.5cm3cm 2cm ④③②①E2、 (2007年西城实验期末考试题)如图所示,在半径为4cm 的图中有两条互相垂直的线段,阴影部分面积A与其它部分面积B 之差(大减小)是 2cm .3、一块圆形稀有金属板平分给甲、乙二人.但此金属板事先已被两条互相垂直的弦切割成如图所示尺寸的四块.现甲取②、③两块,乙取①、④两块.如果这种金属板每平方厘米价值1000元,问:甲应偿付给乙多少元?4、 求右图中阴影部分的面积.(π取3)5、 (第四届走美决赛试题)如图,边长为3的两个正方形BDKE 、正方形DCFK 并排放置,以BC 为边向内侧作等边三角形,分别以B 、C 为圆心,BK 、CK 为半径画弧.求阴影部分面积.(π 3.14=)圆与扇形练习题(五)1、如图,已知扇形BAC 的面积是半圆ADB 面积的34倍,则角CAB 的度数是________.DCBA3、 如下图,直角三角形ABC 的两条直角边分别长6和7,分别以,B C 为圆心,2为半径画圆, 已知图中阴影部分的面积是17,那么角A 是多少度(π3=)4、 如图,大小两圆的相交部分(即阴影区域)的面积是大圆面积的415,是小圆面积的35.如果量得小圆的半径是5厘米,那么大圆半径是多少厘米?5、 有七根直径5厘米的塑料管,用一根橡皮筋把它们勒紧成一捆(如图),此时橡皮筋的长度是多少厘米?(π取3)6、 如图,边长为12厘米的正五边形,分别以正五边形的5个顶点为圆心, 12厘米为半径作圆弧,请问:中间阴影部分的周长是多少?(π 3.14=)7、 如图是一个对称图形.比较黑色部分面积与灰色部分面积的大小,得:黑色部分面积________灰色部分面积.圆与扇形练习题(六)1、 用一块面积为36平方厘米的圆形铝板下料,从中裁出了7个同样大小的圆铝板.问:所余下的边角料的总面积是多少平方厘米?2、 如图,若图中的圆和半圆都两两相切,两个小圆和三个半圆的半径都是1.求阴影部分的面积.3、 如图所示,求阴影面积,图中是一个正六边形,面积为1040平方厘米,空白部分是6个半径为10厘米的小扇形.(圆周率取3.14)4、 (09年第十四届华杯赛初赛)如下图所示,AB 是半圆的直径,O 是圆心,AC CD DB ==,M 是 CD 的中点,H 是弦CD 的中点.若N 是OB 上一点,半圆的面积等于12平方厘米,则图中阴影部分的面积是 平方厘米.5、如图,C 、D 是以AB 为直径的半圆的三等分点,O 是圆心,且半径为6.求图中阴影部分的面积.6、如图,两个半径为1的半圆垂直相交,横放的半圆直径通过竖放半圆的圆心,求图中两块阴影部分的面积之差.(π取3)圆与扇形练习题(七)1、 如图,两个正方形摆放在一起,其中大正方形边长为12,那么阴影部分面积是多少?(圆周率取3.14)2、 如右图,两个正方形边长分别是10和6,求阴影部分的面积.(π取3)3、 如图,ABC 是等腰直角三角形,D 是半圆周的中点,BC 是半圆的直径.已知10AB BC ==,那么阴影部分的面积是多少?(圆周率取3.14)4、 图中给出了两个对齐摆放的正方形,并以小正方形中右上顶点为圆心,边长为半径作一个扇形,按图中所给长度阴影部分面积为 ;(π 3.14=)5、 如图,图形中的曲线是用半径长度的比为2:1.5:0.5的6条半圆曲线连成的.问:涂有阴影的部分的面积与未涂有阴影的部分的面积的比是多少?圆与扇形练习题(八)1、 (2008年西城实验考题)奥运会的会徽是五环图,一个五环图是由内圆直径为6厘米,外圆直径为8厘米的五个环组成,其中两两相交的小曲边四边形(阴影部分)的面积都相等,已知五个圆环盖住的面积是77.1平方厘米,求每个小曲边四边形的面积.(π 3.14=)DC B2、 已知正方形ABCD 的边长为10厘米,过它的四个顶点作一个大圆,过它的各边中点作一个小圆,再将对边中点用直线连擎起来得右图.那么,图中阴影部分的总面积等于______方厘米.(π 3.14=)3、 如图,ABCD 是边长为a 的正方形,以AB 、BC 、CD 、DA 分别为直径画半圆,求这四个半圆弧所围成的阴影部分的面积.(π取3)4、如图,正方形ABCD 的边长为4厘米,分别以B 、D 为圆心以4厘米为半径在正方形内画圆.求阴影部分面积.(π取3)B5、(2008年四中考题)已知三角形ABC 是直角三角形,4cm AC =,2cm BC =,求阴影部分的面积.6、(奥林匹克决赛试题)在桌面上放置3个两两重叠、形状相同的圆形纸片.它们的面积都是100平方厘米,盖住桌面的总面积是144平方厘米,3张纸片共同重叠的面积是42平方厘米.那么图中3个阴影部分的面积的和 是平方厘米.圆与扇形练习题(九)1、(2008年国际小学数学竞赛)如图所示,ABCD 是一边长为4cm 的正方形,E 是AD 的中点,而F 是BC 的中点.以C 为圆心、半径为4cm 的四分之一圆的圆弧交EF 于G ,以F 为圆心、半径为2cm 的四分之一圆的圆弧交EF 于H 点,若图中1S 和2S 两块面积之差为2π(cm )m n -(其中m 、n 为正整数),请问m n +之值为何?S 2S 1G HFE DCBAC332、在图中,两个四分之一圆弧的半径分别是2和4,求两个阴影部分的面积差.(圆周率取3.14)3、如图,矩形ABCD 中,AB =6厘米,BC =4厘米,扇形ABE 半径AE =6厘米,扇形CBF 的半径CB =4厘米,求阴影部分的面积.(π取3)4、求图中阴影部分的面积.5、如右图,正方形的边长为5厘米,则图中阴影部分的面积是 平方厘米,(π 3.14=)6、如图所示,阴影部分的面积为多少?(圆周率取3)圆与扇形练习题(十)1、已知右图中正方形的边长为20厘米,中间的三段圆弧分别以1O 、2O 、3O 为圆心,求阴影部分的面积.(π3=)I IAB CIO32、 一个长方形的长为9,宽为6,一个半径为l 的圆在这个长方形内任意运动,在长方形内这圆无法运动到的部分,面积的和是_____.(π取3)3、 已知半圆所在的圆的面积为62.8平方厘米,求阴影部分的面积.(π 3.14=)B4、 如图,等腰直角三角形ABC 的腰为10;以A 为圆心,EF 为圆弧,组成扇形AEF ;两个阴影部分的面积相等.求扇形所在的圆面积.5、 如图,直角三角形ABC 中,AB 是圆的直径,且20AB =,阴影甲的面积比阴影乙的面积大7,求BC长.(π 3.14=)6、三角形ABC 是直角三角形,阴影I 的面积比阴影II 的面积小225cm ,8cm AB =,求BC 的长度.圆与扇形练习题(十一)1、 如图,三角形ABC 是直角三角形,阴影部分①比阴影部分②的面积小28平方厘米,AB 长40厘米.求BC 的长度?(π取3.14)2、 (2009年十三分入学测试题)图中的长方形的长与宽的比为8:3,求阴影部分的面积.3、 如图,求阴影部分的面积.(π取3)4、 如图,直角三角形的三条边长度为6,8,10,它的内部放了一个半圆,图中阴影部分的面积为多少?65、 大圆半径为R ,小圆半径为r ,两个同心圆构成一个环形.以圆心O 为顶点,半径R 为边长作一个正方形:再以O 为顶点,以r 为边长作一个小正方形.图中阴影部分的面积为50平方厘米,求环形面积.(圆周率取3.14)6、图中阴影部分的面积是225cm ,求圆环的面积.圆与扇形练习题(十二)1、已知图中正方形的面积是20平方厘米,则图中里外两个圆的面积之和是 .(π取3.14)2、图中小圆的面积是30平方厘米,则大圆的面积是平方厘米.(π取3.14)3、图中大正方形边长为a,小正方形的面积是.4、一些正方形内接于一些同心圆,如图所示.已知最小圆的半径为1cm,请问阴影部分的面积为多少平方厘米?(取22π7 =)5.图中大正方形边长为6,将其每条边进行三等分,连出四条虚线,再将虚线的中点连出一个正方形(如图),在这个正方形中画出一个最大的圆,则圆的面积是多少?(π 3.14=)6.如下图所示,两个相同的正方形,左图中阴影部分是9个圆,右图中阴影部分是16个圆.哪个图中阴影部分的面积大?为什么?圆与扇形练习题(十三)1、如图,在33⨯方格表中,分别以A、E、F为圆心,半径为3、2、1,圆心角都是90°的三段圆弧与正方E O DC BA DA形ABCD 的边界围成了两个带形,那么这两个带形的面积之比12:?S S2、 如图中,正方形的边长是5cm ,两个顶点正好在圆心上,求图形的总面积是多少?(圆周率取3.14)3、 如下图,AB 与CD 是两条垂直的直径,圆O 的半径为15厘米,AEB 是以C 为圆心,AC 为半径的圆弧,求阴影部分面积.4、 如图,AB 与CD 是两条垂直的直径,圆O 的半径为15, AEB是以C 为圆心,AC 为半径的圆弧. 求阴影部分面积.ACB5、 如下图所示,曲线PRSQ 和ROS 是两个半圆.RS 平行于PQ .如果大半圆的半径是1米,那么阴影部分是多少平方米?(π取3.14)6、 在右图所示的正方形ABCD 中,对角线AC 长2厘米.扇形ADC 是以D 为圆心,以AD为半径的圆的一部分. 求阴影部分的面积.圆与扇形练习题(十四)1、某仿古钱币直径为4厘米,钱币内孔边缘恰好是圆心在钱币外缘均匀分布的等弧(如图).求钱币在桌面上能覆盖的面积为多少?9631293GDA2、 传说古老的天竺国有一座钟楼,钟楼上有一座大钟,这座大钟的钟面有10平方米.每当太阳西下,钟面就会出现奇妙的阴影(如右图).那么,阴影部分的面积是 平方米.3、图中是一个钟表的圆面,图中阴影部分甲与阴影部分乙的面积之比是多少?4已知三角形GHI 是边长为26厘米的正三角形,圆O 的半径为15厘米.90AOB COD EOF ∠=∠=∠=︒.求阴影部分的面积.5.如下图,两个半径相等的圆相交,两圆的圆心相距正好等于半径,AB 弦约等于半径为10厘米,求阴影部分的面积.6、 下图中,3AB =,阴影部分的面积是圆与扇形练习题(十五)1、如图,ABCD 是平行四边形,8cm AD =,10cm AB =,30DAB ∠=︒,高4cm CH =,弧BE 、DF 分别以AB 、CD 为半径,弧DM 、BN 分别以AD 、CB 为半径,则阴影部分的面积为多少?(精确到0.01)DA760︒30︒B1C1C2A2CBAⅢⅡⅠⅣⅢⅡⅠEDCBAA2、如图所示,两条线段相互垂直,全长为30厘米.圆紧贴直线从一端滚动到另一端(没有离开也没有滑动).在圆周上设一个定点P,点P从圆开始滚动时是接触直线的,当圆停止滚动时也接触到直线,而在圆滚动的全部过程中点P是不接触直线的.那么,圆的半径是多少厘米?(设圆周率为3.14,除不尽时,请四舍五入保留小数点后两位.如有多种答案请全部写出)P3、(第三届希望杯)将一块边长为12厘米的有缺损的正方形铁皮(如图)剪成一块无缺损的正方形铁皮,求剪成的正方形铁皮的面积的最大值.4、正三角形ABC的边长是6厘米,在一条直线上将它翻滚几次,使A点再次落在这条直线上,那么A点在翻滚过程中经过的路线总长度是多少厘米?如果三角形面积是15平方厘米,那么三角形在滚动过程中扫过的面积是多少平方厘米?(结果保留π)5、直角三角形ABC放在一条直线上,斜边AC长20厘米,直角边BC长10厘米.如下图所示,三角形由位置Ⅰ绕A点转动,到达位置Ⅱ,此时B,C点分别到达1B,1C点;再绕1B点转动,到达位置Ⅲ,此时A,1C点分别到达2A,2C点.求C点经1C到2C走过的路径的长.6、如图,一条直线上放着一个长和宽分别为4cm和3cm的长方形Ⅰ.它的对角线长恰好是5cm.让这个长方形绕顶点B顺时针旋转90°后到达长方形Ⅱ的位置,这样连续做三次,点A到达点E的位置.求点A走过的路程的长.圆与扇形练习题(十六)1、草场上有一个长20米、宽10米的关闭着的羊圈,在羊圈的一角用长30米的绳子拴着一只羊(见如图).问:CB A2、一只狗被拴在底座为边长3m 的等边三角形建筑物的墙角上(如图),绳长是4m ,求狗所能到的地方的总面积.(圆周率按3.14计算)3、如图是一个直径为3cm 的半圆,让这个半圆以A 点为轴沿逆时针方向旋转60︒,此时B 点移动到'B 点,求阴影部分的面积.(图中长度单位为cm ,圆周率按3计算).4、如图所示,直角三角形ABC 的斜边AB 长为10厘米,60ABC ∠=︒,此时BC 长5厘米.以点B 为中心,将ABC ∆顺时针旋转120︒,点A 、C 分别到达点E 、D 的位置.求AC 边扫过的图形即图中阴影部分的面积.(π取3)E5、如右图,以OA 为斜边的直角三角形的面积是24平方厘米,斜边长10厘米,将它以O 点为中心旋转90︒,问:三角形扫过的面积是多少?(π取3)6、如图,直角三角形ABC 中,B ∠为直角,且2BC =厘米,4AC = 厘米,则在将ABC ∆绕C 点顺时针旋转120︒的过程中,AB 边扫过图形的面积为 .(π 3.14=)圆与扇形练习题(十七)1、如图,ABC ∆是一个等腰直角三角形,直角边的长度是1米.现在以C 点为圆心,把三角形ABC 顺时针转90度,那么,AB 边在旋转时所扫过的面积是 平方米.(π 3.14=)ABC2、 (祖冲之杯竞赛试题)如图,ABCD 是一个长为4,宽为3,对角线长为5的正方形,它绕C 点按顺时针方向旋转90︒,分别求出四边扫过图形的面积.CBD A3、 (2004年第九届华杯赛初赛)半径为25厘米的小铁环沿着半径为50厘米的大铁环的内侧作无滑动的滚动,当小铁环沿大铁环滚动一周回到原位时,问小铁环自身转了几圈?⑵⑴A O A O4、如果半径为25厘米的小铁环沿着半径为50厘米的大铁环的外侧作无滑动的滚动,当小铁环沿大铁环滚动一周回到原位时,问小铁环自身转了几圈?⑴O A⑵OA5、如图所示,大圆周长是小圆周长的n (1n >)倍,当小圆在大圆内侧(外侧)作无滑动的滚动一圈后又回到原来的位置,小圆绕自己的圆心转动了几周?6.如图,15枚相同的硬币排成一个长方形,一个同样大小的硬币沿着外圈滚动一周,回到起始位置.问:这枚硬币自身转动了多少圈?圆与扇形练习题(十八)1、12个相同的硬币可以排成下面的4种正多边形(圆心的连线).用一个同样大小的硬币,分别沿着四个正多边形的外圈无滑动地滚动一周.问:在哪个图中这枚硬币自身转动的圈数最多,最多转动了多少圈?2、 一枚半径为1cm 的圆形硬币相互紧靠着平放在桌面上,让一枚硬币沿着它们的外轮廓滚过后回到原来的位置,那么与原A 点重合的点是______.硬币自己转动______,硬币圆心的运动轨迹周长为_______.3、 先做一个边长为2cm 的等边三角形,再以三个顶点为圆心,2cm 为半径作弧,形成曲边三角形(如左图).再准备两个这样的图形,把一个固定住(右图中的阴影),另一个围绕着它滚动,如右图那样,从顶点相接的状态下开始滚动.请问此图形滚动时经过的面积是多少平方厘米?(π 3.14=)CBA 2224、如图:求中间阴影面积与四边阴影的面积差。

圆的弧长与扇形面积综合练习题

圆的弧长与扇形面积综合练习题

圆的弧长与扇形面积综合练习题题1:已知一个半径为3cm的圆的弧长为12πcm,求扇形的面积。

题解:求扇形的面积时,需要知道扇形的圆心角和半径。

已知圆的弧长是12πcm,可以计算出圆心角的大小。

因为弧长等于半径乘以圆心角的弧度,所以可以得到12π = 3cm × 圆心角。

解方程可以得到圆心角为4π/3弧度。

扇形的面积等于圆心角占据的比例乘以整个圆的面积,所以扇形的面积为(4π/3)(π(3)^2) = 12π平方cm。

题2:若一个圆的半径是5cm,那么它的弧长和扇形面积各是多少?题解:已知圆的半径是5cm,它的弧长可以计算得出。

弧长等于半径乘以圆心角的弧度,所以弧长等于5cm ×圆心角。

圆心角的弧度可以通过圆弧长除以半径得到。

假设圆心角为θ弧度,则弧长为5θ。

要求扇形的面积,也需要知道圆心角的大小。

同样,我们可以利用扇形的面积公式,并确认圆心角的弧度为θ。

扇形的面积等于圆心角占据的比例乘以整个圆的面积。

所以扇形的面积为θ(π(5)^2) = 25θπ平方cm。

题3:已知一个扇形的半径是8m,扇形的面积是12π平方m,求圆心角和弧长各是多少?题解:已知扇形的半径是8m,扇形的面积是12π平方m。

要求圆心角的大小,可以利用扇形面积的公式,并确认圆心角的弧度为θ。

扇形的面积等于圆心角占据的比例乘以整个圆的面积,所以12π平方m = θ(π(8)^2)。

解方程可以得到θ = 3π/4。

要求弧长的大小,同样可以利用扇形的面积公式,但是需要先计算出圆心角的弧度。

扇形的面积等于圆心角占据的比例乘以整个圆的面积,所以12π平方m = (3π/4)(π(8)^2)。

解方程可以得到弧长为6πm。

题4:一个扇形的圆心角是π/2,弧长是4,求扇形的面积。

题解:已知扇形的圆心角是π/2,弧长是4。

要求扇形的面积,需要用到圆心角和半径的关系。

圆心角所占的比例乘以整个圆的面积就是扇形的面积。

所以扇形的面积等于(π/2)(πr^2),其中r表示圆的半径。

圆与扇形练习试题小学

圆与扇形练习试题小学

圆与扇形练习题一一、判断题:1、圆的面积和圆的半径成正比例。

()2、圆的面积和圆的半径的平方成正比例。

()3、圆的面积和圆的周长的平方成正比例。

()4、正方形的面积和边长成正比例。

()5、正方形的周长和边长成正比例。

()6、长方形的面积一定时,长和宽成反比例。

()7、长方形的周长一定时,长和宽成反比例。

()8、三角形的面积一定时,底和高成反比例。

()9、梯形的面积一定时,上底和下底的和与高成反比例。

()10、圆的周长和圆的半径成正比例。

()1、两个圆的周长相等,它们的直径也相等()2、圆的周长总是该圆直径的∏倍。

()3.大圆的圆周率比小圆的圆周率大。

()4、大圆的直径是小圆半径的4倍,那么大圆的周长是小圆周长的4倍。

()5、半圆的周长就是圆周长的一半。

()6、圆的半径扩大2倍,它的直径也扩大2倍,它的周长将会增加一倍。

()二、填空。

1。

在同一个圆里,半径是5厘米,直径是()厘米。

2.圆是平面上的一种()图形。

3、圆的半径是3厘米,直径是()厘米,周长是()厘米。

4.圆的周长是28.26米,它的直径是()厘米,半径是()厘米。

5、一台时钟的分针长6厘米,它走过2圈走了()厘米6。

一圆的周长是12.56厘米,如果用圆规画这个圆,圆规两脚的距离是()厘米。

7、一个圆环,外圆半径是3厘米,内圆半径是2厘米,这个圆环的面积是()8、8、圆心角是90度的扇形面积是所在圆面积的()分之()三、圆的面积1.个圆的周长一个正方形的周长相等,这个正方形的边长是6.28厘米,圆的面积是多少平方厘米?2.圆形水池,周长是18.84米,面积是多少平方厘米?20cm5.直径是1.5米,每分转8圈,压路机每分前进多少米?6.圆形养鱼池,直径是4米,这个养鱼池的周长是多少米?8.自动旋转喷灌装置半径是10米,它的最大喷灌面积是多少平方米?9.草坪周长是50.24米,这块草坪占地多少平方米?10.画一个直径2cm的圆。

圆与扇形练习题二1.填空题(每题2分,共24分)(1)一个半圆,半径为r,半圆周长是()。

六年级上册圆和扇形练习题

六年级上册圆和扇形练习题

六年级上册圆和扇形练习题一、选择题1. 下列哪个不是圆的特征?A. 有无数个对等的直径B. 任意两点之间的距离相等C. 长度相等的弧划分的圆周角相等D. 中心角的两条弧相等2. 圆的直径是8cm,那么圆的半径是多少?A. 4cmB. 8cmC. 16cmD. 12cm3. 直径为12cm的圆杆,一个圆柱形的铁板体积是多少立方厘米?A. 904.32立方厘米B. 2260.8立方厘米C. 1690.08立方厘米D. 6780.32立方厘米4. 将一个扇形展开,可以得到下列哪个图形?A. 圆B. 三角形C. 长方形D. 梯形5. 一个扇形的圆心角是60°,那么扇形的圆周角是多少度?A. 60°B. 120°C. 180°D. 360°二、解答题1. 一个扇形的弧长是20cm,半径是5cm,那么该扇形的面积是多少平方厘米?2. 圆的周长是30πcm,那么该圆的面积是多少平方厘米?3. 某个扇形的半径是8cm,圆心角是60°,求出该扇形的弧长和面积。

4. 一个扇形的半径是10cm,圆心角是120°,求出该扇形的弧长和面积。

三、应用题1. 一个扇形的半径是6cm,圆心角是30°。

一只小猫从扇形的一端点出发,绕该扇形一周,回到圆弧的另一端点,问它走的路程是多长?2. 王平拿到了一个半径为14cm的铁皮片,他想将其制作成一个扇形的风扇片。

如果他希望风扇片的圆心角是45°,他需要切割多长的弧长?四、综合题小明拿到了一个圆形的文具盒,他想在盖子上画一个扇形的花纹。

已知文具盒的半径是8cm,他希望花纹的圆心角是90°。

1. 请帮助小明计算出他需要画多长的弧线才能画出所期望的花纹。

2. 如果小明还希望花纹的半径是文具盒半径的一半,请计算出他需要画多长的弧线才能实现。

3. 如果小明决定将文具盒的圆盖分成四个等份,每个扇形的圆心角相等,求每个扇形的圆心角和面积。

圆和扇形练习的的题目

圆和扇形练习的的题目

圆和扇形练习题1(如无特别说明,题目中π取3.14)姓名:一、填空题1. 如果用d 表示圆的直径,那么圆的周长C = .2. 如果已知圆的周长为C ,那么求圆的半径用公式 .3. π叫做 ,它是 和 的比值,即π= .4.我国南北朝时期的数学家 将圆周率计算到七位小数.5.如果已知圆的半径为r ,那么半圆的周长公式为C 半圆= .6.已知圆环的外圆半径为r 1,内圆半径为r 2,那么圆环的宽度d= .7.已知圆的周长为C ,那么圆心角为n °的弧长l = .8.半径为r ,圆心角为n °的弧长l = .9.120°的圆心角是360°的 分之一,它所对的弧是相应圆周长的 分之一.10.将长为12㎝的圆周平均分为四份,每一份的弧长为 ㎝.11.已知60°的圆心角所对的弧长为3㎝,它所在的圆的周长是 ㎝.12.半径为2㎝,圆心角为90°的弧长为 .二、选择题1.圆的周长是直径的…………………………………………( )(A )3.14159倍; (B )3.14倍; (C )3倍; (D )π倍2.圆的半径扩大为原来的3倍………………………………( )(A )周长扩大为原来的9倍 (B )周长扩大为原来的6倍(C )周长扩大为原来的3倍 (D )周长不变3.圆的半径不变,圆心角扩大为原来的2倍,则………( )(A )弧长扩大为原来的4倍 (B )弧长扩大为原来的2倍(C )弧长不变 (D )弧长缩小为原来的一半三、简答题1. 求下图中圆的周长2、一个圆形花坛的直径为5米,3、用18.84㎝的铁丝做一个圆,要在它的边上镶一圈合金,需要合金 求这个圆的半径. 多少米4、求下图中半圆的周长5、如果圆环的外圆周长为30㎝,内圆周长为20㎝,求圆环的宽度.(结果保留两位小数)6.半径为5㎝,圆心角为72°的 7.直径为9㎝的圆,圆心角40°的 弧长是多少 弧长是多少 8. 半径为6㎝的圆,一圆心角所对的弧长为6.28㎝,这个圆心角多少度9、一辆自行车的车轮直径是0.76米,那么(1)它在地面上转一圈行了多少路程(2)如果它每分钟转200圈,那么它每分钟可以行驶多少路程(3)按上面的速度,小明从家到学校要5分钟,求小明家到学校的距离.d=2厘米 r=2厘米 O d=8厘米10.某海关大楼的大钟时针长1.8米,从上午11点到下午4点,时针的尖端移动了多少米圆和扇形练习题2(如无特别说明,题目中π取3.14)姓名:一、填空题1.如果用r表示圆的半径,那么圆的面积S=.2.半径为1米的圆的面积为,半径为2米的圆面积为 .3. 直径为1米的圆的面积为,直径为6米的圆面积为.4.面积为12.56平方米的圆,半径为米,直径为米.5.如果已知圆的半径为r,那么半圆的面积公式为S半圆=.6.外滩海关大钟钟面的直径是5.8米,面积是平方米(结果保留一位小数).8. 面积为3.14㎡的圆半径是米,直径是米.211.已知外圆的面积为5㎡,内圆的面积为3㎡,圆环的面积是 .12.已知外圆的半径为2㎝,内圆半径为1㎝,圆环的面积为.13.已知圆面积为S,那么圆心角为n°的扇形面积S扇=.14.半径为r,圆心角为n°的扇形面积S扇=.15.120°的圆心角是360°的,它所对的扇形面积是相应圆面积的.16.已知60°扇形面积为3㎡,它所在的圆的面积是㎡.17.一扇形半径为2㎝,圆心角为90°18.扇形半径为5㎝,面积是15.7㎝219. 一扇形的半径5厘米,面积15.7平方厘米,这个扇形的圆心角是.20. 圆心角为60°的扇形面积为8.96平方厘米,它所在圆的面积是.2,扇形的圆心角是=.21. 一扇形面积是所在圆面积的322.如果圆的半径r=40㎝,那么圆心角为72°的扇形的面积是.23.如果圆的半径r=30㎝,那么弧长为36㎝的扇形的面积是.24.直径为4㎝的圆中,弧长为5㎝的扇形的面积是.二、选择题1.圆的半径扩大为原来的3倍……………………()(A)面积扩大为原来的9倍(B)面积扩大为原来的6倍(C)面积扩大为原来的3倍(D)面积不变2 周长相等,面积最大的图形是………………………………()(A)正方形;(B)长方形;(C)圆;(D)它们的面积也相等3. 圆的面积扩大为原来的四倍,则半径………………………()(A)扩大为4倍;(B)扩大为16倍;(C)不变;(D)扩大为2倍4.扇形的半径不变,圆心角扩大为原来的2倍,则………()(A)面积扩大为原来的4倍(B)面积扩大为原来的2倍(C)面积不变(D)面积缩小为原来的一半5.半径扩大为原来的两倍,圆心角不变,扇形面积……………()(A)扩大为原来的两倍;(B)扩大为原来的四倍;(C)不变;(D)缩小一半三、简答题1、求下列圆的面积(1)r=2cm (2) d=10cm2、上海体育馆圆形比赛场地的3、求下图中半圆的面积半径是55米,求它的周长和面积.4、在一个边长为20㎝的正方形内画一个最大的圆,这个圆的面积又是多少5. 已知电风扇的叶片长约50㎝,6. 如下图,在半径为5米的圆形花坛周 风扇转动时叶片扫过的面积. 围修一条宽1米的小路,求小路的面积.7.图中正方形的边长为2㎝,求下图中阴影部分的面积.8.半径为15㎝,圆心角为72°的 9.直径为18㎝的圆中,圆心角40°的 扇形面积是多少 扇形面积是多少10. 半径为6㎝的扇形面积为18.84cm 2,它的圆心角是多少度11.某海关大楼的大钟时针长1.8米,从上午11点到下午4点,时针扫过的面积是多少平方米12. 求下图中扇形的周长和面积 13.下列每个正方形的边长为2,求下图中阴影部分的面积2,求右图中阴影部分的面积. 第四章圆和扇形(时间45分钟,满分1003分,满分36分)30,则圆的周长= .2、圆半径为2cm ,那么180°的圆心角所对的弧长l = cm.3、如果圆的半径r =12cm ,那么18°的圆心角所对的弧长l = cm.4、把边长为2分米的正方形剪成一个最大的圆,则这个圆的面积= dm 2.5、大圆的半径是小圆的半径的2倍,则大圆面积是小圆面积的 倍.6、一个半圆面的半径是r ,则它的面积是 .7、圆的面积扩大到原来的9倍,则它的半径扩大到原来的 倍.8、一个圆的半径从2cm 增加到3cm ,则周长增加了 cm.9、120°的圆心角所对的弧长是15.072米,弧所在的圆的半径是 米.10、一个扇形面积是它所在圆面积的61,这个扇形的圆心角是 度. 11、一个圆环的外半径是5cm ,内半径是3cm,这圆环的面积是 cm 2.12、把直径为18厘米的圆等分成9个扇形,每个扇形的周长是 厘米.二、选择题(每题3分,满分12分)13、下列结论中正确的是………………………………………………( )(A)任何圆的周长与半径之比不是一个常数;(B)任何两个圆的周长之比等于它们的半径之比;(C)任何两个圆的周长之比是一个常数;(D 称圆的周长与半径之比为圆周率.14、下列判断中正确的是………………………………………………( )(A)半径越大的弧越长;(B)所对圆心角越大的弧越长;(C)所对圆心角相同时,半径越大的弧越长;(D)半径相等时,无论圆心角怎么改变弧长都不会改变.15、下列判断中正确的是………………………………………………( ) O d=10厘米(A)半径越大的扇形面积越大;(B)所对圆心角越大的扇形面积越大;(C)所对圆心角相同时,半径越大的扇形面积越大;(D)半径相等时,所对圆心角越大的扇形面积越小.16、一个圆的半径增加2cm ,则这个圆………………………………( )(A)周长增加4cm ;(B)周长增加π4cm ;(C)面积增加4cm 2; (D)面积增加.π4cm 2.三、简答题(17~20每题5分,21~24每题6分,25题8分,满分52分)17、一辆汽车的轮子直径1米,若行驶时车轮转速为8周/秒,取≈π3,试计算这辆汽车的行驶速度为每小时多少千米18、取≈π3,试计算当上述汽车以120千米/小时的速度行使时,车轮的转速是每秒多少周.(结果保留整数位)19、如图,一个圆环的外圆半径为4cm ,内圆半径为3cm ,取≈π 3.14,试计算圆环的面积.20、如图,半径为6的圆恰容于一个正方形内,试用π表示正方形内圆以外部分的面积.21、某建筑物上大钟的分针长1.2米,时针长0.9米,取≈π 3.14,试计算一小时分针和时针的针尖运动的弧长.22、已知正方形边长为2,分别以正方形两个对角顶点为圆心,以边长为半径作两段圆弧,试用π表示两弧所夹叶形部分的面积.23、已知C 、D 两点在以AB 为直径的半圆周上且把半圆三等分,若已知AB 长为10,试用π表示阴影部分面积.24、如图,四个圆的半径都是1,四个圆的圆心恰好是正方形的四个顶点,试用π表示阴影部分面积.25、小红用4根各长1米的绳子围成4个圆,小蓝用2根各长2米的绳子围成2个圆,小白用1根长4米的绳子围成1个圆,试求他们围得图形的面积之比.BA C D。

圆和扇形 小学数学 习题集

圆和扇形 小学数学 习题集

一、选择题1. 在一个圆里,最多能画出()个完全相同的扇形.A.16 B.360 C.无数二、填空题2. 已知正方形ABCD的边长是20厘米,过它的四个顶点作一个大圆,过它的各边中点作一个小圆,再将对边中点用直线连接起来(如图所示),那么,图中阴影部分的总面积为______.3. 桌上有一个固定圆盘与一个活动圆盘,这两个圆盘的半径相等.将活动圆盘绕着固定圆盘的边缘作无滑动的滚动(滚动时始终保持两盘边缘密切相接).当活动圆盘绕着固定圆盘转动一周后,活动圆盘本身旋转了______圈.4. 一枚半径为1的圆形硬币相互紧靠着平放在桌面上,让一枚硬币沿着它们的外轮廓滚过后回到原来的位置,那么与原点重合的点是______.硬币自己转动______,硬币圆心的运动轨迹周长为_______.5. 一个闹钟内圆的面积是30平方厘米,阴影部分的面积是________平方厘米.(取3.14)6. 如图所示,将半径分别为5厘米和4厘米的两个半圆如图放置,那么阴影部分的周长是______.三、解答题7. 正三角形的边长是6厘米,在一条直线上将它翻滚几次,使点再次落在这条直线上,那么点在翻滚过程中经过的路线总长度是多少厘米?如果三角形面积是15平方厘米,那么三角形在滚动过程中扫过的面积是多少平方厘米?(结果保留)8. 如图,是平行四边形,,,,高,弧、分别以、为半径,弧、分别以、为半径,则阴影部分的面积为多少?(精确到)9. 如图所示,直角三角形的斜边长为10厘米,,此时长5厘米.以点为中心,将顺时针旋转,点、分别到达点、的位置.求边扫过的图形即图中阴影部分的面积.(取3)10. 如图,若图中的圆和半圆都两两相切,两个小圆和三个半圆的半径都是1.求阴影部分的面积.。

小学数学六年级上学期 圆与扇形 完整版题型训练+详细答案

小学数学六年级上学期 圆与扇形 完整版题型训练+详细答案

圆与扇形例题讲解板块一:基础题型1.已知一个扇形的圆心角为120°,半径为2,这个扇形的面积和周长各是多少?(л取3.14)解析:知道了圆心角,就相当于知道了扇形占圆面积的31,扇形的弧长也是圆周长的31。

19.4214.3312=⨯⨯ 19.842214.331=+⨯⨯⨯2.已知一个扇形的面积为18.84平方厘米,圆心角为60°,这个扇形的半径和周长各是多少?(л取3.14) 解析:366114.384.18=÷÷,半径r=6 周长:28.18122614.361=+⨯⨯⨯3.(1)根据图中所给的数值,求这个图形的外周长和面积.(л取3.14)(2)如图,有8个半径为1厘米的小圆,用它们圆周的一部分连成一个花瓣图形,图中的黑点是这些圆的圆心。

如果圆周率л取3.14,那么花瓣图形的周长和面积分别是多少?解析:1.圆的半径:144=÷ 周长:28.14421214.3=⨯+⨯⨯ 2的小正方形面积加上4个的面积减去4个的面积,即加上4×43-4×21=1个半径为1的圆的面积.所以花瓣组成的图形的面积为4×2×2-1×1×1π≈16+3.14=19.14(平方厘米).4.如图,求各图形中阴影部分的面积.(图中长度单位为厘米,л取3.14)解析:1.用平移法阴影为三角形面积,29233=÷⨯ 2.用平移法阴影面积为正方形面积,111=⨯3.22114.32)114.322(22=÷⨯+÷⨯-⨯5.如图,求各图中阴影部分的面积.(图中长度单位为厘米,л取3.14)解析:1.考虑到重叠,28.2222214.32=⨯-÷⨯ 2.考虑到重叠,56.4244214.32=÷⨯-⨯ 3.考虑到重叠,965.132774714.32=÷⨯-÷⨯6.图中甲区域比乙区域的面积大57平方厘米,且半圆的半径是10厘米.其中直角三角形竖直的直角边的长度是多少?(л取3.14)解析:10202)5721014.3(2=÷⨯-÷⨯(厘米)7.求图中阴影部分的面积.(л取3.14)解析:我们只用将两个半径为10厘米的四分之一圆减去空白的①、②部分面积和即可,其中①、②面积相等.A20厘米B①②C易知①、②部分均是等腰直角三角形,但是①部分的直角边AB的长度未知,单独求①部分面积不易,于是我们将①、②部分平移至一起,如下图所示,则①、②部分变为一个以AC的直角边的等腰直角三角形,而AC为四分之一圆的半径,所以有AC=10.AB①②C两个四分之一圆的面积和为2×41×102×π≈50×3.14=157,而①、②部分的面积和为21×10×10=50,所以阴影部分的面积为157-50=107(平方厘米).8.如图,在3×3的方格表中,分别以A、E为圆心,3、2为半径,画出圆心角都是90°的两段圆弧.图中阴影部分的面积是多少?(л取3.14)解析:()()075.14214.3224314.33322=÷⨯-⨯-÷⨯-⨯9.如图,在一块面积为36平方厘米的圆形铝板中,裁出了7个同样大小的圆铝板.问:余下的边角料的总面积是多少平方厘米?解析:首先算出大圆和小圆的面积比,设小圆的半径为r ,则大圆为3r 大圆面积:小圆面积=1:9:)3(22=r r ππ小圆的面积为4936=÷余下边角料的面积为:84736=⨯-平方厘米10.一条直线上放着一个长和宽分别为4厘米和3厘米的长方形I .让这个长方形绕顶点B 顺时针旋转090后到达长方形Ⅱ的位置,这样连续做三次,A 点到达E 点的位置.求A 点经过的总路程的长度.(圆周率按3计算)解析:三次转动,每次A 点走的都是四分之一个圆周,只是圆周的半径不一样。

圆的弧长与扇形面积练习题

圆的弧长与扇形面积练习题

圆的弧长与扇形面积练习题一、选择题1、已知扇形的圆心角为120°,半径为3cm,则扇形的面积是()A 3π cm²B 9π cm²C 6π cm²D 12π cm²2、若扇形的弧长是 16cm,面积是 56cm²,则它的半径是()A 7cmB 8cmC 7cm 或 8cmD 14cm3、一个扇形的半径为 8cm,弧长为16π/3 cm,则扇形的圆心角为()A 60°B 120°C 150°D 180°4、已知一个扇形的面积为12π,圆心角为 120°,则此扇形的半径为()A 6B 9C 12D 155、扇形的圆心角扩大到原来的 2 倍,半径缩小到原来的一半,此时扇形的面积是原来扇形面积的()A 2 倍B 4 倍C 1/2D 1/4二、填空题1、若扇形的半径为 6cm,圆心角为 60°,则扇形的弧长为______cm,面积为______cm²。

2、一个扇形的弧长是20π cm,面积是240π cm²,则扇形的圆心角是______度。

3、扇形的圆心角为 150°,弧长为20π cm,则扇形的半径为______cm,面积为______cm²。

4、已知扇形的半径为 3cm,面积为9π/2 cm²,则扇形的弧长为______cm,圆心角为______度。

5、若扇形的面积为3π,弧长为2π,则扇形的半径为______,圆心角为______度。

三、解答题1、已知扇形的圆心角为 120°,面积为300π,求扇形的半径和弧长。

2、一个扇形的弧长为10π,面积为25π,求扇形的圆心角和半径。

3、扇形的半径为 8,弧长为12π,求扇形的面积和圆心角。

4、已知扇形的面积为18π,圆心角为 60°,求扇形的弧长和半径。

5、扇形的弧长为20π,面积为240π,求扇形的半径和圆心角。

数学《圆和扇形》课后习题

数学《圆和扇形》课后习题

数学《圆和扇形》课后习题
数学《圆和扇形》课后习题
选择题
1、下列说法正确的是()
A.扇形是圆的一部分,圆的一部分是扇形
B.扇形的半径越大,面积就越大
C.在圆中任意画两条半径,一定能构成两个扇形
D.两条半径和一条弧长就能组成一个扇形
2、扇形的半径不变,圆心角扩大为原来的'2倍,则()
A.面积扩大为原来的4倍
B.面积扩大为原来的2倍
C.面积不变
D.面积缩小为原来的一半
解答题
1、直径为18cm的圆中,圆心角40.的扇形面积是多少?
列式:答案
答:圆心角40的扇形面积是平方厘米。

2、某海关大楼的大钟时针长1.8米,从上午11点到下午4点,时针扫过的面积是多少平方米?
列式:答案
答:时针扫过的面积是平方米。

【数学《圆和扇形》课后习题】。

人教版小学六年级圆与扇形综合练习题

人教版小学六年级圆与扇形综合练习题

圆与扇形练习题一ﻫ1、两个圆的周长相等,它们的直径也相等( )ﻫ2、圆的周长总是该圆直径的∏倍。

( )ﻫ3.大圆的圆周率比小圆的圆周率大。

( )4、大圆的直径是小圆半径的4倍,那么大圆的周长是小圆周长的4倍。

( )5、半圆的周长就是圆周长的一半。

( )ﻫ6、圆的半径扩大2倍,它的直径也扩大2倍,它的周长将会增加一倍。

( )ﻫ二、填空。

ﻫ1。

在同一个圆里,半径是5厘米,直径是( )厘米。

ﻫ2.圆是平面上的一种( )图形。

3、圆的半径是3厘米,直径是( )厘米,周长是( )厘米。

4.圆的周长是28.26米,它的直径是( )厘米,半径是( )厘米。

5、一台时钟的分针长6厘米,它走过2圈走了( )厘米ﻫ6。

一圆的周长是12.56厘米,如果用圆规画这个圆,圆规两脚的距离是( )厘米。

7、一个圆环,外圆半径是3厘米,内圆半径是2厘米,这个圆环的面积是( )8、8、圆心角是90度的扇形面积是所在圆面积的( )分之( )ﻫ三、圆的面积1.个圆的周长一个正方形的周长相等,这个正方形的边长是6.28厘米,圆的面积是多少平方厘米?2.圆形水池,周长是18.84米,面积是多少平方厘米?ﻫ20cm ﻫ5.直径是1.5米,每分转8圈,压路机每分前进多少米?6.圆形养鱼池,直径是4米,这个养鱼池的周长是多少米?8. 自动旋转喷灌装置半径是10米,它的最大喷灌面积是多少平方米?ﻫ9.草坪周长是50.24米,这块草坪占地多少平方米?10.画一个直径2cm 的圆。

圆与扇形练习题二1.填空题(每题2分,共24分)(1)一个半圆,半径为r,半圆周长是( )。

(2)如果一个圆的半径扩大3倍,它的直径扩大( )倍,面积扩大( )倍。

(3)圆的周长是157厘米,它的直径是( 50)厘米,面积是( )平方厘米。

(4)一根铜丝长18.84米,正好在一个圆形线轴上绕40周。

这个圆形线轴的直径是( )厘米。

(5)圆的周长是直径的()倍,是半径的( )倍。

小学数学圆和扇形练习题

小学数学圆和扇形练习题

小学数学圆和扇形练习题圆和扇形是小学数学中的重要概念,掌握圆和扇形的性质和计算方法对于学生来说至关重要。

在这篇文章中,我们将讨论一些与圆和扇形相关的练习题,帮助学生更好地理解和应用这些概念。

1. 圆的性质练习题1) 请问在一个圆中,直径与半径的关系是什么?解析:直径是通过圆心的两个点之间的距离,而半径是从圆心到圆上的任意一点的距离。

我们可以得出结论,直径是半径的两倍,即直径=2×半径。

2) 如果一个圆的直径是10厘米,那么它的半径是多少?解析:根据上题的结论,我们可以得出半径是5厘米。

3) 如果一个圆的半径是6米,那么它的直径是多少?解析:同样根据上题的结论,我们可以得出直径是12米。

2. 扇形的计算练习题1) 如果一个扇形的半径是8厘米,弧长是12厘米,那么它的度数是多少?解析:扇形的弧长是弧所对的圆心角的一部分。

我们可以通过以下公式来计算扇形的度数:度数 = (弧长 / 圆周长) × 360°根据题目,我们可以得出度数= (12 / (2×3.14×8)) × 360° ≈ 68.04°2) 如果一个扇形的半径是10米,度数是120°,那么它的弧长是多少?解析:同样使用上面的公式,我们可以通过以下计算来求解弧长:弧长 = (度数 / 360°) ×圆周长根据题目,我们可以得出弧长= (120 / 360) × (2×3.14×10) ≈ 20.94米3. 圆和扇形的综合运用练习题1) 如果一个圆的直径是14厘米,那么它的面积是多少?解析:圆的面积公式是πr²,其中r是半径。

我们可以通过以下计算来求解面积:面积= 3.14 × (14/2)² ≈ 3.14 × 7² ≈ 153.86平方厘米2) 如果一个扇形的半径是5米,度数是60°,那么它的面积是多少?解析:扇形的面积是扇形所对弧的一部分。

扇形圆形六年级综合练习题

扇形圆形六年级综合练习题

扇形圆形六年级综合练习题在一个充满学习和探索的六年级数学课堂中,扇形和圆形综合练习题成为了同学们解决问题的新挑战。

本文将通过一系列精心设计的练习题,让我们深入了解和应用扇形与圆形的相关知识,提升我们的数学能力。

【练习题一】1. 如图所示,一个半径为5cm的圆中,扇形部分的圆心角为60°。

求这个扇形圆弧的长度和面积。

【解析】解决这个问题,我们需要思考如何计算扇形的弧长和面积。

首先,我们可以使用以下公式来计算扇形的弧长和面积:- 扇形弧长公式:L = πrθ/180°- 扇形面积公式:A = πr^2θ/360°根据题目给出的信息,扇形的圆心角为60°,半径为5cm。

因此,根据公式,我们可以得出:- 扇形弧长:L = π * 5 * 60 / 180 = 5π cm- 扇形面积:A = π * 5^2 * 60 / 360 = 5π cm^2练习题一的答案是:扇形圆弧的长度为5π cm,面积为5π cm^2。

【练习题二】2. 如图所示,一个半径为8cm的圆中,扇形部分的圆心角为120°。

求这个扇形圆弧的长度和面积。

【解析】同样地,我们可以使用之前提到的公式来求解这道题目。

根据题目给出的信息,扇形的圆心角为120°,半径为8cm。

因此,根据公式,我们可以得出:- 扇形弧长:L = π * 8 * 120 / 180 = 32π/3 cm- 扇形面积:A = π * 8^2 * 120 / 360 = 64π/3 cm^2练习题二的答案是:扇形圆弧的长度为32π/3 cm,面积为64π/3cm^2。

【练习题三】3. 如图所示,一个半径为10cm的圆,被划分成三个相等的扇形。

求每个扇形的圆心角、弧长和面积。

【解析】这道题目要求我们计算等分圆的扇形的圆心角、弧长和面积。

根据题目给出的信息,半径为10cm,并且圆被分成三个相等的扇形。

因此,每个扇形的圆心角为360°/3 = 120°。

六年级圆与扇形综合练习题2

六年级圆与扇形综合练习题2

圆及扇形练习题一一、判断1.两个圆周长相等, 它们直径也相等()2.圆周长总是该圆直径∏倍。

()3. 大圆圆周率比小圆圆周率大。

()4.大圆直径是小圆半径4倍, 那么大圆周长是小圆周长4倍。

()5.半圆周长就是圆周长一半。

()6.圆半径扩大2倍, 它直径也扩大2倍, 它周长将会增加一倍。

()二、填空。

1。

在同一个圆里, 半径是5厘米, 直径是()厘米。

2. 圆是平面上一种()图形。

3.圆半径是3厘米, 直径是()厘米, 周长是()厘米。

4. 圆周长是28. 26米, 它直径是()厘米, 半径是()厘米。

5.一台时钟分针长6厘米, 它走过2圈走了()厘米6。

一个圆周长是12. 56厘米, 如果用圆规画这个圆, 圆规两脚距离是()厘米。

7、一个圆环, 外圆半径是3厘米, 内圆半径是2厘米, 这个圆环面积是()8、圆心角是90度扇形面积是所在圆面积()三、圆面积1.一个圆周长及一个正方形周长相等, 这个正方形边长是6.28厘米, 圆面积是多少平方厘米?2.圆形水池, 周长是18.84米, 面积是多少平方厘米?5.直径是1.5米, 每分转8圈, 压路机每分前进多少米?6.圆形养鱼池, 直径是4米, 这个养鱼池周长是多少米?8.自动旋转喷灌装置半径是10米, 它最大喷灌面积是多少平方米?9.草坪周长是50.24米, 这块草坪占地多少平方米?10.画一个直径2cm圆。

圆及扇形练习题二1.填空题1.一个半圆, 半径为r, 半圆周长是()。

(2)如果一个圆半径扩大3倍, 它直径扩大()倍, 面积扩大()倍。

(3)圆周长是157厘米, 它直径是( 50)厘米, 面积是()平方厘米。

(4)一根铜丝长18.84米, 正好在一个圆形线轴上绕40周。

这个圆形线轴直径是()厘米。

(5)圆周长是直径()倍, 是半径()倍。

(7)圆规两脚分开距离是6厘米, 用这个圆规画出圆, 它周长是()。

(8)在一个正方形中画出一个最大圆, 圆面积及正方形面积比是()。

圆和扇形(经典题汇总)

圆和扇形(经典题汇总)

圆与扇形公式与割补内容提要本讲主要讲解与圆和扇形有关的概念,及周长、面积公式等.下面我们来说说这方面的基础知识. 圆是我们在生活中经常见到的图形,它也是最完美的平面图形:有无数条通过圆心的对称轴,绕圆心旋转任何角度还保持原状.而且,所有的平面图形在周长相同的情况下,圆的面积是最大的.我们知道,圆的周长和直径的比值是一个固定不变的数,这正是圆周率,用π表示.另外,一般把直径记作d ,半径记作r ,如图1所示.如图3,由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫扇形.它是圆的一部分,所以关于扇形的各种计算可以应用圆里面的结论.扇形的圆心角为n °时,它的弧长和面积应该分别是圆周长和圆面积的360n.我们先来熟悉一下这些公式. 练习:n °r 图3图11.半径是2的圆的面积和周长分别是多少?2.直径是5的圆的面积和周长分别是多少?3.周长是10π的圆的面积是多少?4.面积是9π的圆的周长是多少?例题一、基本公式运用例题1.已知扇形的圆心角为120°,半径为2,则这个扇形的面积和周长各是多少?(圆周率按3.14计算)例题2.已知扇形面积为18.84平方厘米,圆心角为60°,则这个扇形的半径和周长各是多少?(圆周率按3.14计算)60°随堂练习:1.已知一个扇形的弧长为0.785厘米,圆心角为45,这个扇形的半径和周长各是多少?2.扇形的面积是31.4平方厘米,它所在圆的面积是157平方厘米,这个扇形的圆心角是多少?例题3.如图,直角三角形ABC 的面积是45,分别以B ,C 为圆心,3为半径画圆.已知图中阴影部分的面积是35.58.请问:角A 是多少度?(π取3.14)二、 圆中方,方中圆例题4.如图,左下图和右下图中的正方形边长都是2,那么大圆、小圆的面积分别为________、________.随堂练习:1. 已知外面大圆的半径是4,里面小圆的面积是多少?(答案用π表示)二、割补法例题5. 求下列各图中阴影部分的面积(图中长度单位为厘米,圆周率按3.14计算): (1)(2)随堂练习:求下图中阴影部分的面积(图中长度单位为厘米,圆周率按3.14计算): (1) (2)例题6.求下列各图中阴影部分的面积(图中长度单位为厘米,圆周率按3.14计算): (1) (2)例题7.已知图中正方形的边长为2,分别以其四个顶点为圆心的直角扇形恰好交于正方形中心,那么图中阴影部分的面积为________.(答案用 表示)例题8.根据图中所给数值,求下面图形的外周长和总面积分别是多少?(π取3.14)472随堂练习:1. 根据下图中给出的数值,求这个图形的外周长和面积.(π取3.14)例题9.求图中阴影部分的面积.(圆周率 取3.14)思考题图中的4个圆的圆心是正方形的4个顶点,它们的公共点是该正方形的中心.如果每个圆的半径都是1厘米,那么阴影部分的总面积是多少平方厘米?作业:1.半径为4厘米的圆的周长是________厘米,面积是________平方厘米;2.半径为4厘米,圆心角为90︒的扇形周长是________厘米,面积是________平方厘米.(π取3.14)3.家里来客人了,淘气到超市买了4瓶啤酒,售货员阿姨将4瓶啤酒捆扎在一起(如下图所示),捆4圈至少要用绳子________厘米.(π取3.14,接头处忽略不计)4.求下列各图中阴影部分的面积(图中长度单位为厘米,圆周率按3.14计算):(1)(2)5.下列图形中的正方形的边长为2,则下图中各个阴影部分面积的大小分别为______、______.(π取3.14)6.用一块面积为36π平方厘米的圆形铝板下料,从中裁出了7个同样大小的圆铝板.问:所余下的边角料的总面积是多少平方厘米?1 1圆与扇形旋转与重叠知识总结:学习如何利用割补法和包含排除的思想计算图形中特定部分的面积;学会分析几何图形的运动过程,并由此得出点的轨迹和图形扫过的区域.例题:一、 重叠问题例题1.下图中甲区域比乙区域的面积大57平方厘米,且半圆的半径是10厘米,那么其中直角三角形的另一条直角边的长度是多少?(圆周率π取3.14)例题2.下图中有一个等腰直角三角形ABC ,一个以AB 为直径的半圆,和一个以BC 为半径的扇形.已知10AB BC ==厘米.图中阴影部分的面积为多少平方厘米?(π取3.14)随堂练习1. 如图17-13,以AB 为直径做半圆,三角形ABC 是直角三角形,阴影部分①比阴影部分②的面积小28平方厘米,AB 长40厘米.求BC 的长度.(π取3.14.)ABB例题3.如图,直角三角形的两条直角边分别为3和5,分别以三条边做了3个半圆(直角顶点在以斜边为直径的半圆上),那么阴影部分的面积为______.例题4.图1是一个直径是3厘米的半圆,AB 是直径.如图2所示,让A 点不动,把整个半圆逆时针转60°,此时B 点移动到C 点.请问:图中阴影部分的面积是多少平方厘米?(π取3.14)二、 动态扫面积问题例题5.如图,正方形ABCD 边长为1厘米,依次以A 、B 、C 、D 为圆心,以AD 、BE 、CF 、DG 为半径画出四个直角扇形,那么阴影部分的面积为________平方厘米.(π取3.14)图1B图2例题6.如图所示,以等边三角形的B 、C 、A 三点分别为圆心,分别以AB 、CD 、AE 为半径画弧,这样形成的曲线ADEF 被称为正三角形ABC 的渐开线,如果正三角形ABC 的边长为3厘米,那么此渐开线的长度为多少厘米,图中I 、II 、III 三部分的面积之和是多少平方厘米?三、 运动圆扫面积例题7.图中正方形的边长是4厘米,而圆环的半径是1厘米.当圆环绕正方形无滑动地滚动一周又回到原来位置时,其扫过的面积有多大?(π取3.14)随堂练习1. 图中长方形的长是10厘米,宽是4厘米,而圆环的半径是1厘米.当圆环绕正方形无滑动地滚动一周又回到原来位置时,其扫过的面积有多大?(π取3.14)D例题8.图中等边三角形的边长是3厘米,而圆环的半径是1厘米.当圆环绕等边三角形无滑动地滚动一周又回到原来位置时,其扫过的面积有多大?(π取3.14)思考题如图所示,一只小狗被拴在一个边长为4米的正五边形的建筑物的一个顶点处,四周都是空地.绳长刚好够小狗走到建筑物外墙边的任一位置.小狗的活动范围是多少平方米?(建筑外墙不可逾越,小狗身长忽略不计,π取3)作业:1. 图17-14由一个长方形与两个90︒角的扇形构成,其中阴影部分的面积是_______平方厘米.(π取3.14.)2. 图中有一个矩形和两个半径分别为5和2的直角扇形,那么两个阴影部分的面积相差为_______.(π取3.14)图17-14 狗3.如图,直角三角形的两条直角边长分别是10cm和6cm,分别以直角边为直径作出两个半圆,这两个半圆的交点恰好落在斜边上,那么阴影部分的面积是_______cm2.(π取3.14)(17π-30)4.图1是一个直径是3厘米的半圆,AB是直径.如图2所示,让A点不动,把整个半圆逆时针转60°,此时B点移动到C点.请问:图中阴影部分的面积是_______平方厘米(π取3.14)5.图中正方形的边长是6厘米,而圆环的半径是1厘米.当圆环绕正方形无滑动地滚动一周又回到原来位置时,其扫过的面积有______.(π取3.14)6.图中等边三角形的边长是5厘米,圆形的半径是1厘米.当圆形绕等边三角形滚动一周又回到原来位置时,扫过的面积有________.(π取3.14)图1 B图26cm几何计数知识总结:例题:一、 枚举或分类解题利用枚举法以及分类的方法进行几何计数,特别是对于正方形和三角形的计数问题.通常按照面积的大小或者包含基本图形的多少来对图形进行分类.例题1.小杰瑞把巧克力棒摆成了如图所示的形状,其中每一条小短边代表一个巧克力棒.请问:(1)一共有多少个巧克力棒?(2)这些巧克力棒共构成了多少个三角形?(3)嘴馋的小杰瑞吃掉一个巧克力棒后(图中两端带有箭头的小边),剩下的图形中还有多少个三角形?随堂练习 1. 图中共有_______个三角形;例题2.如图,它是由18个大小相同的小正三角形拼成的四边形,其中某些相邻的小正三角形可以拼成较大的正三角形.图中包含“”的各种大小的正三角形一共有_______.例题3.如图,AB ,CD ,EF ,MN 互相平行,则图中三角形个数是_______.例题4.图中有多少个正方形?二、 与排列组合有关的计数利用排列组合的方法进行几何计数,特别是对于矩形和四边形的计数问题例题5.如图,线段AB ,BC ,CD ,DE 的长度都是3厘米.请问:(1)图中一共有多少条线段?(2)这些线段的长度之和是多少厘米?随堂练习1. 求图中一共有多少条线段.3厘米3厘米 3厘米 3厘米 A BC D EB MAEF D N例题6.求图中一共有多少条线段.求图中一共有多少个矩形.随堂练习1.如图,四条边长度都相等的四边形称为菱形.用16个同样大小的菱形组成如图的一个大菱形.数一数,图中共有多少个菱形?例题7.右图是一个长为9,宽为4的长方形网格,每一个小格都是一个正方形,那么:1)从中可以数出_______个矩形.2)从中可以数出_______个正方形.3)从中可以数出包含_______个,正方形有________个.随堂练习(1)图中包含★的长方形有_______个.包含☺的正方形又有_______个.(2)图中同时包含☺和★的长方形有_______个.三、与容斥原理有关的几何计数例题8.图中一共包含多少个矩形?多少个正方形?随堂练习1.图中有_______个矩形思考题用16个边长为1的等边三角形拼成一个边长为4的大等边三角形,那么组成的图形中可以找出多少个平行四边形?作业1.数一数图中一共有多少条线段?2. 图中共有_______个三角形.【分析与解】按边长分类数,图中共有93113++=个三角形;平行四边形共有333215⨯+⨯=个.3. 在图中,包含※的长方形共有________个.4. 图中有_______个矩形,_______个正方形.【分析与解】图中共有718+=个正方形,19个长方形.这道题适合按大小分类数.5. 图中有三角形_______个,梯形_______个.【分析与解】三角形有()312318⨯++=个,梯形有()()1212318+⨯++=个.6. 图中有_______个正方形,_______个长方形.【分析与解】答案是38,144.长方形有()()()()123123452123123144++⨯++++⨯-++⨯++=⎡⎤⎣⎦ 个,正方形有()()352413294138⨯+⨯+⨯⨯-++=个(这里给出正方形的求法比较巧妙,如果不合适,请按正方形的边长分类枚举).行程知识总结:本讲重点学习在小升初中和各个杯赛中的较复杂的行程问题,行程问题主要有三组共9个基本公式:(1) =⨯路程速度时间;=÷速度路程时间;=÷时间路程速度;(2) =⨯相遇路程速度和时间;=÷速度和相遇路程时间;=÷时间相遇路程速度和;(3) =⨯追及路程速度差时间;=÷速度差追及路程时间;=÷时间追及路程速度差.要会灵活运用公式,通过已知的条件求出未知的路程、速度或时间.此时,我们还经常需要用到以下这三个基本倍数关系:当运动的速度相同时,时间的倍数关系等于路程的倍数关系;当运动的时间相同时,速度的倍数关系等于路程的倍数关系;当运动的路程相同时,时间的倍数关系等于速度的倍数关系,但注意时间长的速度慢,时间短的速度快.例题1. ( )甲、乙两地间的路程是600千米,上午8点客车以平均每小时60千米的速度从甲地开往乙地,货车以平均每小时50千米的速度从乙地开往甲地.要使两车在全程的中点相遇,货车必须在上午几点出发?例题2. ( )某学校组织学生去春游,以2米/秒的速度前进,一名学生以4米/秒的速度从队尾跑到队头,再回到队尾,共用6分钟,那么队伍的总长为多少米?例题3. A 城在一条河的上游,B 城在这条河的下游.A 、B 两城的水路距离为396千米.一艘在静水中速度为每小时12千米的渔船从B 城往A 城开,一艘在静水中速度为每小时30千米的治安巡逻艇从A 城往B 城开.已知河水的速度为每小时6千米,从A 流向B .两船在距离A 城180千米的地方相遇.巡逻艇在到达B 城后得到消息说他们刚才遇到的那艘渔船上有一名逃犯,于是巡逻艇立刻返回去追渔船.请问巡逻艇能不能在渔船到达A 城之前追上渔船?如果能的话,请问巡逻艇在距A 城多远的地方追上渔船;如果不能的话,请算出巡逻艇比渔船慢多少小时到A 城.例题4.蜗牛沿着公路前进,对面来了一只兔子,他问兔子:“后面有乌龟吗?”,兔子回答说:“10分钟前我超过了一只乌龟”,接着蜗牛继续爬了10分钟,遇到了乌龟.已知乌龟的速度是蜗牛速度的10倍,那么兔子速度是乌龟速度的________倍.例题5.甲、乙二人相距100米的直路上来回跑步,甲每秒钟跑2.8米,乙每秒钟跑2.2米.他们同时分别在直路两端出发,当他们跑了30分钟时,这段时间内相遇了几次?例题6.甲乙两车同时从A、B两地出发相向而行,两车在距离B地64千米的地方第一次相遇,相遇后两车继续原速前进,并且在到达对方出发点之后,立即沿原路返回,途中在距离A点48千米处第二次相遇,问:两次相遇点距离是多少千米?例题7.甲、乙两车分别从A、B两地出发,在A、B之间不断往返行驶,已知甲车的速度是每小时15千米,乙车的速度是每小时35千米,并且甲、乙两车第三次相遇(这里特指面对面的相遇)的地点与第四次相遇的地点恰好相距120千米,那么,A、B两地之间的距离等于_________ 千米.例题8.快、中、慢3辆车同时从同一地点出发,沿同一公路追赶前面的一个骑车人.这3辆车分别用6分钟、10分钟、12分钟追上骑车人.现在知道快车每小时走24千米,中车每小时走20千米,那么,慢车每小时走多少千米?例题9.有甲乙丙三车各以一定的速度从A到B,乙比丙晚出发10分钟,出发后40分钟追上丙,甲比乙又晚出发10分钟,出发后60分钟追上丙,问,甲出发后多少分钟可以追上乙?思考题一次越野赛跑中,当小明跑了1600米时,小刚跑了1450米,此后两人分别以每秒a米和每秒b米匀速跑,又过100秒时小刚追上小明,200秒时小刚到达终点,300秒时小明到达终点,这次越野赛跑的全程为多少?作业1.现有两列火车同时同方向齐头行进,快车每秒行18米,慢车每秒行10米,行12秒后快车超过慢车.如果这两辆火车车尾相齐同时同方向行进,则9秒后快车超过慢车.那么快慢两车的车长分别是几米?2.一辆中巴车6点(24小时制)从A城出发,以每小时40千米的速度向B城驶去,3小时后一辆小轿车以每小时75千米的速度也从A出发到B.当小轿车到达B后,中巴车离B还有90千米.那么中巴车是几点几分到达B的?3.甲、乙两人从相距为46千米的A、B两地出发相向而行,甲比乙先出发一个小时.他们两人在乙出发后4小时相遇,又已知甲比乙每小时快2千米,那么乙的速度为每小时多少千米?4.甲、乙两人分别从南北两地相对而行.已知甲每分钟走50米,乙走完全程要30分钟.相对而行10分钟后,甲、乙仍相距100米.那么还要过多少秒钟,甲、乙第一次相遇?5.(第三届“走进美妙的数学花园”团体对抗赛第22题)一个和尚每天早晨都到河边去提一桶水,他提空桶时每秒走3米,提满桶时每秒2米,来回一趟需10分钟。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆与扇形精选题
【例1】图中的4个圆的圆心是正方形的4个顶点,它们的公共点是该正方形的中心.如果每个圆的半径都是1厘米,那么阴影部分的总面积是多少平方厘米?(8平方厘米)
【巩固】如图所示,四个全等的圆每个半径均为2m,阴影部分的面积是.(16平方米)
2m
【例2】如图中三个圆的半径都是5cm,三个圆两两相交于圆心.求阴影部分的面积和.(圆周率取3.14) (39.25平方厘米)
【巩固】如图,大圆半径为小圆的直径,已知图中阴影部分面积为
S,空白部分面积为2S,
1
那么这两个部分的面积之比是多少?(圆周率取3.14) (57:100)
O
【例 3】 请计算图中阴影部分的面积.(30平方厘米)
3
10
【例 4】 求如图中阴影部分的面积.(圆周率取3.14) (4.56平方厘米)
44
【巩固】如图,四分之一大圆的半径为7,求阴影部分的面积,其中圆周率π取近似值227
.(14平方厘米)
【例 5】 (华校2005~2006年度第一学期期中测试第6题)大
圆半径为R ,小圆半径为r ,两个同心圆构成一个环
形.以圆心O 为顶点,半径R 为边长作一个正方形:
再以O 为顶点,以r 为边长作一个小正方形.图中阴影部分的面积为50平方厘米,求环形面积.(圆周率取3.14) (157平方厘米)
固】图中阴影部分的面积是225cm ,求圆环的面积.(157平方厘米)
【巩
(2008年101中学考题)已知图中正方形的面积是20平方厘米,则图中里外两个圆的面积之和是 .(π取3.14)(47.1平方厘米)
【巩固】图中小圆的面积是30平方厘米,则大圆的面积是 平方厘米.(π取3.14)
(60平方厘米)
【巩固】(2008年四中考题)图中大正方形边长为a ,小正方形的面积是 .
(212
a 平方厘米)
【例 1】 如图,两个正方形摆放在一起,其中大正方形边长为
12,那么阴影部分面积是多少?(圆周率取3.14) (113.04)
A F
E
D
C B
【巩固】如右图,两个正方形边长分别是10和6,求阴影部分的面积.(π取3)(39) 610G F
E D C
B A
【例 2】 如图,ABC 是等腰直角三角形,D 是半圆周的中点,BC 是半圆的直径.已知
10AB BC ==,那么阴影部分的面积是多少?(圆周率取3.14)(321.125)
D B
P C
A
【例 3】 图中给出了两个对齐摆放的正方形,并以小正方形中右上顶点为圆心,边长为半径
作一个扇形,按图中所给长度阴影部分面积为 ;(π 3.14=)(28.56)
6
4
【例 4】 如图,ABCD 是边长为a 的正方形,以AB 、BC 、CD 、DA 分别为直径画半圆,求这
四个半圆弧所围成的阴影部分的面积.(π取3) (212a =)
D
C
B A a
【巩固】如图,正方形ABCD 的边长为4厘米,分别以B 、D 为圆心以4厘米为半径在正方
形内画圆.求阴影部分面积.(π取3)
D C
B A (8)
【例 5】 (2008年四中考题)已知三角形ABC 是直角三角形,4cm AC =,2cm BC =,求阴影部
分的面积.(3.85平方厘米)
C
B
A
【例 6】 如图,矩形ABCD 中,AB =6厘米,BC =4厘米,扇形ABE 半径AE =6厘米,扇形
CBF 的半径CB =4厘米,求阴影部分的面积.(π取3)(15平方厘米)
F E D C B A
【巩固】求图中阴影部分的面积.(41.04平方厘米)
12
12
【巩固】如右图,正方形的边长为5厘米,则图中阴影部分的面积是 平方厘米,(π 3.14=) (7.125平方厘米)
F
E
D C
B A
【例 7】 已知半圆所在的圆的面积为62.8平方厘米,求阴影部分的面积.(π 3.14=) (5.7平方厘米)
O D C
B A
【例 8】 如图,等腰直角三角形ABC 的腰为10;以A 为圆心,EF 为圆弧,组成扇形AEF ;
两个阴影部分的面积相等.求扇形所在的圆面积.(400平方厘米)
F E
C
B A
【例 9】 如图,直角三角形ABC 中,AB 是圆的直径,且20AB =,阴影甲的面积比阴影乙的
面积大7,求BC 长.(π 3.14=) (15平方厘米)。

相关文档
最新文档