三角函数公式表(全)
(完整word版)三角函数公式表(全)
三角函数公式表同角三角函数的基本关系式倒数关系:商的关系:平方关系:tanα ·cotα=1 sinα ·cscα=1sinα/cosα=tanαsin2α+cos2α=11+tan2α=sec2α(六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积.")诱导公式(口诀:奇变偶不变,符号看象限。
)sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotαsin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotαsin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα(其中k∈Z)两角和与差的三角函数公式万能公式sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβ2tan(α/2) sinα=——————cos(α-β)=cosαcosβ+sinαsinβtanα+tanβtan(α+β)=—-————-———1-tanα ·tanβtanα-tanβtan(α-β)=——-—--—--————1+tanα ·tanβ1+tan2(α/2)1-tan2(α/2)cosα=—-————1+tan2(α/2)2tan(α/2)tanα=—-————1-tan2(α/2)半角的正弦、余弦和正切公式三角函数的降幂公式二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin2α=2sinαcosαcos2α=cos2α-sin2α=2cos2α-1=1-2sin2α2tanαtan2α=-————1-tan2αsin3α=3sinα-4sin3αcos3α=4cos3α-3cosα3tanα-tan3αtan3α=——————1-3tan2α三角函数的和差化积公式三角函数的积化和差公式Sinα+sinβ=2sin[(α+β)/2]·co s[(α-β)/2]sinα—sinβ=2cos[(α+β)/2]·sin [(α—β)/2]cos α+cos β=2cos[(α+β)/2]·cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]·sin[(α—β)/2] 1sinα ·cosβ=-[sin(α+β)+sin(α-β)]21cosα ·sinβ=—[sin(α+β)-sin(α-β)]21cosα ·cosβ=-[cos(α+β)+cos(α-β)]21sinα ·sinβ=- -[cos(α+β)-cos(α-β)]2化asinα ±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式)。
(完整版)三角函数三角函数公式表
(完整版)三角函数公式表1. 正弦函数 (sin):定义:正弦函数是直角三角形中对边与斜边的比值。
公式:sin(θ) = 对边 / 斜边范围:1 ≤ sin(θ) ≤ 1特殊值:sin(0°) = 0, sin(30°) = 1/2, sin(45°) = √2/2, sin(60°) = √3/2, sin(90°) = 12. 余弦函数 (cos):定义:余弦函数是直角三角形中邻边与斜边的比值。
公式:cos(θ) = 邻边 / 斜边范围:1 ≤ cos(θ) ≤ 1特殊值:cos(0°) = 1, cos(30°) = √3/2, cos(45°) = √2/2, cos(60°) = 1/2, cos(90°) = 03. 正切函数 (tan):定义:正切函数是直角三角形中对边与邻边的比值。
公式:tan(θ) = 对边 / 邻边范围:tan(θ) 可以取任意实数值特殊值:tan(0°) = 0, tan(30°) = 1/√3, tan(45°) = 1, tan(60°)= √3, tan(90°) 不存在(无穷大)4. 余切函数 (cot):定义:余切函数是直角三角形中邻边与对边的比值。
公式:cot(θ) = 邻边 / 对边范围:cot(θ) 可以取任意实数值特殊值:cot(0°) 不存在(无穷大), cot(30°) = √3, cot(45°) = 1, cot(60°) = 1/√3, cot(90°) = 05. 正割函数 (sec):定义:正割函数是直角三角形中斜边与邻边的比值。
公式:sec(θ)= 1 / cos(θ)范围:sec(θ) 可以取任意实数值特殊值:sec(0°) = 1, sec(30°) = 2, sec(45°) = √2, sec(60°) = 2/√3, sec(90°) 不存在(无穷大)6. 余割函数 (csc):定义:余割函数是直角三角形中斜边与对边的比值。
三角函数公式大全(表格分类)
三角函数的和差化积公式
三角函数的积化和差公式
sin sin 2sin
2 2 sin sin 2 cos sin 2 2 cos cos 2 cos cos 2 2 cos cos 2sin sin 2 2
sin( ) sin cos cos sin sin( ) sin cos cos sin cos( ) cos cos sin sin cos( ) cos cos sin sin
sin( ) sin cos( ) cos tan( ) tan cot( ) cot
sin(
3 ) cos 2 3 cos( ) sin 2 3 tan( ) cot 2 3 cot( ) tan 2 3 ) cos 2 3 cos( ) sin 2 3 tan( ) cot 2 3 cot( ) tan 2
化 asinα ±bcosα 为一个角的一个三角函数的形式(辅助角的三角函数的公式)
a sin x b co中 角所在的象限由 a 、 b 的符号确定, 角的值由 tan
b 确定 a
六边形记忆法:图形结构“上弦中切下割,左正右余中间 1”;记忆方法“对角线上两个函数的积为 1;阴影三角形 上两顶点的三角函数值的平方和等于下顶点的三角函数 值的平方;任意一顶点的三角函数值等于相邻两个顶点的 三角函数值的乘积。”
万能公式
sin(2 ) sin cos(2 ) cos tan(2 ) tan cot(2 ) cot
三角函数的公式大全
三角函数的公式大全1、两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinBtan(A+B) = (tanA+tanB)/(1-tanAtanB)tan(A-B) = (tanA-tanB)/(1+tanAtanB)cot(A+B) = (cotAcotB-1)/(cotB+cotA)cot(A-B) = (cotAcotB+1)/(cotB-cotA)2、倍角公式tan2A = 2tanA/(1-tan² A)Sin2A=2SinA•CosACos2A = Cos^2 A–Sin² A=2Cos² A—1=1—2sin^2 A3、三倍角公式sin3A = 3sinA-4(sinA)³;cos3A = 4(cosA)³ -3cosAtan3a = tan a • tan(π/3+a)• tan(π/3-a)4、半角公式sin(A/2) = √{(1–cosA)/2}cos(A/2) = √{(1+cosA)/2}tan(A/2) = √{(1–cosA)/(1+cosA)}cot(A/2) = √{(1+cosA)/(1-cosA)} ?tan(A/2) = (1–cosA)/sinA=sinA/(1+cosA) 5、和差化积sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2] sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2] cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2] cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2] tanA+tanB=sin(A+B)/cosAcosB6、积化和差sin(a)sin(b) = -1/2*[cos(a+b)-cos(a-b)] cos(a)cos(b) = 1/2*[cos(a+b)+cos(a-b)] sin(a)cos(b) = 1/2*[sin(a+b)+sin(a-b)] cos(a)sin(b) = 1/2*[sin(a+b)-sin(a-b)]7、诱导公式sin(-a) = -sin(a)cos(-a) = cos(a)sin(π/2-a) = cos(a)cos(π/2-a) = sin(a)sin(π/2+a) = cos(a)cos(π/2+a) = -sin(a)sin(π-a) = sin(a)cos(π-a) = -cos(a)sin(π+a) = -sin(a)cos(π+a) = -cos(a)tgA=tanA = sinA/cosA8、万能公式sin(a) = [2tan(a/2)] / {1+[tan(a/2)]²}cos(a) = {1-[tan(a/2)]^2} / {1+[tan(a/2)]²}tan(a) = [2tan(a/2)]/{1-[tan(a/2)]^2}9、其它公式a•sin(a)+b•cos(a) = [√(a²+b²)]*sin(a+c) [其中,tan(c)=b/a] a•sin(a)-b•cos(a) = [√(a²+b²)]*cos(a-c) [其中,tan(c)=a/b] 1+sin(a) = [sin(a/2)+cos(a/2)]²;1-sin(a) = [sin(a/2)-cos(a/2)]²;10、其他非重点三角函数csc(a) = 1/sin(a)sec(a) = 1/cos(a)11、双曲函数sinh(a) = [e^a-e^(-a)]/2cosh(a) = [e^a+e^(-a)]/2tg h(a) = sin h(a)/cos h(a)12、公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)= sinαcos(2kπ+α)= cosαtan(2kπ+α)= tanαcot(2kπ+α)= cotα13、公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinαcos(π+α)= -cosαtan(π+α)= tanαcot(π+α)= cotα14、公式三:任意角α与-α的三角函数值之间的关系:sin(-α)= -sinαcos(-α)= cosαtan(-α)= -tanαcot(-α)= -cotα15、公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinαcos(π-α)= -cosαtan(π-α)= -tanαcot(π-α)= -cotα16、公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinαcos(2π-α)= cosαtan(2π-α)= -tanαcot(2π-α)= -cotα17、公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)= cosαcos(π/2+α)= -sinαtan(π/2+α)= -cotαcot(π/2+α)= -tanαsin(π/2-α)= cosαcos(π/2-α)= sinαtan(π/2-α)= cotαcot(π/2-α)= tanαsin(3π/2+α)= -cosαcos(3π/2+α)= sinαtan(3π/2+α)= -cotαcot(3π/2+α)= -tanαsin(3π/2-α)= -cosαcos(3π/2-α)= -sinαtan(3π/2-α)= cotαcot(3π/2-α)= tanα√表示根号,包括{……}中的内容18、三角函数记忆口诀三角函数是函数,象限符号坐标注。
三角函数公式大全表格304560
三角函数公式大全表格304560
三角函数是数学中极为重要的一部分,涉及到三角关系的求解和它们之间的关系。
以下是30度、45度和60度的三角函数公式的详细表格。
1. 正弦函数(sin):
角度,正弦值
30度,0.5
45度,√2/2(约等于0.707)
60度,√3/2(约等于0.866)
2. 余弦函数(cos):
角度,余弦值
30度,√3/2(约等于0.866)
45度,√2/2(约等于0.707)
60度,0.5
3. 正切函数(tan):
角度,正切值
30度,√3/3(约等于0.577)
45度,1
60度,√3(约等于1.732)
4. 反正弦函数(arcsin):
正弦值,角度
0.5,30度
√2/2,45度
√3/2,60度
5. 反余弦函数(arccos):
余弦值,角度
√3/2,30度
√2/2,45度
0.5,60度
6. 反正切函数(arctan):
正切值,角度
√3/3,30度
1,45度
√3,60度
7.对于余切函数、反余切函数等其他三角函数,可以通过这些已知的三角函数来计算。
这是一个简单的三角函数表格,包括了常见的30度、45度和60度的三角函数值和对应的反函数值。
通过这些值,我们可以在解决三角关系和问题时进行计算和推导。
需要注意的是,三角函数的值和角度都可以根据单位圆和三角恒等式进行推导,例如平方和恒等式、余切与正弦和余弦的关系等等。
这些三角函数的值和关系在数学和物理等领域有广泛的应用,特别是在解决三角关系、图像处理、信号处理等方面。
三角函数公式总表(详细)
⒕和差化积公式:
cos ② sin sin 2 cos sin 2 2 2 2 ③ cos cos 2 cos cos ④ cos cos 2 sin sin 2 2 2 2
① sin sin 2 sin
3tg tg 3 tg tg (60 ) tg (60 ) 1 3tg 2
⒓半角公式: (符号的选择由 所在的象限确定) ① sin
1 cos 2 2
1 cos 2 2
2
② sin 2
1 cos 2 2 2
2tg 1 tg 2
ii). tg
A B A C B C tg tg tg tg tg 1 2 2 2 2 2 2
② cos 2 cos2 sin 2 2 cos2 1 1 2 sin 2 ③ tg 2
2tg 1 tg 2
a 2 b 2 sin( )
a
(其中辅助角 与点(a,b)
在同一象限,且 tg b ) ⒍函数 y= A sin( x ) k 的图象及性质: ( 0, A 0 ) 振幅 A,周期 T= 2 , 频率 f= 1 , 相位 x ,初相
x | x k 1
k
arcsin a, k Z
cos x a
a 1 a 1
x | x 2k arccos a, k Z x | x 2k arccos a, k Z x | x k arctga, k Z x | x k arcctga , k Z
三角公式总表
⒈L 弧长= R= 180 ⒉正弦定理:
三角函数变换公式大全表格
三角函数变换公式大全表格三角函数变换公式大全表格 1三角函数的转化公式sin(-α)=-sinαcos(-α)=cosαsin(π/2-α)=cosαcos(π/2-α)=sinαsin(π/2+α)=cosαcos(π/2+α)=-sinαsin(π-α)=sinαcos(π-α)=-cosαsin(π+α)=-sinαtanα=sinα/cosαtan(π/2+α)=-cotαtan(π/2-α)=cotαtan(π-α)=-tanαtan(π+α)=tanα三角和差变换乘积公式sinA+sinB=2sin[(A+B)/2]cos[(A-B)/2]sinA-sinB=2cos[(A+B)/2]sin[(A-B)/2]cosA+cosB=2cos[(A+B)/2]cos[(A-B)/2]cosA-cosB=-2sin[(A+B)/2]sin[(A-B)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)三角乘积变换和差公式sinAsinB=-[cos(A+B)-cos(A-B)]/2cosAcosB=[cos(A+B)+cos(A-B)]/2sinAcosB=[sin(A+B)+sin(A-B)]/2cosAsinB=[sin(A+B)-sin(A-B)]/2三角函数的关系公式三角函数的倒数关系公式tanαcotα=1sinαcscα=1cosαsecα=1三角函数的商数关系公式tanα=sinα/cosαcotα=cosα/sinα三角函数的平方关系公式(sina)^2+(cosa)^2=11+(tana)^2=(seca)^21+(cota)^2=(csca)^2三角函数变换公式大全表格 2公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα k∈zcos(2kπ+α)=cosα k∈z tan(2kπ+α)=tanα k∈zcot(2kπ+α)=cotα k∈z公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinα k∈zcos(π+α)=-cosα k∈z tan(π+α)=tanα k∈zcot(π+α)=cotα k∈z公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα。
三角函数公式大全
三角函数公式两角和公式sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos(A+B) = cosAcosB-sinAsinBcos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB-1tanB tanA + tan(A-B) =tanAtanB1tanB tanA +- cot(A+B) =cotAcotB 1-cotAcotB + cot(A-B) =cotAcotB 1cotAcotB -+ 倍角公式 tan2A =Atan 12tanA 2- Sin2A=2SinA•CosACos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式sin3A = 3sinA-4(sinA)3cos3A = 4(cosA)3-3cosAtan3a = tana ·tan(3π+a)·tan(3π-a)sin(2A )=2cos 1A - cos(2A )=2cos 1A + tan(2A )=AA cos 1cos 1+- cot(2A )=AA cos 1cos 1-+ tan(2A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin2b a +cos 2b a - sina-sinb=2cos 2b a +sin 2b a - cosa+cosb = 2cos 2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2b a - tana+tanb=b a b a cos cos )sin(+ 积化和差 sinasinb = -21[cos(a+b)-cos(a-b)] cosacosb = 21[cos(a+b)+cos(a-b)] sinacosb = 21[sin(a+b)+sin(a-b)] cosasinb = 21[sin(a+b)-sin(a-b)]sin(-a) = -sinacos(-a) = cosa sin(2π-a) = cosa cos(2π-a) = sina sin(2π+a) = cosa cos(2π+a) = -sina sin(π-a) = sinacos(π-a) = -cosasin(π+a) = -sinacos(π+a) = -cosa tgA=tanA =aa cos sin 万能公式 sina=2)2(tan 12tan2a a+ cosa=22)2(tan 1)2(tan 1a a +- tana=2)2(tan 12tan 2a a -a•sina+b•cosa=)b (a 22+×sin(a+c) [其中tanc=a b ] a•sin(a)-b•cos(a) =)b (a 22+×cos(a-c) [其中tan(c)=b a ] 1+sin(a) =(sin 2a +cos 2a )2 1-sin(a) = (sin 2a -cos 2a )2其他非重点三角函数 csc(a) =asin 1 sec(a) =a cos 1 双曲函数 sinh(a)=2e -e -aa cosh(a)=2e e -aa + tg h(a)=)cosh()sinh(a a 公式一设α为任意角,终边相同的角的同一三角函数的值相等:sin (2kπ+α)= sinαcos (2kπ+α)= cosαtan (2kπ+α)= tanαcot (2kπ+α)= cotα设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinαcos(π+α)= -cosαtan(π+α)= tanαcot(π+α)= cotα公式三任意角α与-α的三角函数值之间的关系:sin(-α)= -sinαcos(-α)= cosαtan(-α)= -tanαcot(-α)= -cotα公式四利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinαcos(π-α)= -cosαtan(π-α)= -tanαcot(π-α)= -cotα公式五利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinαcos(2π-α)= cosαtan(2π-α)= -tanαcot(2π-α)= -cotα2π±α及23π±α与α的三角函数值之间的关系: sin (2π+α)= cosα cos (2π+α)= -sinα tan (2π+α)= -cotα cot (2π+α)= -tanα sin (2π-α)= cosα cos (2π-α)= sinα tan (2π-α)= cotα cot (2π-α)= tanα sin (23π+α)= -cosα cos (23π+α)= sinα tan (23π+α)= -cotα cot (23π+α)= -tanα sin (23π-α)= -cosα cos (23π-α)= -sinα tan (23π-α)= cotα cot (23π-α)= tanα (以上k ∈Z)这个物理常用公式我费了半天的劲才输进来,希望对大家有用 A•sin(ωt+θ)+ B•sin(ωt+φ) =)cos(222ϕθ⋅++AB B A ×sin )cos(2)Bsin in arcsin[(As t 22ϕθϕθω⋅++++AB B A三角函数公式证明(全部)公式表达式乘法与因式分解a2-b2=(a+b)(a-b) a3+b3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a2+ab+b2) 三角不等式|a+b|≤|a|+|b||a-b|≤|a|+|b||a|≤b<=>-b≤a≤b|a-b|≥|a|-|b|-|a|≤a≤|a|一元二次方程的解-b+√(b2-4ac)/2a -b-b+√(b2-4ac)/2a根与系数的关系X1+X2=-b/aX1*X2=c/a注:韦达定理判别式b2-4a=0 注:方程有相等的两实根b2-4ac>0 注:方程有一个实根b2-4ac<0 注:方程有共轭复数根三角函数公式两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB某些数列前n项和1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6 13+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3 正弦定理a/sinA=b/sinB=c/sinC=2R注:其中R 表示三角形的外接圆半径余弦定理b2=a2+c2-2accosB注:角B是边a和边c的夹角正切定理[(a+b)/(a-b)]={[Tan(a+b)/2]/[Tan(a-b)/2]}圆的标准方程(x-a)2+(y-b)2=r2 注:(a,b)是圆心坐标圆的一般方程x2+y2+Dx+Ey+F=0 注:D2+E2-4F>0抛物线标准方程y2=2px y2=-2px x2=2py x2=-2py直棱柱侧面积S=c*h斜棱柱侧面积S=c'*h正棱锥侧面积S=1/2c*h'正棱台侧面积S=1/2(c+c')h'圆台侧面积S=1/2(c+c')l=pi(R+r)l球的表面积S=4pi*r2圆柱侧面积S=c*h=2pi*h圆锥侧面积S=1/2*c*l=pi*r*l弧长公式l=a*ra是圆心角的弧度数r >0扇形面积公式s=1/2*l*r锥体体积公式V=1/3*S*H圆锥体体积公式V=1/3*pi*r2h斜棱柱体积V=S'L注:其中,S'是直截面面积,L是侧棱长柱体体积公式V=s*h圆柱体V=pi*r2h-------------------------------------------------------------------------------------------- 三角函数积化和差和差化积公式记不住就自己推,用两角和差的正余弦:cos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinB这两式相加或相减,可以得到2组积化和差:相加:cosAcosB=[cos(A+B)+cos(A-B)]/2相减:sinAsinB=-[cos(A+B)-cos(A-B)]/2sin(A+B)=sinAcosB+sinBcosAsin(A-B)=sinAcosB-sinBcosA这两式相加或相减,可以得到2组积化和差:相加:sinAcosB=[sin(A+B)+sin(A-B)]/2相减:sinBcosA=[sin(A+B)-sin(A-B)]/2这样一共4组积化和差,然后倒过来就是和差化积了不知道这样你可以记住伐,实在记不住考试的时候也可以临时推导一下正加正正在前正减正余在前余加余都是余余减余没有余还负正余正加余正正减余余余加正正余减还负3.三角形中的一些结论:(不要求记忆)(1)anA+tanB+tanC=tanA·tanB·tanC(2)sinA+tsinB+sinC=4cos(A/2)cos(B/2)cos(C/2)(3)cosA+cosB+cosC=4sin(A/2)·sin(B/2)·sin(C/2)+1(4)sin2A+sin2B+sin2C=4sinA·sinB·sinC(5)cos2A+cos2B+cos2C=-4cosAcosBcosC-1 ...........................已知sinα=m sin(α+2β), |m|<1,求证tan(α+β)=(1+m)/(1-m)tanβ解:sinα=m sin(α+2β)sin(a+β-β)=msin(a+β+β)sin(a+β)cosβ-cos(a+β)sinβ=msin(a+β)cosβ+mcos(a+β)sinβ sin(a+β)cosβ(1-m)=cos(a+β)sinβ(m+1)tan(α+β)=(1+m)/(1-m)tanβ。
三角函数公式大全
3.三角形中的一些结论:(不要求记忆) (1)anA+tanB+tanC=tanA· tanB· tanC (2)sinA+tsinB+sinC=4cos(A/2)cos(B/2)cos(C/2) (3)cosA+cosB+cosC=4sin(A/2)· sin(B/2)· sin(C/2)+1 (4)sin2A+sin2B+sin2C=4sinA· sinB· sinC (5)cos2A+cos2B+cos2C=-4cosAcosBcosC-1 ........................... 已知 sinα=m sin(α+2β), |m|<1,求证 tan(α+β)=(1+m)/(1-m)tanβ 解:sinα=m sin(α+2β) sin(a+β-β)=msin(a+β+β) sin(a+β)cosβ-cos(a+β)sinβ=msin(a+β)cosβ+mcos(a+β)sinβ sin(a+β)cosβ(1-m)=cos(a+β)sinβ(m+1) tan(α+β)=(1+m)/(1-m)tanβ
+a)·tan( -a) 3 3
1 cos A A )= 2 2
1 cos A A )= 2 2
cos(
tan(
1 cos A A )= 1 cosA 2 1 cos A A )= 1 cosA 2
cot( tan(
sin A A 1 cos A )= = 1 cos A sin A 2 和差化积 ab a b sina+sinb=2sin cos 2 2
三角函数公式大全
三角函数公式大全一、基本定义及性质1. 正弦函数(sin):sin A = 对边 / 斜边cos A = 临边 / 斜边tan A = 对边 / 临边余切函数(cot):cot A = 临边 / 对边2.零度三角函数:sin 0° = 0, cos 0° = 1, tan 0° = 0, cot 0° = ∞3.π/6弧度三角函数:sin (π/6) = 1/2, cos (π/6) = √3/2, tan (π/6) = 1/√3, cot (π/6) = √34.π/4弧度三角函数:sin (π/4) = √2/2, cos (π/4) = √2/2, tan (π/4) = 1, cot (π/4) = 15.π/3弧度三角函数:sin (π/3) = √3/2, cos (π/3) = 1/2, tan (π/3) = √3, cot (π/3) = 1/√36.相反角关系:sin (-A) = -sin A, cos (-A) = cos A, tan (-A) = -tan A, cot (-A) = -cot A7.90°三角函数:sin 90° = 1, cos 90° = 0, tan 90° = ∞, cot 90° = 08.π/2弧度三角函数:sin (π/2) = 1, cos (π/2) = 0, tan (π/2) = ∞, cot (π/2) = 09.倒数关系:sin (π - A) = sin A, cos (π - A) = -cos A, tan (π - A) = -tan A, cot (π - A) = -cot A10.余角关系:sin (π/2 - A) = cos A, cos (π/2 - A) = sin A, tan (π/2 -A) = cot A, cot (π/2 - A) = tan A二、和差与倍角公式1.和差公式:sin (A ± B) = sin A cos B ± cos A sin Bcos (A ± B) = cos A cos B ∓ sin A sin Btan (A ± B) = (tan A ± tan B) / (1 ∓ tan A tan B)2.二倍角公式:sin 2A = 2 sin A cos Acos 2A = cos^2 A - sin^2 A = 2 cos^2 A - 1 = 1 - 2 sin^2 A tan 2A = (2 tan A) / (1 - tan^2 A)三、万能角公式(三角函数的倒数、减角公式、二倍角公式的推广形式)1.正弦函数倒数公式:csc A = 1 / sin A2.余弦函数倒数公式:sec A = 1 / cos A3.正切函数倒数公式:cot A = 1 / tan A4.减角公式:sin (A - B) = sin A cos B - cos A sin Bcos (A - B) = cos A cos B + sin A sin Btan (A - B) = (tan A - tan B) / (1 + tan A tan B)5.二倍角公式推广形式:sin 2A = 2 sin A cos Acos 2A = cos^2 A - sin^2 A = 2 cos^2 A - 1 = 1 - 2 sin^2 A tan 2A = (2 tan A) / (1 - tan^2 A)四、积和差公式1.积公式:sin A sin B = (1/2)[cos(A-B) - cos(A+B)]cos A cos B = (1/2)[cos(A-B) + cos(A+B)]sin A cos B = (1/2)[sin(A-B) + sin(A+B)]2.差公式:sin A - sin B = 2 cos[(A+B)/2] sin[(A-B)/2]cos A - cos B = -2 sin[(A+B)/2] sin[(A-B)/2]sin A + sin B = 2 sin[(A+B)/2] cos[(A-B)/2]cos A + cos B = 2 cos[(A+B)/2] cos[(A-B)/2]五、其他重要性质1. 正弦函数的周期:2π,即sin (x + 2π) = sin x余弦函数的周期:2π,即cos (x + 2π) = cos x2.正弦函数的奇偶性:sin (-x) = -sin x,即 sin 函数是奇函数sin (π + x) = -sin x,即 sin 函数是周期为2π的周期函数3.余弦函数的奇偶性:cos (-x) = cos x,即 cos 函数是偶函数cos (π + x) = -cos x,即 cos 函数是周期为2π的周期函数4.正弦函数和余弦函数的间接关系:sin^2 x + cos^2 x = 1。
三角函数公式全集归纳表格
$\sin(2\alpha) = 2\sin(\alpha)\cos(\alpha)$
4
$\sin^2(\alpha) + \cos^2(\alpha) = 1$
5
$\sin(\frac{\alpha}{2}) = \pm\sqrt{\frac{1 - \cos(\alpha)}{2}}$
余弦函数公式
反正切函= \alpha \implies \tan(\alpha) = x$
3
$\tan(2\alpha) = \frac{2\tan(\alpha)}{1 - \tan^2(\alpha)}$
反正弦函数公式
序号
公式
1
$\sin^{-1}(x) = \alpha \implies \sin(\alpha) = x$
反余弦函数公式
序号
公式
1
$\cos^{-1}(x) = \alpha \implies \cos(\alpha) = x$
三角函数公式全集归纳表格
正弦函数公式
序号
公式
1
$\sin(\alpha + \beta) = \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta)$
2
$\sin(\alpha - \beta) = \sin(\alpha)\cos(\beta) - \cos(\alpha)\sin(\beta)$
正切函数公式
序号
公式
1
$\tan(\alpha + \beta) = \frac{\tan(\alpha) + \tan(\beta)}{1 - \tan(\alpha)\tan(\beta)}$
三角函数公式(最全)
正弦定理变形可得:
五、其他公式
2、余弦定理
对于如图所示的边长为a、b、c而相应角为α、β、γ的△ABC, 有:
3、降幂公式
sin²α=[1-cos(2α)]/2 cos²α=[1+cos(2α)]/2 tan²α=[1-cos(2α)]/[1+cos(2α)]
4、三角和
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+ cosα·cosβ·sinγ-sinα·sinβ·sinγ
ln(1+x)=x-x2/2+x3/3-…+(-1)k-1xk/k, x∈(-1,1)
sin x = x-x3/3!+x5/5!-…+(-1)k-1x2k-1/(2k-1)!+…, x∈R
cos x = 1-x2/2!+x4/4!-…+(-1)kx2k/(2k)!+…, x∈R
arcsin x = x + x3/(2*3) + (1*3)x5/(2*4*5) + (1*3*5)x7/(2* 4*6*7)…+(2k+1)!!*x2k+1/(2k!!*(2k+1))+…, x∈(-1,1)(!!表 示双阶乘)
1
一、定义公式
三角函数公式
锐角三角函数 任意角三角函数
正弦(sin) 余弦(cos) 正切(tan或tg) 余切(cot或ctg) 正割(sec) 余割(csc) 正弦(sin) 余弦(cos) 正切(tan或tg) 余切(cot或ctg) 正割(sec) 余割(csc)
1、倒数关系
二、函数关系
所有三角函数的公式大全
所有三角函数的公式大全在学习三角函数的过程中,公式是很重要的基础之一。
掌握了三角函数的公式,我们就能够更好地理解三角函数的性质,从而更好地解题。
以下是所有三角函数的公式大全。
一、正弦函数(sin)1. 定义:在一个直角三角形中,正弦函数的值等于其对边的长度与斜边的长度的比值。
2. 周期性:sin(x + 2π) = sin(x),其中π为圆周率。
3. 奇偶性:sin(-x) = -sin(x),即sin函数是奇函数。
4. 余角公式:sin(π - x) = sin(x)sin(π + x) = -sin(x)sin(2π - x) = -sin(x)5. 和差公式:sin(x ± y) = sin(x) cos(y) ± cos(x) sin(y)6. 二倍角公式:sin(2x) = 2sin(x) cos(x)sin²(x) = (1 - cos(2x)) / 27. 三倍角公式:sin(3x) = 3sin(x) - 4sin³(x)8. 多倍角公式:sin(nx) = 2^(n-1) sin(x) cos(x) cos(2x) ...cos((n-1)x)9. 单位圆上的正弦函数:sin(x) = y,其中x为角度,称为弧度制下的角度。
在单位圆上,角度为x对应的点的y坐标即为sin(x)的值。
二、余弦函数(cos)1. 定义:在一个直角三角形中,余弦函数的值等于其邻边的长度与斜边的长度的比值。
2. 周期性:cos(x + 2π) = cos(x),其中π为圆周率。
3. 奇偶性:cos(-x) = cos(x),即cos函数是偶函数。
4. 余角公式:cos(π - x) = -cos(x)cos(π + x) = -cos(x)cos(2π - x) = cos(x)5. 和差公式:cos(x ± y) = cos(x) cos(y) ∓ sin(x) sin(y)6. 二倍角公式:cos(2x) = cos²(x) - sin²(x) = 2cos²(x) - 1 = 1 - 2sin²(x)7. 三倍角公式:cos(3x) = 4cos³(x) - 3cos(x)8. 多倍角公式:cos(nx) = 2^(n-2) cos²(x) - 2^(n-4) cos⁴(x) ...(-1)^(n-1) cos((n-1)x)9. 单位圆上的余弦函数:cos(x) = x,其中x为角度,称为弧度制下的角度。
完整版)完整三角函数公式表
完整版)完整三角函数公式表三角函数公式表同角三角函数的基本关系式三角函数是数学中的重要概念,它们在数学和物理学中都有广泛的应用。
同角三角函数的基本关系式包括倒数关系、商的关系和平方关系。
其中,倒数关系式如下:tan\alpha\cdot\cot\alpha=1$$sin\alpha\cdot\csc\alpha=1$$cos\alpha\cdot\sec\alpha=1$$商的关系式如下:frac{\sin\alpha}{\cos\alpha}=\tan\alpha=\frac{\sec\alpha}{\csc\alpha}$$frac{\cos\alpha}{\sin\alpha}=\cot\alpha=\frac{\csc\alpha}{\sec\alpha}$$平方关系式如下:sin^2\alpha+\cos^2\alpha=1$$2^2+ \tan^2\alpha=\sec^2\alpha$$1+\cot^2\alpha=\csc^2\alpha$$这些关系式可以用六边形记忆法和记忆方法来记忆。
其中,六边形记忆法是指图形结构“上弦中切下割,左正右余中间1”,而记忆方法是指对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。
诱导公式诱导公式是指通过已知的三角函数值来推导其他角度的三角函数值的公式。
它们可以用口诀“奇变偶不变,符号看象限”来记忆。
具体来说,诱导公式包括三角函数的奇偶性和象限问题。
奇偶性公式如下:sin(-\alpha)=-\sin\alpha$$cos(-\alpha)=\cos\alpha$$tan(-\alpha)=-\tan\alpha$$cot(-\alpha)=-\cot\alpha$$象限问题公式如下:sin\left(\frac{3\pi}{2}-\alpha\right)=-\cos\alpha$$ cos\left(\frac{3\pi}{2}-\alpha\right)=-\sin\alpha$$ sin(2\pi-\alpha)=-\sin\alpha$$cos(2\pi-\alpha)=\cos\alpha$$tan\left(\frac{3\pi}{2}-\alpha\right)=\cot\alpha$$ tan(2\pi-\alpha)=-\tan\alpha$$cot\left(\frac{3\pi}{2}-\alpha\right)=\tan\alpha$$ cot(2\pi-\alpha)=-\cot\alpha$$另外,还有两个特殊的角度:sin\left(\frac{\pi}{2}-\alpha\right)=\cos\alpha$$cos\left(\frac{\pi}{2}-\alpha\right)=\sin\alpha$$ tan\left(\frac{\pi}{2}-\alpha\right)=\cot\alpha$$ cot\left(\frac{\pi}{2}-\alpha\right)=\tan\alpha$$ sin\left(\frac{\pi}{2}+\alpha\right)=\cos\alpha$$ cos\left(\frac{\pi}{2}+\alpha\right)=-\sin\alpha$$ tan\left(\frac{\pi}{2}+\alpha\right)=-\cot\alpha$$ cot\left(\frac{\pi}{2}+\alpha\right)=-\tan\alpha$$ sin(\pi-\alpha)=\sin\alpha$$cos(\pi-\alpha)=-\cos\alpha$$tan(\pi-\alpha)=-\tan\alpha$$cot(\pi-\alpha)=-\cot\alpha$$sin(\pi+\alpha)=-\sin\alpha$$cos(\pi+\alpha)=-\cos\alpha$$tan(\pi+\alpha)=\tan\alpha$$cot(\pi+\alpha)=\cot\alpha$$两角和与差的三角函数公式最后,还有两角和与差的三角函数公式。
三角函数公式大全表
三角函数公式大全表三角函数公式大全表:1、正弦函数:正弦函数的定义为:y = sin x这里x表示弧度,y表示正弦函数的值,取值范围为(-1, +1).2、余弦函数:余弦函数的定义为:y = cos x这里x表示弧度,y表示余弦函数的值,取值范围为(-1, +1).3、正割函数:正割函数的定义为:y = tan x这里x表示弧度,y表示正割函数的值,取值范围为(-∞,+∞).4、反正弦函数:反正弦函数的定义为:x = arcsin y这里x表示弧度,y表示反正弦函数的值,取值范围为(-1, +1).5、反余弦函数:反余弦函数的定义为:x = arccos y这里x表示弧度,y表示反余弦函数的值,取值范围为(-1, +1).6、反正割函数:反正割函数的定义为:x = arctan y这里x表示弧度,y表示反正割函数的值,取值范围为(-∞,+∞).7、双曲正弦函数:双曲正弦函数的定义为:y = sinh x这里x表示弧度,y表示双曲正弦函数的值,取值范围为(-∞,+∞).8、双曲余弦函数:双曲余弦函数的定义为:y = cosh x这里x表示弧度,y表示双曲余弦函数的值,取值范围为(1, +∞)9、双曲正割函数:双曲正割函数的定义为:y = tanh x这里x表示弧度,y表示双曲正割函数的值,取值范围为(-1,+1).10、反双曲正弦函数:反双曲正弦函数的定义为:x = arcsinh y这里x表示弧度,y表示反双曲正弦函数的值,取值范围为(-∞,+∞).11、反双曲余弦函数:反双曲余弦函数的定义为:x = arccosh y这里x表示弧度,y表示反双曲余弦函数的值,取值范围为(0, +∞).12、反双曲正割函数:反双曲正割函数的定义为:x = arctanh y这里x表示弧度,y表示反双曲正割函数的值,取值范围为(-1, +1).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数公式表
同角三角函数的基本关系式
倒数关系: 商的关系:平方关系:
tanα ·cotα=1 sinα ·cscα=1 sinα/cosα=tanα
sin2α+cos2α=1
1+tan2α=sec2α
(六边形记忆法:图形结构“上弦中切下割,左
正右余中间1”;记忆方法“对角线上两个函数的
积为1;阴影三角形上两顶点的三角函数值的平方
和等于下顶点的三角函数值的平方;任意一顶点
的三角函数值等于相邻两个顶点的三角函数值的
乘积。
”)
诱导公式(口诀:奇变偶不变,符号看象限。
)
sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα
sin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα
sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
(其中k∈Z)
两角和与差的三角函数公式万能公式
sin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=co sαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβ
tanα+tanβ
tan(α+β)=———----———
1-tanα ·tanβ
tanα-tanβ
tan(α-β)=—————-------—
1+tanα ·tanβ
2tan(α/2)
sinα=——————
1+tan2(α/2)
1-tan2(α/2) cosα=——————
1+tan2(α/2)
2tan(α/2)
tanα=——————
1-tan2(α/2)
半角的正弦、余弦和正切公式三角函数的降幂公式
二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式
sin2α=2sinαcosα
cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α
2tanα
tan2α=—————
1-tan2αsin3α=3sinα-4sin3αcos3α=4cos3α-3cosα
3tanα-tan3αtan3α=——————
1-3tan2α
三角函数的和差化积公式三角函数的积化和差公式
Sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2] cos α+cos
β=2cos[(α+β)/2]·cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2 ] 1
sinα ·cosβ=-[sin(α+β)+sin(α-β)]
2
1
cosα ·sinβ=-[sin(α+β)-sin(α-β)]
2
1
cosα ·cosβ=-[cos(α+β)+cos(α-β)]
2
1
sinα ·sinβ=— -[cos(α+β)-cos(α-β)]
2
化asinα ±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式)。