温度检测与控制电路

温度检测与控制电路
温度检测与控制电路

温度检测与控制电路设计报告

一. 设计要求

运用双臂电桥、差动集成运放、滞回比较器、继电器等设计温度监测与控制电路, 检测电路中用热敏电阻Pt100(或热电偶)作为测温原件,对实时温度进行监控采集,当温度超过设定值(如60±2?C)时,能自动停止加热,否则将继续加热,具有自动指示“加热”与“停止”功能(不设计加热电路),并用单片机控制A/D转换和实时温度显示。

1、根据要求设计温度检测电路和温度控制电路的原理图;

2、运用multisim仿真软件对所设计的电路进行仿真,并确定连接实物时所需采用的原件,连接实物图;

3、制作PCB电路板图;

4、编写用单片机控制A/D转换和温度显示的程序,并在单片机实验箱上进调试;

5、分析实验现象,记录实验结果。

二. 设计的作用、目的

学习运用双臂电桥、差动集成运放、滞回比较器设计温度监测及控制电路的方法,学会电子电路的组装、调试和测量方法;同时掌握运用单片机试验箱即时显示温度的原理和单片机试验箱的使用。

三.设计的具体实现

1.系统概述

运用双臂电桥、差动集成运放搭建温度采集电路,Pt100热电阻作为双臂电桥的一个桥臂,当温度变化时,Pt100对应的阻值也会发生变化,电桥会产生差压,通过差动集成运放对差压信号进行放大,并送给滞回比较器进行电压比较,从而决定滞回比较器的输出电位(“高”或者“低”),控制二极管的亮灭。同时将放大的信号送入单片机,通过温度与阻值,阻值与电压值的对应关系编写程序来实现温度显示。

系统结构框图:

2.单元电路设计、仿真与分析

用multisim仿真电路图如下:

3.用Protel绘制电路原理图和PCB电路板图

用Protel绘制的电路原理图:

电气规则检查:

PCB电路板图:

4.电路的安装与调试

①设计实现

根据multisim仿真原理图连接实物图如下:

连接时,首先要注意电路设计板的导通方式,窄条的插孔为横向导通、较宽条的插孔则为纵向导通;其次,因为电路元件较多,插线较为复杂,所以要注意设计板上元件的分布,切勿杂乱无章,这样有利于在出现故障时检查电路;再次,由于此实物连接只是插板,并没有制板焊接,因此电路连接可能不稳,导线连接时要注意露出端不要和电路的其他部分接触,防止电路发生短路,损坏元件。

受实验条件的限制,无法准确采集热电阻在某一温度值时的电阻值,只能用温度源给定大致的温度,粗略测量一下热电偶对应的电阻值,并与查表所得的热

电阻阻值进行比较校正(查表结果如下)。通过滑动变阻器得到下表中的不同温

度条件下的电阻值,以此来代替热电阻接入电路中采集不同温度时电路输出电压值。其中输出电压包括送入滞回比较器的比较电压和送入A/D转换器的显示电压。

通过上表可以看出,热电阻Pt100的温度与阻值之间近似呈线性关系。

送入滞回比较器的比较电压是指当温度恰好达到设定值(60o C)时,一级差动集成运放的输出电压。当加热热电阻达到60o C时,发光二极管刚好由亮转灭。因为缺少稳定的温度源,故我们调节滑动变阻器阻值为Pt100在60o C时的阻值,并将其接入电路中,此时调节控制滞回比较器的正端电压值的滑动变阻器,使发光二极管刚好由亮转灭,固定此时滑动变阻器的位置,便于以后使用方便。

送入A/D转换器的显示电压是指滑动变阻器不同阻值时对应的输入电压值。用万用表测量滑动变阻器不同阻值时对应的电压值如下

由上表得下图:

温度与电压的对应关系:U= 0.048T + 0.360

(1)

通过查阅相关的资料,我们了解到TLC549是一种逐次逼近式A/D转换器,可以和单片机直接接口。TLC549的八位输出口以255个精度来显示。可将参考电压设定为4V,这样就使输入电压范围为0-4V,显示精度为4/255=0.0158V,由温度与电压的关系可知,温度变化每1 o C,电压变化0.0485V,即显示误差不到1/3V,满足了精度要求。

单片机试验箱连接图如下:

在单片机输出显示时,需要将TLC549转化出的数字电压信号与相应的温度对应上。不做调整的情况下,数显值:

x=U*255/4 (2)将(2)代入(1,)数显值转化为温度显示值,关系如下:

T=(x-25)/3 (3)(3)式就是单片机显示转换的对应关系,这样就实现了温度的显示。TLC549每隔128us采集一次数据,即每隔128us采集显示一次温度值。这样也就实现了温度的及时采集显示。(在实际的实验中对温度信号的采集显示存在滞后现象)

②仪器设备

温度源(只用于电路调试和关系确定,不用于实验演示)、单片机实验箱、不同阻值电阻、电容等(参考元件清单)。

③实验结果

开启电源,将程序写入单片机,此时数码显示管上显示室温(18o C),将Pt100放入热水中使其温度升高,数码显示管显示温度值逐渐升高。此时,二极管始终处于发光状态,即加热;当数码显示管显示温度值60o C,发光二极管开始不停的闪烁直至熄灭,之后继续升温,二极管始终熄灭。取出Pt100,放入冷水中,当温度降至60o C时,二极管开始闪烁直至放光,当温度在60o C以下时,二极管始终发光。

四.心得体会及建议

这次实习让我对之前所学的电路知识得以巩固,且对集成运放,双臂电桥,滞回比较等有了更加深刻的认识和更深入的了解,这是对我们课堂所学知识的学以致用,是课堂学习的延伸。如果当初学习电路的时候就能接触这些实践内容,我认为对课本所学知识掌握的会更加牢固。另外对单片机的应用,让我对本学期学习的单片机知识进行了复习。

对于我来说,本次实习的难点在于实际电路的连接。条件有限,不能焊接电路是一个原因,主要还是自己缺乏耐心,面对复杂的电路,有点无从下手,而且总希望一次能够连接成功,不喜欢重复检查电路中出现的问题。但是当调试出现问题时,现实让我不得不硬着头皮,一遍又一遍的仔细去检查。“功夫不负有心人”,最后看到实验成功时,心中无比的喜悦,这是自己辛勤付出换来的。从中我体会到了“耐心、细心、专心、用心、恒心”的重要性,对我以后的学习和工作受益匪浅。

对于这次实习,我也有一些小小的建议:个人认为实习的条件有些“艰苦”,导致最后得到的实践成果也相应的有些欠缺。主要表现在以下几个方面:(1)机房设备差,经常是做着做着电脑就死机了,有些没有及时存盘的文件丢失,还得重新来完成,影响仿真的进度;(2)程设计中虽然有制作PCB这一要求,但是并没有印刷电路板,且元件提供不是特别充足,不敢进行实际电路板焊接,在插板过程中经常会出现连接的电路不稳,连接点容易断开,对实际参数的测定造成了一定的影响。

五.附录

六.参考文献

1.单片机/微机实验系统使用说明及实验指导书·北京精仪达盛科技有限公司

2.李良荣·电子设计技术·机械工业出版社·2007.8

3.清源科技·Protel 99 SE 电路原理图与PCB 设计与仿真·机械工业出版社·2007.7

4.康华光·电子技术基础(模拟部分)·高等教育出版社·2006.1

PT100温度传感器测量电路

PT100温度传感器测量电路 温度传感器PT100是一种稳定性和线性都比较好的铂丝热电阻传感器,可以工作在 -200℃ 至650℃ 的范围.本电路选择其工作在 -19℃ 至500℃ 范围。 整个电路分为两部分,一是传感器前置放大电路,一是单片机 A/D 转换和显示,控制,软件非线性校正等部分。 前置放大部分原理图如下: 工作原理: 传感器的接入非常简单,从系统的 5V 供电端仅仅通过一支 3K92 的电阻就连接到 PT100 了.这种接法通常会引起严重的非线性问题,但是.由于有了单片机的软件校正作为后盾,因此就简化了传感器的接入方式. 按照 PT100 的参数,其在0℃ 到500℃ 的区间内,电阻值为 100 至280.9Ω,我们按照其串联分压的揭发,使用公式:Vcc/(PT100+3K92)* PT100 = 输出电压(mV),可以计算出其在整百℃时的输出电压,见下面的表格:

单片机的 10 位 A/D 在满度量程下,最大显示为 1023 字,为了得到PT100 传感器输出电压在显示 500 字时的单片机 A/D 转换输入电压,必须对传感器的原始输出电压进行放大,计算公式为:(500/1023 * Vcc)/传感器两端电压( mV/℃ ) ,(Vcc=系统供电=5V),可以得到放大倍数为10.466 。 关于放大倍数的说明:有热心的用户朋友询问,按照 (500/1023 * Vcc)/传感器两端电压不能得到 10.466 的结果,而是得到 11.635的结果。实际上,500 个字的理想值是无法靠电路本身自然得到的,自然得到的数字仅仅为 450 个字,因此,公式中的500℃ 在实际计算时的取值是 450 而不是 500 。450/1023*5/(0.33442-0.12438)≈10.47 。其实,计算的方法有多种,关键是要按照传感器的mV/℃ 为依据而不是以被测温度值为依据,我们看看加上非线性校正系数:10.47*1.1117=11.639499 ,这样,热心朋友的计算结果就吻合了。 运算放大器分为两级,后级固定放大 5 倍(原理图中 12K/3K+1=5),前级放大为:10.465922/5=2.0931844 倍,为了防止调整时的元器件及其他偏差,使用了一只精密微调电位器对放大倍数进行细调,可以保证比较准确地调整到所需要的放大倍数(原理图中 10K/(8K2+Rw)+1)。

温度检测与控制实验报告材料

实验三十二温度传感器温度控制实验 一、实验目的 1.了解温度传感器电路的工作原理 2.了解温度控制的基本原理 3.掌握一线总线接口的使用 二、实验说明 这是一个综合硬件实验,分两大功能:温度的测量和温度的控制。 1.DALLAS最新单线数字温度传感器DS18B20简介 Dallas 半导体公司的数字化温度传感器DS1820是世界上第一片支持“一线总线”接口的温度传感器。现场温度直接以“一线总线”的数字方式传输,大大提高了系统的抗干扰性。适合于恶劣环境的现场温度测量,如:环境控制、设备或过程控制、测温类消费电子产品等。与前一代产品不同,新的产品支持3V~5.5V的电压围,使系统设计更灵活、方便。 DS18B20测量温度围为 -55°C~+125°C,在-10~+85°C围,精度为±0.5°C。DS18B20可以程序设定9~12位的分辨率,及用户设定的报警温度存储在EEPROM中,掉电后依然保存。 DS18B20部结构 DS18B20部结构主要由四部分组成:64位光刻ROM、温度传感器、非挥发的温度报警触发器TH和TL、配置寄存器。DS18B20的管脚排列如下: DQ为数字信号输入/输出端;GND为电源地;VDD为外接供电电源输入端(在寄生电源接线方式时接地)。 光刻ROM中的64位序列号是出厂前被光刻好的,它可以看作是该DS18B20的地址序列码。64位光刻ROM的排列是:开始8位(28H)是产品类型标号,接 着的48位是该DS18B20自身的序列号,最后8位是前面56位的循环冗余校验 码(CRC=X8+X5+X4+1)。光刻ROM的作用是使每一个DS18B20都各不相同,这样 就可以实现一根总线上挂接多个DS18B20的目的。 DS18B20中的温度传感器可完成对温度的测量,以12位转化为例:用16位符号扩展的二进制补码读数形式提供,以0.0625℃/LSB形式表达,其中S为符号位。 Bit7 Bit6 Bit5 Bit4 Bit3 Bit2 Bit1 Bit0 232221202-12-22-32-4 Bit15 Bit14 Bit13 Bit12 Bit11 Bit10 Bit9 Bit8 S S S S S 262524这是12位转化后得到的12位数据,存储在18B20的两个8比特的RAM中,二进制中的

温度检测电路

第1章绪论 1.1 引言 温度检测在自动控制系统电路设计中的使用是相当广泛的,系统往往需要针对控制系统内部以及外部环境的温度进行检测,并根据温度条件的变化进行必要的处理,如:补偿某些参数、实现某种控制和处理、进行超温告警等。因此,对所监控环境温度进行精确检测是非常必要的,尤其是一些对温度检测精度要求很高的控制系统更是如此。良好的设计可以准确的提取系统的真实温度,为系统的其他控制提供参考;而相对不完善的电路设计将给系统留下极大的安全隐患,对系统的正常工作产生非常不利的影响。本文结合实践经验给出两种在实际应用中验证过的设计方案。 1.2 设计要求 1.确定设计方案画出电路图 2.完成所要求的参数计算 3.对电路进行焊接与组装 4.对电路进行调试 5.写出使用说明书 1.2.1 设计题目和设计指标 设计题目:温度检测电路 技术指标:1. 量程:0-30摄氏度 2. 两位数码管显示 1.2.2 设计功能 1. 温度检测

2. 信号调理 3. 数码显示 1.2.3 硬件设计 1.传感器可选择LM35(因为热敏电阻的精度不高)。 2.模数转换,译码可选择集成芯片ICL7107芯片。 3.显示电路可以选择数码管三位显示室温。 1.3 需要做的工作 1.器件选型 2.原理图绘制 3.各个流程设计 4.仿真之后做出实物

第2章电路的方框图 2.1 数字温度计电路原理系统方框图 数字温度计电路原理系统方框图,如图1-1所示。 图1-1 电路原理方框图 2.2 方框图工作流程介绍 通过温度传感器采集到温度信号,经过放大电路送到A/D 转换器,然后通过译码器驱动数码管显示温度。在温度采集过程中我们选择多种传感器进行比较,但我们最终选择LM35温度传感器,因为它校准方式简单,使用温度范围适中。在A/D转换和译码的过程中,我们选择了ICL7107芯片,因为他集模数转换与译码器于一体,使得外围电路简单,易于焊接,而且抗干扰能力强。

数字式温度测量电路设计概述

数字式温度测量电路设计 专业班级:电子 1035班 姓名:陈艳 时间:1月1日 ---1月12日指导教师:皇甫立群 2007 年 1 月 9日

数字远程温度测量 一. 设计目的 专业方向课程设计是一项重要的实践性教育环节,是学生在完成本专业所有课程学习后必须接受的一项结合本专业方向的,系统的,综合的工程训练.在教师指导下,运用工程的方法,通过一个较复杂课题的设计练习,可使学生通过综合的系统设计,熟悉设计过程,设计要求,完成的工作内容和具体的设计思想。 二. 设计要求及课程简介 本课题的具体要求即:基本测量范围-50℃-150℃,精度误差小于0.2℃,非线性度小于0.2%,LED数码直读显示,可远距离测量温度.温度传感器类型较多,近年来集成温度传感器被广泛应用,例如AD590就是一个线性度优良的电流型温度传感器。使用传感器将温度信号转换为电流信号后经放大预处理环节后将输出一个温度成比例的电压信号。 三. 设计分析 数字式温度测量是采用数码管直接显示出被测温度值,这种数字显示不仅直观,测量精度高而且便于控制.本设计根据课题要求,主控器单元是单片机 AT89C51和V/F转换器AD654,选用完全符合测量温度范围要求且价格低廉的AD590作为温度传感器,信号的调理主要由失调电压很低、线性误差极小的高精度仪用放大器AD622(也可以用三个LM324组成的减法器)来完成。具有温度数码显示(精确到0.1度),超出量程报警(红色LED管或用蜂鸣器)及自动断电等功能;也符合目前对工业现场参数远程监控的要求(用方波传数据,抗干扰强)!经过各项实验测试,该系统的性能指标达到了任务书的基本要求!该系统根据需要,稍加改造可方便地移植于对压力、液位、流量等方面的检测,其实就是换一个传感器就可以了!该设计控制器使用单片机AT89C51,测温传感器使用AD654,用4位共阳极LED数码管实现温度显示,能准确达到以上要求。 四. 总体设计方案 1.设计方案论证 ⑴方案一:由于本设计是测温电路,使用热敏电阻类器件作为感温器件(找了很多这样的器件, 精度达不到要求),然后把变化的电压或电流采集下来,进行A/D转换器转换后,送到单片机进行数据处理,然后就可以将被测温度显示出来。常用的热电阻材料有铂、铜、镍、铁等,它具有高温度系数、高电阻率、化学、物理性能稳定、良好的线性输出特性等,常用的热电阻如PT100、PT1000等。这类器件的最大缺点是测温的范围太窄,一般只有-55~+125℃,而且温度的测量精度都不高,好的才±0.5℃,一般有±2℃左右,因此在高精度的场合不太满足用户的需要。这种设计感温电路麻烦,数据准确度也不高,精度达不到要求,而且我对此了解不多,就放弃了。 ⑵方案二:重新考虑用温度传感器,一开始找到了LM92,是美国半导体公司近期生产的一种高精度数字温度传感器,内含12 b温度A/D转换器,工作电压:+2.7~+5.5 V;测温范围:-55~+150 ℃;精度:±0.333 ℃(30 ℃时)。但精度达不到本设计的要求,放弃!查找到AD公司生产的数字温度传感器AD741X 系列,其内部包括一个温度传感器和一个10位A/D转换器,精度可达0.25℃,但还是精度不够!找了很多温度传感器,综合考虑,最后还是采用温度传感器

温度测量控制系统的设计与制作实验报告(汇编)

北京电子科技学院 课程设计报告 ( 2010 – 2011年度第一学期) 名称:模拟电子技术课程设计 题目:温度测量控制系统的设计与制作 学号: 学生姓名: 指导教师: 成绩: 日期:2010年11月17日

目录 一、电子技术课程设计的目的与要求 (3) 二、课程设计名称及设计要求 (3) 三、总体设计思想 (3) 四、系统框图及简要说明 (4) 五、单元电路设计(原理、芯片、参数计算等) (4) 六、总体电路 (5) 七、仿真结果 (8) 八、实测结果分析 (9) 九、心得体会 (9) 附录I:元器件清单 (11) 附录II:multisim仿真图 (11) 附录III:参考文献 (11)

一、电子技术课程设计的目的与要求 (一)电子技术课程设计的目的 课程设计作为模拟电子技术课程的重要组成部分,目的是使学生进一步理解课程内容,基本掌握电子系统设计和调试的方法,增加集成电路应用知识,培养学生实际动手能力以及分析、解决问题的能力。 按照本专业培养方案要求,在学完专业基础课模拟电子技术课程后,应进行课程设计,其目的是使学生更好地巩固和加深对基础知识的理解,学会设计小型电子系统的方法,独立完成系统设计及调试,增强学生理论联系实际的能力,提高学生电路分析和设计能力。通过实践教学引导学生在理论指导下有所创新,为专业课的学习和日后工程实践奠定基础。 (二)电子技术课程设计的要求 1.教学基本要求 要求学生独立完成选题设计,掌握数字系统设计方法;完成系统的组装及调试工作;在课程设计中要注重培养工程质量意识,按要求写出课程设计报告。 教师应事先准备好课程设计任务书、指导学生查阅有关资料,安排适当的时间进行答疑,帮助学生解决课程设计过程中的问题。 2.能力培养要求 (1)通过查阅手册和有关文献资料培养学生独立分析和解决实际问题的能力。 (2)通过实际电路方案的分析比较、设计计算、元件选取、安装调试等环节,掌握简单实用电路的分析方法和工程设计方法。 (3)掌握常用仪器设备的使用方法,学会简单的实验调试,提高动手能力。 (4)综合应用课程中学到的理论知识去独立完成一个设计任务。 (5)培养严肃认真的工作作风和严谨的科学态度。 二、课程设计名称及设计要求 (一)课程设计名称 设计题目:温度测量控制系统的设计与制作 (二)课程设计要求 1、设计任务 要求设计制作一个可以测量温度的测量控制系统,测量温度范围:室温0~50℃,测量精度±1℃。 2、技术指标及要求: (1)当温度在室温0℃~50℃之间变化时,系统输出端1相应在0~5V之间变化。 (2)当输出端1电压大于3V时,输出端2为低电平;当输出端1小于2V时,输出端2为高电平。 输出端1电压小于3V并大于2V时,输出端2保持不变。 三、总体设计思想 使用温度传感器完成系统设计中将实现温度信号转化为电压信号这一要求,该器件具有良好的线性和互换性,测量精度高,并具有消除电源波动的特性。因此,我们可以利用它的这些特性,实现从温度到电流的转化;但是,又考虑到温度传感器应用在电路中后,相当于电流源的作用,产生的是电流信号,所以,应用一个接地电阻使电流信号在传输过程中转化为电压信号。接下来应该是对产生电压信号的传输与调整,这里要用到电压跟随器、加减运算电路,这些电路的实现都离不开集成运放对信号进行运算以及电位器对电压调节,所以选用了集成运放LM324和电位器;最后为实现技术指标(当输出端1电压大于3V时,输出端2为低电平;当输出端1小于2V时,输出端2为高电平。输出端1电压小于3V并大于2V时,输出端2保持不变。)中的要求,选用了555定时器LM555CM。 通过以上分析,电路的总体设计思想就明确了,即我们使用温度传感器AD590将温度转化成电压信号,然后通过一系列的集成运放电路,使表示温度的电压放大,从而线性地落在0~5V这个区间里。最后通过一个555设计的电路实现当输出电压在2与3V这两点上实现输出高低电平的变化。

热敏电阻温度测量电路

热敏电阻温度测量电路 下图是温度在0~50℃范围的测量电路。当温度为0℃时输出电压是0V ,温度为50℃时是5V 。他可以与电压表链接来测量温度,也可以连接AD 转换器变换为数字量,利用计算机之类进行测量。 1、工作原理 该电路由检测温度的热敏电阻和1个运算放大器电路,以及将0~50℃的温度信息变换为0~5V 电压的2个运算放大器电路构成。 热敏电阻检测温度时,利用热敏电阻TH R 与电阻3R 分压后的电压作为检测电压进行处理,在这里是利用运算放大器1OP 的电压跟随器电路提取的。输出电压的极性为正,随着温度的上升,热敏电阻的电阻值降低,所以输出电压也下降。 检出的信号加在1OP 和电阻~4R 7R 构成的差动放大电路的正输入端上,而加在负输入端上的是由8R 、9R 、1VR 对5V 分压后的电压,这部分是电压调整电路,可以在温度为0℃时将1OP 的输出电压调整为0V ,这样就可以输出与温度上升成比例的负电压。 2OP 的输出加在由3OP 构成的反转放大电路上被放大,放大倍数为—10211/)(R VR R +倍。调整2VR 可以使温度达50℃时3OP 的输出电压为+5V 。 通过调整1VR 和2VR ,可以在0℃时得到0V 的输出电压,50℃时得到5V 的输出电压,使输出电压与温度成比例。 2、设计 (1)温度测量范围以及输出电压、电源电压的确定:设定温度测量范围为0~50℃,这时的输出电压是0~5V 。电路使用的电源为±15V ,基准电压为5V 。 (2)热敏电阻和运算放大器的选定:这里使用NTC 型热敏电阻,选用25℃的电阻值为10K Ω,误差在±1%以内的NTH4G39A 103F02型,这种热敏电阻的常数为B=3900。 (3)补偿电阻3R 的确定:电阻3R 的作用是当热敏电阻的温度变化时,将相对应的输出电压的变化线性化。设线性化的温度范围是0~50℃,,那么补偿电阻3 R

简易数字式温度计设计

摘要 随着人们生活水平的不断提高,单片机控制无疑是人们追求的目标之一,它所给人带来的方便也是不可否定的,其中数字温度计就是一个典型的例子,但人们对它的要求越来越高,要为现代人工作、科研、生活、提供更好的更方便的设施就需要从数单片机技术入手,一切向着数字化控制,智能化控制方向发展。 本设计所介绍的数字温度计与传统的温度计相比,具有读数方便,测温围广,测温准确,其输出温度采用数字显示,主要用于对测温比较准确的场所,或科研实验室使用,该高精度数字式温度计采用了由DALLAS公司生产的单线数字温度传感器DS18B20,它具有独特的单线总线接口方式。本毕业论文详细的介绍了单线数字温度传感器DS18B20的测量原理、特性以及在温度测量中的硬件和软件设计,该温度计具有接口简单、精度高、抗干扰能力强、工作稳定可靠等特点。 关键词:DS18B20 温度传感器STC89C51

目录 第一章绪论3 1.1 课题背景及研究意义3 1.2 国外的现状3 1.3 设计的目的4 1.4 设计实现的目标4 1.5 数字温度计简介5

第一章绪论 1.1 课题背景及研究意义 随着新技术的不断开发与应用,近年来单片机发展十分迅速,一个以微机应用为主的新技术革命浪潮正在蓬勃兴起,单片机的应用已经渗透到电力、冶金、化工、建材、机械、食品、石油等各个行业。传统的温度采集方法不仅费时费力,而且精度差,单片机的出现使得温度的采集和数据处理问题能够得到很好的解决。温度是工业对象中的一个重要的被控参数。然而所采用的测温元件和测量方法也不相同;产品的工艺不同,控制温度的精度也不相同。本系统所使用的加热器件是电炉丝,功率为三千瓦,要求温度在400~1000℃。静态控制精度为2.43℃。 本设计使用单片机作为核心进行控制。单片机具有集成度高,通用性好,功能强,特别是体积小,重量轻,耗能低,可靠性高,抗干扰能力强和使用方便等独特优点,在数字、智能化方面有广泛的用途。 1.2 国外的现状 温度控制系统在国各行各业的应用虽然已经十分广泛,但从国生产的温度控制器来讲,总体发展水平仍然不高,同日本、美国、德国等先进国家相比,仍然有着较大的差距。成熟的温控产品主要以“点位”控制及常规的PID控制器为主,它们只能适应一般温度系统控制,而用于较高控制场合的智能化、自适应控制仪表,国技术还不十分成熟,形成商品化并广泛应用的控制仪表较少。随着我国经济的发展及加入WTO,我国政府及企业对此都非常重视,对相关企业资源进行了重组,相继建立了一些国家、企业的研发中心,开展创新性研究,使我国仪表工

基于单片机的温度检测与控制系统的设计(论文)开题报告

河南中医学院 本科生毕业设计(论文)开题报告 题目:基于单片机温度检测与控制系统设计 院系:信息技术学院 专业:计算机科学与技术 班级:2010级计科班 学号:2010180042 学生姓名:郭文珠 指导教师:谢志豪 2013年11月13日 一、立题依据(包括研究的目的与意义及国内外现状): 研究的目的与意义 这次毕业设计选题的目的主要是让我们将所学的知识应用与生活当中,掌握系统总体设计的流程,方案的论证,选择,实施与完善。通过对温度控制系统的设计、制作、控制、测试的全过程,提高对单片机的认识和实际操作的能力,初步培养在完成工程项目中所应具备的基本素质和要求,培养自己的研发能力,提高自己的查阅资料,语言表达和理论联系实际的能力。 温度控制无论在日常生活还是工业生产中都有分厂重要的作用,随着社会经济的高速发展,更多方面对温度控制的可靠性和稳定性有了更高的要求,而单片机进行温度的调节就具备很高的可靠性[1]。 国内外现状 国外对温度控制技术研究较早,始于20世纪70年代。先是采用模拟式的组合仪表,采集现场信息并行指进示、记录和控制。80年代末出现了分布式控制系统[2]。目前正开发和研制计算机数据采集控制系统的多因子综合控制系统。现在世界各国的温度测控技术发展很快,一些国家在实现自动化的基础上正向着完全自动化、无人化的方向发展[3]。我国对于温度测控技术的研究较晚,始于20世纪80年代。我国工程技术人员在吸收发达国家温度测控技术的基础上,才掌握了温度室内微机控制技术,该技术仅限于对温度的单项环境因子的控制。我国温度测控设施计算机应用,在总体上正从消化吸收、简单应用阶段向实用化、综合性应用阶段过渡和发展[4]。在技术上,以单片机控制的单参数单回路系统居多,尚无真正意义上的多参数综合控制系统,与发达国家相比,存在较大差距。我国温度测量控制现状还远远没有达到工厂化的程度,生产实际中仍然有许多问题困扰着我们,存在着装备配套能力差,产业化程度低,环境控制水平落后,软硬件资源不能共享可靠性差等缺点[5]。在今后的温控系统的研究中会趋于智能化,集成化,系统的各项性能指标更准确,更加稳定可靠。 二、研究主要内容(包括计划解决的具体问题或实现的基本功能,研究中的重难点分析、实用性及创新性分析,预期达到的成果等。不得低于800字): 计划实现的基本功能 温度控制系统主要是完成温度信号采集、处理、显示等功能[6]。设 计叙述了基于单片机的温度检测与控制系统的设计,包括硬件的设计以 及软件的设计,该系统在硬件设计上主要是通过温度传感器对温度进行 采集,把温度转成变化的电压,然后由放大器将信号放大,通过转化器

NTC温度监测及控制电路

大庆石油学院课程设计 2009年 6 月29 日

石油学院课程设计任务书 课程电子技术课程设计 题目NTC温度监测及控制电路 专业自动化连会学号 5 主要容: 运用双臂电桥、差动集成运放、滞回比较器设计温度监测及控制电路。 基本要求: (1)、检测电路采用热敏电阻Rt(NTC)作为测温元件。 (2)、用100Ω/2W的电阻元件作为加热装置。 (3)、设计温度检测电路和温度控制电路。 (4)、具有自动指示“加热”与“停止”功能。 (5)、写出完整的设计及实验调试总结报告。 参考资料: [1] 淑燕,青.电子技术教学实践指导书[M].:中国电力,2005.10. [2] 润华,立山.模拟电子技术[M].:石油大学,2003. [3] 廖先芸,郝军.电子技术实践教程[M].:石油工业,1998.5. [4] 汪学典.电子技术基础实验[M].:华中科技大学,2006.8. [5] 介华.电子技术课程设计指导[J].:高等教育,1997. 完成期限2009.6.29至2009.7.3 指导教师 专业负责人 2009年 6 月27 日

目录 1 设计要求 (1) 2方案设计 (1) 2.1设计思路 (1) 2.2总体方案方框图 (1) 2.3基本原理 (2) 3总体方案的选择和设计 (2) 3.1 PTC温度控制电路 (2) 3.2 NTC温度监测及控制电路 (3) 4单元电路的设计 (3) 4.1含有热敏电阻的桥式放大电路 (3) 1、测温电桥 (3) 2、差动放大电路 (4) 4.2 滞回比较器 (5) 4.3 输出警报和控制电路 (6) 4.4元件参数的计算及选择 (6) 1、差分放大电路 (6) 2、桥式测温放大电路 (7) 3、滞回比较器 (7) 5总电路图 (8) 6总结 (8) 参考文献 (9) 附录 (10)

数字式温度测量电路的设计

泰山职业技术学院 毕业设计(论文) 题目:数字式温度测量电路设计 系部:汽车电子工程系 专业:应用电子 学号: 学生姓名:赵志广 指导教师:刘勇 职称:指导老师 二OO 年月日

泰山职业技术学院 毕业论文(设计)任务书 课题名称:数字式温度测量电路设计 系部:汽车与电气工程系_________ 专业:应用电子_________________ 姓名:赵志广___________________ 学号:_________________________ 指导教师:刘勇_____________________ 二〇〇年月日

摘要 温度是一种最基本的环境参数,人们生活与环境温度息息相关,在工业生产过程中需要实时测量温度,在工业生产中也离不开温度的测量,因此研究温度的测量方法和控 制具有重要的意义。 本设计是一款简单实用的小型数字温度计,所采用的主要元件有传感器18B20,单片机AT89S52,,四位共阴极数码管一个,电容电阻若干。本次数字式温度测量计的设计共分为五部分,主控制器,LED显示部分,传感器部分,复位部分,时钟电路。本论文首先是对其工作原理进行了叙述,然后对其各个电路进行分析与设计,最后完成整 个系统的设计。 【关键词】数字式温度测量电路、单片机、AT89C52、温度传感器、DS18B20 Digital temperature measurement circuit design Author: Directed by: Abstract:The temperature is a basic environmental parameters of people's lives are closely related to the ambient temperature in industrial processes require real-time measurements of temperature, is also inseparable from the temperature measurement in industrial production of temperature measurement and control of importantsignificance. This is a simple and practical design small digital thermometer, the main components of the sensor 18B20 MCU AT89S52 is, four digital cathode tube one, capacitive resistance of certain The design of the digital temperature gauge is divided into five parts, the main controller, LED display, sensor parts, reset part of the clock circuit. Firstly, its working principle is described and its various circuit analysis and design, to finalize the design of the entire system. Key words:Microcontroller, AT89C52, temperature sensor, DS18B20 第一章概述 1.1 电路功能和组成 数字式测量电路应具有下列基本功能; 1、能把温度转换为成比列的模拟电信号(电流或电压等)。 2、把模拟电信号变换成数字信号。 3、最后用过数字电路(计数、译码和显示)直接指示出温度值。 根据上述基本功能的要求,可画出数字式测温电路的方框图,如图1所示。它主要包括;温度变换处理器、A/D转换器和计数、译码、显示三大部分。 由图可以看出,在电路组成上数字式测温电路与其它数字式测量电路(比如数字式电压表等),有许多相同之处,差别仅在于测温电路多了温度变换和处理部分,这部分的作用是; 1、要把温度(非电量)转换成与之成比例的电信号 2、对转换后的电压进行线性化,零点校正等处理并加以放大。

温度测量与控制电路

《电子技术》课程设计报告 题目温度测量与控制电路 学院(部)电子与控制工程学院 专业电子科学与技术 班级 学生姓名郭鹏 学号 13 指导教师(签字) 前言 随着数字时代的到来,人们对于温度的测量与控制的要求越来越高,用传统的水银或酒精温度计来测量温度,不仅测量时间长、读数不方便、精度不够高而且功能单一,已经不能满足人们在数字化时代的要求。于是我们提出,测温电路利用温度传感器监测外界温度的变化,通过放大器将温度传感器接收到的信号进行放大,放大到比较有利于我们测量的温度范围,然后利用A/D转换器实现模拟信号到数字信号的转换,最后通过编程让FPGA实现8位二进制数与BCD码之间的转化,实现温度的显示;并利用比较器来实现对放大电压信号的控制,从而实现对温度的控制;再者还加载了报警装置,使它的功能更加完善,使用更加方便。

本设计是采用了温度的测量、信号放大、A/D转换、温度的显示、温度的控制、报警装置六部分来具体实现上述目的。 目录 摘要与设计要求 (4) 第一章:系统概述 (5) 第二章:单元电路设计与分析 (5) 1) 方案选择 (5) 2)设计原理与参考电路 (6) 1 放大电路 (6) 2 低通滤波电路 (7) 3 温度控制电路 (8) 4 报警电路 (9) 5 A/D转换器 (10)

6 译码电路 (11) 第三章:系统综述、总体电路图 (14) 第四章:结束语 (15) 参考文献 (15) 元器件明细表 (15) 收获与体会,存在的问题等 (16) 温度测量与控制电路 摘要: 利用传感器对于外界的温度信号进行收集,收集到的信号通过集成运算放大器进行信号放大,放大后的信号经过A/D转换器实现模拟信号与数字信号间的转换,再通过FPGA编程所实现的功能将转换后的数字信号在数码管上显示出来,实现温度测量过程。放大的信号可以与所预定的温度范围进行比较,如果超出预定范围,则自动实现声光报警功能,实现温度控制过程。 关键字:温度测量温度控制信号放大 A/D转换声光报警 设计要求: 1. 测量温度范围为200C~1650C,精度 0.50C; 2. 被测量温度与控制温度均可数字显示; 3. 控制温度连续可调; 4. 温度超过设定值时,产生声光报警。

基于热电偶的温度测量电路设计

燕山大学 课程设计说明书题目:基于热电偶的温度测量电路设计 学院(系):电气工程学院 年级专业: 学号: 学生: 指导教师: 教师职称:

燕山大学课程设计(论文)任务书院(系):电气工程学院基层教学单位:

说明:此表一式四份,学生、指导教师、基层教学单位、系部各一份。 2011年6 月26 日燕山大学课程设计评审意见表

目录 第1章摘要 (2) 第2章引言 (2) 第3章电路结构设计 (2) 3.1 热电偶的工作原理 (2) 3.2 冷端补偿电路设计 (5) 3.3 运算放大器的设计 (6) 第4章参数设计及运算 (8) 4.1 补偿电路的计算 (8) 4.2 运算放大器的计算 (9) 4.3 仿真器仿真图示 (10) 心得体会 (12) 参考文献 (13)

第一章摘要 本文所要设计的是基于运算放大器的具有冷端补偿的热电偶测温。 所要设计包括三部分,热电偶,冷端补偿,运算放大器。热电偶选用的为K型热电偶,补偿采用是桥式补偿电路,运算放大器则用的是运放比例较大而输出阻抗比较小的仪器仪表放大器。 第二章引言 在工业生产过程中,温度是需要测量和控制的重要参数之一,在温度测量中,热点偶的应用极为广泛,它具有结构简单,制作方便,测量围广,精度高,惯性小和输出信号便于远传等许多优点。另外,由于热电偶是一种有源传感器,测量时不需外加电源,使用十分方便,所以常被用作测量炉子,管道的气体或液体的温度及固体的表面温度。热电偶作为一种温度传感器,热电偶通常和显示仪表,记录仪表和电子调节器配套使用。热电偶可以直接测量各种生产中从0℃到1300℃围的液体蒸汽和气体介质以及固体的表面温度。 第三章电路结构设计 3.1热电偶的工作原理 热电偶是一种感温元件,是一次仪表,它直接测量温度,并把温度信号转换成热电动势信号,通过电气仪表(二次仪表)转换成被测介质的温度。 热电偶测温的基本原理是两种不同成份的材质导体(称为热电偶丝材或热电极)组成闭合回路,当接合点两端的温度不同,存在温度梯度时,回路中就会有电流通过,此时两端之间就存在电动势——热电动势,这就是所谓的塞贝克效应。两种不同成份的均质导体为热电极,温度较高的一端为工作端(也称为测量端),温度较低的一端为自由端(也称为补偿端),自由端通常处于某个恒定的温度下。根据热电动势与温度的函数关系,制成热电偶分度表;分度表是自由端温度在0℃时的条件下得到的,不同的热电

数显温度测量仪电路设计

,,,….大学 课程设计说明书 2011/2012 学年第 1 学期 学院:电子与计算机科学技术学院 专业:电子科学与技术 学生姓名:JJJJK 学号:VHGGHJHH 课程设计题目:数显温度测量仪电路设计 起迄日期:2011年12月19 日~ 2012年1 月5日课程设计地点:电子科学与技术系机房 指导教师:KLJKLJ 系主任:JKL 下达任务书日期: 2011年 12月 19日

目录: 1. 课程设计目的 (3) 2. 课程设计内容和要求 (3) 3. 设计方案 (3) 4. 设计流程图 (5) 5. 工作原理 (6) 5.1 测温部分 (6) 5.2 温度检测电路模块 (7) 5.3电压放大电路模块 (8) 5.4 温度数字显示 (9) 6. 课程设计总结 (15) 7. 参考文献 (16) 8. 附录 (17)

一.课程设计目的 (1)、了解数显温度测量仪电路的基本实现原理; (2)、掌握计数器、显示等中规模数字集成器件的逻辑功能和使用方法; (3)、掌握利用protel绘制电路原理图与制作PCB图的方法。 (4)、Protues仿真。 二.课程设计内容和要求 (1)查阅所用器件技术资料,详细说明设计的数显温度测量仪电路工作流程; (2)温度测量范围:20℃~100℃,测量精度为0.1℃,数字显示位数四位。 (3)选择适当的传感器,设计恰当的放大电路,且具有调零电路。 (4)为减少或消除干扰,电路应具有低通功能。 三.设计方案 本次课程设计任务为数显温度测量仪:测温范围20℃—100℃,用CC7107(ICL7107可用 位数字电压表显示。测温传感器铂-100热电阻(Pt-100)。热电阻变换TC7107代替)组装31 2 电路用全桥测量电路。通过网上查找资料以及自身理解我选择用ICL7107芯片,经过铂金属的传热和中间电路将热信号转换为电压信号再经放大后输入到ICL7107芯片,最后经数字显示电路将温度信号显示。 采用铂金属温度传感器来检测温度的变化,铂金属温度传感器的电阻值会随着外界温度的变化而变化,并且近似为线性关系。利用这种线性关系,可以组成温度测量电路。从这个电路中将会得到跟随外界温度变化而变化的带有当前温度特征的电压信号。 温度测量电路模块输出的电压信号的伏值一般较小,不能直接用于后续电路模块的输入信号。因此,要在温度测量电路模块后面加上电压放大电路。将温度测量电路输出的带有当前温度特征的电压信号进行放大,使得其输出的电压伏值能够满足后续电路模块的输入要求。 放大电路模块输出的电压信号分为两路:一路直接用于数字显示电路模块的输入信号,从而得到直观的温度数据。另一路将输出的电压信号作为继电器驱动电路模块中的电压比较器的一个输入信号。

NTC温度监测及控制电路

大庆石油学院课程设计 2009年 6 月 29 日

石油学院课程设计任务书 课程电子技术课程设计 题目 NTC温度监测及控制电路 专业自动化连会学号070601140215 主要容: 运用双臂电桥、差动集成运放、滞回比较器设计温度监测及控制电路。 基本要求: (1)、检测电路采用热敏电阻Rt(NTC)作为测温元件。 (2)、用100Ω/2W的电阻元件作为加热装置。 (3)、设计温度检测电路和温度控制电路。 (4)、具有自动指示“加热”与“停止”功能。 (5)、写出完整的设计及实验调试总结报告。 参考资料: [1] 淑燕,青.电子技术教学实践指导书[M].:中国电力,2005.10. [2] 润华,立山.模拟电子技术[M].:石油大学,2003. [3] 廖先芸,郝军.电子技术实践教程[M].:石油工业,1998.5. [4] 汪学典.电子技术基础实验[M].:华中科技大学,2006.8. [5] 介华.电子技术课程设计指导[J].:高等教育,1997. 完成期限 2009.6.29至2009.7.3 指导教师 专业负责人

2009年 6 月 27 日 目录 1 设计要求 (1) 2方案设计 (1) 2.1设计思路 (1) 2.2总体方案方框图 (1) 2.3基本原理 (2) 3总体方案的选择和设计 (2) 3.1 PTC温度控制电路 (2) 3.2 NTC温度监测及控制电路 (3) 4单元电路的设计 (3) 4.1含有热敏电阻的桥式放大电路 (3) 1、测温电桥 (3) 2、差动放大电路 (4) 4.2 滞回比较器 (5) 4.3 输出警报和控制电路 (6) 4.4元件参数的计算及选择 (6) 1、差分放大电路 (6) 2、桥式测温放大电路 (7) 3、滞回比较器 (7) 5总电路图 (8) 6总结 (8) 参考文献 (10) 附录 (11)

pt100温度测量电路图(电子发烧友)

PT100与热敏电阻相反,热敏电阻温度越高电阻值越小 pt100温度测量电路,温度传感器PT100是一种稳定性和线性都比较好的铂丝热电阻传感器,可以工作在 -200℃ 至650℃ 的范围.本电路选择其工作在 -19℃ 至500℃ 范围. 整个电路分为两部分,一是传感器前置放大电路,一是单片机 A/D 转换和显示,控制,软件非线性校正等部分. 前置放大部分原理图如下: 工作原理: 传感器的接入非常简单,从系统的 5V 供电端仅仅通过一支 3K92 的电阻就连接到 PT100 了.这种接法通常会引起严重的非线性问题,但是.由于有了单片机的软件校正作为后盾,因此就简化了传感器的接入方式. 按照 PT100 的参数,其在0℃ 到500℃ 的区间内,电阻值为 100 至 280.9Ω,我们按照其串联分压的揭发,使用公式: Vcc/(PT100+3K92)* PT100 = 输出电压(mV),可以计算出其在整百℃时的输出电压,见下面的表格:

单片机的 10 位 A/D 在满度量程下,最大显示为 1023 字,为了得到 PT100 传感器输出电压在显示 500 字时的单片机 A/D 转换输入电压,必须对传感器的原始输出电压进行放大,计算公式为:(500/1023 * Vcc)/传感器两端电压( mV/℃ ) ,(Vcc=系统供电=5V),可以得到放大倍数为 10.466 。 关于放大倍数的说明:有热心的用户朋友询问,按照 (500/1023 * Vcc)/传感器两端电压不能得到 10.466 的结果,而是得到 11.635 的结果。实际上,500 个字的理想值是无法靠电路本身自然得到的,自然得到的数字仅仅为 450 个字,因此,公式中的500℃ 在实际计算时的取值是 450 而不是 500 。450/1023*5/(0.33442-0.12438)≈10.47 。其实,计算的方法有多种,关键是要按照传感器的mV/℃ 为依据而不是以被测温度值为依据,我们看看加上非线性校正系数:10.47*1.1117=11.639499 ,这样,热心朋友的计算结果就吻合了。 运算放大器分为两级,后级固定放大 5 倍(原理图中 12K/3K+1=5),前级放大为:10.465922/5=2.0931844 倍,为了防止调整时的元器件及其他偏差,使用了一只精密微调电位器对放大倍数进行细调,可以保证比较准确地调整到所需要的放大倍数(原理图中 10K/(8K2+Rw)+1)。 通常,在温度测量电路里,都会有一个“调零”和另一个“调满度”电位器,以方便调整传感器在“零度”及“满度”时的正确显示问题。本电路没有采用两只电位器是因为只要“零度”调整准确了,就可以保证整个工作范围的正确显示,当然也包括满度时的最大显示问题了。 那么,电路中对“零度”是如何处理的呢?它是由单片机程序中把这个“零度”数字直接减掉就是了,在整个工作范围内,程序都会自动减掉“零度”值之后再作为有效数值来使用。 当供电电压发生偏差后,是否会引起传感器输入的变化进而影响准确度呢?供电变化后,必然引起流过传感器的电流发生变化,也就会使传感器输出电压发生变化。可是,以此同时,单片机的供电也是在同步地接受到这种供电变化的,当单片机的 A/D 基准使用供电电压时,就意味着测量基准也在同步同方向发生变化,因此,只要参数选择得当,系统供电的变化在 20% 之内时,就不会影响测量的准确度。(通常单片机系统并不允许供电有过大的变化,这不仅仅是在温度测量电路中的要求。)

温度检测及控制电路

课程设计 课程名称测控电路课程设计_____ 题目名称温度检测及控制电路_ 学生学院信息工程学院_______ 专业班级 学号 学生姓名 指导教师 2014年1 月1日

广东工业大学课程设计任务书 题目名称温度检测及控制电路 学院信息工程学院 专业班级 测控技术与仪器专业 光机电一体化方向11(1-2) 姓名关汉记 学号3111002392 一、课程设计的内容 1、设计内容 (1)详细分析集成运算放大器构成的差动放大器工作原理及调零过程; (2)把测量得到的数据输入Matlab,用Matlab画出测温放大电路温度-电压关系曲线及比较器电压传输特性曲线; (3)详细分析电路中滞回比较器的电压传输特性对温控电路的作用和影响; (4)计算差动放大电路的电压放大倍数,计算所实现电路的滞回门限宽度; (5)详细分析测温电桥的工作原理; (6)分析如何设定温度控制点。 2、电路仿真 根据温度检测及控制电路工作原理,选用相应软件实现电路的仿真,并画出电路各点的信号波形,观察电桥输出、差动放大器输出及比较器输出信号随温度的变化趋势。 3、使用Protel绘制电路原理图,布局PCB板,使用热转印或者曝光方法制作电路板,根据系统原理图及所选择的元件及参数,购买相应元器件,完成电路焊接、调试。 二、课程设计的要求与数据 1、完成温度检测及控制电路的设计与制作; 2、讨论与分析,制作与调试,演示与答辩,提交设计报告。

三、课程设计应完成的工作 1、电路原理图设计; 2、电路工作原理分析; 3、电路参数计算与分析; 4、电路原理仿真; 5、电路制作、调试; 6、撰写设计报告; 7、实物演示与答辩。 四、课程设计进程安排 序号课程设计各阶段内容地点起止日期 1 布置设计安排;讲授设计内容;说明设计要求待定13.12.23 上午 2 方案设计、分析与比较实验楼 1-412 13.12.23 下午 3 确定方案和电路参数,理论计算、分析与仿真实验楼 1-412 13.12.24 4 绘制电路原理图;电路制作、调试;实验楼 1-412 13.12.25 5 撰写设计报告;实验楼 1-412 13.12.26 6 实物演示、答辩、成绩评定实验楼 1-412 13.12.27 五、应收集的资料及主要参考文献 1.张国雄等编。测控电路,机械工业出版社,2001.8. 2.赵负图主编,现代传感器集成电路,人民邮电出版社,2000.1. 3.刘征宇主编,线性放大器应用手册,福建科学技术出版社,2005.1. 4.蔡锦福等编,运算放大器原理与应用,科学出版社,200 5.7. 5.自编,测控电路设计型实验任务书. 发出任务书日期:2013年12月20日指导教师签名:计划完成日期: 2013年12月20日系主任签名:主管院长签名:

相关文档
最新文档