基于多层次模糊分析综合评价法的课堂教学评价数学模型
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于多层次模糊分析综合评价法的课堂教学评价数学模型
摘要:本文将采取多层次模糊综合评价法对课堂教学进行量化的评价,并给出评价等级。它首先通过参考信息工程大学的本科人才培养目标,教师队伍发展的指导思想,结合现实的教学情况,制定了一套完整的评价指标体系,并且将反应课堂质量的因素按照层次分类并对其重要性进行量化,得到一系列各层次的权值矩阵。通过对学员问卷调查最终得到了模糊判断矩阵计算出数字化的模糊关系矩阵,通过多层的复合运算, 最终确定评价对象所属等级。
文中将看到此模型在制定评价指标体系中的权值分配反应的我校教学转型思想和“三基四能”培养目标,通过构建四项评价机制“教员互评”、“教员自评”、“学员评价”、“专家评价”比较完整地科学地评价了一门课程,并能经改进后能够做到跟踪调查,反馈意见,据此模型给出我们对我校我院的教学方式的一些意见。本模型经过些许修改可以适用于任何一种评价模型。
基于多层次模糊分析综合评价法的课堂教学评价数学模型
问题的提出以及分析
课堂的教学质量评价,是我院全面提高教学质量,调节教学行为,优化教师队伍结构 , 促进教学水平提高,使师资队伍的管理系统化、科学化的一项有效措施。近几年,我校大力推进教育转型,深化编制体制改革,对课堂教学质量提出了更高的要求。课堂教学评估是一项实践性很强的工作,需要一定的科学理论为依据,方法为基础。本文将结合我校教育转型和“三基四能”人才培育方案,通过建立教师教学质量评估体系的层次结构图 ,构建模糊一致判断矩阵并计算出各指标权重,通过对不同的全体(学员、教员、专家)问卷调查的统计分析,分别得到模糊判断矩阵,算出在不同全体的评价分值,在对各评价分值通过加权计算得到该课堂的最终结果。
(一)模型假设、层次构建以及符号定义
一、模型假设
(1)在对课堂模型评价过程中,教员自评能够诚实守信、以人格为重,对自己教学的长处和不足给出客观的评价,教师互评中教员没有互相考虑,互相照顾。
(2)学生评价在课程考试之前进行,由专家安排人员组织学员认真填写测评表,学员能够自主地按照自己的意愿实事求是地给出自己的评价。
(3)所有的问卷调查表都能够回收,没有出现丢失和篡改现象。
(4)专家评价由专家评价小组施行,专家评价小组依据平时的听课、召开学生座谈会、检查学生作业、学生试卷、教师教案以及查看教学报告等情况进行评价。
(5)出现以下情况者直接定义为不合格:
1、多次出现教学事故
2、参与测评的学生有半数对其教学效果的综评价为不合格者直接判断为不合格。
二、课堂教学评价层次。
课堂质量绝对不能仅仅只从期末成绩的好坏来判断,从我校教学转型的方向和本科培养应用型人才的目标来看,一个良好的课堂应该包括教学目标的科学准确、德育渗透,教学内容重点突出、层次清晰、延拓性强,教学方法注重启迪、手段多样、体现互动,教学素质过硬可靠、熟练规范,教学效果气氛活跃、落实目标。同时在军校本科教学中,答疑这一方面是地方大学、军校研究生阶段所没有的,所以课堂评价中应该还要包括教员答疑的出勤率、以及答疑效果。我们的课堂教学模型的评价的功能应从注重甄别与选拔转向激励、反馈与调整;评价内容应从过分注重学业成绩转向注重多方面发展的潜能;评价主体应从单一转向多元,即由学员、教员自己、教员同事、专家一起参与评价。所以,我们构建了如下的层次模型:
课堂教学质量
教学目标
教学内容
教学效果
教学素质
答疑
德育渗透自然得体
操作技术熟练规范
组织调控灵活有效
语言准确板书规范
教态自然情绪饱满
面向全体因材施教
教学手段恰当实用
体现双主师生互动
启发思维培养能力
创设情景激发兴趣
容量恰当学法指导
信息广泛注重实践
层次清晰把握联系
重点突出滩点突破
科学准确符合实际
教学目标得到落实
能力方法都有所得
生动活泼气氛热烈
积极表达大胆质疑
兴趣浓厚思维活跃
充分利用答疑解惑
准时到场出勤率高
教学方法
教员
自评
专家
测评
教员
互评
学员
评价
第一层次第二层次
第四层次
三、符号体系的建立以及相关公式。
根据以上的层次模型我们定义如下的符号体系以及与算法有关的相关公式:
1、在一级评价指标(对应第二层次)中,设因素教员自评、教员互评、专家测评、学员评价分别为A1,A2,A3,A4,得到一级指标因素的集合为:A={ A1,A2,A3,A4}。
2、在二级评价指标(对应第三层次)中,设因素教学目标、教学内容、教学方法、教学素质、教学效果、答疑分别B1,B2,B3,B4,B5,B6,得到二级指标因素的集合为B={ B1,B2,B3,B4,B5,B6}。
3、在三级评价指标(对应第四层次)中,设隶属二级指标Bi(i=1,2,3,4,5,6)的三级指标为结合Ci1,Ci2,Ci3,Ci4,Ci5,记为Ci{ Ci1,Ci2,Ci3,Ci4,Ci5},很明显,隶属于二级指标Bi(i=1,2,3,4,5,6)的三级指标集合Ci包含的元素有没有达到六项的,在此我们做如下处理:对缺项的集合Ci的缺项直接省略,如C1记作为{ C11,C12},对应{教学准确,符合实际}。
4、对于评价等级我们定义为四级:优秀(90-100)、良好(80-90)、及格(60-80)、不及格(0—60)。分别记为V1,V2,V3,V4,我们建立评价集合V{ V1,V2,V3,V4}。
5、定义评价指标体系的权重。在我们的模型中,权重至关重要,直接影响综合评价的结果,这里我们权重的求法构造成对比较矩阵确定。假设有某一集合A={ A1,A2,A3,A4,A5,A6}(此处随便举一例,不同于一级指标因素集合)为例,我们建立如下的模糊一致判断矩阵:
a11a12a13a14a15a16
a21a22a23a24a25a26
a31a32a33a34a35a36
a41a42a43a44a45a46
a51a52a53a54a55a56
a61a62a63a64a65a66
A=
其中a ij表示因素A i与因素A j具有模糊关系“A i比A j重要”的隶属度。