数学 微分 范例例题
高中微积分经典例题

高中微积分经典例题1. 函数求导- 例题1: 求函数 $f(x) = x^3 - 2x^2 + x$ 在点 $x=2$ 处的导数。
将函数 $f(x) = x^3 - 2x^2 + x$ 求导,得到 $f'(x) = 3x^2 - 4x + 1$。
将 $x=2$ 代入导数函数,得到 $f'(2) = 3(2)^2 - 4(2) + 1 = 9$。
所以函数 $f(x)$ 在点 $x=2$ 处的导数为 9。
- 例题2: 求函数 $g(x) = e^x \sin x$ 的导数。
使用链式法则,将函数 $g(x) = e^x \sin x$ 求导。
根据链式法则, $\frac{d}{dx} (e^x \sin x) = (e^x)' \sin x + e^x (\sin x)'$。
对于 $(e^x)'$,使用指数函数求导法则,得到 $(e^x)' = e^x$。
对于 $(\sin x)'$,使用三角函数求导法则,得到 $(\sin x)' = \cos x$。
将这些导数结果带入,得到 $\frac{d}{dx} (e^x \sin x) = e^x \sin x + e^x \cos x$。
所以函数 $g(x) = e^x \sin x$ 的导数为 $e^x \sin x + e^x \cos x$。
2. 积分计算- 例题1: 计算积分 $\int (3x^2 - 2x + 4) \, dx$。
根据积分的线性性质,将积分展开,得到 $\int (3x^2 - 2x + 4) \, dx = \int 3x^2 \, dx - \int 2x \, dx + \int 4 \, dx$。
对于每一项,根据幂函数积分法则,得到 $\int x^n \, dx =\frac{1}{n+1} x^{n+1}$。
将这些结果带入积分式,得到 $\int (3x^2 - 2x + 4) \, dx =\frac{1}{3} x^3 - x^2 + 4x + C$,其中 $C$ 为常数。
多元函数微分学例题

2、求级数和的一般方法
1)
利用
S
=
lim
n→∞
Sn;
2) 利用级数的性质;
3) 利用等比级数求和公式;
4) 利用逐项求导或逐项积分;
5) 利用常用的麦克劳林级数;
≠ 0,
证明: 对任意常数C, f (x, y) = C为一直线的充要条件是
( f y )2 f xx − 2 f x f y f xy + f yy ( f x )2 = 0.
f xx
+
f xy
dy dx
+
f yx
dy dx
+
f yy
⎛⎜⎝
dy dx
⎞⎟⎠2 +
fy
d2 y dx 2
=
0,
将 dy = − fx dx f y
6) 利用傅立叶级数的和函数; 7) 利用方程或常微分方程; 8) 利用定积分定义.
二、典型例题
∑∑ 例1. 求 lim m→+∞ n→+∞
解 因为 0
∫−1
m
i =1
xi
n (−1)i+ j j=1 i + j
+ j−1dx = −
.
( −1)i + i+ j
j
,
所以部分和
∑∑ ∑∑ ∫ Sm,n
=
m i =1
n (−1)i+ j j=1 i + j
m
=−
i =1
n j =1
复合函数微分典型例题

⎞ ⎟ ⎠
cosθ
+
⎛ ⎜ ⎝
∂2u ∂y 2
sin θ
+
∂2u ∂y∂x
cosθ
⎞ ⎟
sin
θ
⎠
4
=
∂2u ∂x2
cos2
θ
+
2
∂2u ∂x∂y
sin θ
cosθ
+
∂2u ∂y 2
sin 2
θ
,
又 ∂u = ∂u ∂x + ∂u ∂y = − ∂u r sinθ + ∂u r cosθ ,
∂θ ∂x ∂θ ∂y ∂θ ∂x
' v
(v)
⋅1+
gu'
(u)
⋅
y
=
−
sin(x + x+ y
y)
+
y
⋅
sin( xy) xy
=
−
sin(x + x+ y
y)
+
sin( xy ) x
同理,
f
' y
(
x,
y)
=
sin( xy ) y
−
sin(x + y) x+ y
例 5 设 z = f (x, y) 二阶连续可微,且 dz = (x2 − c) ydx + (ax3 + x + b sin xy)dy ,试确定常数 a,b, c
∂z = exy cos(x + y) ⋅1+ sin(x + y) ⋅ exy ⋅ y = exy [ y sin(x + y) + cos(x + y)],
多元微分几何应用典型例题与课外练习

多元微分几何应用典型例题与课外练习一、典型例题例1 求曲线sin ,1cos ,4sin 2t x t t y t z =−=−=在点2t π=处的切线方程和法平面方程.解 因()1cos ,()sin ,()2cos 2t x t t y t t z t ′′′=−==,故在 2t π=处的切向量为.又在 2t π=处0001,1,2x y z π=−==11211x y π+−−==.法平面方程为1102x y z π+−+−−=,即402x y π++−−=.例2 求曲线 2221y xz x⎧=⎨=+⎩在点处的切线及法平面方程.解:因 22,21yy zz ′′==−,所以11x y y y=′==,则在点处的切向量为1(1,,24−. 故过处的切线方程为 121142x z −−==−, 法平面方程为11((2)024x y z −+−−=. 即40y +−= .注:该题也可用基本方法中的方法2做,请读者自己完成,并作比较.例3 求曲线 2223023540x y z x x y z ⎧++−=⎨−+−=⎩在点(1, 1, 1)处的切线和法平面方程.解: 设x 为参数,将曲线所给方程组的各方程两边对x 求导得222302350x yy zz y z ′′++−=⎧⎨′′−+=⎩ 解得10415649,106106x z x y y z y z y z−−+−′′==−−−−,(1,1,1)(1,1,1)91,1616y z ′′=−=.则在点(1, 1, 1)处的切向量为 91(1,,1616−. 所给曲线在(1, 1, 1)处的切线方程为 1119111616x y z −−−==−,即1111691x y z −−−==− , 法平面方程为911(1)(1)01616x y z −−−+−= ,即169240x y z +−−=. 例4 求椭球面222236x y z ++=在(1, 1, 1)处的切平面方程与法线方程.解 设222(,,)236F x y z x y z =++−,由于 2,4,6x y z F x F y F z ′′′===在全平面上处处连续,在(1, 1, 1)处 2,4,6x y z F F F ′′′===,椭球面在点(1, 1, 1)处的法向量为(2, 4, 6). 则所求切平面方程为2(1)4(1)6(1)0x y z −+−+−=,即 236x y z ++=所求法线方程为111246x y z −−−==,即111123x y z −−−==. 例5 求曲面222x z y =+平行于22z x y =+的切平面方程.解:设切点为 0000(,,)X x y z . 曲面 222x z y =+,因此,2z z x y x y ∂∂==∂∂.则曲面在 0000(,,)X x y z 处的法向量为00(,2,1)x y .曲面在点0X 处的切平面方程为00000()2()()0x x x y y y z z −+−−−=又切平面与已知平面22z x y =+平行,因此0021221x y −==−,解得切点坐标为000(,,)(2,1,3)x y z =,所求切平面方程为2(2)2(1)(3)0x y z −+−−−=, 即2230x y +−=.例 6 求曲面 sin cos ,sin sin ,cos (0,02)x a y a z a ϕθϕθθϕπθπ===<<<<在点000(,)P ϕθ处的切平面方程和法线方程.解 点000(,)P ϕθ对应曲面上的点 0000(,,)X x y z 其中00000000sin cos ,sin sin ,cos x a y a z a ϕθϕθθ===.0022000000sin 0(,)sin sin cos cos cos sin (,)P a z x a a a ϕϕθϕθϕθϕθ−∂==−∂000022000cos sin cos cos (,)sin cos sin 0(,)P a a y z a a ϕθϕθϕθϕϕθ∂==−∂0000022000000cos cos cos sin (,)sin cos cos sin sin sin (,)P a a x y a a a ϕθϕθϕϕϕθϕθϕθ−∂==−∂则曲面在点000(,)P ϕθ处的法向量为222000000(sin cos ,sin sin ,sin cos )a a a ϕθϕθϕϕ. 曲面在点0X 处的切平面方程为22000000002000sin cos (sin cos )sin sin (sin sin )sin cos (cos )0a x a a y a a z a ϕθϕθϕθϕθϕϕθ−+−+−=即00000sin cos sin sin cos x y z a ϕθϕθϕ++=所求的法线方程为00000222000000sin cos sin sin cos sin cos sin sin sin cos x a y a z a a a a ϕθϕθθϕθϕθϕϕ−−−==即0000000000sin cos sin sin cos sin cos sin sin cos x a y a z a ϕθϕθθϕθϕθϕ−−−==. 例7 求过直线3250x y z x y z −−=⎧⎨++=⎩,且与曲面2252228x y z −+=相切之切平面方程.解 过直线的平面方程可设为325()0x y z x y z λ−−−+++=,即(3)(2)(1)50x y z λλλ++−+−−=,其法向量为(3,2,1)λλλ+−−.记225(,,)2228F x y z x y z =−+−,则 4,4,2x y z F x F y F ′′′==−=设所求的切平面的切点为000(,,)x y z ,则曲面上0002(,,)x y z 处的法向量为00(4,4,2)x y −,且有0002200000(3)(2)(1)50(1)5222(2)8321(3)442x y z x y z tx y λλλλλλ⎧⎪++−+−−=⎪⎪−+=⎨⎪+−−⎪===⎪−⎩由(1)、(3)解得000222115,,248t t x y z t t t+−==−=−, 代入(2)得 2430t t −+=. 解得 121,3t t ==,故 123,7λλ==,则所求切平面方程为3253()0x y z x y z −−−+++=,或3257()0x y z x y z −−−+++=,即625x y z ++= 或 10565x y z ++=.例8 试证曲面 (yz xf x=上任一点处的切平面都过原点,其中()f u 为可微函数.2()()()()()zy y y y y y f xf f f x x x x x x x ∂′′=+⋅−=−⋅∂,1()()z y y xf f yx x x ∂′′=⋅=∂. 故曲面上点 0000(,,)X x y z 处的法向量为 (,,1)yf f f x′′−+−. 则过曲面上点 0000(,,)X x y z 的切平面方程为00000000000[()()]()()()y y y yz z f f x x f y y x x x x ′′−=−−+− 整理后得 000000000000[()()]()(y y y y yz z f f x f y x f x x x x x ′′−=−+−. 注意到0000(y z x f x =,从上述方程得切平面方程为 00000000[()()]()0y y y yf f x f y z x x x x ′′−+−=. 可知其必定过原点. 二、课外练习题1、求曲线 231,1,x t y t z t =+=−=在点(2, 1, 1)处的切线和法平面.2、求空间曲线22221010x y x z ⎧+=⎨+=⎩在点0(3,1,1)X 处的切线方程和法平面方程. 3、求曲面1xy yz zx ++=上点 (1,2,3)−−处的切平面和法线方程.4、求曲面 ,,v u x ye y ve z u v ===+在0u v ==处的切平面.5、设f 是可微函数,证明曲面 (,)0f cx az cy bz −−=上任意一点的法线与一定向量垂直.。
数学微分练习题

数学微分练习题微分是微积分中的重要概念之一,它广泛应用于物理、工程和经济等领域。
为了帮助读者更好地理解微分的应用和技巧,本文将提供一些数学微分的练习题,以帮助读者巩固知识并提高解题能力。
题目一:求函数 f(x) = x^3 - 2x^2 + 5x - 3 在点 x = 2 处的导数。
解答一:为了求函数 f(x) 在点 x = 2 处的导数,我们可以使用导数的定义公式:f'(x) = lim(h→0) [f(x+h) - f(x)] / h首先,我们需要将函数 f(x) 代入上述公式,并计算出差商:f'(2) = lim(h→0) [f(2+h) - f(2)] / h= lim(h→0) [(2+h)^3 - 2(2+h)^2 + 5(2+h) - 3 - (2^3 - 2(2)^2 + 5(2) - 3)] / h= lim(h→0) [(8 + 12h + 6h^2 + h^3) - (8 - 8h + 5) + 10h - 3] / h= lim(h→0) (14h + 6h^2 + h^3 + 10h) / h= lim(h→0) (h^3 + 6h^2 + 24h) / h= lim(h→0) (h(h^2 + 6h + 24)) / h= lim(h→0) (h^2 + 6h + 24)因此,函数 f(x) = x^3 - 2x^2 + 5x - 3 在点 x = 2 处的导数为 24。
题目二:已知函数 g(x) = sin(x),求函数 g'(x) 的表达式。
解答二:为了求函数 g(x) 的导数 g'(x),我们可以利用三角函数的导数公式:d/dx sin(x) = cos(x)因此,函数 g(x) = sin(x) 的导数 g'(x) 等于 cos(x)。
练习题三:求函数 h(x) = ln(x^2 + 1) 在点 x = 1 处的导数。
解答三:为了求函数 h(x) 的导数 h'(x),我们可以利用链式法则:h'(x) = (d/dx) ln(x^2 + 1)= 1 / (x^2 + 1) * (d/dx) (x^2 + 1)= 2x / (x^2 + 1)因此,函数 h(x) = ln(x^2 + 1) 在点 x = 1 处的导数为 2/2 = 1。
数学分析5.5微分(含习题详解)

第五章导数和微分5 微分一、微分的概念定义1:设函数y=f(x)定义在点x0的某邻域U(x0)内. 当给x0一个增量△x,x0+△x∈U(x0)时,相应地得到函数的增量为△y=f(x0+△x)-f(x0). 如果存在常数A,使得△y能表示为△y=A△x +o(△x),则称函数f在点x0可微,并称上式中的第一项A△x为f在点x0的微分,记作:dy=A△x,或df(x)=A△x.当A≠0时,微分dy称为增量△y的线性主部。
定理5.10:函数f在点x0可微的充要条件是函数f在点x0可导,而且定义中的A=f’(x0).证:先证必要性:若f在点x0可微,则△y=A△x +o(△x),即=A+o(1),两边取极限得:f’(x0)==(A+o(1))=A.再证充分性:若f在点x0可导,则f在点x0的有限增量公式为:△y=f’(x0)△x+o(△x),根据微分的定义,f在点x0可微且有dy=f’(x0)△x.微分的几何意义:(如图)当自变量由x0增加到x0+△x时,函数增量△y= f(x0+△x)-f(x0)=RQ,而微分则是在点P处的切线上与△x所对应的增量,即dy=f’(x0)△x=RQ’,且==f’(x0)=0,所以当f ’(x 0)≠0时,=0. 即当x →x 0时线段Q ’Q 远小于RQ ’。
若函数y=f(x)在区间I 上每一点都可微,则称f 为I 上的可微函数.函数y=f(x)在I 上任一点x 处的微分记作dy=f ’(x)△x ,x ∈I. 特别地,当y=x 时,dy=dx=△x ,则微分也可记为dy=f ’(x)dx ,即 f ’(x)=,可见函数的导数等于函数微分与自变量微分的商。
因此导数也常称为微商。
二、微分的运算法则1、d[u(x)±v(x)]=du(x)±dv(x);2、d[u(x)v(x)]=v(x)du(x)+u(x)dv(x);3、d=;4、d(f ◦g(x))=f ’(u)g ’(x)dx ,其中u=g(x),或dy=f ’(u)du.例1:求y=x 2lnx+cosx 2的微分。
第二章导数与微分应用案例_高等数学 2

案例1 [电流] 电路中某点处的电流 是通过该点处的电量 关于时间 的瞬时变化率,如果一电路中的电量为 .(1) 求其电流函数 ;(2) 时的电流是多少?(3) 什么时候电流为28.答案 :解 (1)()dqi t dt =(=3)t t '+3()t t ''=+()231t =+; (2) (3)i =23(31)t t =+233128=⨯+=;(3) 解方程()28i t =,即23128t +=,得3t = .案例2 [制冷效果] 某电器厂在对冰箱制冷后断电测试其制冷效果, 小时后冰箱的温度为 .问冰箱温度 关于时间 的变化率是多少?答案 :解 冰箱温度T 关于时间t 的变化率为dT dt =2(20)0.051t t '-+2()(20)0.051t t ''=-+22(0.051)20.050(0.051)t t t +-⨯=-+22(0.051)t =+案例3 [电阻中电流与电压的关系] 在电容器两端加正弦电流电压 ,求电流 . 答案 :解 因为dt du C i c =[sin()]m C U t ωφ'=+[cos()]m C U t ωωφ=+)2sin(πφωω++=t CU m )sin(θω+=t I m其中m m I CU =ω是电流的峰值(最大值),称振幅,相位2πφθ+=.由)sin(φω+=t U u m c , =i )2sin(πφωω++t CU m )sin(θω+=t I m ,从而可知,电容器上电流与电压有下列关系:(1)电流i 与电压u 是同频率的正弦波;(2)电流i 比电压c u 相位提前2π;(3)电压峰值与电流峰值之比为ωωC U C U I U m m m m 1==, 电工中称ωC 1为容抗(容性电抗).[链接到电路分析]案例4 [发动机的效率] 一汽车厂家正在测试新开发的汽车的发动机的效率,发动机的效率 (%)与汽车的速度 (单位:km/h) 之间的关系为 .问发动机的最大效率是多少? 答案 :解 求发动机的最大效率p 最大,即求函数300004.0768.0v v p -=的最大值.先求极值点.32d 0.7680.000040.7680.00012d p v v v v '=-=-(), 令d 0d p v =,得80v =(单位:km/h) .由实际问题知,此时发动机的效率最大,最大效率为80p ≈()41(% )案例5 [最大输出功率]设在电路中,电源电动势为E ,内阻为r,(E ,r 均为常量),问负载电阻R 多大时,输出功率P 最大?1. [车间面积] 某车间靠墙壁要盖一间长方形小屋,现有存砖只够砌20米长的墙壁,问应围成怎样的长方形才能使这间小屋的面积最大?2. [最大利润] 某快餐店每月对汉堡包的需求由 确定,其中 是需求量, 是价格.又设生产 个汉堡包的成本为试问当产量是多少时,快餐店才获得最大利润?答案 :解 消耗在电阻R 上的功率R I P 2=,其中I 是回路中的电流,由欧姆定律知r R E I +=,所以22)(r R R E P +=)0(∞<<R . 要使P 最大,应使0=dR dP ,即=dR dP 0)()(32=-+R r r R E得 r R = 此时,R E P 42= 由于此闭合电路的最大输出功率一定存在,且在),0(∞内部取得,所以必在P 的唯一驻点r R =处取得.因此,当r R =时,输出功率最大为R E P 42=.(链接电路分析)3. [淋雨量]人在雨中行走,速度不同可能导致雨量有很大不同,即雨量是人行走速度的函数,记淋雨量为 (单位:单位/s ),行走速度为 (单位:m/s ),并设它们之间有以下函数关系: ,求其淋雨量最小时的行走速度.4. [广告策略] 某一新产品问世后,公司会为推销这一新产品而花费大量的广告费,但随着产品在市场上被认可,广告的作用会越来越小,何时减少甚至取消广告?这往往取决于产品的销售高峰—最畅销时间,设某产品在时刻 的销量公式由 给出,试问该产品何时最为畅销?5. [修路问题]铁路线上AB 的距离为100km .工厂C 距A 处为20km ,AC 垂直于AB (图2.3.7),现要在AB 线上选定一点D 向工厂修筑一条公路,已知铁路与公路每公里货运费之比为3:5,问D 选在何处,才能使从B 到C 的运费最少?6. [旅馆房价] 一旅馆有200个房间,如果每间定价不超过40元则可全部出租.若每间定价高出1 元,则会少出租4间,设房间出租后的服务费为8元/间,问管理者应把房租价定为多少可获利最大?7. [ 船只距离] 轮船A 位于轮船B 以东75km 处,以12km/h 的速度向西行驶,而轮船B 则以6km/h 的速度向北行驶,问经过多少时间,两船相距最近?8. [药效分析] 病人服用一剂量为D 的某药所产生的体温 的变化由下式给出 ,其中 是正常数.(1) 多大剂量的药使体温变化最大?(2) 在药的剂量为 时,身体对药物的敏感度定义为 .当 , 时,敏感度是多少?(3) 当时,服用多大剂量的药物,身体敏感度最大?。
多元函数的微分学典型例题

多元函数的微分学典型例题例 1 设 2 2 y xy x z + - = .求它在点 ) 1 , 1 ( 处沿方向v = ) sin , cos ( a a 的方向导 数,并指出:(1) 沿哪个方向的方向导数最大? (2) 沿哪个方向的方向导数最小? (3) 沿哪个方向的方向导数为零?解 1 ) 1 , 1 ( = x z , 1 ) 1 , 1 ( = y z . ) 1 , 1 (v z¶ ¶ a a sin cos + = .因此(1) 函数 a a a j sin cos ) ( + = 在 4pa = 取最大值,即沿方向 ) 1 , 1 ( 的方向导数最大.(2) 函数 a a a j sin cos ) ( + = 在 4 pa - = 取最小值,即沿方向 ) 1 , 1 ( - - 的方向导数最小.(3) 43pa - = 是函数 a a a j sin cos ) ( + = 的零点,即沿方向 ) 1 , 1 (- 的方向导数为零.例 2 如果函数 ) , ( y x f 在点 ) 2 , 1 ( 处可微, 且从点 ) 2 , 1 ( 到点 ) 2 , 2 ( 方向的方向 导数为2,从点 ) 2 , 1 ( 到点 ) 1 , 1 ( 方向的方向导数为 2 - .求 (1) 该函数在点 ) 2 , 1 ( 处的梯度;(2) 该函数在点 ) 2 , 1 ( 处从点 ) 2 , 1 ( 到点 ) 6 , 4 ( 方向的方向导数. 解 (1) 设 x f 和 y f 分别表示函数 ) , ( y x f 在点 ) 2 , 1 ( 处关于x 和 y 的偏导 数,从点 ) 2 , 1 ( 到点 ) 2 , 2 ( 的方向为 1 l ,从点 ) 2 , 1 ( 到点 ) 1 , 1 ( 的方向为 2 l ,则 1 l 和 2 l 的方向余弦分别为 ) 0 , 1 ( 和 ) 1 , 0 ( - ,于是就有x f l f = ¶ ¶ 12 0 1 = × + × y f ,故 2 = x f ; 2 1 0 2 - = × - × = ¶ ¶ y x f f l f ,故 2 = y f . 因此 ) 2 , 2 ( ) 2 , 1 ( = gragf .(2) 在点 ) 2 , 1 ( 处从点 ) 2 , 1 ( 到点 ) 6 , 4 ( 方向的方向余弦为 ÷ ø öç è æ 5 4,5 3 ,设该方向为l ,则 l f ¶ ¶ ) 2 , 1 ( 5145 4 2 5 3 2 = ´ + ´ = .例 3 验证函数) , ( y x f ïî ï í ì = + ¹ + + = . 0 ,0 , 0 , 2 2 22 22 y x y x yx xy 在原点 ) 0 , 0 ( 连续且可偏导,但它在该点不可微.验证 注意不等式 | | 2 2 xy y x ³ + ,就有0 | | 0 2 2 22 2 2 22 ® + = + + £ + £y x y x y x y x xy , ) , ( y x ® ) 0 , 0 ( .故而 0 ) , ( lim)0 , 0 ( ) , ( = ® y x f y x f = ) 0 , 0 ( .因此, ) , ( y xf 在原点 ) 0 , 0 ( 连续. x f ) 0 , 0 ( = 0lim® x 0 )0 , 0 ( ) 0 , ( = - xf x f ,由变量对称性得 y f ) 0 , 0 ( 0 = .即该函数在原点 ) 0 , 0 ( 可偏导.假如 ) , ( y x f 在原点 ) 0 , 0 ( 可微,就应有) , ( y x f = - ) 0 , 0 ( f x f ) 0 , 0 ( + x y f ) 0 , 0 ( ) ( 2 2 y x y + +o ,即 ) , ( y x f = ) ( 2 2 y x + o .但这是不可能的,因为沿路径 ) 0 ( ¹ = k kx y ,就有= + ® 2 2 )0 , 0 ( ) , ( ), ( limyx y x f kx x = + ® 2 2 ) 0 , 0 ( ) , ( lim y x xykx x 0 1 lim 2 2 2 2 2 0 ¹ + = + ® k k x k x kx x .可见, ) , ( y x f ¹ ) ( 2 2 y x + o .因此, ) , ( y x f 在原点 ) 0 , 0 ( 不可微. 例 4 验证函数) , ( y x f ï îï íì = + ¹ + + + = . 0 , 0 , 0 , 1 sin ) ( 2 2 22 22 2 2 y x y x y x y x 的偏导函数 ) , ( y x f x 和 ) , ( y x f y 在原点 ) 0 , 0 ( 不连续,但它却在该点可微.验证x f ) 0 , 0 ( = 0lim® x 0 1sin lim ) 0 , 0 ( ) 0 , ( 2 0 = = - ® xx x f x f x ; ) , ( y x ¹ ) 0 , 0 ( 时,) , ( y x f x 22 2222222121 2sin()cos () x x x y x y x y x yæö =++- ç÷ +++ èø 2 2 2 2 2 2 1cos2 1 sin2 y x y x x y x x + + - + = .因此, ) , ( y x f x ï î ï íì= + ¹ + + + - + = . 0 , 0 , 0 , 1 cos 2 1 sin 2 2 2 2 2 22 2 2 2 2 y x y x y x y x x y x x 由变量对称,得) , ( y x f y ï îï íì= + ¹ + + + - + = . 0 , 0 , 0 , 1 cos 2 1 sin 2 2 2 2 2 22 2 2 2 2 y x y x y x y x y y x y ) , ( y x f x 在点 ) 0 , 0 ( 不连续.事实上,沿路径 x y = , ® ) , ( x x ) 0 , 0 ( 时,2 2 2 2 1 cos 2 2 2 1 sin2 ) , ( x x x x x x x f x - = 中,第一项趋于零,而第二项 22 1cos 1 x x - 的极限不存在(比如取 pk x k 2 1=, +¥ ® k 时有 0 ® k x ,而2 2 1cos 1 kk x x -¥ ® ).可见, x y x f ) 0 , 0 ( ) , ( lim ® ) , ( y x 不存在,因此 ) , ( y xf x 在点 ) 0 , 0 ( 不连续.同理可证 ) , ( y x f y 在点 ) 0 , 0 ( 不连续. 但由于0 1sin ) , ( 0 2 2 22 2 2 22 ® + £ + + =+ £y x y x y x y x y x f ,® ) , ( y x ) 0 , 0 ( ,就有 0 ) , ( 22® + yx y x f ,于是就有0 ) , ( ) 0 , 0 ( ) 0 , 0 ( ) 0 , 0 ( ) , ( 2222® + =+ - - - yx y x f yx yf x f f y x f y x , ® ) , ( y x ) 0 , 0 ( ,即 ) ( ) 0 , 0 ( ) 0 , 0 ( ) 0 , 0 ( ) , ( 2 2 y x y f x f f y x f y x + + + = - o . 可见 f 在点 ) 0 , 0 ( 可微. 例 5 证明函数) , ( y x f ï îïí ì = + ¹ + + = . 0 , 0 , 0 , 2 22 22 42 2 y x y x y x xy 在原点 ) 0 , 0 ( 处沿各个方向的方向导数都存在,但它在该点不连续,因此不可 微.证 设 ) sin , cos ( a a = l 则= - = ¶ ¶ ® tf t t f l f t )0 , 0 ( ) sin , cos ( lim 0 a a 32 2244 0 2cos sin lim ( cos sin )t t t t t a a a a ® = +3 0 , , , 22 2tan sin , , . 22p p a p p a a a ì= ï ï = íï ¹ ï î 可见在原点 ) 0 , 0 ( 处沿各个方向的方向导数都存在.但沿路径 2y x = ,有 = ® ) , ( lim )0 , 0 ( ) , ( 2y x f y y f y y y y y ¹ = + ® 1 2 lim 4 4 22 0 ) 0 , 0 ( 可见 f 在 原点 ) 0 , 0 ( 并不连续,因此不可微. 例 6 计算下列函数的高阶导数或高阶微分: (1) x yz arctan = ,求 2 2 x z ¶ ¶ , y x z ¶ ¶ ¶ 2 22 y z ¶ ¶ ;解 x z ¶ ¶ 2 2 2 2 2 1 y x y x y x y + - = + -= , y z ¶ ¶ 22 22 1 1 y x x xy x + = + =. 2 2 x z ¶ ¶ 2 2 2 ) ( 2 y x xy + = , y x z ¶ ¶ ¶ 2 2 2 2 2 2 ) ( y x x y + - = , 2 2 y z ¶ ¶ = 22 2 )( 2 y x xy+ - . (2) xyxe z = ,求 y x z ¶ ¶ ¶ 2 3 和 23 y x z¶ ¶ ¶ .解 x z ¶ ¶ = ) 1 ( xy e xye e xyxy xy + = + , 2 2 x z ¶ ¶ ) 2 ( ) 1 ( xy ye y e xy ye xy xy xy + = + + = ;yx z¶ ¶ ¶ 2 ) 2 ( ) 1 ( xy xe xe xy xe xy xy xy + = + + = . y x z ¶ ¶ ¶ 2 3 = = ¶ ¶ ¶¶ x y x z 3 = ÷ ÷ ø ö ç ç è æ ¶ ¶ ¶ ¶ ¶ y x z x 2 xyxy xy xy e xy xye xye xy e ) 2 3 ( ) 2 ( + = + + + ;2 3 y x z ¶ ¶ ¶ = ÷ ÷ ø ö ç ç è æ ¶ ¶ ¶ ¶ ¶ = y x z y 2 ( )= + + xy xy xe xy xe x ) 2 ( xye y x x x ) 3 ( 2 + . (3) ) ln(xy x z = ,求 z d 2 ; 解 x z 1 ) ln( ) ln( + = + = xy xy xy xy, xy z y xy x 1 = = , x xy y z xx 1= = ;y z y x xy x = = 2 , yy z 2 yx- = .2222222 2 12 xx xy yy d z dx dy z z dx z dxdy z dy x y x dx dxdy dy x y yæö¶¶ =+=++ ç÷ ¶¶ èø =+- .(4) ) ( sin 2 by ax z + = ,求 z d 3 .解 x z ) ( 2 sin by ax a + = , xx z ) ( 2 cos 2 2 by ax a + = , = 3x z ) ( 2 sin 4 3 by ax a + - ,) ( 2 sin 4 2 axby b a z xxy - = ; y z ) ( 2 sin by ax b + = , ) ( 2 cos 2 2 by ax b z yy + = ,= = yyx xyy z z ) ( 2 sin 4 2 by ax ab + - . = 3 y z ) ( 2 sin 4 3 by ax b + - .z d 3 = = ÷ ÷ ø ö ç ç è æ ¶ ¶ + ¶¶ z y dy x dx 33223322333 x x y xy y z dx z dx dy z dxdy z dy +++ ) ( 2 sin 12 ) ( 2 sin 4 2 3 by ax b a by ax a + - + - = ) ( 2 sin 12 2 by ax ab + - 3 4sin 2()b ax by -+ ) ( 2 sin ) ( 4 3 by ax b a + + - = .例 7 利用链式规则求偏导数 :(1) ÷ ÷ øö ç ç è æ = , y x xy f u .求 x u¶ ¶ , y u ¶ ¶ , y x u ¶ ¶ ¶ 2 和 2 2 y u ¶ ¶ .解 设 xy t = , yxs = .x u ¶ ¶ = ¶ ¶ ¶ ¶ + ¶ ¶ ¶ ¶ = x s s f x t t f s f y t f y ¶ ¶ + ¶ ¶ 1 , y u ¶ ¶ = ¶ ¶ ¶ ¶ + ¶ ¶ ¶ ¶ = y s s f y t t f sfy x t f x ¶ ¶ - ¶ ¶ 2 ;y x u ¶ ¶ ¶ 2 ÷ ø ö ç è æ ¶ ¶ ¶ ¶ = x u y ÷ ÷ øö ç ç è æ ¶ ¶ ¶ ¶ ¶ + ¶ ¶ ¶ ¶ + ¶ ¶ = y s s t f y t t f y t f 2 2 2 22 22 11 f f t f s y s y s t y s y æö¶¶¶¶¶ -++ ç÷ ¶¶¶¶¶¶ èø = ÷ ÷ øö ç ç è æ ¶ ¶ ¶ - ¶ ¶ + ¶ ¶ s t f y x t f x y t f 2 2 2 2 22 222 11 f f x f x y s y s t y s æö¶¶¶ -+- ç÷ ¶¶¶¶ èø 2 2 t f xy ¶ ¶ = s t f y x ¶ ¶ ¶ - 2 3 s fy t f ¶ ¶ - ¶ ¶ + 2 1 .2 2 y u ¶ ¶ ÷ ÷ ø ö ç ç è æ ¶ ¶ ¶ ¶ = y u y 2 f x f x y t y s æö ¶¶¶ =- ç÷ ¶¶¶èø 23 2 2 2 2 y xs f y x y s s t f y t t f x - ¶ ¶ + ÷ ÷ ø ö ç ç è æ ¶ ¶ ¶ ¶ ¶ + ¶ ¶ ¶ ¶ = = ÷ ÷ øöç ç è æ ¶ ¶ ¶ ¶ + ¶ ¶ ¶ ¶ ¶ y s s f y t t s f 2 2 2 23 2 2 2 2 2 y xs f y x s t f y x tf x x - ¶ ¶ + ÷ ÷ ø ö ç ç è æ ¶ ¶ ¶ - ¶ ¶ = = ÷ ÷ ø ö ç ç è æ ¶ ¶ - ¶ ¶ ¶ 2 2 2 2 s f y x t sf x s f y x s f y x s t f y x t f x ¶¶ +¶ ¶ + ¶ ¶ ¶ - ¶ ¶ = 3 2 2 2 2 2 2 2 2 2 22 2 . (2) ) ( 222z y x f u + + = .求 x u ¶ ¶ , y u ¶ ¶ , z u¶ ¶ , y x u ¶ ¶ ¶ 2 和 2 2 xu ¶ ¶ .解 设 2 2 2 z y x t + + = .x u ¶ ¶ ( 2 ) ( f x x tt f ¢ = ¶ ¶ ¢ = ) 2 2 2 z y x + + , y u ¶ ¶ ( 2 ) ( f y yt t f ¢ = ¶ ¶ ¢= ) 2 2 2 z y x + + , z u ¶ ¶ ( 2 ) ( f z zt t f ¢ = ¶ ¶ ¢ = ) 2 2 2 z y x + + ;y x u ¶ ¶ ¶ 2 = ÷ ø ö ç è æ ¶ ¶ ¶ ¶ = x u y ( )= + + ¢ ¶ ¶) ( 2 2 2 2 z y x f x y 4( xyf ¢¢ ) 2 2 2 z y x + + ; 22 xu ¶ ¶ = ÷ ø ö ç è æ ¶ ¶ ¶ ¶ = x u x ( ) 222 2() xf x y z x ¶¢ ++ ¶ 2( f ¢ = ) 2 2 2 z y x + + 2 4x + ( f ¢¢ ) 2 2 2 z y x + + . 例 8 设函数 ) , ( y x f z = 具有二阶连续导数.写出 2 2 x z ¶ ¶ 2 2 y z ¶ ¶ + 在坐标变换2 2 y x u - = , xy v 2 = 下的表达式.解x z ¶ ¶ = u z ¶ ¶ x u ¶ ¶ + v z ¶ ¶ x v ¶ ¶ x 2 = u z ¶ ¶ + y 2 vz¶ ¶ ,2 2 x z ¶ ¶ 2 = u z¶ ¶ ÷ ÷ øö ç ç è æ ¶ ¶ ¶ ¶ ¶ + ¶ ¶ ¶ ¶ + x v v u z x u u z x 2 2 2 2 22 2 2 z u z v y v u x v x æö ¶¶¶¶ ++ ç÷ ¶¶¶¶¶ èø 2 2 24 u z x ¶ ¶ = v u z xy ¶ ¶ ¶ + 2 8 222 4 v z y ¶ ¶ + 2 + u z ¶ ¶ .y z ¶ ¶ = u z ¶ ¶ y u ¶ ¶ + v z ¶ ¶ y v ¶ ¶ y 2 - = u z ¶ ¶ + x 2 vz¶ ¶ ,2 2 y z ¶ ¶ 2 - = u z¶ ¶ ÷ ÷ øö ç ç è æ ¶ ¶ ¶ ¶ ¶ + ¶ ¶ ¶ ¶ - y v v u z y u u z y 2 2 2 2 22 2 2 z u z v x v u y v y æö ¶¶¶¶ ++ ç÷ ¶¶¶¶¶ èø u z vz x v u z xy u z y ¶ ¶ - ¶ ¶ + ¶ ¶ ¶ - ¶ ¶ = 2 4 8 4 222 2 2 2 2. 则2 2 x z ¶ ¶ 22 y z ¶ ¶ + 2 2 2 4 u z x ¶ ¶ = v u z xy ¶ ¶ ¶ + 2 8 2 22 4 v z y ¶ ¶ + 2 + u z ¶ ¶ = ¶ ¶ - ¶ ¶ + ¶ ¶ ¶ - ¶ ¶ + u z v z x v u z xy u z y 2 4 8 4 2 2 2 2 2 2 2÷ ÷ ø ö ç ç è æ ¶ ¶ + ¶¶ + 2 2 2 22 2 ) ( 4 v z u z y x . 例 9 (1)写出函数 ) , ( y x f 9 8 6 2 23 2 2 3 3 + - - - - + = y x xy y x y x 在点 ) 2 , 1 ( 的Taylor 展开式.解= ) 2 , 1 ( f 16 - , = ) 2 , 1 ( x f 13 - , = ) 2 , 1 ( y f 6 - ; = ) 2 , 1 ( xx f 10, = ) 2 , 1 ( xy f 12 - , = ) 2 , 1 ( yy f 8;= ) 2 , 1 ( 3 x f 18, = ) 2 , 1 ( xxy f 4 - , 4 ) 2 , 1 ( - = xyy f , 6 ) 2 , 1 ( 3 = y f .更高阶的导数全为零 .因此, ) , ( y x f = + ) 2 , 1 ( f + - ) 1 )( 2 , 1 ( x f x ( 1 , 2 )(2)y f y - + - + 2 ) 1 )( 2 , 1 ( x f xx + - - ) 2 )( 1 )( 2 , 1 ( 2 y x f xy 2( 1 , 2 )(2) yy f y - 3 3 ( 1 , 2 )(1) x f x +- 3 ) 2 ( ) 1 )( 2 , 1 ( 3 2 + - - + y x f xxy 2) 2 )( 1 )( 2 , 1 ( - - y x f xyy 3 3 ( 1 , 2 )(2)y f y +- 22 1613(1)6(2)5(1)12(1)(2)4(2)x y x x y y =-----+----+- 3 2 2 3 ) 2 ( ) 2 )( 1 ( 2 ) 2 ( ) 1 ( 2 ) 1 ( 3 - + - - - - - - - + y y x y x x .(2) 求函数 ) , ( y x f y x e + = 在点 ) 0 , 0 ( 的n 阶Taylor 展开式,并写出余项.解x f ¶ ¶ y x e + = , y f ¶ ¶ yx e + = ,一般地,有 k h k h yx f ¶ ¶ ¶ + y x e + = ,则 1 ) 0 , 0 ( 00 = = ¶ ¶ ¶ + + e yx f kh k h . 因此, ) , ( y x f 在点 ) 0 , 0 ( 的n 阶Taylor 展开式为) , ( y x f å = + ÷ ÷ øö ç ç è æ ¶ ¶ + ¶ ¶ = n k kf y y x x k 0 ) 0 , 0 ( ! 1 )! 1 ( 1 + n 1( , )n x y f x y x y q q + æö ¶¶ + ç÷ ¶¶ èø å = + + = nk k y x k 0 ) ( ! 1 )! 1 ( 1 + n yx n e y y x x 1q q + + ÷ ÷ øö ç ç è æ ¶ ¶ + ¶ ¶ , ) 1 0 ( < <q .例 10 求下列方程所确定的隐函数的导数或偏导数:(1) 0 arctan = - + a y a y x ,求 dx dy 和 2 2 dxy d ;解 0 1 1 2 = ¢ - ÷ øöç è æ + + ¢+ a y a y x a y ,即 a y y x a y a ¢ = + + ¢ + 2 2 ) ( ) 1 ( ,即 dx dy 22 ) ( y x a + = . 由 2 2 ) ( y x y a + ¢ = ,再求导 0 ) 1 )( ( 2 ) ( 2 = ¢ + + ¢ + + ¢ ¢ y y x y y x y ,解得 2 ) ( ) 1 )( ( 2 y x y y x y y + ¢ + + ¢ - = ¢ ¢ ,代入 = ¢ y 22)( y x a + ,得 2 2 dx y d 22 23 () () x y a a x y ++ = + . (2) 0 = -xyz e z,求 x z ¶ ¶ 、 y z ¶ ¶、 2 2 xz ¶ ¶ 和 y x z ¶ ¶ ¶ 2 ;解 方程 0 = -xyz e z 两端对x 求导,得 0 = - - x z x xyz yz e z , x z ¶ ¶ xye yzz - = ;方程 0 = -xyz e z 两端对y 求导,得 0 = - - z z y xyz xz e z , y z ¶ ¶ xye xzz - = .0 = - - x z x xyz yz e z 再对x 求导,得 0 2 = - - - - + xx x x zx z xx xyz yz xz z e z e z ,解得2 2 x z ¶ ¶ xy e e z z y x z z zx x - - + + = 2 ) ( 32 2 2 2 ) ( ) ( xy e e z y xy e z y ze zzz z - - - + = . 同理得y x z ¶ ¶ ¶ 2 32 2 2 2 )( ) ( xy e e z x xy e z x ze zzz z - - - + = . (3) 0 ) , , ( = + + + x z z y y x f ,求 x z ¶ ¶ 和 yz ¶ ¶.解 设 y x u + = , z y v + = , x z w + = ,方程 0 ) , , ( = + + + x z z y y x f 两端对x 求导,得 = ¶ ¶ ¶ ¶ + ¶ ¶ ¶ ¶ + ¶ ¶ ¶ ¶ x w w f x v v f x u u f 0 1 = ÷ ø ö ç è æ + ¶ ¶ ¶ ¶ + ¶ ¶ ¶ ¶ + ¶ ¶ x z w f x z v f u f,解得 x z¶ ¶ w v u w f f f f + + - = ;同理得 y z ¶ ¶ wv v u f f f f + + - = .例 11 求下列方程组所确定的隐函数的导数或偏导数 :(1) ï î ï í ì = + + = - - . 4 32 ,0 22 2 2 22 a z y x y x z 求 dx dy , dx dz , 2 2 dx y d 和 2 2 dx z d ; 解 方程对x 求导,注意 y 和z 是x 的函数,就有 î íì = ¢ + ¢ + = ¢ - - ¢ . 0 6 4 2 , 0 2 2 z z y y x y yx z *) 解得 dx dy ) 3 1 ( 2 6 z y xz x + + - = , dx dzzx z y xy 3 1 ) 3 1 ( 2 2 + = + = .方程 *)在对x 求导,有 ï î ï íì = ¢ + ¢ ¢ + ¢ + ¢ ¢ + = ¢ - ¢ ¢ - - ¢ ¢ . 0 6 6 4 4 , 0 2 2 2 2 2 2 z z z y y yx y y y z 解得 2 2 dx yd ) 3 1 ( 4 12 6 ) 3 1 ( 4 2 2 z y z z z y x + + ¢ + + ¢ + - = , 2 2 dxz d ) 3 1 ( 2 6 ) 1 ( 4 4 2 2 z y z y xy y y y + ¢ - - + ¢ + = ;代入 dx dy 和 dxdz的表达式,即得2 2 dx y d 2 22 3 ) 3 1 ( 2 3 ) 3 1 ( 4 ) 6 1 ( 4 ) 3 1 ( 4 12 z y x z y z x z y z x + -+ + - + + - = , 2 2 dx z d 222 3 ) 3 1 ( 3 ) 3 1 ( 2 ) 6 )( 1 ( ) 4 (2 1 z x z y xz x y x + - + + + + - = . (2) î í ì - = + = . ) , (, ) , , ( 2y v x u g v y v x u f u 求 x u ¶ ¶ 和 y v ¶ ¶ . 解 设 y v s + = , x u t - = , y v r 2 = ,方程对x 求导,注意u 和v 是x 的函 数,就有î íì + = + + = . ) , ( ) , (, ) , , ( ) , , ( ) , , (2 x r x t x x s x x u x r r t g t y v t g v s s x u f s x u f u s x u f u 即î íì + - = + + = . 2 ) , ( ) 1 )( , (, ) , , ( ) , , ( ) , , ( x r x t x x s x x u x yvv r t g u r t g v v s x u f s x u f u s x uf u 解得x u¶ ¶ ), ( ) , , ( ] 1 ) , ( 2 ][ 1 ) , , ( [ ) , ( ) , , ( ] 1 ) , ( 2 )[ , , ( r t g s x u f r t yvg s x u f r t g s x u f r t yvg s x u f t s r u t s r x - - - + - - = ; 方程对 y 求导,注意u 和v 是x 的函数,就有ï îï í ì + + = + + = . ) 2 )( , ( ) , ( , 1) )( , , ( ) , , ( 2 v yvv r t g u r t g v v s x u f u s x u f u y r y t y y s y u y 解得y v ¶ ¶), ( ) , , ( ] 1 ) , ( 2 ][ 1 ) , , ( [ ) , ( ) , , ( ] 1 ) , ( 2 )[ , , ( 2 r t g s x u f r t yvg s x u f r t g s x u f v r t yvg s x u f t s r u r s r s - - - - - -= . 例 12 设函数 ) , ( y x f z = 具有二阶连续偏导数. 在极坐标 q cos r x = , q sin r y = 变换下,求 + ¶ ¶ 2 2 x f 2 2 yf¶ ¶ 关于极坐标的表达式.解2 2 y x r + = , xy arctan = q .所以= ¶ ¶ x f = ¶ ¶ ¶ ¶ + ¶ ¶ ¶ ¶ x f x r r f q q 2 2 2 2 y x y f y x x r f + ¶ ¶ - + ¶ ¶ q qq q ¶ ¶ - ¶ ¶ = f r r f sin cos , = ¶ ¶ y f = ¶ ¶ ¶ ¶ + ¶ ¶ ¶ ¶ y f y r r f q q 2 2 2 2 y x x f y x y r f + ¶ ¶ + + ¶ ¶ q q q q ¶ ¶ + ¶ ¶ = f r r f cos sin ; 2 2 x f ¶ ¶ ÷ ø ö ç è æ ¶ ¶ - ¶ ¶ ¶¶ = q q q f r r f x sin cos r ¶ ¶ = q cos sin cos f f r r q q q ¶¶ æö - ç÷ ¶¶ èø q q ¶ ¶ -r sin sin cos f f r r q q q ¶¶ æö- ç÷¶¶ èør fr f rf r r f r csos r f ¶ ¶ + ¶ ¶ + ¶ ¶ + ¶ ¶ ¶ - ¶ ¶ = q q q q q q q q q q 2 22 2 2 2 2 2 2 2sin cos sin 2 sin sin 2 cos ; 类似有22 yf ¶ ¶ r f r f r f r r f r csos r f ¶ ¶ + ¶ ¶ - ¶ ¶ + ¶ ¶ ¶ + ¶ ¶ = q q q q q q q q q q 2 2 2 2 2 2 2 2 2 2cos cos sin 2 cos sin 2 sin . 于是得 + ¶ ¶ 2 2 x f 2 2 yf ¶ ¶ = r fr f r r f ¶ ¶ + ¶ ¶ + ¶ ¶ 1 1 2 2 2 2 2 q .例 13 证明:通过线性变换 y x u l + = , y x v m + = ,可以北将方程A 2 2 x f ¶ ¶B 2 + y x f ¶ ¶ ¶ 2C + 0 2 2 = ¶ ¶ yf,( 0 2 < - B AC )化简为 0 2 = ¶ ¶ ¶ v u f.并说明此时l 和m 为一元二次方程 0 2 2 = + + Ct Bt A 的两个相异实根.证 由 y x u l + = 和 y x v m + = 得x f ¶ ¶ v f u f ¶ ¶ + ¶ ¶ = , y u ¶ ¶ vfu f ¶ ¶ + ¶ ¶ = m l . 2 2 x f ¶ ¶ + ¶ ¶ = 2 2 u f + ¶ ¶ ¶ v u f 2 2 2 v f ¶ ¶ , 2 2 y f ¶ ¶ lm l 2 2 2 2 + ¶ ¶ = u f + ¶ ¶ ¶ v u f 2 222 v f ¶ ¶ m , = ¶ ¶ ¶ v u f 2 ) ( 2 2 m l l + + ¶ ¶ u f + ¶ ¶ ¶ v u f 2 2 22 vf ¶ ¶ m . 代入A 2 2 x f ¶ ¶ B 2 + y x f ¶ ¶ ¶ 2 C + 0 2 2 = ¶ ¶ yf ,化简得) 2 ( 2l l C B A + + 2 2 u f ¶ ¶ + ) 2 ( 2 m m C B A + + 2 2 vf ¶ ¶] 2 ) ( 2 2 [ lm m l C B A + + + + 0 2 = ¶ ¶ ¶ vu f.可见,当且仅当l 和m 为一元二次方程 0 2 2 = + + Ct Bt A 的两个相异实根时,方 程就化成 0 2 = ¶ ¶ ¶ vu f.例 14 求椭球面 498 3 2 2 2 2 = + + z y x 的平行于平面 7 5 3 = + + z y x 的切平面.解 所求切平面的法向量为 ) 6 , 4 , 2 ( z y x ,应有 56 3 4 1 2 z y x = = k 令== ,就有 2 k x = , k y 4 3 = , k z 6 5 = ,代入方程 498 3 2 2 2 2 = + + z y x ,有 498 2483 2 = k ,得12 ± = k . 在点M ) 10 , 9 , 6 ( 和N ) 10 , 9 , 6 ( - - - 的切平面与平面 7 5 3 = + + z y x 平 行.在点M ) 10 , 9 , 6 ( 的法向量为 ) 60 , 36 , 12 ( ,切平面为0 ) 10 ( 60 ) 9 ( 36 ) 6 ( 12 = - + - + - z y x ,即 0 83 5 3 = - + + z y x ;在点N ) 10 , 9 , 6 ( - - - 的法向量为 ) 60 , 36 , 12 ( - - - ,切平面为0 ) 10 ( 60 ) 9 ( 36 ) 6 ( 12 = + - + - + - z y x ,即 0 83 5 3 = + + + z y x .综上,椭球面 498 3 2 2 2 2 = + + z y x 上,平行于平面 7 5 3 = + + z y x 的切平面 有两块,它们是 0 83 5 3 = ± + + z y x .例15 证明曲面 a z y x = + + ) 0 ( > a 上任一点的切平面在各坐标轴上的 截距之和等于a .证 设M ) , , ( 0 0 0 z y x 为曲面 a z y x = + + 上任的一点,曲面在该点的切面为0 2 2 2 00 00 00 = - + - + - z z z y y y x x x ,即0 ) ( 0 0 0 0 00 = + + - + + z y x z z y y x x , 亦即0 0 0 0 = - + + a z z y y x x .化为截距式即为 1 0 0 0= + + az zay y ax x . 可见在各坐标轴上的截距之和为a az ay ax = + + 0 0 0 = + + ) ( 0 0 0 z y x a .例 16 在 ] 1 , 0 [ 上用怎样的直线 b ax + = x 来代替曲线 2 x y = ,才能使它在平方 误差的积分 = ) , ( b a J ò - 10 2 ) ( dx y x 为极小意义下的最佳近似.解 = ) , ( b a J = - - ò 10 22) ( dx b ax x 51 32 23 2 2 + - - + + b a ab b a .现求其中极小值.ï ï îï ï íì- + = - + = .3 2 2 ,2 1 3 2 a b J b a J b a 解得有唯一驻点M ÷ ø ö ç èæ- 6 1 , 1 .0 3 1 1 2 3 2 | ) ( > = - ´ = - M ab bb aa J J J ,又 0 32| > = Maa J ,因此, ) , ( b a J 在点 M ÷ ø ö ç è æ- 6 1 , 1 取极小值.因为 ) , ( b a J 在R 2 中仅有唯一的极小值,可见该极小值还是最小值.因此,在 ] 1 , 0 [ 上用直线 61- = x x 来代替曲线 2 x y = ,才能使它在平方误差的积分为极小的意义下是最佳的近似.例 17 要做一圆柱形帐篷,并给它加一个圆锥形的顶.问在体积为定值时,圆柱的半径R ,高H 及圆锥的高h 满足什么关系时,所用的布料最省?解 设体积为定值V ,则 ÷ ø ö ç èæ+ = h H R V 3 1 2 p ,得 h R V H 3 1 2 - = p .帐篷的全面积为2 2 2 2 322 2 ) , ( h R R Rh R V h R R RH h R S + + - =+ + = p p p p , 0 > R , 0 > H . R S 0 3 2 2 2 2 2 22 2 = + + + + - - = hR R h R h R V p p p ,(*)0 3 2 2 2 = + + - = hR RhR S h p p .(**)由(**)式的得 h h R 232 2 = + ,代入(*)式,有R S 0 6 4 5 12 242 2 = + + - = h R R h R Vh p p ,由 0 6 2 > h R ,应有 0 12 5 4 2 2 2 = - + Vh h R R p p . 这就是驻点出应满足的关系式.由于该问题在于有最小值,这也是帐篷的全面 积 ) , ( h R S 取最小值时,圆柱的半径R 与圆锥的高h 所应满足的关系式. 例 18 抛物面 2 2 y x z + = 被平面 1 = + + z y x 截成一椭圆.求原点到这个椭圆的 最长距离与最短距离.解 这是求函数 2 2 2 ) , , ( z y x z y x d + + = 在约束条件 0 2 2 = - - y x z 与0 1= - + + z y x 之下的条件极值问题 .构造 Lagrange 函数= ) , , , , ( m l z y x L l - + + 2 2 2 z y x m + - - ) ( 2 2 y x z ) 1 ( - + + z y x .(5) . 0 1 (4) , 0 (3) , 0 2) 2 ( , 0 2 2 ) 1 ( , 0 2 2 2 2 ï ï ï î ïï ïí ì = - + + = = - + = = + - = = + + = = + + = z y x Lz y x L z L y y Lx x L z y x m l m l m l m l 由(1)和(2)有 0 ) 1 )( ( 2 = + - l y x ,由于 1 - ¹ l (否则由(1)得 0 = m ,据(3)得 2 1 - = z ,代入(4) ,导致 0 212 2 = + + y x 无解),得 y x = .把 y x = 代入(4)和(5) ,解得 2 3 1 2 , 1 ± - =x , 231 2, 1 ± - = y , 3 2 2 1 m = - = x z .即得两个 驻点A ÷ ÷ ø ö ç ç è æ - + - + - 3 2 , 2 3 1 , 2 3 1 和B ÷ ÷ øöç ç è æ + - - - - 3 2 , 2 3 1 , 2 3 1 . 而该 问题必有最大值和最小值,因此,点A 和B 就是最大和最小值点.由于d ÷ ÷ ø öç ç è æ - + - + - 3 2 , 2 3 1 , 2 3 1 3 5 9- = ; d ÷ ÷ øöç ç è æ + - - - - 3 2 , 2 3 1 , 2 3 1 3 5 9+ = . 可见点A 和B 分别是最小和最大值点.即原点到这个椭圆的最长距离为 3 5 9+ ,最短距离为 3 5 9- .例 19 求椭圆 12 3 2 2 = + y x 的内接等腰三角形,其底边平行于椭圆的长轴,而使面积最大.解 所指内接等腰三角形的一半(如图) 是 ABC D ,设C 的坐标为(,) x y ,则三角(0,2)A yx(0,)B y o(,)C x y形 ABC D 面积为 ) 2 ( y x - 之半,于是所求内接等腰三角形的面积为 ) 2 ( y x - .问题是求函数 ) 2 ( ) , ( y x y x S - = 在约束条件 12 3 2 2 = + y x 之下的条件极值. 设Lagrange 函数为) 12 3 ( ) 2 ( ) , , ( 2 2 - + + - = y x y x y x L l l ,( 0 > x , 2 2 < < - y ),则ï î ïí ì = - + = = + -= = + - = (3) . 0 12 3 (2) , 0 6 ) 1 ( , 0 22 2 2 y x L y x L x y L y x ll l 从方程(1)和(2)中消去l ,得 y y x 6 3 2 2 - = ,代入(3) ,得 0 2 2 = - - y y ,解得 231± = y . 2 = y 时, 0 ) 2 , ( = x S .因此,得唯一的驻点 ) 1 , 3 ( - .该问题有最大值,当底边右端点的坐标为 ) 1 , 3 ( - 时,所得内接等腰三角形的面 积最大.。
微分方程例题范文

微分方程例题范文微分方程是描述物理学、化学、经济学、生物学等领域中变化规律的重要数学工具。
下面我将给出几个微分方程的例题,解析其求解过程。
例题1:一般线性微分方程已知其中一种细菌种群的个体数量N(t)随时间t的变化符合以下微分方程:dN(t)/dt = k*N(t)其中k为常数。
求解该微分方程,并给出其通解。
解析:思路:这是一个一阶线性微分方程,可以使用分离变量法进行求解。
将方程进行分离变量:dN(t)/N(t) = k*dt两边同时积分:∫ (1/N(t)) dN(t) = ∫ k dt得到:ln,N(t), = kt + C1其中C1为常数。
对上式两边取指数:N(t), = e^(kt+C1) = e^C1 * e^kt = C * e^kt其中C=e^C1为常数。
由于细菌数量N(t)永远为正数,所以可以去掉绝对值符号,得到通解:N(t) = C * e^kt其中C为常数。
例题2:二阶常系数齐次线性微分方程已知其中一振动系统满足以下微分方程:d²x(t)/dt² + 4dx(t)/dt + 5x(t) = 0求解该微分方程,并给出其通解。
解析:思路:这是一个二阶常系数齐次线性微分方程,可以使用特征根法进行求解。
将方程转化为特征方程:λ²+4λ+5=0求解特征方程的解,得到特征根:λ₁=(-4+√(-4²-4*5))/2=-2+iλ₂=(-4-√(-4²-4*5))/2=-2-i特征根为复数,分别为共轭复数对。
根据特征根的性质,解的形式为:x(t) = e^(-2t) (C₁cos(t) + C₂sin(t))其中C₁、C₂为常数。
例题3:二阶常系数非齐次线性微分方程已知其中一电路中的电流I(t)满足以下微分方程:d²I(t)/dt² + 3dI(t)/dt + 2I(t) = 6e²求解该微分方程,并给出其通解。
第七章 微分方程经典例题

第七章 微分方程例7 有高为1米的半球形容器,水从它的底部小孔流出,小孔横截面积为1平方厘米. 开始时容器内盛满了水, 求水从小孔流出过程中容器里水面的高度h (水面与孔口中心间的距离)随时间t 的变化规律.解 由力学知识得,水从孔口流出的流量为62.0dtdVQ ⋅==孔口截面面积 重力加速度,12cm S = .262.0dt gh dV =∴ ①设在微小的时间间隔],,[t t t ∆+水面的高度由h 降至,h h ∆+则,2dh r dV π-=,200)100(100222h h h r -=--= .)200(2dh h h dV --=∴π ②比较①和②得:,262.0)200(2dt gh dh h h =--π 即为未知函数得微分方程. ,)200(262.03dh h h gdt ---=π,1000==t h ,101514262.05⨯⨯=∴gC π所求规律为 ).310107(265.45335h h gt +-⨯=π例10 求解微分方程.2222xyy dyy xy x dx -=+-解 原方程变形为=+--=2222y xy x xy y dx dy ,1222⎪⎭⎫⎝⎛+--⎪⎭⎫⎝⎛x y x y x y x y 令,xy u =则,dx dux u dx dy +=方程化为,1222u u u u dx du x u +--=+ 分离变量得⎥⎦⎤⎢⎣⎡-+--⎪⎭⎫ ⎝⎛--112212121u u u u ,x dxdu = 两边积分得,ln ln ln 21)2ln(23)1ln(C x u u u +=----整理得.)2(12/3Cx u u u =--所求微分方程的解为 .)2()(32x y Cy x y -=-例13 抛物线的光学性质. 实例:车灯的反射镜面 ——旋转抛物面. 解 设旋转轴Ox 轴,光源在),0,0( ),(:x y y L =设),(y x M 为L 上任一点,MT 为切线,斜率为,y 'MN 为法线,斜率为,1y '-,NMR OMN ∠=∠ ,t a n t a n N M R O M N ∠=∠∴由夹角正切公式得,11tan y x y x yy OMN '--'-=∠ ,1t a n y N M R '=∠ 得微分方程 ,02=-'+'y y x y y ,12+⎪⎪⎭⎫ ⎝⎛±-='y x yxy 令 ,x y u =方程化为 ,112uu dx du x u +±-=+ 分离变量得,1)1(22xdxu u udu -=+±+ 令 ,122t u =+得,)1(xdxt t tdt -=±积分得 ,ln |1|ln xCt =± 即.112±=+x C u平方化简得,2222x CxC u += 代回,xyu =得 .222⎪⎭⎫ ⎝⎛+=C x C y所求旋转轴为Ox 轴得旋转抛物面的方程为 .2222⎪⎭⎫ ⎝⎛+=+C x C z y 例14(E07)设河边点O 的正对岸为点A , 河宽h OA =, 两岸为平行直线, 水流速度为a, 有一鸭子从点A 游向点O , 设鸭子(在静水中)的游速为)(a b b >, 且鸭子游动方向始终朝着点O , 求鸭子游过的迹线的方程.解 设水流速度为),|(|a a a =鸭子游速为),|(|b b b = 则鸭子实际运动速度为.b a v += 取坐标系如图,设在时刻t 鸭子位于点),,(y x P 则鸭子运动速度},,{},{t t y x y x v v v == 故有.yxt t v v y x dy dx ==现在),0,(a a = 而,be b = 其中e 为与PO 同方向的单位向量. 由},,{y x PO -=故,},{22y x y x e +-=于是},,{22y x yx b b +-==+=b a v .,2222⎪⎪⎭⎫ ⎝⎛+-+-y x byy x bxa 由此得微分方程,22yx by y x a v v dy dx y x++-== 即 ,12y xy x bady dx ++⎪⎪⎭⎫ ⎝⎛-= 初始条件为.0|==h y x 令,u yx =则,yu x =,u dy du y dy dx +=代入上面的方程,得,12+-=u ba dy du y分离变量得,12dy byau du -=+ 积分得),ln (ln C y b a arshu +-=即b a Cy sh u /)ln(-=],)()[(21//b a b a Cy Cy -=-故].)()[(21])()[(2/1/1//b a b a b a b a Cy Cy CCy Cy y x +---=-=将初始条件代入上式得,/1h C =故所求迹线方程为 2h x =,/1/1⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+-b a b a h y h y .0y h ≤≤一、一阶线性微分方程 形如)()(x Q y x P dxdy=+ (3.1) 的方程称为一阶线性微分方程. 其中函数)(x P 、)(x Q 是某一区间I 上的连续函数. 当,0)(≡x Q 方程(3.1)成为0)(=+y x P dxdy(3.2) 这个方程称为一阶齐次线性方程. 相应地,方程(3.1)称为一阶非齐次线性方程.方程(3.2)的通解.)(⎰-=dx x P Ce y (3.3)其中C 为任意常数.求解一阶非齐次线性微分方程的常数变易法:即在求出对应齐次方程的通解(3.3)后,将通解中的常数C 变易为待定函数)(x u ,并设一阶非齐次方程通解为 ,)()(⎰-=dxx P ex u y一阶非齐次线性方程(3.1)的通解为[]⎰-⎰+=⎰dx x P dx x P e C dx e x Q y )()()( (3.5)二、伯努利方程:形如n y x Q y x P dxdy)()(=+ (3.7) 的方程称为伯努利方程,其中n 为常数,且1,0≠n .伯努利方程是一类非线性方程,但是通过适当的变换,就可以把它化为线性的. 事实上,在方程(3.7)两端除以ny ,得),()(1x Q y x P dxdyy n n=+-- 或 ),()()(1111x Q y x P y nn n =+'⋅--- 于是,令nyz -=1,就得到关于变量z 的一阶线性方程)()1()()1(x Q n z x P n dxdz-=-+. 利用线性方程的求解方法求出通解后,再回代原变量,便可得到伯努利方程(3.7)的通解.)1)(()()1()()1(1⎪⎭⎫⎝⎛+-=⎰⎰⎰----C dx e n x Q e y dx x P n dx x P n n 例5(E03)求方程0)12(23=-+dy xy dx y 的通解.解 当将y 看作x 的函数时,方程变为2321xy y dx dy -=这个方程不是一阶线性微分方程,不便求解.如果将x 看作y 的函数,方程改写为1223=+x y dydxy 则为一阶线性微分方程,于是对应齐次方程为0223=+x y dy dx y 分离变量,并积分得,2⎰⎰-=y dy x dx 即211yC x = 其中1C 为任意常数,利用常数变易法,设题设方程的通解为,1)(2y y u x =代入原方程,得yy u 1)(=' 积分得 C y y u +=||ln )(故原方程的通解为)||(ln 12C y yx +=,其中C 为任意常数.例6(E04)在一个石油精炼厂,一个存储罐装8000L 的汽油,其中包含100g 的添加剂. 为冬季准备,每升含2g 添加剂的石油以40L/min 的速度注入存储罐. 充分混合的溶液以45L/min 的速度泵出. 在混合过程开始后20分钟罐中的添加剂有多少?解 令y 是在时刻t 罐中的添加剂的总量. 易知100)0(=y . 在时刻t 罐中的溶液的总量 ()()t t t V 5800045408000-=-+= 因此,添加剂流出的速率为()()()()tt y t t y t V t y 58000454558000-=⋅-=⋅溶液流出的速率 添加剂流入的速率80402=⨯,得到微分方程 t ydt dy 580004580--= 即805800045=⋅-+y tdt dy 于是,所求通解为()()9580004558000451600101600080-+-=⎪⎪⎭⎫ ⎝⎛+⎰⋅⎰=---⎰t C t C dt e e y dt t dt t由100)0(=y 确定C ,得()()016000010160009=-+⨯-C ,8160010=C ,故初值问题的解是()()9816001600101016000-+-=t t y , 所以注入开始后20分钟时的添加剂总量是()()58.1512160020160010201016000)20(98≈-+⨯-=y g. 注:液体溶液中(或散布在气体中)的一种化学品流入装有液体(或气体)的容器中,容器中可能还装有一定量的溶解了的该化学品. 把混合物搅拌均匀并以一个已知的速率流出容器. 在这个过程中,知道在任何时刻容器中的该化学品的浓度往往是重要的. 描述这个过程的微分方程用下列公式表示:容器中总量的变化率=化学品进入的速率—化学品离开的速率.例10(E06) 求方程1)()(23=-+-+x y x x y x dxdy的通解. 解 令,u x y =-则,1+=dx du dx dy 于是得到伯努利方程.23u x xu dxdu -=+ 令,121u u z ==-上式即变为一阶线性方程.3x xz dxdz=- 其通解为 22x e z =⎪⎪⎭⎫ ⎝⎛+⎰-C dx e x x 232.2222--=x Ce x 回代原变量,即得到题设方程的通解.211222--+=+=x Ce x zx y x例11(E07)求解微分方程.)(sin 12xy xy x dx dy -= 解 令,xy z =则,dxdy x y dx dz += ∴x y dxdz+=⎪⎪⎭⎫ ⎝⎛-x y xy x )(sin 12,sin 12z = 利用分离变量法解得 ,42s i n2C x z z +=- 将xy z =代回,得所求通解为 .4)(2s i n2C x xy xy +=- 二、),(y x f y '=''型这种方程的特点是不显含未知函数y ,求解的方法是:令),(x p y =' 则)(x p y '='',原方程化为以)(x p 为未知函数的一阶微分方程,).,(p x f p ='设其通解为),,(1C x p ϕ=然后再根据关系式,p y =' 又得到一个一阶微分方程).,(1C x dxdyϕ= 对它进行积分,即可得到原方程的通解.),(21⎰+=C dx C x y ϕ三、),(y y f y '=''型这种方程的特点是不显含自变量x . 解决的方法是:把y 暂时看作自变量,并作变换),(y p y =' 于是,由复合函数的求导法则有.dydp p dx dy dy dp dx dp y =⋅=='' 这样就将原方程就化为).,(p y f dydpp= 这是一个关于变量y 、p 的一阶微分方程. 设它的通解为),,(1C y p y ϕ=='这是可分离变量的方程,对其积分即得到原方程的通解.),(21C x C y dy+=⎰ϕ例7设有一均匀、柔软的而无伸缩性的绳索,两端固定,绳索仅受重力的作用而下垂. 求绳索曲线在平衡状态时的方程.解 设绳索的最低点为.A 取y 轴通过点A 铅直向上,并取x 轴水平向右,且||OA 等于某个定值(这个定值将在以后说明).设绳索曲线的方程为).(x y y =考察绳索上点A 到另一点),(y x M 间的一段弧,AM 设其长为.s 假定绳索的线密度为,ρ则弧AM 的重量为.gs ρ由于绳索是柔软的,因而在点A 处的张力沿水平的切线方向,其大小设为;H 在点M处的张力沿该点处的切线方向,设其倾角为,θ其大小为T (如图).因作用于弧段AM 的外力相互平衡,把作用于弧段AM 上的力沿铅直及水平两方向解得.cos ,sin H T gs T ==θρθ两式相除得 .1t a n ⎪⎪⎭⎫ ⎝⎛==g H a s aρθ由于⎰'+='=xdx y s y 02,1,tan θ代入上式即得 .1102⎰'+='x dx y ay 将上式两端对x 求导,便得)(x y y =满足得微分方程 .112y ay '+='' (1) 取原点O 到点A 的距离为定值,a 即,||a OA =则初始条件为.0,00='===x x y a y对方程(1),设,p y ='则,dxdpy ='''代入并分离变量得: adxp dp =+21.1C a x p arsh +=由00='=x y 得01=C .a x p arsh =即a x sh y =' .2C axa c h y += 将条件a y x ==0代入上式,得 .02=C于是该绳索的曲线方程为 .2⎪⎪⎭⎫ ⎝⎛+==-a xa x e e a a x a c h y 这曲线叫做悬链线.),(y y f y '=''型二、二阶变系数线性微分方程的一些解法对于变系数线性方程,要求其解一般是很困难的. 这里我们介绍处理这类方程的两种方法. 一种是利用变量替换使方程降阶——降阶法;另一种是在求出对应齐次方程的通解后,通过常数变易的方法来求得非齐次线性方程的通解——常数变易法.对于二阶齐次线性方程, 如果已知其一个非零特解, 作变量替换,1⎰=zdx y y , 就可将其降为一阶齐次线性方程, 从而求得通解. 并有下列刘维尔公式.1)(21211⎥⎥⎦⎤⎢⎢⎣⎡+=⎰-⎰dx e y C C y y dx x P三、常数变易法在求一阶非齐次线性方程的通解时, 我们曾对其对应的齐次方程的通解, 利用常数变易法求得非齐次方程的通解. 这种方法也可用于二阶非齐次线性方程的求解.设有二阶非齐次线性方程),()()(22x f y x Q dx dyx P dx y d =++ (5.10) 其中)(),(),(x f x Q x P 在某区间上连续, 如果其对应的齐次方程0)()(22=++y x Q dx dyx P dxy d的通解2211y C y C y +=已经求得, 那么也可通过如下的常数变易法求得非齐次方程的通解.设非齐次方程(5.10)具有形如2211*y u y u y += (5.11)的特解, 其中)(),(2211x u u x u u ==是两个待定函数, 将上式代入原方程从而确定出这两个待定函数. 降阶法例2(E01)已知x xy sin 1=是方程0222=++y dx dy x dxy d 的一个解, 试求方程的通解. 解 作变换⎰=,1zdx y y 则有dxdy⎰+=,11zdx dx dy z y 22dx y d ⎰++=.221211zdx dx y d z dx dy dx dz y 代入题设方程,并注意到1y 是题设方程的解,有,022111=⎪⎭⎫+ ⎝⎛+z x y dx dy dx dz y 将1y 代入,并整理,得x z dx dzcot 2-=⇒.sin 21xC z = 故所求通解为y ⎰=zdx y 1⎢⎣⎡⎥⎦⎤+=.sin sin 221C dx x C x x )cot (sin 21C x C x x+-=).cos sin (112x C x C x -= 常数变易法例3(E02)求方程x dx dyx dxy d =-122的通解. 解 先求对应的齐次方程的通解.由0122=-dx dy x dx y d dx dy x dx y d 122= dx x dx dy d dxdy 11=⎪⎭⎫ ⎝⎛⋅ ,||ln ||ln lnC xdxdy+= 即 .Cx dx dy = 从而得到对应齐次方程的通解.221C x C y +=为求非齐次方程的一个解,*y 将21,C C 换成待定函数,,21u u 设,221u x u y +=*则根据常数变易法,21,u u 满足下列方程组⎩⎨⎧='⋅+'='⋅+'x u u x u u x 212121201.21,21221x u u -='=' 积分并取其一个原函数得 .6,21321x u x u -== 于是,题设原方程得一个特解为.3621333221x x x u x u y =-=⋅+⋅=*从而题设方程的通解为 .33221x C x C y ++= 例4(E03)求方程1111-=--'-+''x y xy x x y 的通解. 解 因为,01111=---+xx x 易见题设方程对应的齐次方程的一特解为,1x e y =由刘维尔公式求出该方程的另一特解2y dx e eedx x xx x⎰--⎰=121,x = 从而对应齐次方程的通解为,21x e C x C y +=可设题设方程的一个特解为,11*x e u x u y += 由常数变易法, 21,u u 满足下列方程组⎪⎩⎪⎨⎧-='+'='+'102121x u e u u e u x x x ⇒,11-='u x xe u -='2 积分并取其一个原函数得,1x u -=',2x x e xe u ----=' 于是,题设方程的通解为 .1221---+=x x e C x C y x内容要点一、二阶常系数齐次线性微分方程及其解法0=+'+''qy y p y (6.1) 特征方程 ,02=++q pr r (6.2) 称特征方程的两个根,1r 2r 为特征根.)sin cos ()(,002121212121212121x C x C e y i r i r e x C C y r r e C e C y r r qy y p y q pr r x xr xr x r βββαβαα+=-=+=+==+==+'+''=++有一对共轭复根有二重根有二个不相等的实根的通解微分方程的根特征方程 这种根据二阶常系数齐次线性方程的特征方程的根直接确定其通解的方法称为特征方程法.二、 n 阶常系数齐次线性微分方程的解法 n 阶常系数齐次线性微分方程的一般形式为01)1(1)(=+'+++--y p y p y p y n n n n (6.6)其特征方程为0111=++++--n n n n p r p r p r (6.7)根据特征方程的根,可按下表方式直接写出其对应的微分方程的解:xk k k k rxk k e x x D x D D x x C x C C i k e x C x C C r k αβββα]sin )(cos )[()(111011101110------+++++++±+++ 复根重共轭是重根是通解中的对应项特征方程的根注: n 次代数方程有n 个根, 而特征方程的每一个根都对应着通解中的一项, 且每一项各含一个任意常数. 这样就得到n 阶常系数齐次线性微分方程的通解为 .2211n n y C y C y C y +++=例8(E05)求方程x x y y 2cos =+''的通解.解 对应齐次方程的特征方程的特征根为,2,1i r ±=故对应齐次方程的通解x C x C Y sin cos 21+=作辅助方程.2ix xe y y =+''i 2=λ 不是特征方程的根,故设,)(2*ix e B Ax y +=代入辅助方程得,034=-B Ai 13=-A ⇒,31-=A i B 94-=∴*y =⎪⎭⎫ ⎝⎛--i x 9431ix e 2=⎪⎭⎫ ⎝⎛--i x 9431)2sin 2(cos x i x +i x x x -+-=2sin 942cos 31⎪⎭⎫⎝⎛+x x x 2sin 312cos 94取实部得到所求非齐次方程的一个特解:.2sin 942cos 31x x x y +-=所求非齐次方程的通解为.2sin 942cos 31sin cos 21x x x x C x C y +-+=例11 已知函数x x e x e y )1(2++=是二阶常系数非齐次线性微分方程x ce by y a y =+'+''的一个特解, 试确定常数b a ,与c 及该方程的通解. 解 将已知方程的特解改写为,2x x x xe e e y ++=因对应齐次方程的解应是rx e 型的,如x e 2是对应齐次方程的解, x e 也可能是,因原方程的自由项是,x Ce 而x xe 或x e x )1(+是原非齐次方程的解,故x e 也是对应齐次方程的解(即1=r 也是特征方程的根).故原方程所对应的齐次方程的特征方程为,0)1)(2(=--r r 即,0232=+-r r于是得.2,3=-=b a 将x xe y =*代入方程x Ce y y y =+'-''23得,2)1(3)2(x x x x Ce xe e x e x =++-+原方程的通解为 .221x x x xe e C e C y ++=内容要点形如)(1)1(11)(x f y p y x p y x p y x n n n n n n =+'+++--- 的方程称为欧拉方程, 其中n p p p ,,,21 为常数.欧拉方程的特点是: 方程中各项未知函数导数的阶数与其乘积因子自变量的幂次相同. 作变量替换 t e x = 或 ,ln x t =将上述变换代入欧拉方程, 则将方程(8.1)化为以t 为自变量的常系数线性微分方程, 求出该方程的解后, 把t 换为ln x , 即得到原方程的解. 如果采用记号D 表示对自变量t 求导的运算,dtd则上述结果可以写为 ,Dy y x =' y D D y x )1(2-='',y D D D y D D D y x )2)(1()23(233--=+-=''',一般地,有y k D D D y x k k )1()1()(+--= .例3 设有方程 ,0)0(),0(),1ln(])1(2[)1(02='≥+-''++=+⎰y x x dx y x y y x x求由此方程所确定的函数).(x y 解 将方程两边对x 求导,整理后得y y x y x +'+-''+)1()1(2,11x+=且有,0)0(=y ,0)0(='y 这是欧拉方程,令t e x =+1或),1ln(x t +=将它化为常系数非齐次线性微分方程,222t e y dt dydty d -=+- 其通解为,41)(21t t e e t C C y -++=故原方程的通解为,)1(41)1)](1ln([21x x x C C y +++++=由初始条件,0)0(=y ,0)0(='y 可求得,411-=C ,212=C故由题设方程确定的函数为.)1(41)1()1ln(2141x x x y +++⎥⎦⎤⎢⎣⎡++-=例1(E01)求解微分方程组 ⎪⎩⎪⎨⎧=++=+++)2(035)1(02y x dty x dtdydt dx 解 由(2)得,5351y dt dy x --=,535122dt dy dt y d dt dx --= (3) 把(3)代入(1),得.022=+y dtyd 这是一个二阶常系数线性微分方程,易求出它的通解为.sin cos 21t C t C y += (4)将上式代入(3),得.cos )3(51sin )3(512121t C C t C C x +--= (5)联立(4),(5)即得所求方程组的通解.例3(E03)解微分方程组 ⎪⎪⎩⎪⎪⎨⎧=++=-+.0,2222y dt dx dt y d e x dt dydtx d t解 记,dtdD =则方程组可写成 ⎪⎩⎪⎨⎧=++=+-0)1()1(22y D Dx e Dy x D t )2()1( 设法消去变量,x 为此作如下运算:D ⨯-)2()1(得t e y D x =--3 (3)D ⨯+)2()1(得t De y D D =++-)1(24,即t e y D D =++-)1(24 (4)方程(4)对应的齐次方程的特征方程为0124=++-r r 特征根为,2512,1+±=±=αr 2514,3-±=±=βi r 又易求得方程(4)一个特解为,*t e y =故方程(1)的通解为t t t e t C t C e C e C y ++++=-ββααsin cos 4321 (5)将其代入方程(3),可得t t e C e C x αααα2313-=-t e t C t C 2sin cos 4333-+-ββββ (6)联立(5),(6)即得所求方程组的通解.追迹问题例3(E03)设开始时甲、乙水平距离为1单位, 乙从A 点沿垂直于OA 的直线以等速0v 向正北行走;甲从乙的左侧O 点出发, 始终对准乙以)1(0>n nv 的速度追赶. 求追迹曲线方程, 并问乙行多远时, 被甲追到.解 设所求追迹曲线方程为).(x y y =经过时刻,t 甲在追迹曲线上的点为),,(y x P 乙在点).,1(0t v B 于是 .1tan 0xyt v y --='=θ (1) 由题设,曲线的弧长OP 为 ⎰='+xt nv dx y 002,1解出,0t v 代入(1),得⎰'+=+'-xdx y n y y x 02.11)1( 整理得.11)1(2y ny x '+=''- 追迹问题的数学模型 设,),(p y x p y '=''='则方程化为 211)1(p np x +='- 或 ,)1(12x n dxp dp -=+两边积分,得|,|ln |1|ln 1)1ln(12C x n p p +--=++ 即 .1112n xC p p -=++将初始条件000=='==x x p y 代入上式,得.11=C 于是 ,1112nxy y -='++' (2)两边同乘,12y y '+-'并化简得,112n x y y --='+-' (3)(2)式与(3)式相加得 ,11121⎪⎪⎭⎫ ⎝⎛---='nnx x y 两边积分得 .)1(1)1(121211C x n n x n ny nn nn +⎥⎦⎤⎢⎣⎡-++---=+- 代入初始条件00==x y 得,122-=n nC 故所求追迹曲线为 ),1(1)1(1)1(121211>-+⎥⎦⎤⎢⎣⎡-++---=+-n n n x n n x n n y nn nn 甲追到乙时,即点P 的横坐标,1=x 此时.)1(2-=n n y 即乙行走至离A 点)1(2-n n 个单位距离时被甲追到.例4(E04)一个离地面很高的物体, 受地球引力的作用由静止开始落向地面. 求它落到地面时的速度和所需的时间(不计空气阻力).解 取连结地球中心与该物体的直线为y 轴,其方向铅直向上,取地球的中心为原点O (如图).设地球的半径为,R 物体的质量为,m 物体开始下落时与地球中心的距离为),(R l l >在时刻t 物体所在位置为),(t y y =于是速度为.)(dtdyt v =由万有引力定律得微分方程 ,222y kmM dt y d m -= 即 ,222ykMdt y d -=其中M 为地球的质量,k 为引力常数. 因为当R y =时,g dtyd -=22 (取负号是因此时加速度的方向与y 轴的方向相反).,,22gR kM RkM g ==代入得到,2222ygR dt y d -=初始条件为 ,0l y t ==.00='=t y先求物体到达地面时的速度. 由,v dtdy=得 ,22dy dvv dt dy dy dv dt dv dty d =⋅== 代入并分离变量得dy y gR vdv 22-=.2122C y gR v +=把初始条件代入上式,得 ,221gR C -=于是⎪⎪⎭⎫⎝⎛-=l y gR v 11222 .112⎪⎪⎭⎫ ⎝⎛--=l y g R v 式中令,R y =就得到物体到达地面时得速度为.)(2lR l gR v --= 再求物体落到地面所需的时间.,112⎪⎪⎭⎫ ⎝⎛--==l y g R v dt dy,0l y t == 分离变量得 .21dy yl yg l R dt --=由条件,0l y t ==得.02=C.a r c c o s 212⎪⎪⎭⎫ ⎝⎛+-=l y l y ly g l R t 在上式中令,R y =便得到物体到达地面所需得时间为.arccos 212⎪⎪⎭⎫ ⎝⎛+-=l R l R lR g l R t例6(E06)在图7-10-8的电路中, 设,1,40H L R =Ω= ,10164F C -⨯= t t E 10cos 100)(=且初始电量和电流均为0, 求电量)(t Q 和电流).(t I解 由已知条件知,可得到方程,10cos 1006254022t Q dt dQdt Q d =++其特征方程为 ,0625402=++r r 特征根,15202,1i r ±-= 故对应齐次方程的通解为).15sin 15cos ()(2120t C t C e t Q t c +=- 而非齐次方程的特解可设为.10sin 10cos )(t B t A t Q p += 代入方程,并比较系数可得 .69764,69784==B A 所以 .10sin 6410cos 84(6971)()t t t Q p += 从而所求方程的通解为 .10sin 1610cos 21(6974)15sin 15cos ()(2120)t t t C t C et Q t+++=- 利用初始条件,0)0(=Q 得到 ,069784)0(1=+=C Q .697841-=C 又 t C C t C C e dtdQt I t 15sin )2015(15cos )1520[()(212120--++-==- )],10cos 1610sin 21(69740t t +-+ 由,06976401520)0(21=++-=C C I 得.20914642-=C 于是 ⎥⎦⎤⎢⎣⎡++--=-)10sin 1610cos 21()15sin 11615cos 63(36974)(20t t t t e t Q t[].)10cos 1610sin 21(120)15sin 1306015cos 1920(20911)(20t t t t e t I t +-++-=- 解)(t Q 中含有两部分,其中第一部分[])(0.)15sin 11615cos 63(20911)(20∞→→--=-t t t e t Q t c 即当t 充分大时,有).10sin 1610cos 21(6974)()(t t t Q t Q p +=≈ 因此,)(t Q p 称为稳态解。
导数与微分的应用练习题及解析

导数与微分的应用练习题及解析在微积分学中,导数和微分是重要的概念和工具,它们在很多实际问题中有着广泛的应用。
本文将通过一些经典的导数和微分应用练习题,为读者展示它们的具体运用,并给出相应的解析。
1. 题目:一个长方形的长和宽分别是x和y,且满足x+y=20。
求长方形面积的最大值。
解析:设长方形的长为x,宽为y,则由题意可知x+y=20。
长方形的面积为S=x*y。
我们的目标是求解长方形面积S的最大值,即求解关于x的函数S=f(x)的最大值。
由题意可知,我们可以将y表示为y=20-x,代入面积函数得到S=x*(20-x)=20x-x^2。
为了求解函数S的最大值,可以使用导数法。
对函数S关于x求导,得到S'=(20-2x)。
令S'=0,解得x=10。
再对x=10进行二阶导数检验得到S''=(-2),小于0。
所以x=10是S的极大值点。
将x=10代入S得到S=10*(20-10)=100。
因此,当长方形的长为10时,面积取得最大值100。
2. 题目:一个矩形的周长为12m,求解矩形面积的最大值。
解析:设矩形的长为x,宽为y,则由题意可知2x+2y=12,即x+y=6。
矩形的面积为S=x*y。
我们的目标是求解矩形面积S的最大值,即求解关于x的函数S=f(x)的最大值。
由题意可知,我们可以将y表示为y=6-x,代入面积函数得到S=x*(6-x)=6x-x^2。
同样地,为了求解函数S的最大值,可以使用导数法。
对函数S关于x求导,得到S'=(6-2x)。
令S'=0,解得x=3。
再对x=3进行二阶导数检验得到S''=(-2),小于0。
所以x=3是S的极大值点。
将x=3代入S得到S=3*(6-3)=9。
因此,当矩形的长为3m时,面积取得最大值9。
3. 题目:一个长方体的长、宽、高分别为x、y和z,且满足xyz=8。
求长方体表面积的最小值。
解析:长方体的表面积为S=2(xy+xz+yz)。
大学数学期末复习专题:微积分问题经典例题解析

大学数学期末复习专题:微积分问题经典例题解析微积分作为数学的一个重要分支,是大学数学课程中的核心内容之一。
在期末复中,重点理解和掌握微积分的经典例题是非常重要的。
本文将对一些微积分经典例题进行解析,帮助同学们加深对这些题目的理解。
1.定积分问题例题1:已知函数 $f(x) = 2x^3 - 3x^2 + 1$,求 $f(x)$ 在区间 $[0.2]$ 上的定积分 $\int_0^2 f(x) dx$。
解析通过积分的定义,我们可以得到:int_0^2 f(x) dx = F(2) - F(0)$$其中 $F(x)$ 是函数 $f(x)$ 的原函数。
根据函数的求导规则,求得 $F(x)$ 的表达式为:F(x) = \frac{1}{2}x^4 - x^3 + x + C$$将 $x$ 的取值代入 $F(x)$ 中,我们可得:F(2) - F(0) = (4 - 8 + 2 + C) - (0 - 0 + 0 + C) = -2$$所以,函数 $f(x)$ 在区间 $[0.2]$ 上的定积分为 $-2$。
例题2:已知函数 $f(x) = \sqrt{x+1}$,求 $f(x)$ 在区间 $[0.3]$ 上的定积分 $\int_0^3 f(x) dx$。
解析首先,我们可以直接计算函数 $f(x)$ 的原函数 $F(x)$ 如下:F(x) = \frac{2}{3}(x+1)^{\frac{3}{2}} + C$$将 $x$ 的取值代入 $F(x)$,可得:F(3) - F(0) = \frac{2}{3}(4^{\frac{3}{2}} - 1)$$经过计算,得出定积分 $\int_0^3 f(x) dx$ 的值为$\frac{2}{3}(4^{\frac{3}{2}} - 1)$。
2.导数和极值问题例题3:已知函数 $f(x) = x^3 - 6x^2 + 9x + 2$,求函数 $f(x)$ 的极值点和极值。
一元函数微分学典型例题

⼀元函数微分学典型例题⼀元函数微分学典型例题1. 有关左右极限题求极限+++→x x sin e e lim x x x 41012 ●根据左右极限求极限,●极限xx e lim 1→,x x sin lim x 0→,x tan lim x 2π→,x cot lim x 0→,x cot arc lim x 0→,x arctan lim x 1 0→都不存在,●A )x (f lim A )x (f lim )x (f lim x x x =?==∞→-∞→+∞→●【 1 】2. 利⽤两个重要极限公式求1∞型极限xsin x )x (lim 2031+→● 0→)x (?,e ))x (lim()x (=+??11●A )x (f lim =0→)x (?,A )x (f )x (e ]))x (lim[(=+??11●【6e 】3. 等价⽆穷⼩量及利⽤等价代换求极限当0x +→(A)1-(B) ln(C) 1.(D) 1-.●等价⽆穷⼩定义:如果1=αβlim,则称β与α失等价⽆穷⼩,记为α∽β,● 0→x 时,(1)nx x ax a xx x x x x x xx e x x x x x nx x ≈-+≈-≈-+≈-≈---+≈-≈+≈≈≈≈1111121161111123ln )(cos sin )ln(arctan tan sin αα●当0→)x (?时,)x (sin ?∽)x (?,11-+n)x (?∽n)x (?∽∽●【 B 】4. 利⽤单调有界准则求极限设数列{}n x 满⾜n n x sin x ,x =<<+110π。
证明:极限n n x lim ∞→存在,计算1 1nxn n n x x lim+∞→●利⽤单调有界准则球数列或者函数极限的步骤:1。
证明数列或函数单调;2。
证明数列或函数是有界;3。
等式取极限求出极限。
●定理单调有界数列必有极限还可以叙述为单调递减有下界数列必有极限,或单调递增有上界数列必有极限。
多元函数微分学及应用经典例题

. 解方程组
.
解得
,
,
.
当
任意一个成立时, 都有
. 所以, 当边长为
有最大体积
.
十七. 求原点到曲面
的最短距离.
解. 设曲面上达到最短距离的点为(x , y , z ), 则
达到最小值.
令
, 由(3) 若 = 1
代入(1), (2) 得 得到
, 解得
. 代入曲面方程
,
,
由(3) 若
由(3) 解得
. 由(1), (2) 得到
. 代入曲面方程
, 得到
,
,
,
所以所求的最短距离为
.
十八. 当
时, 求函数 上的最大值, 并证明对任意的成立不等式
在球面
解. 构造函数
,
解得
因为在球面上当
.
所以当
时, u 达到最大值.
对于任意正实数
,令
. 原题条件极值问题转化为
注意到
. 于是
即
.
五. 设
, 其中 f 具有二阶连续偏导数, 求
.
解.
=
六. 已知
.
解.
=
=
=
七. 设
确定, 求
.
解. 以上两式对 x 求导, 得到关于
的方程组
由克莱姆法则解得
,
八. 设
解.
=
于是
=
= 0
九. 设
, 其中 f ( u , v ) 具有二阶连续偏导数,
二阶可导, 求
.
解.
=
十. 已知
,
,
p ( t ) 连续, 试求
.
解.
高等数学微分练习题

高等数学微分练习题
1. 计算函数 \( f(x) = x^3 - 2x^2 + 3x - 5 \) 的导数,并求出其在 \( x = 2 \) 处的导数值。
2. 给定函数 \( g(x) = \sin(x) + \cos(x) \),求其导数,并说明导数的周期性。
3. 求函数 \( h(x) = e^x \) 的导数,并证明该导数等于原函数。
4. 计算复合函数 \( F(x) = \ln(1 + x^2) \) 的导数,并讨论其在\( x = 0 \) 处的导数值。
5. 求函数 \( p(x) = \sqrt{x} \) 的导数,并用该导数求出曲线
\( y = \sqrt{x} \) 在点 \( (1, 1) \) 处的切线斜率。
6. 给定函数 \( q(x) = \frac{1}{x} \),求其导数,并讨论其在
\( x = 1 \) 处的导数值。
7. 计算函数 \( r(x) = x^2 \cdot \sin(x) \) 的导数,并求出其在\( x = \frac{\pi}{2} \) 处的导数值。
8. 求函数 \( s(x) = \ln(x) \) 的导数,并用该导数求出曲线 \( y = \ln(x) \) 在点 \( (e, 1) \) 处的切线方程。
9. 给定函数 \( t(x) = x^3 - 6x^2 + 11x - 6 \),求其导数,并讨论其在 \( x = 2 \) 处的导数值。
10. 计算函数 \( u(x) = \frac{x^2 - 1}{x + 1} \) 的导数,并求出其在 \( x = 1 \) 处的导数值。
88、数学分析经典二十题微分部分答案-11页 文字版

>
x1 n+1
......
xm m
−
xm+1 m+1
>
x1 m+
. 1
将以上各式相加得到
xn n
>
xn n
−
xm+1 m+1
>
(1 x1 n + 1
.
1 −
− 1
1
Sn
= =
∑n
1
k=0
α2
y0y1 − 1(
·
·· 1
yk
α α2 − 1
= −
∑n α2 −
k=0 α 1
α2n+2 − 1
1( 1 α2k+1
) .
−
1
−
1 α2k+2
−
) 1
微信公众号:学习资料杂货铺
数学分析经典二十题(微分部分)
·3·
最终
lim
n→∞
Sn
=
α2 − 1 ( 1 α α2 −
=
+∞
矛盾.
■
5. 设 y0 2,yn = yn2−1 − 2 (n ∈ N),
Sn
=
1 y0
+
1 y0y1
+
···+
y0
y1
1 ··
·
yn
.
证明:
√
lim
n→+∞
Sn
=
y0 −
y02 − 4 . 2
证明 若 y0 = 2,这 yn = 2,n ∈ N.此时
√
lim
n→+∞
Sn
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4 p.85
(1) 试求 f ( x) x3的导函数。
(1) 令 a 为实数,
则 f (a) lim f ( x) f (a) xa x a
lim x3 a3 xa x a
x a x2 ax a2
lim
xa
xa
lim x2 ax a2 3a2 xa
10 p.93
微分(随堂练习) page 11/11
已知垂直向上抛一颗石头,则 t 秒后的高度可用函数 s(t ) 4.9t 2 49t 来表示(单位:公尺),试问: (1) 前 2 秒的平均速度。 (2) t = 2 秒时的瞬时速度。
(1) 前 2 秒的平均速度为
s(2) s(0) 4.9 22 49 2 39.2(公尺/秒)
2x 1 x2 x 1 x2 x 2 2x 1
4x3 3
(2) f (1) 4 13 3 1
7 p.89
微分(随堂练习) page 8/11
令函数 f ( x) 3x 2100,试求:
(1) f (x) 的导函数。
得 lim f(x)-f(1)=\ lim f(x)-f(1)
x1- x-1
x1+ x-1
∴lim f(x)-f(1)不存在,即 f(x)在 x=1處不可微分 x1 x-1
上一题 下一题
主题 2 导函数
例题 4 求导函数
(1) 试求 f(x)=x3 的导函数 f '(x)。
解■ (1) 令 a 为实数,我们先求 f '(a)
令函数 f ( x) x2 3,试求 f (5)。
f (5) lim f ( x) f (5) x5 x (5)
x2 3 22
lim x5 x 5
x 5 x 5
lim x5 x 5
lim x 5 10 x5
例题 4 求导函数
(2) 设 n 为正整数且 f(x)=xn,试证 f '(x)=nxn-1。
■證 (2) 令 a 为实数,我们先求 f '(a)
f( a)=lim f(x)-f(a)=lim xn -an
xa x-a
xa x-a
=lim(x-a)(x n-1+ax n-2+a 2 x n-3+……+a n-2 x+a n-1)
微分(随堂练习e 3/11
令函数
f
(x)
1,x 0, x
0 0
,证明
f
(x)
在
x
=
0
不可微分。
因为 lim f ( x) f (0) lim 0 1 lim 1 不存在,
x0 x 0
x0 x x0 x
在此点的切线斜率为 f (a) 2a 故直线方程式可设为 y 2a( x a) a2 1
(1, 4) 代入得 4 2a(1 a) a2 1 化简得 a2 2a 3 0,所以 a = 3 或 1 代回直线方程式得 y 6 x 10与 y 2x 2
xa
x-a
=lim(x n-1+ax n-2+a 2 x n-3+……+a n-2 x+a n-1) xa
=nan-1
因此,有 a 对应到 nan-1 的函数关系
故导函数 f '(x)=nxn-1
即(xn)=nxn-1 或 d xn=nxn-1 dx
上一题 下一题
主题 3 微分的运算
例题 5 利用微分公式求导函数(一)
例题 2 在某一点的导数
(2) 函数 f(x)= 1,试求 f(x)在 x=2 的导数。 x
解■ (2) f(x)在 x=2 的导数即为 f '(2),由导数的定义得
f( 2)=lim x2
f(x)x--2f(2)=lxim2
1-1 x2 x-2
2-x
=lim 2x x2 x-2
=lim-1=-1
上一题 下一题
例题 3 可微分与连续
试判断函数 f(x)=|x2-1|在 x=1 处是否连续?是否可以微分?
解■
lim f(x)= lim 〔-(x2-1)〕=0
x1-
x1-
lim f(x)= lim (x2-1)=0
x1+
x1+
∴ lim f(x)= lim f(x)=0
x1-
x1+
lim f ( x) f (0) lim 1 1 0 ,
x0 x 0
x0 x
故 lim f ( x) f (0) lim f ( x) f (0)
x0 x 0
x0 x 0
因此,lim f ( x) f (0) 不存在
x0 x 0
即 f (x) 在 x = 0 不可微分
f( a)=lim xa
f(x)x--af(a)=lxima
x3-a3 x-a
=lim(x-a)(x2+ax+a2)
xa
x- a
=lim(x2+ax+a2)=3a2 xa
因此,有 a 对应到 3a2 的函数关系,
故导函数 f '(x)=3x2
即(x3)=3x2 或 d x3=3x2 dx
1 p.81
微分(随堂练习) page 1/11
试求 y x2的图形上,以点 A 3,9为切点的切线斜率。
以 A 为切点的切线斜率为
lim x2 9 lim x 3 x 3
x3 x 3 x3 x 3
lim x 3 6 x3
2 p.82
x-1 当 x → 1 时,B 点会趋近于 A 点,
上式的极限值即为过 A 点的切线斜率,
故通过 A 点的切线斜率为
f( 1)=lim x1
x3-1 x-1
=lxim1(x-1)(x-x21+x+1)=lxim(1 x2+x+1)=3
即所求切线斜率为 3
下一题
例题 2 在某一点的导数
(1) 函数 f(x)=x2-3x+2,试求 f(x)在 x=2 的导数。
f '(x)=3x2-4x-5, f "(x)=6x-4, f "'(x)=6, f(4)(x)=0
上一题 下一题
主题 4 导数的应用
例题 10 求切线方程式
试求函数 f(x)=(x2-x+1)2 图形上以 P(1 , 1)为切点的切线方 程式。 解■ f '(x)=2(x2-x+1)(2x-1)
f ( x) 4x 9 f ( x) 4 f ( x) 0
9 p.91
微分(随堂练习) page 10/11
试求通过点 (1, 4) 且与函数 f ( x) x2 1的图形相切的直线方 程式。
f ( x) 2x,因为 (1, 4)不在图形上 设该直线与 f (x) 的函数图形于点 ( a , f (a) ) 相切
(1) 令函数 f(x)=2x4-x2+5,试求 f '(x)。 (2) 令函数 g(x)=-x3-3x2+2x-1,试求 g'(-1)。
解■ (1) 利用微分公式 5,可得 f '(x)=8x3-2x (2) 利用微分公式 5,可得 g'(x)=-3x2-6x+2 ∴g'(-1)=-3.(-1)2-6.(-1)+2 =-3+6+2=5
(2) 利用微分公式 6 与 7,
=16(x-1)(x2-2x-1)7
可得 g'(x)=10(x-1)9(x2+x+1)20
+(x-1)10.20(x2+x+1)19(2x+1)
∴g'(1)=0
上一题 下一题
例题 8 利用微分的定义求导数
已知函數 f(x)=((xx+-11))((xx+-22)),試求 f( 1)的值。
(2) f '(1) =4.13+3.12-2.1-2=3
上一题 下一题
例题 7 利用微分公式求导函数(三)
(1) 试求函数 f(x)=(x2-2x-1)8 的导函数。 (2) 已知函数 g(x)=(x-1)10(x2+x+1)20,试求 g'(1)的值。
解■ (1) 利用微分公式 7,可得 f '(x)=8(x2-2x-1)7(2x-2)
(2) f (1)的值。
(1) f ( x) 100 3x 299 3x 2 3003x 299
(2) f (1) 300 599
8 p.90
微分(随堂练习) page 9/11
试求函数 f ( x) 2x2 9x 7的二阶导函数 f ( x)和三阶导函 数 f ( x)。
6 p.89
微分(随堂练习) page 7/11
令函数 f ( x) x2 x 2 x2 x 1 ,试求:
(1) f (x) 的导函数。
(2) f (1)的值。
(1) f ( x) x2 x 2 x2 x 1 x2 x 2 x2 x 1
解■ (1) f(x)在 x=2 的导数即为 f '(2),由导数的定义得
f( 2)=lim f(x)-f(2)=lim(x2-3x+2)-(22-3.2+2)
x2 x-2
x2
x-2
=lim(x x2
2-22) x--23(x-2)=lxim2(x+2)(x-x-2)2-3(x-2)
=lim〔(x+2)-3〕=1 x2
又 f(1)=0,故 lim f(x)=0=f(1)
x1
∴f(x)在 x=1 处连续
但 lim f(x)-f(1)= lim -(x2-1)= lim〔-(x+1)〕=-2