化工原理第四章 传热
化工原理-第四章-传热
d12
d1
4 d2 d1
入口效应修正 在管进口段,流动尚未充分发展,传热边界层较
薄,给热系数较大,对于l d1 60 的换热管,应考虑进口段对给 热系数的增加效应。故将所得α乘以修正系数:
l
1 d l
0.7
弯管修正 流体流过弯曲管道或螺旋管时,会引起二次环流而强
化传热,给热系数应乘以一个大于1的修正系数:
水和甘油:T ↗ ↗ 一般液体: T ↗ ↘ 纯液体>溶液
气体的导热系数:
T ↗ ↗ P ↗ 变化小 极高P ↗ ↗
气体导热系数小,保温材料之所以保温一般是材料中空 隙充有气体。
18
三、平壁的稳态热传导
1.单层平壁的热传导
t1 t2
b
t Q t1
t2
0 bx
b:平均壁厚,m; t:温度差,oC;
4
❖ 一、传热过程的应用
物料的加热与冷却 热量与冷量的回收利用 设备与管路的保温
❖ 二、热传递的三种基本方式
热传导 热对流 热辐射
5
1. 热传导(又称导热)
热量从高温物体传向低温物体或从物体内部高温部 分向低温部分传递。
特点:物体各部分不发生相对位移,仅借分子、原 子和自由电子等微观粒子的热运动而引起的热量 传递。
8
3. 热辐射
因热的原因而产生的电磁波在空间的传递, 称为热辐射。
热辐射的特点:
①不需要任何介质,可以在真空中传播;
②不仅有能量的传递,而且还有能量形式 的转移;
③任何物体只要在热力学温度零度以上, 都能发射辐射能,但是只有在物体温度较高时, 热辐射才能成为主要的传热方式。
9
二、间壁传热与速率方程
41
化工原理习题及答案
化⼯原理习题及答案第四章传热⼀、名词解释1、导热若物体各部分之间不发⽣相对位移,仅借分⼦、原⼦和⾃由电⼦等微观粒⼦的热运动⽽引起的热量传递称为热传导(导热)。
2、对流传热热对流是指流体各部分之间发⽣相对位移、冷热流体质点相互掺混所引起的热量传递。
热对流仅发⽣在流体之中, ⽽且必然伴随有导热现象。
3、辐射传热任何物体, 只要其绝对温度不为零度(0K), 都会不停地以电磁波的形式向外界辐射能量, 同时⼜不断地吸收来⾃外界物体的辐射能, 当物体向外界辐射的能量与其从外界吸收的辐射能不相等时, 该物体就与外界产⽣热量的传递。
这种传热⽅式称为热辐射。
4、传热速率单位时间通过单位传热⾯积所传递的热量(W/m2)5、等温⾯温度场中将温度相同的点连起来,形成等温⾯。
等温⾯不相交。
⼆、单选择题1、判断下⾯的说法哪⼀种是错误的()。
BA 在⼀定的温度下,辐射能⼒越⼤的物体,其⿊度越⼤;B 在同⼀温度下,物体吸收率A与⿊度ε在数值上相等,因此A与ε的物理意义相同;C ⿊度越⼤的物体吸收热辐射的能⼒越强;D ⿊度反映了实际物体接近⿊体的程度。
2、在房间中利⽤⽕炉进⾏取暖时,其传热⽅式为_______ 。
CA 传导和对流B 传导和辐射C 对流和辐射3、沸腾传热的壁⾯与沸腾流体温度增⼤,其给热系数_________。
CA 增⼤B 减⼩C 只在某范围变⼤D 沸腾传热系数与过热度⽆关4、在温度T时,已知耐⽕砖辐射能⼒⼤于磨光铜的辐射能⼒,耐⽕砖的⿊度是下列三数值之⼀,其⿊度为_______。
AA 0.85B 0.03C 15、已知当温度为T时,耐⽕砖的辐射能⼒⼤于铝板的辐射能⼒,则铝的⿊度______耐⽕砖的⿊度。
DC 不能确定是否⼤于D ⼩于6、多层间壁传热时,各层的温度降与各相应层的热阻_____。
AA 成正⽐B 成反⽐C 没关系7、在列管换热器中,⽤饱和蒸汽加热空⽓,下⾯两项判断是否正确: A甲、传热管的壁温将接近加热蒸汽温度;⼄、换热器总传热系数K将接近空⽓侧的对流给热系数。
化工原理_上下册_修订版_(夏清__陈常贵_着)_天津大学出版社 第四章 传热(新)
一、对流传热速率方程和对流传热系数
(一)对流传热速率方程 若以流体和壁面间的对流传热为例,对流传热速率方程可以 表示为
式中
dQ:局部对流传热速率,W; dS: 微分传热面积,m2; T: 换热器的任一截面上热流体的平均温度,℃; Tw:换热器的任一截面上与热流体相接触一侧的壁面温度,℃; α : 比例系数,又称局部对流传热系数,W/(m2· ℃)。
第四章 传
热
1
4.1 概述
传热:由温差引起的能量传递。 自发过程:热量从高温传递到低温。
一、化工生产的传热问题
化工生产需要大规模地改变物质的化学性质和物理性质,而 这些性质的变化都涉及热能的传递。 化学反应:向反应器提供热量或从反应器移走热量; 蒸发、蒸馏、干燥:按一定的速率向这些设备输入热量;
高温或低温设备:隔热保温,减少热损失;
空气自然 气体强制 对流 对流 5~25 20~100 水自然 对流 20~ 1000 水强制 对流 1000~ 15000 水蒸汽 冷凝 5000~ 15000 有机蒸 汽冷凝 500~ 2000 水沸腾 2500~ 25000
34
§4-3-3 保温层的临界厚度
t1 t f 总推动力 Q ln r0 r1 1 总热阻 2L 2Lr0
7
三、间壁式换热和间壁式换热器
冷、热流体被固体壁面所隔开,分别在固体壁面两侧 流动。冷、热 流体通过间壁进行热量交换。 1、套管式换热器
8
2、列管式换热器
9
单程列管式换热器
1— 外壳 2—管束 3、4—接管 5—封头 6—管板 7—挡板
双程列管式换热器
1—壳体 2—管束 3—挡板 4—隔板
10
牛顿冷却定律。
化工原理答案 第四章 传热
第四章 传 热热传导【4-1】有一加热器,为了减少热损失,在加热器的平壁外表面,包一层热导率为(m·℃)、厚度为300mm 的绝热材料。
已测得绝热层外表面温度为30℃,另测得距加热器平壁外表面250mm 处的温度为75℃,如习题4-1附图所示。
试求加热器平壁外表面温度。
解 2375℃, 30℃t t ==计算加热器平壁外表面温度1t ,./()W m λ=⋅016℃ (1757530025005016016)t --= ..145025********t =⨯+=℃【4-2】有一冷藏室,其保冷壁是由30mm 厚的软木做成的。
软木的热导率λ= W/(m·℃)。
若外表面温度为28℃,内表面温度为3℃,试计算单位表面积的冷量损失。
解 已知.(),.123℃, 28℃, =0043/℃ 003t t W m b m λ==⋅=, 则单位表面积的冷量损失为【4-3】用平板法测定材料的热导率,平板状材料的一侧用电热器加热,另一侧用冷水冷却,同时在板的两侧均用热电偶测量其表面温度。
若所测固体的表面积为0.02m 2,材料的厚度为0.02m 。
现测得电流表的读数为2.8A ,伏特计的读数为140V ,两侧温度分别为280℃和100℃,试计算该材料的热导率。
解 根据已知做图热传导的热量 .28140392Q I V W =⋅=⨯=.().()12392002002280100Qb A t t λ⨯==-- 【4-4】燃烧炉的平壁由下列三层材料构成:耐火砖层,热导率λ=(m·℃),厚度230b mm =;绝热砖层,热导率λ=(m·℃);普通砖层,热导率λ=(m·℃)。
耐火砖层内侧壁面温度为1000℃,绝热砖的耐热温度为940℃,普通砖的耐热温度为130℃。
(1) 根据砖的耐热温度确定砖与砖接触面的温度,然后计算绝热砖层厚度。
若每块绝热砖厚度为230mm ,试确定绝热砖层的厚度。
化工原理第四章传热
4-2.2
平面壁的稳态热传导
t Q R
dt Q A d
单层平面壁的稳态热传导
t1
△t
1、过程分析 假设Ⅰ:一维稳态热传导,即t=f(x) 假设Ⅱ:无限大平壁 A 2、模型 Q (t t )
1 2
A
Q
t2
可改写为:
t t Q A R
Am,3 2 rm,3l
Ф
t4
数学模型
★
1 1 Am,1
t1
t4
其中,
t1
Am,1 2 rm,1l Am,2 2 rm,2l
rm ,1
t4 Ф
r r r2 r1 r r rm ,2 3 2 rm ,3 4 3 r r r4 ln 2 ln 3 ln r1 r2 r3
非稳态传热——传热面各点温度t、传热速率Q 、热通量q等 物理量不仅为位置的函数,同时也随时间而改变。 Q, q, t……=f (x,y,z, τ)
化工原理
等温面 在温度场中,温度相同的各点组成的面。
等温面
温度梯度 等温面法线方向上的温度变化率。
t1>t2
对于一维稳定温度场, t=f(x),温度梯度表示为:
★ Q
t t t R 2 lrm Am
其中,
r2 r1 rm r ln 2 r1
Am 2 rml
rm——半径的对数平均值;当r2/r1<2时,rm≈ (r1+r2)/2
化工原理
多层圆筒壁的热传导
Q t1 t4 t t 3 2 R Am 2 Am,2 3 Am,3
dt grad (t ) d
化工原理第四章对流传热41页PPT
Re
lu
普兰德数 (Prandtl number)
Pr c p
表示惯性力与粘性力之比, 是表征流动状态的准数
表示速度边界层和热边界层 相对厚度的一个参数,反映
与传热有关的流体物性
影响 较大的物性常数有:,, Cp ,。 (1)的影响 ; (2)的影响 Re ;
(3)Cp的影响 Cp 则单位体积流体的热容量大,
则较大; (4)的影响 Re 。
2020/3/29
3、流动型态 【层流】主要依靠热传导的方式传热。由于流体的
导热系数比金属的导热系数小得多,所以热阻大。
【湍流】由于质点充分混合且层流底层变薄,较大
2020/3/29
2、有效膜模型
(1)流体与固体壁面之间存在一个厚度为bt的虚拟 膜(流体层),称之为有效膜; (2)有效膜集中了传热过程的全部传热温差的以及 全部热阻,在有效膜之外无温差也无热阻存在(所 有的热量传递均产生在有效膜内); (3)在有效膜内,传热以热传导的方式进行。
2020/3/29
2020/3/29
二、对流传热速率方程 1、什么是模型法
【定义】把复杂问题简单化、摒弃次要的条件,抓 住主要的因素,对实际问题进行理想化处理,构建 理想化的物理模型,获得某一过程的有关规律。具 体方法为: (1)对过程进行合理的简化; (2)获得物理模型(构象); (3)对物理模型进行数学描述,获得有关规律。
过程的因素都归结到了当中。
2020/3/29
三、影响对流传热系数的因素
1、引起流动的原因 【自然对流】由于流体内部存在温差引起密度差形
成的液体内部环流,一般u较小,也较小。
【强制对流】在外力作用下引起的流动运动,一般u
较大,故较大。因此:
化工原理
Q ──热冷流体放出或吸收的热量,W; cph,cpc ──热冷流体的比热容, J/(kg. ℃) ;
h1,h2 ──冷流体的进出口焓,J/kg;
H1,H2 ──热流体的进出口焓, J/kg 。
相变时
若热流体为饱和蒸汽,当冷凝时有相的变化,但是冷 凝液在饱和温度下离开换热器。冷流体无相变化。
Q Wh rh Wc c pc t 2 t1
A
2)较大温差记为t1,较小温差记为t2; 3)当t1/t2<2,则可用算术平均值代替
t m (t1 t 2 ) / 2
4)当t1=t2
t m t1=t 2
2、错流、折流时的 t m
t m t m
'
t ' m :逆流时的平均温度差
f ( P, R, 流型)
t 对流
(1)管外对流
dQo o dAo (T Tw )
(2)管壁热传导
dQ壁
(3)管内对流
b
dAm (Tw t w )
dQi i dAi (t w-t )
dQ dQo dQ壁 dQi
对于稳定传热
T Tw Tw t w t w t T t dQ 1 b 1 1 b 1 o dAo dAm i dAi o dAo dAm i dAi
T t dQ 1 KdA
1 1 b 1 KdA o dAo dAm i dAi
式中 K——总传热系数,W/(m2· K)。
讨论:
1.当传热面为平面时,dA=dAo=dAi=dAm
1 1 b 1 K o i
2.以外表面为基准(dA=dAo):
化工原理第四章 传热及传热设备..
4.2 热传导
4.2.5 圆筒壁的稳定热传导 二、多层圆筒壁
第一层
第二层
盐城工学院
第三层
Q
2L(t1 tn1 ) in 1 ln ri1
i1 i
ri
-----通式
可写成与多层平壁计算公式相仿的形式:
Q
t1 t4
b1
b2
b3
1 Am1
2 Am 2
3 Am3
Am1、 Am2 、Am3分别为各层 圆筒壁的对数平均面积。
主要特点:冷热两种流体被一固体间壁所隔开,在 换热过程中,两种流体互不接触,热量由热流体通 过间壁传给冷流体。以达到换热的目的。
优点:传热速度较快,适用范围广,热量的综合利 用和回收便利。
缺点:造价高,流动阻力大,动力消耗大。
典型设备:列管式换热器、套管式换热器。
适用范围:不许直接混合的两种流体间的热交换。
解:(1)每米管长的热损失
r1=0.053/2=0.0265m r2=0.0265+0.0035=0.03m r3=0.03+0.04=0.07 m r4 =0.07+0.02=0.09 m
=191. 4 W/m
第四章 传热及传热设备
(2)保温层界面温度t3
盐城工学院
解得:t3=131.2℃
第四章 传热及传热设备
热导率
纯金属 金属合金 液态金属 非金属固体 非金属液体 绝热材料 气体
100~1400 50~500 30~300 0.05 ~50 0.5~5 0.05~1 0.005~0.5
可见,在数值上: 金属 非金属 液体 气体
第四章 传热及传热设备
盐城工学院
4.2 热传导
化工原理(王志魁版)---第四章 传热
Q
t1 t2 t3 b1 b2 b3
t1 t4 R1 R2 R3
1 Am1 2 Am2 3 Am3
λ2 λ1
Q1
2l1(t1 ln r2
t2)
2l(t1 t2 ) 1 ln r2
Q2
2l(t2 t3 ) 1 ln r3
Q3
2l(t3 t4 ) 1 ln r4
r1
1 r1
2 r2
3 r3
Q
2l(t1 t4 )
1 ln r2 1 ln r3 1 ln r4
ห้องสมุดไป่ตู้
1 r1 2 r2 3 r3
说明 Q1=Q2=Q3=Q4 Q=2πr1Lq1= 2πr2Lq2= 2πr3Lq3 r1q1=r2q2=r3q3 q1>q2 >q3
第十八页,共79页。
第三节 对流传热
第十九页,共79页。
第十一页,共79页。
4-2-3 单层平壁的稳态热传导
一单层平壁的热传导
t=f(x)
y
假设:i. λ为常数或取壁面范围内的平均值
ii. 平壁面积与厚度相比无限大
根据傅立叶定律:
Q
b
0
dx
A t2 t1
dt
Q A dt
dx
Q b A(t1 t2 )
平壁间的热传导公式
Q
t1
t2 b
t R
推动力 阻力
校正系数冷热流体的最初温差冷物流的温升冷流体的温升热物流的温降单壳程换热器两壳程换热器四壳程换热器三壳程换热器一圆筒壁的总传热系数da总传热速率微分式总传热速率微分式kda总传热热阻kda冷流体与间壁的对流传热热阻管壁的热传导热阻热流体与间壁的对流传热热阻dadadadadakdadadadadadada11若以若以aa11为传热面积为基准进行计算为传热面积为基准进行计算dadadadadadadadada其中其中kk11为传热面积为传热面积aa11为为基准的总传热系数为为基准的总传热系数ddmm为为dd11dd22的对数平均值的对数平均值22若以若以aa22为传热面积为基准进行计算为传热面积为基准进行计算dadadadadada33若以若以aamm为传热面积为基准进行计算为传热面积为基准进行计算dadadadadada二污垢热阻管壁内外侧表面上的污垢热阻分别为rd1污垢系数三平壁与薄壁管的总传热系数计算当传热面为平面或管壁很薄时d如果rd1d2为总热阻中的控制因素则必须减慢污垢的形成速度或及时清理污垢四总传热速率与热衡算式的关系由于管壁一般都为热良导体故可认为管壁内外温度相同4545热辐射热辐射辐射
《化工原理》传热计算
Q = W1·Cp1·(T1-T2 )= W2·Cp2·(t2- t1) + W2 ·r
若热损失为Q损,则:
Q = W1·Cp1·(T1-T2 )= W2·Cp2·(t2- t1) + W2 ·r +Q损
(4)冷热流体均有相变
热流体的放热量 = W1 ·Cp1·(T1-T2 )+ W1R 冷流体的吸热量 = W2 ·Cp2 ·(t2 - t1) + W2 ·r
1 1 1
K
i
o
设 1 10;2 1000 则
K 1
1
10
1 1 1 1
1 2 10 1000
现提高 α2 10000
则
K
1 11
1 2
1
1
1
10 10000
10
若提高 α1 100
K
1
1
1
1
1
1
100
则
1 2 100 1000
若 i o 则 K o
管壁外侧对流传热控制
四、平均温度差的计算
1、恒温差传热
壁面两侧进行热交换的冷热流体,其温度不 随时间及位置而变化。
2、变温差传热
采用对数平均值计算平均温度差(传热平均推 动力)。
(1) 并流
冷热流体流动方向相同。
tm并
t1 t2 ln t1
T1
t1 T2 t2
ln T1 t1
t2
T2 t2
(2) 逆流
Q热
T
TW 1
α1 S1
Q壁
TW
b
tw
λ Sm
Q冷
化工原理--传热
第四章传热本章介绍了三种基本传热方式,即导热、对流传热、辐射传热的基本概念和定律;详细分析了对流传热过程机理,建立了对流传热速率方程以及表面传热系数的经验关联式;由总传热速率方程出发,对传热过程进行设计计算和操作分析、诊断;介绍了换热设备的类型和列管式换热器的设计和选用。
本章重点要求掌握:①对流传热过程的基本概念、定律、传热速率方程;②管内强制湍流流动时表面传热系数的经验关联及影响因素;③总传热速率方程以及传热过程的计算。
4.1 概述4.1.1 传热在化工生产中的应用传热,即热量的传递,是自然界中普遍存在的物理现象。
由热力学第二定律可知,凡是有温度差存在的物系之间,就会导致热量从高温处向低温处的传递,故在科学技术、工业生产以及日常生活中都涉及许多的传热过程。
化工生产过程与传热关系十分密切。
这是因为化工生产中的很多过程都需要进行加热和冷却。
例如,为保证化学反应在一定的温度下进行,就需要向反应器输入或移出热量;化工生产设备的保温或保冷;生产过程中的热量的合理使用以及废热的回收利用,换热器网络的综合利用;蒸发、精馏、吸收、萃取、干燥等单元操作都与传热过程有关。
化工生产过程中需要解决的传热问题大致分为两类:(1)传热过程的计算,包括设计型计算和操作型计算;(2)传热过程的改进与强化。
这两类问题的解决,都需要从总的传热速率方程出发,即:(4.1.1)式中:Q—冷流体吸收或热流体放出的热流量,W;K—传热系数,W/(m2·℃);A—传热面积,m2;Δtm—平均传热温差,℃。
4.1.2 传热的基本方式根据热量传递机理的不同,传热基本方式有三种,即热传导、对流和辐射。
热传导:热传导又称导热。
是指热量从物体的高温部分向同一物体的低温部分、或者从一个高温物体向一个与它直接接触的低温物体传热的过程。
对流传热:对流传热是依靠流体的宏观位移,将热量由一处带到另一处的传递现象。
在化工生产中的对流传热,往往是指流体与固体壁面直接接触时的热量传递。
化工原理课程课件PPT之第四章传热
第四章 传热
23
思考题:
气温下降,应添加衣服,应把保暖性好的衣服穿在 里面好,还是穿在外面好?
Q
Q
bb
1 2
1 2
bb
2 1
天津商业大学
本科生课程 化工原理
第四章 传热
24
Q ti to b b
1S1 2S2
Q' ti to bb
2S1 1S2
1 2
S1 S2
Q' Q (ti
to
天津商业大学
本科生课程 化工原理
第四章 传热
8
dQ dS t
n
——傅里叶定律
λ——比例系数,
称为导热系数,W/(m •℃)。
负号表示热流方向与
温度梯度方向相反。
du
dy
天津商业大学
本科生课程 化工原理
第四章 传热
9
§4.2.2 导热系数
1、导热系数的定义
dQ q
dS t
t
n
n
在数值上等于单位温度梯度下的热通量,λ越大导热性能
第四章 传热
§4.1 概述
化工生产中传热过程: 强化传热 削弱传热
一、传热的基本方式:
动 量 传 递 热 量 传 递
质 量 传 递
热 传 导 :发生在相互接触的物质之间或物质(静止或层流
(导 热 )
流动)内部,靠分子、原子、电子运(振)动。 无物质的宏观位移。
对 流 传 热 :
自然对流 强制对流
Q t1 t2 t3 t1 tn1
R1 R2 R3
n bi
i1 i Smi
t1 t4
t1 t4
b1 b2 b3
1Sm1 2Sm2 3Sm3
化工原理第四章两流体间传热过程的计算
【特点】平行而同向。
6/28/2020
并流
逆 流 【特点】方向相反且平行。
6/28/2020
折流换热器 【特点】既存在并流,又存在逆流。
6/28/2020
【特点】两种流体的流向垂直交叉。
6/28/2020
喷淋蛇管(错流)式换热器
7、并、逆流操作的平均温度差 在如下假定条件下(稳定传热过程):
Δtm ——两流体的平均温度差,℃
6/28/2020
2、热量衡算式
【衡算前提】
(1)换热器绝热良好;
(2)热损失可忽略。
【衡算系统】热交换器;
【衡算基准】单位时间;
【衡算式】热流体放出的热量等于冷流体得到的热
量。即:
Q热=Q冷
6/28/2020
二、Q值的确定——计算热负荷
1、什么是热负荷 【定义】达到工艺要求的控制参数所应交换的热量 ,即: ①热流体放出的热量; ②冷流体得到的热量。 【作用】由热负荷可以确定传热速率。
6/28/2020
T1
t2
T2
t1
(1)单侧变温
【特点】在热交 换过程中,一侧 温度保持不变, 另一侧温度发生 变化。
6/28/2020
(2)双侧变温 【特点】在热交 换过程中,两侧 温度均发生变化 。
6/28/2020
【特点】局部温度差Δt 沿传热面而变化。
在面积为dA两 侧,可视为恒
Δt=T-t
R=20 15 10 6.0 4.0 3.0 2.0 1.8 1.6 1.4 1.2
1.0 0.8 0.6 0.4 0.2
1.0 0.9
0.8
ψ
0.7
0.6
0.5
化工原理 第四章 传热教学内容
t R
i1 i A
例4-2 P125
多层平壁传热的推动力为总温度差。传热阻力由 各层热阻之和。并且有
t1:t2:t3:t = R1:R2:R3:Ri
25
四、圆筒壁的热传导
1.单层圆筒壁的热传导(稳态)
dr t2 t1
r2
Q
Hale Waihona Puke r1rL26
QAdt2rldt
dr
dr
上式积分可得:
Q
2lt1
ln r2
时的传热速率。
固体导热系数:
固体>液体 >气体
金属的导热系数最大,是热的良导体。
温度↗ ↘
纯度↗ ↗
非金属导热系数较小。
温度↗ ↗ 纯度↗ ↗
对大多数固体: = 0(1+at)= 0 +at
0C时的导热系数
温度系数
17
液体的导热系数: 液态金属(与固态金属性质差不多) 非金属液体:水的导热系数最大
第四章 传热
1
要求:
1.掌握热传导的基本原理、傅里叶定律、平壁与 圆筒壁的稳定热传导计算; 2.掌握对流传热的基本原理及牛顿冷却定律; 3.掌握运用传热速率方程式、热量衡算式、平均 温度差、总传热系数进行传热计算;
2
4.理解对流传热系数的影响因素、关联式及应用 条件; 5.了解间壁换热器的结构特点、应用及强化途径。
21
传热速率
传热推动力 传热阻力
22
2.多层平壁的热传导
Q
b1 b2 b3 t t1
t2 t3 t4 x
23
以三层平壁为例:
QQ 1Q2Q3
Qt1t2 t2 t3 t3t4
b1
b2
b3
化工原理答案第四章传热
第四章 传 热热传导【4-1】有一加热器,为了减少热损失,在加热器的平壁外表面,包一层热导率为(m·℃)、厚度为300mm 的绝热材料。
已测得绝热层外表面温度为30℃,另测得距加热器平壁外表面250mm 处的温度为75℃,如习题4-1附图所示。
试求加热器平壁外表面温度。
解 2375℃, 30℃t t ==计算加热器平壁外表面温度1t ,./()W m λ=⋅016℃ (1757530025005016016)t --= ..145025********t =⨯+=℃【4-2】有一冷藏室,其保冷壁是由30mm 厚的软木做成的。
软木的热导率λ= W/(m·℃)。
若外表面温度为28℃,内表面温度为3℃,试计算单位表面积的冷量损失。
解 已知.(),.123℃, 28℃, =0043/℃ 003t t W m b m λ==⋅=,则单位表面积的冷量损失为【4-3】用平板法测定材料的热导率,平板状材料的一侧用电热器加热,另一侧用冷水冷却,同时在板的两侧均用热电偶测量其表面温度。
若所测固体的表面积为0.02m 2,材料的厚度为0.02m 。
现测得电流表的读数为2.8A ,伏特计的读数为140V ,两侧温度分别为280℃和100℃,试计算该材料的热导率。
解 根据已知做图热传导的热量 .28140392Q I V W =⋅=⨯=.().()12392002002280100Qb A t t λ⨯==-- 【4-4】燃烧炉的平壁由下列三层材料构成:耐火砖层,热导率λ=(m·℃),厚度230b mm =;绝热砖层,热导率λ=(m·℃);普通砖层,热导率λ=(m·℃)。
耐火砖层内侧壁面温度为1000℃,绝热砖的耐热温度为940℃,普通砖的耐热温度为130℃。
(1) 根据砖的耐热温度确定砖与砖接触面的温度,然后计算绝热砖层厚度。
若每块绝热砖厚度为230mm ,试确定绝热砖层的厚度。
化工原理第四章对流传热
【解】在确定各物理量时,先确定定性温度。
一般情况下,用进出设备流体的温度的平均值
(算术平均值),即:
t t进+t出 =20+40=30℃
2
2
查数据手册,30℃时水的物性数据为:
Cp=4183J/(K.kg) ρ=996kg/m3 μ=8.01×10-4Pa.s λ=0.618W/(m.K)
【注意事项】
(1)定性温度取流体进出温度的算术平均值tm; (2)特征尺寸为管内径d;
(3)流体被加热时,n=0.4;
流体被冷却时,n=0.3。
(4)若l/d<60 ,进行校正:
'
1
d
0.7
l
3/24/2020
(2)圆形直管内的湍流(高粘度流体)
0.027 ( du )0.8 ( c p )0.33 ( )0.14
(1)什么是定性温度 【定义】确定物性参数 数值的温度称为定性温 度。
Re du
T1
t2
Pr c p
T2
t1
3/24/2020
(2)定性温度的取法 ①流体进、出口温度的平均值
②膜温
tm
t1
t2 2
t tm tw 2
th T1
热Φ 流 体
th,w
t2
Φ
冷 流 tc,w 体
式中 tw——壁面上的温度;
bt
Q bt A(tw t) 当流体被冷却时:
Q
bt'
A(T
Tw )
bt’
3/24/2020
4、牛顿冷却定律
令:
bt
Q
bt
A(t w
t)
流体被加热: Q A(tw t)
化工原理 第四章 传热
注意→气体很小,有利于保温、绝热,如玻璃棉。
传热-热传导
3. 平壁导热 ① 单层平壁
dt Q S dx x 0,t t1;
x b,t t2; t1 t2
Q
S
b
t1 t2
Q
单层平壁导热
假设→①稳态、一维导热。 ②λ不随温度变化。 ③不计热损失。
⑴ 给热是集热对流和热传导于一体的耦合过程。 ⑵ R集中在层流内层→ 层流内层厚度↓是强化给热的主要途径。
传热-对流传热
② 热边界层 热边界层→即温度边界层,指壁面附近处具有温度梯度的流体薄层。
dt dQ dS dy w
dQ tw t dS
dt dt tw t dy w t dy w
⑴
平板上的热边界层
dt t不变时, t , dy w
。
⑵ 流体在管内流动时,热边界层与流动边 ⑴ 热边界层边缘处→ 界层类似。不同的是,经历进口段和完全 t t 0.99 t t 发展区后,温度分布随管长渐变为平坦, < ⑵ 热边界层厚度→ 。 继而温度梯度消失,直至传热停止。
dQ T Tw dS
Q S t
R
1 S
① →平均给热系数。 ② 流体温度→流动横截面上的平均温度。 ③ 若热流体走管内,冷流体走环隙, dQ i T Tw dSi o tw t dSo
④ 给热研究的内核→不同给热情况下,α 的大小、影响因素及其计算式。
n
bi
mi
Q
2 πL t1 t4 1 r2 1 r3 1 r4 ln ln ln 1 r1 2 r2 3 r3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
是固体内部热量传递的主要形式
2、对流传热(Convection)
原因:流体质点相对位移 特点:流体流动(自然、强制)
3. 辐射传热(Radiation)
原因:因热产生电磁波辐射 特点:不需要媒介,可在真空中传递; 有能量形式变化
三、两流体通过间壁换热
1、间壁式换热器
2、两流体通过间壁的传热过程
对α 影响较大的有: ρ、μ、cp、λ 、β 。 确定这些物性的温度称作定性温度。 一般用流体主体的平均温度作为定性温度:
t1 t 2 t 2
t1——流体进口温度 t2——流体出口温度
(3)传热表面的几何因素
传热表面的形状,排列,放置方式,管径,管长, 板高等。其中对传热影响最大的因素称作特征尺寸, 圆管:d 非圆管:de 垂直管或板:L
(1)热流体以对流方式将热量传递到间壁的一侧壁面
(2)热量从间壁的一侧壁面以导热方式传递到另一侧 壁面
(3)最后以对流方式将热量从壁面传给冷流体
四、传热过程
(一)传热速率
(1)热流量Q:
单位时间内通过整个换热器的传热面所传递的热量 (J/s)或W 可用两种方式表示:
(2)热流密度(或热通量)q:
单位时间、通过单位传热面传递的热量 (J/m2· s)或(W /m2)
t1 t 4 Q R1 R2 R3
b1 1 Am1 t1 t 4 b3 b2 2 Am 2 3 Am 3
t1 t 4 r3 1 r2 1 1 r4 ln ln ln 21l r1 22 l r2 23 l r3
2 l ( t1 t 4 ) r3 1 1 r2 1 r4 ln ln ln 1 r1 2 r2 3 r3
dQ 二者之间的关系: q dA
注意:对传热速率的要求是相对的,需要加热、冷却时, 要强化传热;要求保温时,要降低传热速率。
(二)稳态传热与非稳态传热
稳态过程:
传热过程中,参数T1、T2、t1、t2、qm1、qm2… 等不随时间变化,但可以是位置的函数。 连续生产中的传热过程多为热是指 系统各点温度 不随时间改变。
4、 厚度不同的三种材料构成三层平壁,各层接触良 好,已知各层厚度b1>b2>b3,热导率λ1<λ2<λ3,在 稳定传热过程中,各层的热阻R1 > R2 > R3; 各层热流量Q1 = Q2 = Q3; 各层温差Δt1 > Δt2 > Δt3。 5、一包有石棉瓦保温层的蒸汽管道,当石棉瓦受潮后, 水的λ大于 。 其保温效果应 ↓ ,主要原因是: 保温材料的λ,保温材料的λ↑,导致保温效果↓ 6、外包绝热材料的金属蒸汽管道,当蒸汽压力增大时, 绝热材料的热导率将变 大 ,而蒸汽管道的热导率将 温度升高 。 变 小 ,主要原因是
依叠加原理:
t1 t 2 t 2 t 3 t 3 t 4 t1 t 4 Q 3 b3 b1 b2 bi 1 A 2 A 3 A i 1 i A
(4-7)
n层时:
t1 t n 1 Q n bi i 1 i A
此式说明:某层热阻大,需要的温差也大,即以 较大的温差克服较大的阻力,才能达到与其他层传热 速率相同。
(4-12)
练习题
1.根据传热机理的不同,传热过程可分 为 热传导 、 对流传热 和 热辐射 三种方式。 2.物质导热系数的顺序是:( A )。 A 金属>一般固体>液体>气体; B 金属>液体>一般固体>气体; C 金属>气体>液体>一般固体; D 金属>液体>气体>一般固体 3.不需要任何介质的传热称为( C )传热。 A 热传导;B 对流;C 辐射;D 热流动。
强制对流给热 流体无相变的给热:
自然对流给热 因流体冷、热部分密度 不同而引起的流动。 蒸汽冷凝给热 液体沸腾给热
流体有相变的给热:
自然对流
如图:a、b两点温差为Δt 则 1 t a、b两点形成压差 p gL gL
gL( 1
1 1 t
)
(4-5a)
Q q t1 t 2 A b
(4-6)
(二)多层平壁的稳态热传导
三层平壁如图,设层间接触良好
一维稳定导热必有: Q1= Q2= Q3= Q 即:
t1 t 2 t 2 t 3 t 3 t 4 Q const b1 b2 b3 1 A 2 A 3 A
第三节 对流传热
工业上遇到的对流传热常指流体与固体壁面之间的 热量交换,也称对流给热
热流体侧:
Q
1
b1
A(T TW )
T
冷流体侧:
Q
2
b2
A( tW t )
热 流 TW 体
tw
冷 流 体
t
主流区温度梯度很小,热阻小; 近壁面处温度梯度大,热阻大。
对流传热的类型
流体在外力作用下产 生的宏观流动。 湍流时,热阻主要集 中在层流内层。
一、 对流传热方程与对流传热系数
目前,对流传热的工程计算仍采用半经验方法处理。 对流给热推动力 对流传热速率= 对流给热阻力 = 对流给热系数×对流给热推动力
牛顿冷却定律 热流体侧: q 1 (T TW ) 冷流体侧: q 2 ( tW t )
α——给热系数;W/m2· ℃ TW、tW——壁温; ℃ T、t——流体平均温度;℃ q——热通量; W/m2
傅立叶定律指出: 热流密度正比于传热面的法向温度梯度。 式中负号表示热流方向总是和温度梯度的方向相反 即热量从高温传至低温 傅立叶定律与牛顿粘性定律类似。
du du dy dr
(此处的类似是指非同类过程之间的相似性)
二、热导率
物质的物理性质之一 表征物质的导热能力, λ越大,导热性能越好。 影响因素: 物质种类、环境温度等 (1) 固体导热系数
dt 依傅立叶定律:Q A dr
即
dt Q 2rl dr
t2 dr Q 2l dt r1 r t1 r2
t 2l ( t1 t 2 ) ( t1 t 2 ) Q r2 1 r2 R ln ln r1 2l r1
(4-9)
2 ( r2 r1 )l ( t1 t2 ) 2 rm l ( t1 t 2 ) Q r2 ( r2 r1 ) ( r2 r1 )ln 式(4-9)还 r1 可整理得: A ( t t ) t t m 1 2 1 2 (4-11) b b Am
其中:
(类似于平壁导热)
Am 2rm l d m l
对数平均半径:
r2 r1 rm r2 ln r1
d 2 d1 对数平均直径:d m d2 ln d1
A2 A1 也可用对数平均面积: Am A2 ln A1 2l ( t1 t 2 ) t1 t 2 由式 Q d2 b ln d1 Am
(4)流体类型和相变情况
液体,气体,水蒸气; 牛顿型流体,非牛顿型流体;
有无相变化
三、对流传热的特征数关系式
目的: 将影响α的众多因素组合为若干个无因次数群, 再用实验数据确定他们之间的关系,得到不同条件 下计算α的经验关联式。
f (u, l , , , , c p , gt )
二、给热系数( α )的影响因素
对流给热系数是对流传热过程研究的核心内容之一。
(1)流动形态和动力
流动形态:
层流→传热膜↑,传热阻力↑,α ↓,q↓
湍流→传热膜↓,传热阻力↓,α ↑,q↑
流动动力:
自然对流→湍动↓,传热膜↑,α ↓,q↓
强制对流→湍动↑,传热膜↓,α ↑,q↑
(2)流体的(物理)性质
任课教师:万惠萍
第一节 概述
一、传热过程的应用
1、物料的加热与冷却:
使物料达到指定的温度
2、热量与冷量的回收利用:
以节约能源,降低生产成本
3、设备与管道的保温:
以减少热量、冷量损失
§4.1 二、热量传递的基本方式
根据传热机理的不同,分为三种:
1、热传导(Conduction)(导热)
原因:微观粒子的热运动 特点:无宏观位移
b
a
gL t 1 t
当Δt较小时
β--体积膨胀系数
p
gLt
u p 环流速度: gLt 2
2
u gLt
上式说明,只要有温差就有环流。
为了在一定空间内获得较为均匀的加热,加热器 应放置在该空间的下部;反之,为了在一定空间内获 得较为均匀的冷却,冷却器应放置在该空间的上部。
dt Q A =常数 dx
dt Q A dx
对傅立叶定律式积分:
t2
t1
Q x2 dt dx A x1
Q Q t 2 t1 ( x2 x1 ) b A A
(4-5)
温差,导热推动力(℃)
整理得:
推动力 阻力
导热热阻(℃/W)
(4-5)式还可写成:
l 努塞尔准数:Nu *
普朗特准数: Pr
c p
l
流体的物性参数
3 2 2 2 2 n 2
格拉斯霍夫准数: Gr gtl u l (Re )2 n 2
是Re的一种变形,表征自然对流的流动状态。
圆筒壁热阻
d2 d 2 d1 当 2 时,可用算术平均直径: d m 2 d1
得
(二)多层圆筒壁的稳态热传导
三层圆筒壁如图,设层间接触良好 一维稳定导热: Q1=Q2=Q3=Q
注意: q1≠q2≠q3
原因是:热射线是放射性形式,各层面积不等。 仿多层平壁的处理方法,热阻代入圆筒的热阻。