望远镜显微镜实验原理

合集下载

显微镜和望远镜的工作原理

显微镜和望远镜的工作原理

显微镜和望远镜的工作原理一、显微镜的工作原理显微镜是一种用来观察微小物体的光学仪器。

它通过放大物体的细节,使我们能够看到肉眼无法观察到的微小结构。

显微镜的工作原理主要包括光学系统和放大系统两个方面。

1. 光学系统光学系统是显微镜的基本组成部分,它包括物镜、目镜和光源。

物镜是显微镜的下视镜片,它位于物体与显微镜之间。

物镜的主要作用是将物体上的光线折射并聚焦到焦平面上,形成放大的物像。

目镜是显微镜的上视镜片,它位于物镜的上方。

目镜的主要作用是进一步放大物像,使其可被人眼观察到。

光源是显微镜的照明装置,它提供光线以照亮物体。

常见的光源有白炽灯、荧光灯和LED灯等。

光源发出的光线经过准直器和光阑后,通过物镜照射到物体上。

2. 放大系统放大系统是显微镜的核心部分,它主要包括物镜和目镜的组合。

当物体被照射后,物镜将光线聚焦到焦平面上,形成一个放大的实像。

这个实像位于物镜的焦点处,且与物体呈倒立关系。

接下来,目镜将物镜所形成的实像再次放大,使其可被人眼观察到。

目镜的放大倍数通常为10倍或20倍。

通过物镜和目镜的组合,显微镜可以实现较大的放大倍数。

例如,如果物镜的放大倍数为40倍,目镜的放大倍数为10倍,那么显微镜的总放大倍数为400倍。

二、望远镜的工作原理望远镜是一种用来观察远处物体的光学仪器。

它通过放大远处物体的细节,使我们能够清晰地观察到远处的景象。

望远镜的工作原理主要包括光学系统和放大系统两个方面。

1. 光学系统光学系统是望远镜的基本组成部分,它包括物镜、目镜和光学镜筒。

物镜是望远镜的下视镜片,它位于远处物体与望远镜之间。

物镜的主要作用是将远处物体上的光线折射并聚焦到焦平面上,形成放大的物像。

目镜是望远镜的上视镜片,它位于物镜的上方。

目镜的主要作用是进一步放大物像,使其可被人眼观察到。

光学镜筒是望远镜的外壳,它保护光学系统并固定物镜和目镜的位置。

2. 放大系统放大系统是望远镜的核心部分,它主要由物镜和目镜的组合构成。

显微镜与望远镜的原理

显微镜与望远镜的原理

显微镜与望远镜的原理显微镜和望远镜是两种常见的光学仪器,它们分别用于观察微小物体和远处物体。

这两种仪器都基于光学原理,但它们的设计和功能有所不同。

首先,我们来看看显微镜的原理。

显微镜通过将光线聚焦在样本上,使得我们可以放大并观察微小的细节。

显微镜的主要组成部分包括物镜、目镜和光源。

物镜是位于样本下方的镜片,它可以放大样本的图像。

目镜是位于物镜上方的镜片,它用于观察物镜放大的图像。

光源则提供光线以照亮样本。

当光线通过物镜时,由于物镜的形状和材料的不同,光线会发生折射和散射。

这些光线会聚焦在样本上,并与样本中的细胞或微粒相互作用。

根据样本的特性,一部分光线会被吸收,一部分会被散射或反射。

这些光线再次通过物镜时,会聚焦在目镜上形成放大的图像。

目镜的作用是进一步放大物镜的图像,并将图像传送到观察者的眼睛。

目镜通常由凸透镜组成,使得观察者可以看到放大的图像。

在现代显微镜中,还常常使用了额外的光学元件,如凹透镜和棱镜,以改善图像的质量和对比度。

接下来,我们转向望远镜的原理。

望远镜是一种用于观察远处物体的光学仪器。

望远镜的主要组成部分包括目镜和物镜。

与显微镜不同的是,望远镜的物镜位于前方,而目镜位于后方。

当光线通过物镜时,它会聚焦在焦点上。

这个焦点是位于物镜的一定距离处的点,称为焦距。

物镜的焦距决定了望远镜的放大倍数。

聚焦后的光线再经过目镜,被进一步放大。

观察者通过目镜可以看到放大的图像。

望远镜的放大倍数可以通过改变物镜和目镜的焦距来调节。

较长的焦距会产生较大的放大倍数。

此外,望远镜还常常使用了棱镜或反射镜来改变光线的路径,以便更好地观察远处物体。

显微镜和望远镜的原理虽然有所不同,但它们都依赖于光线的折射和散射现象。

通过合理设计和使用适当的光学元件,我们可以放大并观察微小的细节或远处的物体。

总结起来,显微镜和望远镜是基于光学原理的两种重要仪器。

显微镜用于观察微小物体,利用物镜和目镜将光线聚焦并放大图像。

望远镜用于观察远处物体,利用物镜和目镜将光线聚焦并放大图像。

显微镜和望远镜成像原理

显微镜和望远镜成像原理

显微镜和望远镜成像原理
望远镜成像原理:物镜作用是得到远处物体的实像,由于物体离物镜非常远,所以物体上各点发射到物镜上的光线几乎是平行光束,光线经过物镜汇聚后,离焦点很近的地方形成了一个倒立、缩小的实像。

显微镜成像原理:物体在物镜焦距之外十分靠近焦点的位置,生成一个倒立、放大的实像。

望远镜是由两组凸透镜-目镜和物镜组成,它的结构特点是物镜的焦距长而目镜的焦距短。

形成的这个倒立的、缩小的实像又位于目镜的焦点以内,所以目镜起了放大镜的作用,目镜把经过物镜的倒立的的、缩小的实像放大成了一个正立的、放大的虚像,这就是远处物体通过望远镜所成的虚像。

显微镜也是由目镜和物镜组成,它的目镜焦距很短,物镜的焦距更短,也可以说物镜焦距比目镜焦距短,形成的这个倒立的放大的实像又落在目镜的焦距之内,且十分靠近目镜焦点位置,经目镜放大为一个倒立的(对原物而言)、放大的虚像。

显微镜是由一个透镜或几个透镜的组合构成的一种光学仪器,是人类进入原子时代的标志,用于放大微小物体成为人的肉眼所能看到的仪器。

显微镜分光学显微镜和电子显微镜,光学显微镜是在1590年由荷兰的杨森父子所首创。

现在的光学显微镜可把物体放大1600倍,分辨的最小极限达0.1微米。

望远镜是目镜是放大镜,物镜是照相机的原理。

显微镜是目镜是放大镜,但物镜是投影仪的原理。

显微镜和望远镜的原理光路

显微镜和望远镜的原理光路

显微镜和望远镜的原理光路
显微镜和望远镜都是利用透镜或镜面的折射、反射现象来改变光线方向,从而达到放大细看小物体或远物的目的。

其原理光路可概括如下:
一、显微镜的光路原理
1. 照明系统- 平行光或聚光照明样品进行全面照明。

2. 物镜- 物镜靠近样品,能将样品处的散发或透射光汇聚成实像。

3. 物镜间距- 物镜与目镜间一定距离,确保眼睛能适应。

4. 目镜- 目镜放大物镜形成的实像,送入眼睛成为视像。

二、望远镜的光路原理
1. 物镜- 望远镜的物镜汇聚来自远处物体的光线,形成倒立实像。

2. 目镜- 目镜放大物镜的倒立实像,将光线汇聚传输给眼睛。

3. 导轨运动- 调节物镜与目镜距离进行精确聚焦。

4. 校正镜- 校正部分光学畸变,使图像清晰。

5. 掩蔽- 掩蔽照明环境光线,确保清晰观察。

6. 枢轴运动- 方便调整观测方向。

7. 三脚架- 保持仪器稳定。

综上所述,显微镜和望远镜的工作原理有共通点,都是利用透镜将样品或物体的光线汇聚放大以便细致观察,但光路略有不同,前者观看近处细小样品,后者侧重观测远方天体或地面物体。

显微镜和望远镜的工作原理

显微镜和望远镜的工作原理

显微镜和望远镜的工作原理一、显微镜的工作原理显微镜是一种光学仪器,用于观察微小物体的细节。

它主要由物镜、目镜、光源和支架等部件组成。

1. 物镜:物镜是显微镜中最重要的部件之一。

它通常由多个透镜组成,具有较短的焦距和较高的放大倍数。

物镜的主要作用是将待观察的物体放大,并将光线聚焦在目镜中。

2. 目镜:目镜是显微镜的另一个重要组成部分。

它通常由一个或多个透镜组成,具有较长的焦距和较低的放大倍数。

目镜的主要作用是进一步放大物镜成像的物体,使观察者能够清晰地看到细节。

3. 光源:显微镜的光源通常是一个可调节亮度的白炽灯或荧光灯。

光源的作用是提供足够的光线,以照亮待观察的物体,并使其能够清晰地在显微镜中观察到。

4. 支架:支架是显微镜的基本结构,用于支撑和固定物镜、目镜和光源等部件。

支架通常由金属或塑料制成,具有稳定性和可调节性,以便观察者能够调整显微镜的焦距和高度。

显微镜的工作原理可以简单概括为:光线从光源中发出,经过物镜聚焦后,通过目镜进一步放大,最终形成清晰的放大图像。

观察者通过调节焦距和高度,可以获得不同倍数和清晰度的观察效果。

二、望远镜的工作原理望远镜是一种光学仪器,用于观察远处物体的细节。

它主要由物镜、目镜、反射镜(或透镜)和支架等部件组成。

1. 物镜:物镜是望远镜中最重要的部件之一。

它通常由一个或多个透镜(或反射镜)组成,具有较大的口径和较长的焦距。

物镜的主要作用是收集远处物体的光线,并将其聚焦在焦平面上。

2. 目镜:目镜是望远镜的另一个重要组成部分。

它通常由一个或多个透镜组成,具有较短的焦距和较小的口径。

目镜的主要作用是进一步放大物镜成像的物体,使观察者能够清晰地看到细节。

3. 反射镜(或透镜):望远镜中常用的反射镜是凹面镜,它能够将光线反射并聚焦在焦平面上。

透镜望远镜则使用透镜来折射光线。

反射镜(或透镜)的作用是将物镜收集到的光线聚焦在焦平面上,并形成清晰的放大图像。

4. 支架:支架是望远镜的基本结构,用于支撑和固定物镜、目镜和反射镜(或透镜)等部件。

显微镜和望远镜的工作原理

显微镜和望远镜的工作原理

显微镜和望远镜的工作原理1. 显微镜的工作原理:显微镜是一种用来放大微小物体的光学仪器。

它的工作原理基于光的折射和放大效应。

下面将详细介绍显微镜的构造和工作原理。

1.1 构造:显微镜主要由以下几个部分组成:- 物镜:位于显微镜的底部,用于放大样本的光学镜头。

- 目镜:位于显微镜的顶部,用于放大物镜所形成的放大图像。

- 眼镜:连接目镜的管子,供观察者观察放大图像。

- 台:用于放置样本的平台。

- 光源:提供光线以照亮样本。

1.2 工作原理:显微镜的工作原理可以分为两个步骤:放大样本和观察放大图像。

放大样本:当光线照射到样本上时,一部分光线被样本吸收,一部分光线被样本反射。

反射的光线通过物镜进入显微镜的光学系统。

物镜是一个具有高放大倍数的透镜,它将光线聚焦在样本上,并放大样本的细节。

物镜的放大倍数决定了样本的放大程度。

观察放大图像:放大的样本图像通过物镜成像,然后通过目镜进一步放大。

目镜是一个具有较低放大倍数的透镜,它进一步放大物镜所形成的图像。

观察者通过眼镜观察放大的图像。

2. 望远镜的工作原理:望远镜是一种用来观察远距离物体的光学仪器。

它的工作原理基于光的折射和聚焦效应。

下面将详细介绍望远镜的构造和工作原理。

2.1 构造:望远镜主要由以下几个部分组成:- 物镜:位于望远镜的前端,用于接收并聚焦远距离物体的光线。

- 目镜:位于望远镜的顶部,用于放大物镜所形成的图像。

- 眼镜:连接目镜的管子,供观察者观察放大图像。

- 支架:用于支撑和稳定望远镜。

2.2 工作原理:望远镜的工作原理可以分为两个步骤:聚焦光线和观察放大图像。

聚焦光线:当光线从远距离物体射入望远镜时,物镜将光线聚焦在焦点上。

物镜是一个具有较大口径的透镜,它能够收集更多的光线,并使光线更集中。

聚焦后的光线通过目镜进入观察者的眼睛。

观察放大图像:聚焦后的光线通过物镜形成一个倒立的实像。

这个实像通过目镜进一步放大,使观察者能够清晰地看到远距离物体的细节。

显微镜和望远镜的工作原理

显微镜和望远镜的工作原理

显微镜和望远镜的工作原理一、显微镜的工作原理显微镜是一种光学仪器,用于放大弱小物体,使其能够被肉眼清晰观察到。

它的工作原理基于光的折射和放大效应。

1. 光学系统显微镜的光学系统由物镜、目镜和透镜组成。

物镜是放置在物体上方的镜头,它的主要作用是将被观察的物体放大。

目镜则是放置在物镜下方的镜头,用于进一步放大物体。

透镜用于调节焦距和聚焦。

2. 光源显微镜通常使用白炽灯或者LED灯作为光源。

光源发出的光经过凸透镜或者反射镜聚焦到物镜上,照亮被观察的物体。

3. 物体放置被观察的物体通常放置在显微镜的物镜下方的玻片上。

玻片透明且平整,以确保光线能够通过并聚焦在物镜上。

4. 光的折射和放大当光线从空气进入显微镜的物镜时,会发生折射。

物镜的形状和材料决定了光线的折射程度和放大倍率。

折射后的光线通过目镜进一步放大,形成放大的图象。

5. 调焦显微镜的调焦机制允许用户调整物镜和目镜之间的距离,以获得清晰的图象。

通过挪移物镜或者目镜,可以使光线聚焦在物体上,从而获得更清晰的图象。

二、望远镜的工作原理望远镜是一种用于观测远距离物体的光学仪器。

它的工作原理基于光的折射和反射。

1. 折射望远镜折射望远镜使用透镜来聚焦光线。

它的光学系统由物镜和目镜组成。

物镜是较大的透镜,用于会萃光线并放大图象。

目镜是较小的透镜,进一步放大物体。

光线从物体进入物镜,被聚焦并放大,然后通过目镜进一步放大,形成清晰的图象。

2. 反射望远镜反射望远镜使用反射镜来聚焦光线。

它的光学系统由主镜和目镜组成。

主镜是一个反射镜,通常是一个凹透镜,用于聚焦光线。

目镜是一个透镜,用于进一步放大图象。

光线从物体进入望远镜,被主镜反射并聚焦在焦点上,然后通过目镜进一步放大,形成清晰的图象。

3. 调焦望远镜的调焦机制类似于显微镜。

通过调整物镜和目镜之间的距离,可以使光线聚焦在物体上,从而获得更清晰的图象。

4. 放大倍率望远镜的放大倍率取决于物镜和目镜的焦距。

较长的焦距将产生更大的放大倍率。

显微镜和望远镜的工作原理

显微镜和望远镜的工作原理

显微镜和望远镜的工作原理一、显微镜的工作原理显微镜是一种用来放大弱小物体的光学仪器,它能够使我们观察到肉眼无法看见的微观世界。

下面将详细介绍显微镜的工作原理。

1. 光源:显微镜通常使用白炽灯或者LED作为光源。

光源发出的光线经过凹透镜或者反射镜的聚焦,形成平行光束。

2. 物镜:物镜是显微镜的主要放大元件,它位于样品和目镜之间。

物镜通常由多个透镜组成,这些透镜能够将光线聚焦到样品上,并放大样品的细节。

3. 样品:样品是我们想要观察的物体。

它可以是固体、液体或者气体。

样品被放置在显微镜的物镜下方,光线经过样品后被物镜聚焦。

4. 目镜:目镜是显微镜的观察部份,通常由一个或者多个透镜组成。

它接收物镜放大后的像,并进一步放大,使我们可以清晰地看到样品。

5. 眼睛:人眼是最终观察显微镜图象的部份。

目镜放大的像被人眼观察,形成我们所看到的显微镜图象。

6. 调焦系统:显微镜通常配备有调焦系统,用来调整物镜和样品之间的距离,以获得清晰的图象。

调焦系统可以是粗调焦和细调焦两种方式。

在观察过程中,光线从光源经过物镜聚焦到样品上,然后通过目镜进一步放大,最后进入人眼。

由于物镜和目镜的放大倍数相乘,显微镜能够放大样品的细节,并使我们能够观察到弱小的结构和细胞。

二、望远镜的工作原理望远镜是一种用来观察远距离物体的光学仪器,它能够放大远处物体的图象,使我们能够更清晰地观察到它们。

下面将详细介绍望远镜的工作原理。

1. 物镜:望远镜的物镜是放大远距离物体的主要元件。

物镜通常由多个透镜组成,这些透镜能够将光线聚焦到焦点上,并形成物镜放大的像。

2. 目镜:目镜是望远镜的观察部份,通常由一个或者多个透镜组成。

它接收物镜放大的像,并进一步放大,使我们可以清晰地观察到远处物体。

3. 眼睛:人眼是最终观察望远镜图象的部份。

目镜放大的像被人眼观察,形成我们所看到的望远镜图象。

4. 调焦系统:望远镜通常配备有调焦系统,用来调整物镜和目镜之间的距离,以获得清晰的图象。

显微镜和望远镜的工作原理

显微镜和望远镜的工作原理

显微镜和望远镜的工作原理一、显微镜的工作原理显微镜是一种用于放大微小物体的光学仪器。

它的工作原理基于光的折射和放大效应。

1. 光学系统显微镜的光学系统由物镜、目镜和光源组成。

光源通常是一束白光,可以是白炽灯、荧光灯或者LED灯等。

光线经过准直器和孔径光阑后,通过物镜和目镜依次聚焦,最终形成放大的物体影像。

2. 物镜和目镜物镜是显微镜的主要放大部件,它通常由多个透镜组成。

物镜的放大倍数决定了显微镜的最大放大倍数。

目镜位于物镜的下方,用于进一步放大物体的影像,同时也起到调焦的作用。

3. 光路调节显微镜中的光路调节主要包括调焦和光源亮度的调节。

调焦是通过调整物镜和目镜的相对位置来实现的,可以使物体在视野中清晰可见。

光源亮度的调节可以通过调整光源的强度或者使用光阑来实现。

4. 目镜的放大倍数显微镜的放大倍数是由物镜和目镜的放大倍数相乘得到的。

一般情况下,物镜的放大倍数较大,目镜的放大倍数较小,以保证视野的清晰度和亮度。

5. 分辨率显微镜的分辨率是指显微镜能够分辨出两个相邻物体的最小距离。

分辨率取决于光的波长和物镜的数值孔径。

较小的波长和较大的数值孔径可以提高显微镜的分辨率。

二、望远镜的工作原理望远镜是一种用于观察远距离物体的光学仪器。

它的工作原理基于光的折射和反射。

1. 折射望远镜折射望远镜是通过透镜的折射作用来放大远距离物体的影像。

它主要由物镜和目镜组成。

物镜负责收集并聚焦光线,形成物体的实像;目镜进一步放大实像,使其变得更加清晰可见。

2. 反射望远镜反射望远镜是通过反射镜的反射作用来放大远距离物体的影像。

它主要由主镜和目镜组成。

主镜负责收集并聚焦光线,形成物体的实像;目镜进一步放大实像,使其变得更加清晰可见。

3. 物镜的焦距和放大倍数望远镜的放大倍数是由物镜的焦距和目镜的焦距决定的。

较大的物镜焦距和较小的目镜焦距可以获得较大的放大倍数。

4. 望远镜的稳定性望远镜在观测远距离物体时,需要保持稳定的观测条件。

显微镜和望远镜的工作原理

显微镜和望远镜的工作原理

显微镜和望远镜的工作原理1. 显微镜的工作原理显微镜是一种用来放大细小物体的光学仪器。

它的工作原理基于光的折射和放大效应。

1.1 物镜放大显微镜的物镜是用来放大被观察物体的镜头。

当光线通过物镜时,它会被折射并聚焦在焦点上。

物镜的放大倍数取决于其焦距和物镜的设计。

较短的焦距和更复杂的设计可以提供更高的放大倍数。

1.2 目镜放大目镜是用来放大物镜所成像的物体的镜头。

当光线通过目镜时,它会再次折射并聚焦在焦点上。

通过调整目镜的焦距,我们可以获得不同的放大倍数。

1.3 目镜和物镜的协同作用显微镜的放大倍数是由物镜和目镜的放大倍数相乘得到的。

例如,如果物镜的放大倍数为40倍,目镜的放大倍数为10倍,那么显微镜的总放大倍数就是40乘以10等于400倍。

1.4 光源显微镜通常使用透射光源,如白炽灯或荧光灯。

光源会发出光线,并通过凸透镜或反射镜聚焦在被观察物体上。

这样可以提供足够的光亮度,使得观察者能够清晰地看到细小的细节。

2. 望远镜的工作原理望远镜是一种用来观察遥远物体的光学仪器。

它的工作原理也基于光的折射和放大效应。

2.1 物镜放大望远镜的物镜是用来放大远处物体的镜头。

当光线通过物镜时,它会被折射并聚焦在焦点上。

与显微镜不同的是,望远镜的物镜通常具有较长的焦距和较小的放大倍数,以便观察遥远的物体。

2.2 目镜放大望远镜的目镜是用来放大物镜所成像的物体的镜头。

当光线通过目镜时,它会再次折射并聚焦在焦点上。

通过调整目镜的焦距,我们可以获得不同的放大倍数。

2.3 目镜和物镜的协同作用望远镜的放大倍数也是由物镜和目镜的放大倍数相乘得到的。

通常情况下,望远镜的物镜放大倍数较小,而目镜放大倍数较大。

这样可以提供更广阔的视野和更高的放大倍数。

2.4 经纬仪和赤道仪为了更方便地观察天体,望远镜通常配备经纬仪或赤道仪。

经纬仪可以根据观察者所在位置的经度和纬度来定位天体,使其能够准确地跟随天体的运动。

赤道仪则通过将望远镜安装在一个与地球赤道平行的轴上,使得望远镜能够沿着天球的赤道运动。

显微镜和望远镜的工作原理

显微镜和望远镜的工作原理

显微镜和望远镜的工作原理一、显微镜的工作原理显微镜是一种用于放大细小物体的光学仪器。

它的工作原理基于光线的折射和放大效应。

1. 光学系统:显微镜的光学系统由物镜、目镜和透镜组成。

物镜是放置在物体下方的镜片,它能够将物体上的光线聚焦到焦平面上。

目镜是放置在物镜上方的镜片,它将焦平面上的光线再次聚焦到人眼或相机上。

2. 放大倍数:显微镜的放大倍数由物镜和目镜的焦距决定。

一般来说,物镜的焦距越短,放大倍数越大。

目镜的焦距也会影响放大倍数,但通常不如物镜的影响大。

3. 光源:显微镜通常使用透射光源,如白炽灯或LED灯。

光源的作用是照亮被观察的物体,使其能够反射或透过光线。

4. 物体的放置:被观察的物体通常放置在显微镜的物镜下方,通过调节物镜和目镜的焦距,使物体的图像能够清晰地投影到焦平面上。

5. 目镜调焦:为了使观察者能够看清物体的细节,显微镜通常配备了一个焦距可调的目镜。

通过调节目镜的焦距,观察者可以使物体的图像在焦平面上清晰可见。

二、望远镜的工作原理望远镜是一种用于观察远距离物体的光学仪器。

它的工作原理基于光线的折射和聚焦效应。

1. 光学系统:望远镜的光学系统由物镜、目镜和透镜组成。

物镜是放置在远离观察者的一端的镜片,它能够将远距离物体上的光线聚焦到焦平面上。

目镜是放置在物镜靠近观察者的一端的镜片,它将焦平面上的光线再次聚焦到人眼或相机上。

2. 放大倍数:望远镜的放大倍数由物镜和目镜的焦距决定。

一般来说,物镜的焦距越长,放大倍数越大。

目镜的焦距也会影响放大倍数,但通常不如物镜的影响大。

3. 光源:望远镜通常不需要额外的光源,因为被观察的物体本身会发出或反射足够的光线。

4. 物体的观察:被观察的物体通常位于望远镜的物镜端。

物镜将物体上的光线聚焦到焦平面上,形成清晰的图像。

通过调节目镜的焦距,观察者可以使图像在焦平面上清晰可见。

5. 调焦:为了观察不同距离的物体,望远镜通常配备了一个焦距可调的目镜。

通过调节目镜的焦距,观察者可以使不同距离的物体的图像在焦平面上清晰可见。

显微镜和望远镜的工作原理

显微镜和望远镜的工作原理

显微镜和望远镜的工作原理标题:显微镜和望远镜的工作原理引言概述:显微镜和望远镜是两种常见的光学仪器,它们在科学研究、医学诊断和观测等领域起着重要作用。

本文将详细介绍显微镜和望远镜的工作原理,匡助读者更好地理解这两种仪器的运行机制。

一、显微镜的工作原理1.1 光源:显微镜通过光源照射样品,使样品上的细小结构或者微生物等可见。

1.2 物镜和目镜:物镜和目镜是显微镜的两个重要组成部份,物镜用于放大样品,目镜用于观察放大后的图象。

1.3 焦距调节:通过调节物镜和目镜的位置,可以改变焦距,实现不同倍率的放大。

二、望远镜的工作原理2.1 物镜:望远镜的物镜是用来采集远处物体发出的光线,使其聚焦在焦平面上。

2.2 目镜:目镜将焦平面上的物体放大,使其变得清晰可见。

2.3 焦距调节:望远镜通过调节物镜和目镜的位置,使焦距适应不同距离的观测对象。

三、显微镜和望远镜的区别3.1 放大倍率:显微镜通常具有更高的放大倍率,可以观察到微观尺度的细节。

3.2 使用范围:显微镜主要用于观察微生物、细胞等弱小物体,而望远镜主要用于观测天体、远处景物。

3.3 光路设计:显微镜和望远镜的光路设计有所不同,以适应不同的观测需求。

四、显微镜和望远镜的发展历史4.1 显微镜:最早的显微镜可以追溯到17世纪,随着光学技术的发展,显微镜的分辨率和放大倍率不断提高。

4.2 望远镜:望远镜的历史可以追溯到古希腊时代,随着望远镜的发展,人类对宇宙和地球的认识也不断深化。

4.3 现代化发展:随着科学技术的不断进步,显微镜和望远镜的设计和性能也在不断改进,为人类的观测和研究提供了更多可能。

五、显微镜和望远镜的应用领域5.1 显微镜:显微镜广泛应用于生物学、医学、材料科学等领域,匡助科学家观察和研究弱小结构。

5.2 望远镜:望远镜被用于天文观测、地质勘探等领域,匡助人类探索宇宙和地球的神奇。

5.3 未来发展:随着科技的不断进步,显微镜和望远镜的应用领域将会更加广泛,为人类的探索和发现提供更多可能。

显微镜和望远镜的工作原理

显微镜和望远镜的工作原理

显微镜和望远镜的工作原理一、显微镜的工作原理显微镜是一种用来观察微小物体的光学仪器。

它通过放大被观察物体的细节,使人眼能够清晰地看到这些微小的结构。

显微镜的工作原理主要包括光学放大和成像两个方面。

1. 光学放大显微镜利用透镜的光学特性来放大被观察物体。

它通常由两个透镜组成:物镜和目镜。

物镜位于物体一侧,负责放大被观察物体的细节;目镜位于物镜一侧,负责进一步放大物镜成像的物体,使其能够被人眼观察到。

2. 成像当光线通过物体时,被观察物体反射或透射的光线会经过物镜聚焦成实像。

实像位于物镜的焦点处,它的大小和位置与被观察物体的性质有关。

然后,目镜将实像再次放大,使其能够被人眼观察到。

通过调节物镜和目镜的位置,可以获得清晰的放大图像。

二、望远镜的工作原理望远镜是一种用来观察远距离物体的光学仪器。

它的工作原理与显微镜类似,也是通过光学放大和成像来观察远处的物体。

1. 光学放大望远镜通常由物镜和目镜组成。

物镜位于物体一侧,负责收集远处物体的光线;目镜位于物镜一侧,负责进一步放大物镜成像的物体,使其能够被人眼观察到。

与显微镜不同的是,望远镜的物镜通常比目镜更大,以便收集更多的光线。

2. 成像当光线通过物镜时,被观察物体反射或透射的光线会经过物镜聚焦成实像。

实像位于物镜的焦点处,它的大小和位置与被观察物体的性质有关。

然后,目镜将实像再次放大,使其能够被人眼观察到。

通过调节物镜和目镜的位置,可以获得清晰的放大图像。

三、显微镜和望远镜的区别尽管显微镜和望远镜的工作原理相似,但它们的设计和用途有所不同。

1. 设计差异显微镜通常采用倒像光学系统,即实像位于物镜一侧,而目镜位于物镜的焦点处。

这种设计可以让人眼直接观察到物体的放大图像。

相比之下,望远镜通常采用正像光学系统,即实像位于物镜的焦点处,而目镜位于实像的另一侧,需要通过目镜再次放大才能被人眼观察到。

2. 用途差异显微镜主要用于观察微小物体,如细胞、细菌等。

它在生物学、医学、材料科学等领域有着广泛的应用。

显微镜和望远镜的工作原理

显微镜和望远镜的工作原理

显微镜和望远镜的工作原理一、显微镜的工作原理显微镜是一种用于放大微小物体的光学仪器。

它的工作原理基于光的折射和放大效应。

1. 光的折射:当光从一种介质进入另一种介质时,由于介质的光密度不同,光线会发生折射。

显微镜中的物镜和目镜均由透明的玻璃或石英制成,光线在物镜和目镜之间多次发生折射,使得被观察物体的图像放大。

2. 光的放大:显微镜通过物镜和目镜的组合来放大物体的图像。

物镜是靠近被观察物体的镜头,它能够将物体的细节放大。

目镜是靠近观察者眼睛的镜头,它进一步放大物镜所形成的物体图像。

当光线通过物镜折射后,进入目镜,再次发生折射,形成放大的图像。

3. 调焦机构:显微镜通常配备有调焦机构,用于调整物镜和目镜之间的距离,以获得清晰的图像。

调焦机构可以通过移动物镜或目镜来改变光线的聚焦位置,使得观察者能够看到清晰的放大图像。

4. 光源:显微镜需要光源来照亮被观察物体。

常见的光源包括白炽灯、荧光灯或LED灯。

光源发出的光线经过准直器和准直透镜,使得光线能够均匀地照射到物镜上,提供足够的光强度进行观察。

5. 目镜和目镜系统:目镜是观察者用于观察物体图像的部分。

目镜通常由多个透镜组成,形成一个目镜系统。

透镜的组合可以提供更大的放大倍数和更好的像质。

二、望远镜的工作原理望远镜是一种用于观察远距离物体的光学仪器。

它的工作原理基于光的折射和聚焦效应。

1. 物镜:望远镜的物镜是位于远离观察者的一端,用于收集并聚焦光线。

物镜通常是一块凸透镜或凹透镜,它能够将远处物体发出的光线收集到一个点上。

2. 目镜:望远镜的目镜位于物镜的另一端,用于放大物镜所聚焦的图像。

目镜通常也是一块透镜,它进一步放大物镜所形成的物体图像。

观察者通过目镜看到的是物镜所聚焦的放大图像。

3. 调焦机构:望远镜通常配备有调焦机构,用于调整物镜和目镜之间的距离,以获得清晰的图像。

调焦机构可以通过移动物镜或目镜来改变光线的聚焦位置,使得观察者能够看到清晰的放大图像。

显微镜和望远镜的工作原理

显微镜和望远镜的工作原理

显微镜和望远镜的工作原理显微镜和望远镜是两种常见的光学仪器,它们在科学研究、医学诊断、天文观测等领域起着重要作用。

本文将详细介绍显微镜和望远镜的工作原理。

一、显微镜的工作原理显微镜是一种用来放大细小物体的光学仪器。

它的工作原理基于光的折射和放大原理。

1. 光的折射当光从一个介质进入另一个介质时,由于两个介质的光密度不同,光线会发生折射。

显微镜中使用的是透明介质,如玻璃或水,光线在透明介质中的传播速度会改变,从而导致光线的折射。

2. 放大原理显微镜通过将光线聚焦到样品上,并使用透镜系统将放大的光线聚焦到目镜上来实现放大效果。

主要包括物镜和目镜两个透镜。

- 物镜是位于样品下方的透镜,它将光线聚焦到样品上,并形成一个放大的实像。

- 目镜是位于样品上方的透镜,它将实像再次放大,使得我们能够清晰地观察到样品。

通过调节物镜和目镜的位置,我们可以调整显微镜的放大倍数。

3. 光路显微镜的光路主要包括以下几个部分:- 光源:显微镜通常使用白炽灯或荧光灯作为光源,它们会发出均匀的光线。

- 准直器:准直器用于将光线聚焦到样品上,使得样品上的光线尽可能平行。

- 物镜和目镜:物镜和目镜共同形成放大的光学系统,使得我们能够观察到放大的图像。

- 眼镜:眼镜位于目镜的后方,它进一步放大目镜形成的图像,使得观察者能够更清晰地看到样品。

二、望远镜的工作原理望远镜是一种用来观察远距离物体的光学仪器。

它的工作原理同样基于光的折射和放大原理。

1. 光的折射望远镜中的光学系统与显微镜类似,同样利用光的折射原理。

当光线从空气中进入望远镜的透镜时,由于光线在透镜中的传播速度不同,光线会发生折射。

2. 放大原理望远镜通过将光线聚焦到目镜上来实现放大效果。

与显微镜不同的是,望远镜主要使用的是物镜放大。

- 物镜是位于光路前端的透镜,它将光线聚焦到焦点上,并形成一个放大的实像。

- 目镜是位于焦点后方的透镜,它将实像再次放大,使得我们能够清晰地观察到远距离物体。

显微镜和望远镜的工作原理

显微镜和望远镜的工作原理

显微镜和望远镜的工作原理显微镜和望远镜是两种常见的光学仪器,它们分别用于观察微观和宏观的物体。

本文将详细介绍显微镜和望远镜的工作原理。

一、显微镜的工作原理显微镜是一种用于观察微小物体的光学仪器。

它通过放大物体的细节,使人们能够看到肉眼无法观察到的微观结构。

1. 光源:显微镜通常使用光源来照亮样品。

常见的光源包括白炽灯、荧光灯或LED等。

2. 物镜:物镜是显微镜中最重要的组成部分之一。

它位于样品和目镜之间,负责放大样品的细节。

物镜通常由多个透镜组成,具有不同的放大倍数。

3. 目镜:目镜是显微镜中的另一个关键组件,用于进一步放大物镜所放大的图像。

目镜通常由一个或多个透镜组成。

4. 组合透镜:显微镜中的物镜和目镜通常都是由多个透镜组成的,这些透镜一起工作以放大样品的图像。

5. 调焦系统:显微镜通常配备调焦系统,用于使样品清晰地显示在视野中。

调焦系统可以通过移动物镜或目镜来实现。

6. 目镜筒和眼镜:目镜筒是显微镜中容纳目镜的部分,它通常与一对眼镜一起使用,以便观察者能够同时使用两只眼睛观察样品。

7. 调光系统:显微镜通常配备调光系统,用于调节光源的亮度,以便更好地观察样品。

二、望远镜的工作原理望远镜是一种用于观察远距离物体的光学仪器。

它通过放大远处物体的图像,使人们能够清晰地观察到远处的景象。

1. 物镜:望远镜的物镜是观察目标的第一个透镜,它负责收集远处物体的光线。

物镜通常是一个大直径的透镜或镜面。

2. 目镜:目镜是望远镜中的第二个透镜,它放大物镜所收集到的光线,使观察者能够看到放大的图像。

3. 组合透镜:望远镜中的物镜和目镜通常都是由多个透镜组成的,这些透镜一起工作以放大远处物体的图像。

4. 焦点调节:望远镜通常配备焦点调节系统,用于使观察者能够清晰地观察到目标。

观察者可以通过调节物镜和目镜的位置来实现焦点调节。

5. 眼镜:望远镜通常配备一对眼镜,以便观察者能够同时使用两只眼睛观察目标。

6. 支架和转动装置:望远镜通常安装在一个支架上,并配备转动装置,使观察者能够调整望远镜的方向和角度。

显微镜望远镜成像原理

显微镜望远镜成像原理

显微镜望远镜成像原理【显微镜望远镜成像原理】1、显微镜:显微镜是用多个透镜组成的光学仪器,能把物体上细小的结构放大几十倍或几百倍,使得可以用肉眼看见;除了可以观察个体数据以外,显微镜也允许拍照、摄影、视频以及运用其他形式测量等实验操作。

2、望远镜:望远镜也是一种光学仪器,能把远距离的物体放大到数十倍或数百倍;根据望远镜的结构不同,主要分为双筒望远镜、多筒望远镜、折射望远镜及反射望远镜等。

3、显微镜望远镜成像原理:显微镜望远镜成像原理,是充分利用光的几何属性,根据折射定律,把显微镜放大效果和望远镜放大效果相结合并把物体细微部位进行多次成像,然后通过光学系统传递到成像器(如CCD或CMOS)上显示出更加清晰的图像。

其中常用的主要显微望远镜系统有波前成像仪(Convergent Wavefront Imaging System,CWISE),孔道限制仪(Aperture Limiting System, ALS),多波长成像仪(Multi-Wavelength Imaging System, MWIS)等。

(1)波前成像仪:波前成像仪是利用光学元件实现平行光束在待成像物体上的多次成像,然后将反射的波前信息放大投射到成像系统(CCD或CMOS)上,形成有序的波前图像,实现准确快速的光学成像目标物。

(2)孔道限制仪:孔道限制仪是利用亚光学元件将空间中的待成像物体处的可见光束压缩,然后在进入CCD器件前,将光束空间中的多路信号信息统一成一路信号信息,从而达到增强成像效果的作用。

(3)多波长成像仪:多波长成像仪是将潜藏在金属、液体、材料等待成像物体内部的多路波长的信息通过特殊的光学系统,收集整合到一个成像器件上,有效地提升了定点成像技术的精度。

望远镜和显微镜实验报告

望远镜和显微镜实验报告

大学物理实验报告【实验名称】望远镜和显微镜【实验目的】(1)了解望远镜和显微镜的构造及其放大原理,并掌握其使用方法;(2)了解视放大率等概念并掌握其测量方法;(3)进一步熟悉透镜成像规律。

【实验原理】(一)望远镜1.望远镜基本光学系统基本的望远系统是由物镜和目镜组成的无焦系统,物镜L的像方焦点F'与0o目镜L的物方焦点F重合,如图所示。

无穷远物体发出的光经物镜后在物镜焦ee 平面上成一倒立缩小的实像,再利用目镜(短焦距)将此实像成像于无穷远处, 使视角增大,利于人眼观察。

为了利于对远处物体的观测,望远镜物镜的焦距一般较长。

优点是可在物镜与目镜之间的中间像平面上安装分划板(其上有叉丝和刻尺)!! 以供瞄准或测量。

实验装置中用到的望远镜(如分光计上的望远镜,光杠杆系统中的望远镜等)均为开普勒望远镜,在中间像平面上装有分划板。

实际上,为方便人眼观察,物体经望远镜后一般不是成像于无穷远,而是成虚像于人眼明视距离处;而且为实现对远近不同物体的观察,物镜与目镜的间距即镜筒长度可调,物镜的像方焦点与目镜的物方焦点可能会不重合。

使用望远镜时,观察者应先调目镜看清分划板,使分划板成像于人眼明视距离处,再调节望远镜镜筒长度,即改变物镜、目镜间距,使被观察物清晰可见并与分划板叉丝无视差。

2. 望远镜的视放大率视放大率r 定义为目视光学仪器所成的像对人眼的张角(记为s')的正切与物体直接对人眼的张角(记为3)的正切之比,即:tan 3'r=_ tan 3对图示望远镜,有:y'y 'tan 3=—,tan 3'二因此,望远镜的视放大率r 为Tr =f 0 r ~re其中,f 、f '分别是L 的物方焦距、像方焦距,f =f '。

ee e ee 实际测量望远镜无焦系统的视放大率时,可以利用图示光路用仪器测出像高y '',从三角关系可得出:因此无焦系统的视放大率可测出。

显微镜和望远镜的工作原理

显微镜和望远镜的工作原理

显微镜和望远镜的工作原理一、显微镜的工作原理:显微镜是一种用来观察微小物体的光学仪器。

它的工作原理基于光的折射和放大效应。

1. 光学系统:显微镜的光学系统主要由物镜、目镜和光源组成。

光源发出的光经过凸透镜或反射镜聚焦到物镜上,物镜将光线聚焦到样本上,然后经过目镜放大观察。

2. 放大原理:显微镜的放大原理是利用透镜的折射性质。

当光线从一个介质(如空气)射入另一个介质(如玻璃或水)时,由于介质的折射率不同,光线会发生折射。

物镜和目镜都是透镜,它们通过折射和放大光线,使样本看起来更大。

3. 分辨率:显微镜的分辨率指的是能够分辨出两个相邻物体的最小距离。

分辨率取决于光的波长和显微镜的设计。

提高分辨率的方法包括使用更短的波长光源、增加物镜的数值孔径和增加目镜的放大倍数。

4. 相差显微镜和荧光显微镜:相差显微镜利用不同折射率的物镜和目镜,使样本的不同部分产生相位差,从而增强对细胞结构的观察。

荧光显微镜则利用荧光染料标记样本,通过激发和检测样本发出的荧光信号来观察细胞或组织。

二、望远镜的工作原理:望远镜是一种用来观察远处物体的光学仪器。

它的工作原理基于光的反射或折射。

1. 折射望远镜:折射望远镜使用透镜来聚焦光线。

光线从物体射入望远镜的物镜,经过物镜折射后聚焦到焦平面上。

然后,通过目镜观察焦平面上的像,实现放大效果。

2. 反射望远镜:反射望远镜使用反射镜来聚焦光线。

光线从物体射入望远镜的主镜,主镜将光线反射到焦平面上。

然后,通过目镜观察焦平面上的像,实现放大效果。

3. 放大原理:望远镜的放大原理与显微镜类似,都是通过透镜或反射镜的折射或反射作用使光线聚焦,从而放大远处物体的像。

4. 天文望远镜和光学望远镜:天文望远镜用于观测天体,它的主镜或物镜较大,以接收较弱的天体光。

光学望远镜用于观测地面物体,它的主镜或物镜相对较小,以便更方便地携带和操作。

总结:显微镜和望远镜的工作原理都基于光的折射或反射。

显微镜利用透镜放大细小物体,观察细胞和微观结构。

望远镜和显微镜实验报告

望远镜和显微镜实验报告

望远镜和显微镜实验报告实验报告:望远镜和显微镜的原理与应用一、引言望远镜和显微镜是人类观察天空和微观世界的重要工具。

望远镜通过放大远距离的物体使其能够观察的更清晰,而显微镜则能够放大微小物体使其变得可见。

本实验旨在通过实验验证望远镜和显微镜的工作原理,并探究其应用。

二、实验方法1.用一根直尺放在桌上作为光学轴线。

2.将物镜放在靠近光学轴线一侧的支撑上,调节距离使得物镜能够清晰地对焦。

3.将目镜放在距离物镜远一侧的支撑上,固定。

4.在物镜与目镜间放置一个墨水瓶作为物体,调节物镜与目镜的相对距离,直到物体能够清晰地观察到。

5.重复上述步骤,但将物镜和目镜更换为显微镜的物镜和目镜。

6.记录实验现象和实验数据。

三、实验结果1.望远镜实验结果当物镜和目镜间的距离适宜时,可以清晰地观察到墨水瓶中的物体。

当调节物镜与目镜的距离过大或过小时,图像会变得模糊不清。

此时,可以通过细微调节物镜和目镜的位置来使图像变得清晰。

2.显微镜实验结果当显微镜的物镜和目镜间的距离适宜时,可以清晰地观察到墨水瓶内的微小颗粒。

与望远镜实验类似,当调节物镜和目镜的距离过大或过小时,图像会变得模糊。

细微调节物镜和目镜的位置可以使图像变得清晰。

四、分析与讨论1.望远镜的原理望远镜的主要原理是利用两个透镜的焦距来放大远距离物体的图像。

物镜具有较短的焦距,能够形成一个实像,然后由目镜进一步放大这个实像,使得观察者可以更清晰地看到物体。

2.显微镜的原理显微镜的是利用物镜和目镜间的合作来放大微小物体的图像。

物镜将微小物体放大形成一个实像,然后由目镜来进一步放大这个实像,使得观察者可以清晰地看到微小物体。

3.望远镜和显微镜的应用望远镜主要用于天文观测,可以观察到遥远的星系、行星和恒星。

它在天文学研究、导航和军事侦察等领域有着重要作用。

显微镜广泛应用于生物学、医学、材料科学等领域,可以观察和研究微生物、细胞结构、材料的微观结构等。

五、总结通过本次实验,我们验证了望远镜和显微镜的原理,并探究了其应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验设备-显微镜和望远镜的成像原理(一)显微镜的基本光学原理(一)折射和折射率光线在均匀的各向同性介质中,两点之间以直线传播,当通过不同密度介质的透明物体时,则发生折射现象,这是由于光在不同介质的传播速度不同造成的。

当与透明物面不垂直的光线由空气射入透明物体(如玻璃)时,光线在其介面改变了方向,并和法线构成折射角。

(二)透镜的性能透镜是组成显微镜光学系统的最基本的光学元件,物镜目镜及聚光镜等部件均由单个和多个透镜组成。

依其外形的不同,可分为凸透镜(正透镜)和凹透镜(负透镜)两大类。

当一束平行于光轴的光线通过凸透镜后相交于一点,这个点称"焦点",通过交点并垂直光轴的平面,称"焦平面"。

焦点有两个,在物方空间的焦点,称"物方焦点",该处的焦平面,称"物方焦平面";反之,在象方空间的焦点,称"象方焦点",该处的焦平面,称"象方焦平面"。

光线通过凹透镜后,成正立虚像,而凸透镜则成正立实像。

实像可在屏幕上显现出来,而虚像不能。

(三)凸透镜的五种成象规律 1. 当物体位于透镜物方二倍焦距以外时,则在象方二倍焦距以内、焦点以外形成缩小的倒立实象; 2. 当物体位于透镜物方二倍焦距上时,则在象方二倍焦距上形成同样大小的倒立实象;3. 当物体位于透镜物方二倍焦距以内,焦点以外时,则在象方二倍焦距以外形成放大的倒立实象;4. 当物体位于透镜物方焦点上时,则象方不能成象;5. 当物体位于透镜物方焦点以内时,则象方也无象的形成,而在透镜物方的同侧比物体远的位置形成放大的直立虚象。

三、光学显微镜的成象(几何成象)原理只有当物体对人眼的张角不小于某一值时,肉眼才能区别其各个细部,该量称为目视分辨率ε。

在最佳条件下,即物体的照度为50~70lx及其对比度较大时,可达到1'。

为易于观测,一般将该量加大到2',并取此为平均目镜分辨率。

物体视角的大小与该物体的长度尺寸和物体至眼睛的距离有关。

有公式y=Lε距离L不能取得很小,因为眼睛的调节能力有一定限度,尤其是眼睛在接近调节能力的极限范围工作时,会使视力极度疲劳。

对于标准(正视)而言,最佳的视距规定为250mm(明视距离)。

这意味着,在没有仪器的条件下,目视分辨率ε=2'的眼睛,能清楚地区分大小为0.15mm的物体细节。

在观测视角小于1'的物体时,必须使用放大仪器。

放大镜和显微镜是用于观测放置在观测人员近处应予放大的物体的。

(一)放大镜的成像原理表面为曲面的玻璃或其他透明材料制成的光学透镜可以使物体放大成像,光路图如图1所示。

位于物方焦点F以内的物AB,其大小为y,它被放大镜成一大小为y'的虚像A'B'。

放大镜的放大率Γ=250/f' 式中250--明视距离,单位为mm f'--放大镜焦距,单位为mm 该放大率是指在250mm的距离内用放大镜观察到的物体像的视角同没有放大镜观察到的物体视角的比值。

(二)显微镜的成像原理显微镜和放大镜起着同样的作用,就是把近处的微小物体成一放大的像,以供人眼观察。

只是显微镜比放大镜可以具有更高的放大率而已。

图2是物体被显微镜成像的原理图。

图中为方便计,把物镜L1和目镜L2均以单块透镜表示。

物体AB位于物镜前方,离开物镜的距离大于物镜的焦距,但小于两倍物镜焦距。

所以,它经物镜以后,必然形成一个倒立的放大的实像A'B'。

A'B'位于目镜的物方焦点F2上,或者在很靠近F2的位置上。

再经目镜放大为虚像A''B''后供眼睛观察。

虚像A''B''的位置取决于F2和A'B'之间的距离,可以在无限远处(当A'B'位于F2上时),也可以在观察者的明视距离处(当A'B'在图中焦点F2之右边时)。

目镜的作用与放大镜一样。

所不同的只是眼睛通过目镜所看到的不是物体本身,而是物体被物镜所成的已经放大了一次的像。

(三)显微镜的重要光学技术参数在镜检时,人们总是希望能清晰而明亮的理想图象,这就需要显微镜的各项光学技术参数达到一定的标准,并且要求在使用时,必须根据镜检的目的和实际情况来协调各参数的关系。

只有这样,才能充分发挥显微镜应有的性能,得到满意的镜检效果。

显微镜的光学技术参数包括:数值孔径、分辨率、放大率、焦深、视场宽度、覆盖差、工作距离等等。

这些参数并不都是越高越好,它们之间是相互联系又相互制约的,在使用时,应根据镜检的目的和实际情况来协调参数间的关系,但应以保证分辨率为准。

1.数值孔径数值孔径简写NA,数值孔径是物镜和聚光镜的主要技术参数,是判断两者(尤其对物镜而言)性能高低的重要标志。

其数值的大小,分别标刻在物镜和聚光镜的外壳上。

数值孔径(NA)是物镜前透镜与被检物体之间介质的折射率(n)和孔径角(u)半数的正弦之乘积。

用公式表示如下:NA=nsinu/2 孔径角又称"镜口角",是物镜光轴上的物体点与物镜前透镜的有效直径所形成的角度。

孔径角越大,进入物镜的光通亮就越大,它与物镜的有效直径成正比,与焦点的距离成反比。

显微镜观察时,若想增大NA 值,孔径角是无法增大的,唯一的办法是增大介质的折射率n值。

基于这一原理,就产生了水浸物镜和油浸物镜,因介质的折射率n值大于1,NA值就能大于1。

数值孔径最大值为1.4,这个数值在理论上和技术上都达到了极限。

目前,有用折射率高的溴萘作介质,溴萘的折射率为1.66,所以NA值可大于1.4。

这里必须指出,为了充分发挥物镜数值孔径的作用,在观察时,聚光镜的NA值应等于或略大于物镜的NA值。

数值孔径与其他技术参数有着密切的关系,它几乎决定和影响着其他各项技术参数。

它与分辨率成正比,与放大率成正比,与焦深成反比,NA值增大,视场宽度与工作距离都会相应地变小。

2.分辨率显微镜的分辨率是指能被显微镜清晰区分的两个物点的最小间距,又称"鉴别率"。

其计算公式是σ=λ/NA 式中σ为最小分辨距离;λ为光线的波长;NA为物镜的数值孔径。

可见物镜的分辨率是由物镜的NA值与照明光源的波长两个因素决定。

NA值越大,照明光线波长越短,则σ值越小,分辨率就越高。

要提高分辨率,即减小σ值,可采取以下措施(1)降低波长λ值,使用短波长光源。

(2)增大介质n值以提高NA值(NA=nsinu/2)。

(3)增大孔径角u值以提高NA值。

(4)增加明暗反差。

3.放大率和有效放大率由于经过物镜和目镜的两次放大,所以显微镜总的放大率Γ应该是物镜放大率β和目镜放大率Γ1的乘积:Γ=βΓ1 显然,和放大镜相比,显微镜可以具有高得多的放大率,并且通过调换不同放大率的物镜和目镜,能够方便地改变显微镜的放大率。

放大率也是显微镜的重要参数,但也不能盲目相信放大率越高越好。

显微镜放大倍率的极限即有效放大倍率。

分辨率和放大倍率是两个不同的但又互有联系的概念。

有关系式:500NA<Γ<1000NA 当选用的物镜数值孔径不够大,即分辨率不够高时,显微镜不能分清物体的微细结构,此时即使过度地增大放大倍率,得到的也只能是一个轮廓虽大但细节不清的图像,称为无效放大倍率。

反之如果分辨率已满足要求而放大倍率不足,则显微镜虽已具备分辨的能力,但因图像太小而仍然不能被人眼清晰视见。

所以为了充分发挥显微镜的分辨能力,应使数值孔径与显微镜总放大倍率合理匹配。

4.焦深焦深为焦点深度的简称,即在使用显微镜时,当焦点对准某一物体时,不仅位于该点平面上的各点都可以看清楚,而且在此平面的上下一定厚度内,也能看得清楚,这个清楚部分的厚度就是焦深。

焦深大, 可以看到被检物体的全层,而焦深小,则只能看到被检物体的一薄层,焦深与其他技术参数有以下关系:(1)焦深与总放大倍数及物镜的数值孔径成反比。

(2)焦深大,分辨率降低。

由于低倍物镜的景深较大,所以在低倍物镜照相时造成困难。

在显微照相时将详细介绍。

5.视场直径(Field Of View)观察显微镜时,所看到的明亮的圆形范围叫视场,它的大小是由目镜里的视场光阑决定的。

视场直径也称视场宽度,是指在显微镜下看到的圆形视场内所能容纳被检物体的实际范围。

视场直径愈大,愈便于观察。

有公式 F=FN/β式中F: 视场直径,FN:视场数(Field Number, 简写为FN,标刻在目镜的镜筒外侧),β:物镜放大率。

由公式可看出:(1)视场直径与视场数成正比。

(2)增大物镜的倍数,则视场直径减小。

因此,若在低倍镜下可以看到被检物体的全貌,而换成高倍物镜,就只能看到被检物体的很小一部份。

6.覆盖差显微镜的光学系统也包括盖玻片在内。

由于盖玻片的厚度不标准,光线从盖玻片进入空气产生折射后的光路发生了改变,从而产生了相差,这就是覆盖差。

覆盖差的产生影响了显微镜的成响质量。

国际上规定,盖玻片的标准厚度为0.17mm,许可范围在0.16-0.18mm,在物镜的制造上已将此厚度范围的相差计算在内。

物镜外壳上标的0.17,即表明该物镜所要求的盖玻片的厚度。

7.工作距离WD 工作距离也叫物距,即指物镜前透镜的表面到被检物体之间的距离。

镜检时,被检物体应处在物镜的一倍至二倍焦距之间。

因此,它与焦距是两个概念,平时习惯所说的调焦,实际上是调节工作距离。

在物镜数值孔径一定的情况下,工作距离短孔径角则大。

数值孔径大的高倍物镜,其工作距离小。

(四)物镜物镜是显微镜最重要的光学部件,利用光线使被检物体第一次成象,因而直接关系和影响成象的质量和各项光学技术参数,是衡量一台显微镜质量的首要标准。

物镜的结构复杂,制作精密,由于对象差的校正,金属的物镜筒内由相隔一定距离并被固定的透镜组组合而成。

物镜有许多具体的要求,如合轴,齐焦。

齐焦既是在镜检时,当用某一倍率的物镜观察图象清晰后,在转换另一倍率的物镜时,其成象亦应基本清晰,而且象的中心偏离也应该在一定的范围内,也就是合轴程度。

齐焦性能的优劣和合轴程度的高低是显微镜质量的一个重要标志,它是与物镜的本身质量和物镜转换器的精度有关。

现代显微物镜已达到高度完善,其数值孔径已接近极限,视场中心的分辨率与理论值之区别已微乎其微。

但继续增大显微物镜视场与提高视场边缘成象质量的可能性仍然存在,这种研究工作,至今仍在进行。

显微物镜与目镜在参于成象这点上是有区别的。

物镜是显微镜最复杂和最重要的部分,在宽光束中工作(孔径大),但这些光束与光轴的倾角较小(视场小);目镜在窄光束中工作,但其倾角大(视场大)。

当计算物镜与目镜,在消除象差上有很大差别。

与宽光束有关的象差是球差、慧差以及位置色差;与视场有关的象差是象散、场曲、畸变以及倍率包差。

相关文档
最新文档