分式方程教学设计1北师大版(优秀教案)

合集下载

新北师大版八年级数学下册第5章《分式与分式方程》教案

新北师大版八年级数学下册第5章《分式与分式方程》教案

新北师大版八年级数学下册第5章《分式与分式方程》教案教学目标学习分式及分式的概念、性质和运算法则,并掌握简单分式的变形和分式方程的解法。

教学重难点重点•分式的概念、性质和运算法则•分式的变形•分式方程的解法难点•分式方程的解法教学过程导入(10分钟)1.调查课前练习,询问学生对分式的了解和学习情况。

2.引入分式的概念,让学生举例说明分式的实际应用。

提高课堂参与度(10分钟)1.通过多项式的例子,引入分式。

2.分小组讨论分式与多项式的联系和区别,并展示讨论成果。

理论课(30分钟)1.分式的定义和性质。

2.分式的约分、通分和加减法。

3.分式与整式的加减法。

实践课(50分钟)1.分式的变形:分解、合并及简化。

2.分式方程的概念及解法。

3.通过实例让学生掌握分式方程的解法。

课堂总结(10分钟)1.小结本节课的重点内容。

2.引导学生对本节课的学习成果进行分享。

作业布置1.抄写本节课的重点内容以及实例。

2.完成课后练习。

教学方法1.演示法2.分组讨论3.实践操作4.个别指导教学资源1.教材:新北师大版八年级数学下册2.PPT:分式与分式方程参考文献1.《初中数学》2.《分式与分式方程教育同行》教学反思本节课通过实例和讨论等方式,激发了学生的学习兴趣,真正意义上实现了知识与实践相结合。

在教学过程中,我进一步提高了自己的教学能力,尤其是关注学生的理解进程,帮助学生掌握分式方程的解法,提高其数学素养。

北师版八年级数学分式方程教案

北师版八年级数学分式方程教案

教学目标:1.理解什么是分式方程;2.能够解分式方程;3.能够应用分式方程解决实际问题。

教学重点:1.理解分式方程的含义;2.掌握解分式方程的方法。

教学难点:1.运用分式方程解决实际问题。

教学准备:教学课件、白板、黑板、笔、课后练习题。

教学过程:一、引入新知(5分钟)1.学生回顾一下分式的定义和运算规则;2.引导学生思考,如果等式中包含了分式,我们该如何解决?二、探究分式方程(10分钟)1.通过例题引导学生理解什么是分式方程;2.解释分式方程和整式方程的区别;3.回顾一下如何解整式方程,并与解分式方程进行对比。

三、解分式方程的基本方法(25分钟)1.第一种方法:通分法;a)通过实例引导学生掌握通分法的步骤;b)练习几道简单的例题。

2.第二种方法:消去法;a)通过实例引导学生掌握消去法的步骤;b)练习几道简单的例题。

3.学生通过比较两种方法的异同以及适用情况,总结解分式方程的基本方法。

四、应用分式方程解决实际问题(30分钟)1.引导学生分析一些实际问题,如人工成本、水泥用量等;3.学生尝试自己解决一些实际问题。

五、总结与拓展(5分钟)1.对本节课的内容进行思考,学生主动回答问题;2.对分式方程的解法进行总结;3.作业布置:完成课后练习题。

教学延伸:1.分组讨论:学生分成小组,每组选择一个实际问题,并设计自己的分式方程;2.拓展训练:提供一些难度较高的分式方程,让学生进行解答。

教学反思:本节课通过引入新知、探究分式方程、解分式方程的基本方法以及应用分式方程解决实际问题几个环节,全面而系统地讲解了分式方程的知识点。

通过让学生参与课堂讨论和练习,培养了他们解决实际问题的能力。

同时,通过拓展训练,激发了学生的思维和兴趣。

北师大版数学八年级下册5.4《分式方程》教学设计1

北师大版数学八年级下册5.4《分式方程》教学设计1

北师大版数学八年级下册5.4《分式方程》教学设计1一. 教材分析北师大版数学八年级下册5.4《分式方程》是学生在学习了分式、分式运算、函数等知识的基础上学习的。

本节课主要让学生掌握分式方程的定义、解法以及应用。

通过本节课的学习,学生能够理解和掌握分式方程的概念,熟练运用解法求解分式方程,并能够将分式方程应用到实际问题中。

二. 学情分析学生在学习本节课之前,已经掌握了分式的基本知识,对分式运算有一定的了解。

但部分学生对分式的理解不够深入,解题思路不够清晰,需要在解题过程中进行引导。

此外,学生在解决实际问题时,往往不能将数学知识与实际问题有效结合,需要通过实例进行启发。

三. 教学目标1.理解分式方程的定义,掌握分式方程的解法。

2.能够将分式方程应用到实际问题中,提高解决问题的能力。

3.培养学生的逻辑思维能力,提高学生的数学素养。

四. 教学重难点1.分式方程的定义及解法。

2.将分式方程应用到实际问题中。

五. 教学方法采用问题驱动法、案例教学法、小组合作学习法等,引导学生主动探究、积极思考,提高学生的学习兴趣和参与度。

六. 教学准备1.准备相关的学习材料,如教材、课件、练习题等。

2.准备实际问题案例,用于引导学生应用分式方程解决实际问题。

七. 教学过程1.导入(5分钟)通过一个实际问题引出分式方程的概念,激发学生的学习兴趣。

2.呈现(10分钟)讲解分式方程的定义,演示解法,让学生理解并掌握分式方程的基本知识。

3.操练(10分钟)让学生独立解决一些简单的分式方程,检验学生对知识点的掌握情况。

4.巩固(10分钟)针对学生在操练过程中遇到的问题,进行讲解和辅导,使学生进一步巩固知识点。

5.拓展(10分钟)让学生尝试解决一些较复杂的分式方程,提高学生的解题能力。

6.小结(5分钟)总结本节课所学内容,强调分式方程的解法和应用。

7.家庭作业(5分钟)布置一些相关的练习题,巩固所学知识。

8.板书(5分钟)整理本节课的主要知识点和解题方法,方便学生复习。

北师大版八年级数学下册54.《分式方程》教学设计

北师大版八年级数学下册54.《分式方程》教学设计
2.创设轻松愉快的学习氛围,鼓励学生积极参与,培养学生的自信心。
3.强化学生的问题意识,引导学生善于发现、提出和解决问题。
4.突出学生的主体地位,教师扮演引导者、组织者和合作者的角色,促进师生互动、生生互动。
5.注重培养学生的综合素质,将分式方程知识与实际生活相结合,提高学生的应用能力。
四、教学内容与过程
4.小组成果展示:每组选派一名代表进行成果展示,分享解题过程和经验。
(四)课堂练习
1.练习题设计:设计难易程度不同的练习题,涵盖分式方程的各种类型,使学生在练习中巩固所学知识。
2.学生独立完成:要求学生在规定时间内独立完成练习题,提高学生的解题能力。
3.解题指导:针对学生练习中出现的共性问题,进行集中讲解,帮助学生突破难点。
(一)导入新课
1.教学活动设计:以学生熟悉的生活场景为背景,提出一个关于速度的问题。例如:“小明和小华同时从同一地点出发,小明以4千米/小时的速度跑步,小华以5千米/小时的速度骑自行车,问他们分别在多长时间后相遇?”
2.引导学生思考:这个问题中涉及到哪些数学知识?能否用我们学过的方程来解决这个问题?
7.课后作业与反思:布置适量的课后作业,要求学生独立完成,并进行自我反思,总结解题过程中的优点和不足。
8.教学评价:采用多元化评价方式,关注学生的知识掌握程度、解题能力、合作意识等方面,全面评估学生的学习效果。
在教学过程中,教师应注重以下方面:
1.关注学生个体差异,因材施教,使每位学生都能在原有基础上得到提高。
4.布置课后作业:布置适量的课后作业,要求学生独立完成,并进行自我反思。
五、作业布置
为了巩固学生对分式方程知识的掌握,培养其运用所学解决实际问题的能力,特布置以下作业:

北师大版八年级数学下册54.《分式方程》优秀教学案例

北师大版八年级数学下册54.《分式方程》优秀教学案例
在教学过程中,教师应以学生为主体,注重启发式教学,引导学生主动探究、积极思考,通过小组合作、讨论交流等方式,让学生在实践中学习、在学习中思考,提高学生的数学思维能力和创新能力。同时,教师还应关注学生的个体差异,给予每个学生充分的关注和指导,使他们在原有基础上得到提高和发展。
二、教学目标
(一)知识与技能
2.设计具有挑战性、开放性的数学问题,引导学生进行小组讨论,培养学生的探究精神和创新能力。
3.教师应关注小组合作的过程,及时给予指导和评价,激发学生的学习兴趣,提高学生的合作效果。
4.鼓励学生互相帮助、互相学习,培养学生的团队精神,提高学生的人际沟通能力。
(四)总结归纳
1.教师应引导学生进行自我反思,总结分式方程的学习过程和方法,提高学生的自我认知能力。
2.设计具有启发性的问题,引导学生自主发现分式方程的基本性质和解法,提高学生的数学思维能力。
3.教师应关注学生的个体差异,给予每个学生充分的关注和指导,使他们在原有基础上得到提高和发展。
4.鼓励学生提出问题,培养学生的质疑精神,引导学生学会独立思考和解决问题。
(三)小组合作
1.教师应组织学生进行小组合作学习,让学生在讨论、交流中共同解决问题,提高学生的合作能力。
2.设计具有启发性的问题,引导学生自主发现分式方程的基本性质和解法,提高学生的数学思维能力。
3.教师应关注学生的个体差异,给予每个学生充分的关注和指导,使他们在原有基础上得到提高和发展。
4.鼓励学生提出问题,培养学生的质疑精神,引导学生学会独立思考和解决问题。
(三)学生小组讨论
1.教师应组织学生进行小组合作学习,让学生在讨论、交流中共同解决问题,提高学生的合作能力。
2.设计具有挑战性的数学问题,让学生在解决问题的过程中自然地引入分式方程,感受分式方程的意义。

北师大版数学八年级下册5.4《分式方程》(教案)

北师大版数学八年级下册5.4《分式方程》(教案)
在教学过程中,教师需要针对这些重点和难点内容,设计具有针对性的教学活动,通过讲解、示范、练习和反馈,帮助学生透彻理解分式方程的知识点,并能够熟练应用。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《分式方程》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要按比例分配或者求解某个未知数的问题?”(如购物打折、行程问题等)这个问题与我们将要学习的分式方程密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索分式方程的奥秘。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解分式方程的基本概念。分式方程是含有分式的方程,其特点是方程中至少有一个未知数出现在分母中。分式方程在解决实际问题时具有重要作用。
2.案例分析:接下来,我们来看一个具体的案例。比如,某商店进行打折活动,原价与折后价之间的关系可以表示为一个分式方程。通过求解这个方程,我们可以找出折后价。
五、教学反思
今天我们在课堂上学习了分式方程,整体来看,学生们对于这个新知识的接受程度还是不错的。但在教学过程中,我也发现了一些问题,值得我们共同反思。
首先,我发现有些学生在理解分式方程的定义时,还是有些困难。他们对于分母不能为零的条件理解不够深入,导致在后续解题过程中出现了一些不必要的错误。针对这个问题,我考虑在今后的教学中,可以多举一些生活中的实例,让学生更直观地理解分式方程的含义,从而加深他们对这个知识点的理解。
-分式方程的应用:掌握分式方程在实际问题中的建模过程,以及如何运用分式方程解决具体问题。
-例题解析:通过典型例题的讲解,强化学生对分式方程求解步骤的理解。
举例:重点讲解如何将分式方程$\frac{2}{x-3} = \frac{1}{x+2}$转化为整式方程,并求解得到$x$的值。

2024年春八年级数学下册第5章分式与分式方程1认识分式教案新版北师大版

2024年春八年级数学下册第5章分式与分式方程1认识分式教案新版北师大版

1 相识分式第1课时 分式的有关概念教学目标 一、基本目标1.了解分式的概念,明确分式与整式的区分.2.经验用字母表示现实情境中数量关系的过程,体会分式的模型思想,进一步发展符号感.3.通过教材土地沙化问题的情境,体会爱护人类生存环境的重要性. 二、重难点目标 【教学重点】 分式的概念. 【教学难点】分式有(无)意义的条件,分式值为0的条件. 教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P 108~P109的内容,完成下面练习. 【3 min 反馈】1.一般地,用A 、B 表示两个整式,A ÷B 可以表示成AB的形式.假如B 中含有字母,那么称A B为分式,其中A 称为分式的分子,B 称为分式的分母.对于随意一个分式,分母都不能为零.2.分式有意义的条件是分母不为0.分式的值为0的条件是分子等于0,且分母不等于0.3.下列各式中,哪些是分式?①2b -s ;②3000300-a ;③27;④v s ;⑤s 32;⑥2x 2+15;⑦45b +c ;⑧-5;⑨3x 2-1;⑩x 2-xy +y 22x -1;⑪5x -7.解:分式有①②④⑦⑩.4.当x 取何值时,下列分式无意义?当x 取何值时,下列分式的值等于0? (1)3-x x +2;(2)x +53-2x. 解:(1)当x +2=0时,即x =-2时,分式3-x x +2无意义.当x =3时,分式3-x x +2的值等于0.(2)当3-2x =0时,即x =32时,分式x +53-2x 无意义.当x =-5时,分式x +53-2x 的值等于0.环节2 合作探究,解决问题 活动1 小组探讨(师生互学)【例1】当x 取何值时,下列分式有意义?当x 取何值时,下列分式无意义?当x 取何值时,下列分式值为零?(1)x +1x -1 ; (2)x -2x 2-1; (3)x 2-1x 2-x. 【互动探究】(引发学生思索)依据分式有、无意义所满意的条件进行推断.分式的值为0,则分母不为0,且分子等于0.【解答】(1)有意义:x -1≠0,即x ≠1. 无意义:x -1=0,即x =1.值为0:x +1=0且x -1≠0,∴x =-1. (2)有意义:x 2-1≠0,即x ≠±1. 无意义:x 2-1=0,即x =±1. 值为0:x -2=0且x 2-1≠0,∴x =2. (3)有意义:x 2-x ≠0,即x ≠0且x ≠1. 无意义:x 2-x =0,即x =0或x =1. 值为0:x 2-1=0且x 2-x ≠0,即x =-1.【互动总结】(学生总结,老师点评)分式有意义的条件:分式的分母不能为0.分式无意义的条件:分式的分母等于0.分式值为0的条件:分式的分子等于0,但分母不能等于0.分式的值为0肯定是在有意义的条件下成立的.活动2 巩固练习(学生独学) 1.若代数式1x -1+x 有意义,则实数x 的取值范围是( D ) A .x ≠1 B .x≥0 C .x ≠0D .x≥0且x≠12.若分式2x -13x +5有意义,则x 的取值范围是x≠-53.3.若分式x 2-1x +1的值为0,则x 的值是1.4.对于分式x -m -nm -2n +3x ,已知当x =-3时,分式的值为0;当x =2时,分式无意义.试求m 、n 的值.解:∵当x =-3时,分式的值为0,∴⎩⎪⎨⎪⎧-3-m -n =0,m -2n -9≠0,即⎩⎪⎨⎪⎧m +n =-3,m -2n≠9.又∵当x =2时,分式无意义, ∴m -2n +3×2=0,即m -2n =-6.解方程组⎩⎪⎨⎪⎧m +n =-3,m -2n =-6,得⎩⎪⎨⎪⎧m =-4,n =1.活动3 拓展延长(学生对学)【例2】视察下面一列分式:x 3y ,-x 5y 2,x 7y 3,-x9y 4,….(其中x≠0)(1)依据上述分式的规律写出第6个分式;(2)依据你发觉的规律,试写出第n(n 为正整数)个分式,并简洁说明理由.【互动探究】(1)依据已知分式的分子与分母的次数与系数关系得出答案;(2)利用(1)中数据的变更规律得出答案.【解答】(1)视察各分式的规律可得,第6个分式为-x13y 6.(2)由已知可得:第n(n 为正整数)个分式为(-1)n +1×x 2n +1yn.理由:∵分母的底数为y ,次数是连续的正整数,分子底数是x ,次数是连续的奇数,且第偶数个分式为负,∴第n(n 为正整数)个分式为(-1)n +1×x 2n +1yn.【互动总结】(学生总结,老师点评)此题主要考查了分式的定义以及数字变更规律,得出分子与分母的变更规律是解题关键.环节3 课堂小结,当堂达标 (学生总结,老师点评)1.分式的概念:一般地,假如A 、B 表示两个整式,并且B 中含有字母,那么式子AB 叫做分式.2.分式AB 有无意义的条件:当B≠0时,分式有意义;当B =0时,分式无意义.3.分式AB 值为0的条件:当A =0,B≠0时,分式的值为0.练习设计请完成本课时对应练习!第2课时 分式的基本性质教学目标 一、基本目标1.能正确理解和运用分式的基本性质.2.通过与分数的基本性质相比较,归纳得出分式的基本性质,体验类比的思想方法. 二、重难点目标 【教学重点】理解分式的基本性质,会进行分式的化简. 【教学难点】敏捷应用分式的基本性质将分式变形. 教学过程环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P 110~P112的内容,完成下面练习. 【3 min 反馈】1.分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值不变.这一性质可以用式子表示为:b a =b ·m a ·m ,b a =b ÷ma ÷m(m ≠0).2.把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.分子和分母已没有公因式,这样的分式称为最简分式.化简分式时,通常要使结果成为最简分式或整式.3.分式的分子、分母及分式本身的三个符号中,随意变更其中两个的符号,分式的值不变;若只变更其中一个或三个全变号,则分式的值变成原分式值的相反数.4.下列等式的右边是怎样从左边得到的?(1)a 2b =ac 2bc (c ≠0); (2)x 3xy =x 2y . 解:(1)由c ≠0,知a 2b =a ·c 2b ·c =ac 2bc .(2)由x ≠0,知x 3xy =x 3÷x xy ÷x =x 2y.5.约分:(1)a 2bc ab ; (2)-32a 3b 2c 24a 2b 3d. 解:(1)公因式为ab ,所以a 2bc ab=ac .(2)公因式为8a 2b 2,所以-32a 3b 2c 24a 2b 3d =-4ac3bd.环节2 合作探究,解决问题活动1 小组探讨(师生互学)【例1】不变更分式0.2x +12+0.5x 的值,把它的分子、分母的各项系数都化为整数,所得结果正确的为( )A ..2x +12+5xB ..x +54+xC .2x +1020+5xD .2x +12+x【互动探究】(引发学生思索)利用分式的基本性质,把0.2x +12+0.5x 的分子、分母都乘10,得2x +1020+5x . 【答案】C【互动总结】(学生总结,老师点评)视察分式的分子和分母,要使分子与分母中各项系数都化为整数,只需依据分式的基本性质让分子和分母同乘某一个数即可.【例2】约分:(1)-5a 5bc 325a 3bc 4; (2)x 2-2xyx 3-4x 2y +4xy2.【互动探究】(引发学生思索)要约分须要先找分子、分母的公因式,如何确定公因式呢? 【解答】(1)-5a 5bc 325a 3bc 4=5a 3bc 3-a 25a 3bc 3·5c =-a25c . (2)x 2-2xy x 3-4x 2y +4xy 2=x x -2yx x -2y2=1x -2y. 【互动总结】(学生总结,老师点评)约分的步骤;(1)找公因式.当分子、分母是多项式时应先分解因式;(2)约去分子、分母的公因式.活动2 巩固练习(学生独学)1.把分式2x2x -3y 中的x 和y 都扩大为原来的5倍,那么分式的值( B )A .扩大为原来的5倍B .不变C .缩小为原来的15D .扩大为原来的52倍2.将分式x2-y x 5+y 3的分子与分母中各项系数化为整数,结果是15x -30y6x +10y .3.约分:(1)-15a +b 2-25a +b ; (2)m 2-3m9-m2.解:(1)3a +b5.(2)-mm +3.4.先约分,再求值:(1)3m +n9m 2-n2,其中m =1,n =2; (2)x 2-4y 2x 2-4xy +4y 2,其中x =2,y =4. 解:(1)3m +n 9m 2-n 2=13m -n =13×1-2=1.(2)x 2-4y 2x 2-4xy +4y 2=x +2y x -2y x -2y 2=x +2y x -2y =2+2×42-2×4=-53. 活动3 拓展延长(学生对学)【例3】若x 2=y 3=z 4≠0,求x -y -z 3x +2y -z的值.【互动探究】因为条件是以比相等的形式出现,所以考虑设比值为k ,把待求式转化为关于k 的式子求值.【解答】设x 2=y 3=z 4=k (k ≠0),x =2k ,y =3k ,z =4k ,∴x -y -z 3x +2y -z =2k -3k -4k 6k +6k -4k =-5k8k=-58.【互动总结】(学生总结,老师点评)当数学问题中出现或隐含比值相等的条件时,设比值为一个新字母,把问题转化为新字母的问题求解.环节3 课堂小结,当堂达标 (学生总结,老师点评)1.分式的基本性质:分式的分子与分母都乘(或除以)同一个不为零的整式,分式的值不变.2.符号法则:分式的分子、分母及分式本身,随意变更其中两个符号,分式的值不变;若只变更其中一个符号或三个全变号,则分式的值变成原分式值的相反数.练习设计请完成本课时对应练习!。

北师大版八年级下册数学5.4分式方程(教案)

北师大版八年级下册数学5.4分式方程(教案)
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解分式方程的基本概念。分式方程是含有分式的方程,其中分母不为零。它在解决涉及比例、速率等问题时非常重要。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了分式方程在解决速度与时间关系问题中的应用,以及它如何帮助我们计算出未知数。
3.重点难点解析:在讲授过程中,我会特别强调分式方程的解法和验根的重要性。对于去分母、解整式方程等难点部分,我会通过举例和步骤讲解来帮助大家理解。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了分式方程的基本概念、解法步骤和实际应用。通过实践活动和小组讨论,我们加深了对分式方程的理解。我希望大家能够掌握这些知识点,并在解决实际问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的分式方程教学过程中,我发现学生们对于分式方程的概念和特点掌握得比较快,但在具体的解题过程中,仍然存在一些问题。首先,部分同学在去分母这一步骤上容易出错,特别是在处理复杂分式时,容易漏项或错项。在今后的教学中,我需要加强对这一部分学生的个别指导,帮助他们熟练掌握去分母的方法。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与分式方程相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示分式方程在实际情境中的应用。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
-解整式方程的技巧:在得到整式方程后,学生可能在解方程时遇到困难。
-举例:讲解如何解决含有绝对值、平方项的整式方程,如解$x^2-5x+6=0$。
-验根的重要性:学生可能忽视验根的步骤,导致错误答案。

北师大版数学八下5.4《分式方程(第一课时)》 教案

北师大版数学八下5.4《分式方程(第一课时)》 教案

分式方程第一课时一、教学目标:(1)通过对实际问题的分析,感受分式方程刻画现实世界的有效模型的意义.(2)通过观察,归纳分式方程的概念.(3)体会分式方程到整式方程的转化思想.(4)掌握分式方程的解法二、教学重点:掌握分式方程的概念和分式方程的解法.三、教学难点:利用分式的基本性质、等式的基本性质将等式方程转化为一元一次方程去解,并体会两者的联系与区别.四、教学过程:(一)回顾与思考1. 什么叫做一元一次方程?只含有一个未知数,并且未知数的指数为1,这样的方程叫做一元一次方程.2. 下列方程哪些是一元一次方程?(1)3x-5=3 (2)x+2y=5 5)3(2=−x x 1513)4(=+−x x3.解一元一次方程的步骤有哪些?去分母、去括号、移项、合并同类项、系数化为1. 4. 请解方程: 解: 去分母,得 5x-3(x+1)=15去括号,得 5x-3x-3=15移项,得 5x-3x=15+3合并同类项, 得 2x=18系数化为1,得 x=9经检验:x=9是原方程的根.1513=+−x x(二)新知探究1.小麦实验田问题有两块面积相同的小麦试验田,第一块使用原品种,第二块使用新品种,分别收获小麦9000kg 和15000kg.已知第一块试验田每公顷的产量比第二块少3000kg ,分别求出这两块试验田每公顷的产量.你能找出这一问题中的所有等量关系吗?(1)第一块面积=第二块面积,(2)每公顷的产量土地面积总产量=(3)第一块实验田每公顷的产量=+kg 3000第二块试验田每公顷的产量如果设第一块实验田每公顷的产量为xkg ,那么第二块试验田每公顷的产量是(x+3000)kg.根据题意,可得方程:2.高速公路问题 从甲地到乙地有两条长路:一条是全长600km 的普通公路,另一条是全长480km 的高速公路.某客车在高速公路上行驶的平均速度比在普通公路上快45h km /,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间.这一问题中有哪些等量关系?如果设客车由高速公路从甲地到乙地所需的时间为xh ,那么它由普通公路从甲地到乙地所需的时间为2x h .根据题意,可得方程452600480=−xx 3.捐款问题(这个题目不要求学生讨论.让学生独立完成.)为了帮助遭受自然灾害的地区重建家园.某学校号召同学们自愿捐款.已知第一次捐款总额为4800元,第二次捐款总额为5000元,第二次捐款人数比第一次多20人,3000150009000+=x x而且两次人均捐款恰好相等.如果设第一次捐款人数为x 人,那么x 满足怎样的方程?(2050004800+=x x ) 讨论:上面的问题中出现了方程:, , 它们有什么共同特点?(这些方程的分母中都含有未知数.) 归纳:分式方程的定义:分母中含有未知数的方程叫做分式方程(fractionai equation).我们以前学习的方程都是整式方程,它们的未知数不出现在分母中.随堂练习:1.下列关于x 的方程中,其中哪几个是分式方程?2.下列方程中哪些是分式方程?(三)再探新知——分式方程的解法1.探究: 你能求出前面问题中所列的方程 的解吗?请类比刚才解方程 的步骤试一试. 解:去分母,方程两边同乘x(x+3000)得9000(x+3000)=15000x去括号,得3000150009000+=x x 452600480=−x x 2050004800+=x x 12131)1(=−−+x x x a x =+−22)2(11)1()3(2=−−x x 2112)4(=−+x x 0312)3(432)2(3312)1(=−+=−+=−x •xx x x 1)6(11)5(14943423)4(2==−−−=++y x •x x •x x x x •3000150009000+=x x 1513=+−x x9000x+27000000=15000x移项,得9000x-15000x=-27000000合并同类项,得-6000x=-27000000系数化为1,得x=4500经检验:x=4500是原方程的根.2.思考:根据解方程过程总结解分式方程一般需要经过哪几步?①.转化(去分母):分式方程化为整式方程②.求解:解整式方程③.检验:检验由这个整式方程所得的根是不是原方程的根.④.写根3.归纳:上述解分式方程的过程,实质上是将方程的两边乘以同一个整式,约去分母,把分式方程转化为整式方程来解.所乘的整式通常取方程中出现的各分式的最简公分母. 例1 解方程xx 321=− 解:方程两边都乘以x(x-2),得x=3(x-2)解这个方程,得x=3检验:将x=3带入原方程,得左边=1=右边所以,x=3是原方程的根.例2 解方程452600480=−xx (两种解法) 解: 方程两边都乘以2x ,得960-600=90x解这个方程,得x=4检验:将x=4代入原方程,得左边=45=右边所以,x=4是原方程的根.解法2: 原方程可化为:32032=−xx 方程两边都乘以x ,得32-20=3x解这个方程,得 x=4检验:将x=4代入原方程,得左边=45=右边所以,x=4是原方程的根.4.议一议:解分式方程 22121−−=−−x x x 时,小亮的解为2=x ,他的答案正确吗? 答:不正确, x=2不是原方程的根,因为它使得原方程的分母为零.5.归纳:①使得原方程的分母为零的根,我们称它为原方程的增根.产生增根的原因是,我们在等号的两边同乘了一个可能使分母为零的整式.所以解分式方程必须检验.②验根的方法:解分式方程进行检验的关键是:看所求得的整式方程的根是否使原分式方程中的分式的分母为零.有时为了简便起见,也可将它代入所乘的整式(即最简公分母),看它的值是否为零.如果为零,则为增根;如果不为零,则为原方程的根.补充例题:例3 解方程 41622222−=−+−+−x x x x x 解:方程两边同乘以(x+2)(x-2) ,得()()162222=+−−x x 解这个方程,得 x=-2检验:当 x=-2时, (x+2)(x-2) =0所以,x=-2是增根,原方程无解.例4 已知13−x 与14+−x 互为相反数,求x 的值. 解: ∵13−x 与 14+−x 互为相反数 ∴01413=+−+−x x 解之,得 x=7经检验: x=7是原分式方程的根.∴ x=7随堂练习:1.解方程:2.m 为何值时,方程012=−++x m x m 会产生增根. (四)课堂小结1.分式方程的定义:分母中含有未知数的方程叫做分式方程.2.解分式方程的步骤:转化(去分母)→求解→检验→写根.3.增根的定义:使得原方程的分母为零的根,我们称它为原方程的增根.4.产生增根的原因:我们在等号的两边同乘了一个可能使分母为零的整式.5.验根的方法: 解分式方程进行检验的关键是:看所求得的整式方程的根是否使原分式方程中的分式的分母为零. 为了简便起见,也可将它代入所乘的整式(即最简公分母),看它的值是否为零.如果为零,则为增根;如果不为零,则为原方程的根.(五)布置作业习题3.6第1、2、3题习题3.7第1题x x 413)1(=−1412)2(2−=−x x 423532)3(=−+−xx x。

北师大版八下《分式方程》word教案(3课时全)

北师大版八下《分式方程》word教案(3课时全)

3.4分式方程(第1课时)教学目标1.经历分式方程的概念,能将实际问题中的等量关系用分式方程表示,体会分式方程的模型作用.2.经历“实际问题-分式方程方程模型”的过程,发展学生分析问题、解决问题的能力,渗透数学的转化思想人体,培养学生的应用意识。

3.在活动中培养学生乐于探究、合作学习的习惯,培养学生努力寻找解决问题的进取心,体会数学的应用价值.教学重点:将实际问题中的等量关系用分式方程表示教学难点:找实际问题中的等量关系教学过程:情境导入:有两块面积相同的小麦试验田,第一块使用原品种,第二块使用新品种,分别收获小麦9000 kg和15000 kg。

已知第一块试验田每公顷的产量比第二块少3000 kg,分别求这两块试验田每公顷的产量。

你能找出这一问题中的所有等量关系吗?(分组交流)如果设第一块试验田每公顷的产量为x kg,那么第二块试验田每公顷的产量是________kg。

根据题意,可得方程___________________二、讲授新课从甲地到乙地有两条公路:一条是全长600 km的普通公路,另一条是全长480 km的高速公路。

某客车在高速公路上行驶的平均速度比在普通公路上快45 km/h,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半。

求该客车由高速公路从甲地到乙地所需的时间。

这一问题中有哪些等量关系?如果设客车由高速公路从甲地到乙地所需的时间为x h,那么它由普通公路从甲地到乙地所需的时间为_________h根据题意,可得方程______________________。

学生分组探讨、交流,列出方程.三.做一做:为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款。

已知第一次捐款总额为4800元,第二次捐款总额为5000元,第二次捐款人数比第一次多20人,而且两次人均捐款额恰好相等。

如果设第一次捐款人数为x人,那么x满足怎样的方程?四.议一议:上面所得到的方程有什么共同特点?分母中含有未知数的方程叫做分式方程分式方程与整式方程有什么区别?五、随堂练习(1)据联合国《2003年全球投资报告》指出,中国20XX 年吸收外国投资额达530亿美元,比上一年增加了13%。

《分式方程》公开课教学设计【北师大版八年级数学下册】

《分式方程》公开课教学设计【北师大版八年级数学下册】

《分式方程》教学设计教学目标1.能将实际问题中的等量关系用分式方程表示,体会分式方程的模型作用。

2.经历“实际问题——分式方程模型——求解——解释解的合理性”的过程。

教学重难点【教学重点】让学生掌握分式乘除法的法则及其应用。

【教学难点】分子、分母是多项式的分式的乘除法的运算。

课前准备教师准备课件、多媒体;学生准备;练习本;教学过程第一环节:回顾活动内容:1.列一元一次方程解应用题的一般步骤有哪些?2.列一元一次方程解下列应用题:某工人原计划13小时生产一批零件,后因每小时多生产10件,用12小时不但完成了任务,而且还比原计划多生产了60件,问原计划生产多少零件?活动目的:回顾列一元一次方程解应用题的一般步骤,引出新问题。

教学效果:首先请一位学生分析题中的已知条件和未知条件,列出题中所反应的等量关系式,再让所有学生列出方程并解出方程。

大部分学生依然记得列方程解应用题的基本方法,并能很快解出这一题。

只有小部分学生有些困难,在老师和同学的帮助下也能完成。

第二环节:练一练活动内容:解下列分式方程:xx 1803120=+ 活动目的:复习上节课内容:解分式方程,为本节课提供基础。

教学效果:经过上一节课的学习,学生都能熟练解分式方程。

但是部分学生没有先化简,方程两边应先除以60,再解方程,对于这一点老师应强调,因为实际应用题中的数据有时很大,如果不化简,会给计算带来麻烦。

第三环节:想一想活动内容:你能用所学过的知识和方法为下列应用题列出方程吗?(1).一列列车自2004年全国铁路第5次大提速后,速度提高了26千米/时。

现在该从甲站到乙站所用其所的时间比原来减少了1小时,已知甲、乙两站的路程是312千米,若设列车提速前的速度是x 千米/时,请根据题意列出方程。

(2)“华联”商厦进货员在苏州用80000元购进某品牌衬衫,后又在上海用176000元购进这种品牌衬衫,数量是从苏州购进的2倍,只是单价比苏州的贵4元,请问从苏州购进的衬衫每件多少元?活动目的:引导学生通过独立思考和小组讨论的形式,用所学过的列方程解应用题的一般方法去解决问题,鼓励学生大胆尝试。

北师大版八年级数学下册优秀教学案例5.4分式方程

北师大版八年级数学下册优秀教学案例5.4分式方程
2.学生在解决实际问题中运用分式方程的能力,以及团队合作、沟通表达等方面的发展。
3.学生对数学学科的兴趣、自信心及科学态度的培养。
六、教学反思
在教学过程中,要关注学生的个体差异,针对不同学生制定合适的教学策略,使每位学生都能在课堂上得到充分发展。同时,注重培养学生的数学思维,提高学生运用数学知识解决实际问题的能力。在教学评价方面,要关注学生的全面发展,既要关注学生的知识与技能,也要关注过程与方法、情感态度与价值观的培养。不断反思教学,调整教学策略,提高教学质量。
(三)小组合作
1.小组讨论:将学生分成若干小组,针对问题进行讨论,培养学生的团队协作能力和沟通能力。
2.分工合作:在解决分式方程的过程中,让学生分工合作,每个人都有明确的任务,提高工作效率。
3.分享与交流:小组成员将各自的研究成果进行分享,互相学习,共同提高。
(四)反思与评价
1.自我反思:让学生在课后对所学内容进行反思,总结自己的学习心得,发现自身不足,为下一步学习做好准备。
3.实际应用:让学生运用分式方程解决实际问题,培养学生的应用能力。
五、教学拓展
1.开展数学活动:组织数学竞赛、讲座等活动,激发学生学习兴趣,提高学生的数学素养。
2.家庭作业设计:结合学生实际情况,设计富有挑战性的家庭作业,让学生在课后进行思考和探索。
3.学科交叉:与其他学科相结合,如科学、信息技术等,让学生感受到数学的广泛应用。
2.同伴评价:学生之间相互评价,给出建设性意见,促进共同进步。
Hale Waihona Puke 3.教师评价:教师要对学生的学习情况进行评价,关注学生的知识掌握程度、思维发展水平、情感态度等方面,为下一步教学提供参考。
四、教学实践
1.课堂讲解:结合具体案例,讲解分式方程的解法,引导学生主动思考。

分式方程教学设计1北师大版(优秀教案)

分式方程教学设计1北师大版(优秀教案)

分式方程南郑县城关一中邓建丽总体说明本节共二个课时,它分为分式方程的认知,分式方程的解答,以及分式方程在实际问题中的应用。

彼此之间由浅入深。

是“实题——分式方程建模——求解——解释解的合理性”过程。

本章在前面几节陆续介绍了分式,分式的乘除,分式的加减,为本节解分式方程打下了扎实的基础。

同时应注意对学生进行过程性评价,要延迟评价学生运算的熟练程度,允许学生经过一定时间达到《标准》要求的目标,把评价重点放在对算理的理解上。

一、学生知识状况分析学生的知识技能基础:学生在小学以及七年级学过解应用题,以及在本章第三节所讲述的分式加减时所引入的问题的提出及问题的解答。

对实际问题进行建模有初步地了解,具备分析问题,处理问题的能力。

学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些问题建模活动,解决了一些简单的现实问题,感受到找出问题等量关系的作用。

获得了解决实际问题所必须的一些数学活动经验基础。

同时在以前的数学学习中学生已经经历了很多合作学习的经验,具备了一定的合作与交流的能力。

二、教学任务分析教学时要有意识地进一步提高学生的阅读理解能力,鼓励学生从多角度思考问题,解释所获得结果的合理性。

对于常用的数量关系,虽然学生以前大都接触过,但在本节的教学中仍要注意复习、总结,并抓住用两个已知量表示第三个量的表达式,引导学生举一反三,进一步提高分析问题与解决问题的能力。

为此,本课时的教学目标是:知识与技能:()通过对实际问题的分析,感受分式方程刻画现实世界的有效模型的意义。

()通过观察,归纳分式方程的概念。

()体会到分式方程作为实际问题的模型,能够根据实际问题建立分式方程的数学模型,并能归纳出分式方程的描述性定义。

过程与方法:采用的是尝试——归纳相结合的方法,根据开始提出的多个实际问题。

教师鼓励学生进行尝试,利用具体情境中的等量关系列出分式方程,归纳出分式方程的定义。

情感与态度:在建立分式方程的数学模型的过程中培养能力和克服困难的勇气,并从中获得成就感,提高解决问题的能力。

北师大版数学八下《分式方程》教案_1

北师大版数学八下《分式方程》教案_1
基础题有广度
提高题有梯度
(习题适应全体学生)见过程
(习题适应不同层次的学生)
教学过程



































教师活动(恰到好处的主导作用)
学生活动(体现充分的主体作用)
Ⅰ.提出问题,引入新课
[师]在上节课的几个问题,我们根据题意将具体实际的情境,转化成了数学模型——分式方程.但要使问题得到真正的解决,则必须设法解出所列的分式方程.
2.明确解分式方程验根的必要性
难、疑点
明确分式方程验根的必要性
教、学、法
学生在教师的引导下,探索分式方程是如何转化为整式方程,并发现解分式方程验根的必要性.
学情分析
本班学生解一元一次方程的基础较好,因此,本堂课“类比、化规”思想显得重要。应引导学生讨论分式方程的解法,强化学生的合作意识和交流能力。
精选课堂练习
新课标“分式方程(2)”公开课教案
教案书写教师:(宣和中学)齐亚国
授课教师:齐亚国
授课时间:
2010年6月
授课班级:八年级(5)班
教学课题
分式方程(2)




知识目标
1.解分式方程的一般步骤.
2.了解解分式方程验根的必要性
能力目标
1.通过具体例子,让学生独立探索方程的解法,经历和体会解分式方程的必要步骤.
再往下解,我们就可以像解一元一次方程一样,解出x.即x=3x-6(去括号)

北师大版八下《分式》word教案4篇

北师大版八下《分式》word教案4篇

北师大版八下《分式》word教案4篇第三章分式1.分式(一)[教学目标]1.认知目标:了解分式的概念,理解分式有意义与无意义及其判断。

2.技能目标:会判断何时分式有意义,何时分式的值为零;会用分式表示实际问题的数量关系,会求分式的值。

[教学重点]分式的有关概念。

[教学难点]理解分数在任何情况下都没有意义;如何确定分数何时有意义。

【教具】【教学过程】第一环节自制课件、投影仪等知识准备前面我们学习了整式,请同学们举几个例子,(学生举例)(或教师准备,下列式子中那些是整式?a,-3x2y3,5x-1,x2+xy+y2,,x?y,,m2x?3y)34.我们之前学过积分形式,并且知道一些数量关系可以用积分形式来表示。

问题:所有的数量关系都能用整数表示吗?第二环节情景引入问题情景(1):面对当前严重的土地荒漠化问题,某县决定分期分批进行治沙造林。

项目一期计划在一定时间内固沙造林2400公顷。

每月实际固沙造林面积比原计划增加30公顷。

因此,原计划任务提前四个月完成。

最初计划每月固沙造林多少公顷?这一问题中有哪些等量关系?如果设原计划每月固沙造林x公顷,那么原计划完成一期工程需要个月,实际完成一期工程用了个月。

根据题意,可得方程.问题场景(2):正n形多边形的每个内角为度。

问题场景(3):新华书店有一批库存图书,其中一本原价为每册a元,现降价x元销售,当这种图书的库存全部售出时,其销售额为b元.降价销售开始时,新华书店这种图书的库存量是多少?活动目的:让学生进一步体验在实际问题中探索数量关系的过程;通过问题场景,让学生初步感受分式是解决问题的一种模型;体会分式的意义,发展符号感。

第三个环节是独立探索活动内容:在以小组的形式讨论分数之后,得到分数的概念,并认识到分数的意义。

讨论内容:对前面出现的代数式如下,它们有什么共同特征?它们与整式有什么不同?活动目的:24002400(n?2)?180b,,,xx?3na?x通过观察、归纳、总结出整式与分式的异同,从而得出分式的概念。

《分式方程第1课时》 示范公开课教学设计【部编北师大版八年级数学下册】

《分式方程第1课时》 示范公开课教学设计【部编北师大版八年级数学下册】

5.4《分式方程》教学设计第1课时一、教学目标1.能将实际问题中的等量关系用分式方程表示,体会分式方程的模型作用.2.经历探索分式方程的概念的过程,明确可化为一元一次方程的分式方程与一元一次方程的联系与区别.二、教学重点及难点重点:能将实际问题中的等量关系用分式方程表示,体会分式方程的模型作用.难点:明确可化为一元一次方程的分式方程与一元一次方程的联系与区别.三、教学用具多媒体课件四、教学过程【情境导入】问题:甲乙两地相距1400 km,乘高铁列车从甲地到乙地比乘特快列车少用9 h,已知高铁列车的平均行驶速度是特快列车的2.8倍.(1)你能找出这一问题中的所有等量关系吗?(2)如果设特快列车的平均行驶速度为x km/h,那么x满足怎样的方程?(3)如果设小明乘高铁列车从甲地到乙地需y h,那么y满足怎样的方程?答案:(1)等量关系包括:乘高铁列车的时间+9 h=乘特快列车的时间;高铁列车的平均行驶速度=2.8×特快列车的平均行驶速度;速度×时间=路程.(2)1400140092.8x x-=;(3)140014002.89y y=⨯+;设计意图:学生亲身经历的实际问题引导学生思考发现问题,回忆列方程解应用题的步骤,自然引入新课.【探究新知】分式方程的概念1.做一做:为了帮助受灾地区重建家园,某学校号召同学们自愿捐款.已知初二年级捐款总额为4 800元,初一年级捐款总额为5 000元,初一年级捐款人数比初二年级多20人,而且两年级人均捐款额恰好相等.如果设初二年级有x 人,那么x 应满足怎样的方程?我们可以借助表格分析题目中的数量关系,请你填出表格中的空白:答案:48005000+20x x =. 2.想一想:教师提出问题:列方程的步骤是什么?引导学生归纳列方程的基本思维步骤:一审:审清题意,弄清已知量与未知量之间的数量关系和相等关系.二设:设未知数.三列:列代数式,列方程.3.议一议:问题1:上面我们所得到的方程有什么共同特点?(分母中含有未知数)讨论结果:分母中含有未知数的方程叫做分式方程.分式方程的特征:(1)是等式(2)方程中含有分母(3)分母中含有未知数问题2:分式方程与整式方程有什么区别?讨论结果:分母是否含有未知数,它是区别分式方程与整式方程的关键.设计意图:通过做一做让学生能根据实际问题中的数量关系列出分式方程,这一部分由学生独立完成,教师可个别辅导;通过想一想巩固根据实际问题中的数量关系列出分式方程,归纳出列方程的步骤;通过议一议让学生以小组方式讨论,最后学生自己归纳出分式方程的定义,明确分式方程与以前学过的整式方程的区别,这样达到了突出重点,突破难点的效果.【典例精讲】例:判断下列方程是不是分式方程?分析:判断是否是分式方程的关键是分母是否含有未知数.(1)中的方程分母中不含有未知数.2+3182x =()34(2)42x x =-+2(3)1x x =11(4)23x y =+-(2)(3)(4)中的方程分母中含有未知数解:(1)中的方程分母中不含有未知数,不是分式方程.(2)(3)(4)中的方程分母中含有未知数,是分式方程.设计意图:让学生加深对分式方程概念的理解,掌握判断分式方程的依据.【课堂练习】下列式子中哪些是分式方程?哪些是整式方程?(2)(3)是分式方程,(1)(4)(5)是整式方程,(6)不是方程. 判断一个方程是不是分式方程,关键是看分母中有没有未知数(4)中是一个常数,不是未知数. 【课堂小结】1.分式方程的概念.2.分式方程与整式方程的区别与联系.3.分式方程是刻画现实生活的又一数学模型.4.列分式方程最基本的思维步骤.【板书设计】分母中含有未知数的方程叫做分式方程.分式方程的特征:(1)是等式(2)方程中含有分母(3)分母中含有未知数判断是否是分式方程的关键是分母是否含有未知数. 3123x x -=()34(2)7x y +=1(3)3021x -=+3(4)2x x π-=1(5)2105x x -+=1(6)22x x +-π。

北师大版八年级数学下册 5.4分式方程 第1课时 分式方程的概念及解法 教案

北师大版八年级数学下册 5.4分式方程 第1课时 分式方程的概念及解法 教案

5.4 分式方程第1课时分式方程的概念及解法【教学目标】【知识与技能】1.理解分式方程的概念;2.会通过设适当的未知数并根据等量关系列出分式方程;3.学生掌握解分式方程的基本方法和步骤.【过程与方法】通过列出的方程归纳出它们的共同特点,得出分式方程的概念.了解分式的概念,明确分式和整式的区别;经历和体会解分式方程的必要步骤;使学生进一步了解数学思想中的“转化”思想.【情感态度】在建立分式方程的数学模型的过程中培养能力和克服困难的勇气,并从中获得成就感,提高解决问题的能力.【教学重点】1.理解分式方程的意义.2.理解解分式方程的基本思路和方法.3.了解分式方程可能无解的原因,并掌握解分式方程中验根的方法.【教学难点】掌握分式方程的解法、解,分式方程要验根.【教学过程】一、情境导入问题1:甲、乙两名同学同时从学校出发,去15千米外的景区游玩,甲比乙每小时多行1千米,结果比乙早到半小时,甲、乙两名同学每小时各行多少千米?设甲同学每小时行x千米,你能列出相应的方程吗?这个方程是我们以前学过的方程吗?如果不是,你能给它取个名字吗?问题2:在这一章的第一节《分式》中,我们曾研究过一个“固沙造林,绿化家园”的问题.面对日益严重的土地沙化问题,某县决定分期分批固沙造林,一期工程计划在一定期限内固沙造林2400公顷,实际每月固沙造林的面积比原计划多30公顷,结果提前4个月完成计划任务.原计划每月固沙造林多少公顷?分析:这一问题中有哪些已知量和未知量?已知量:造林总面积2400公顷实际每月造林面积比原计划多30公顷提前4个月完成原任务未知量:原计划每月固沙造林多少公顷这一问题中有哪些等量关系?实际每月固沙造林的面积=计划每月固沙造林的面积+30公顷原计划完成的时间-完成实际的时间=4个月我们设原计划每月固沙造林x公顷,那么原计划完成一期工程需要_____个月,实际完成一期工程用了______个月,根据题意,可得方程____________.【教学说明】为了让学生经历从实际问题抽象.概括分式方程这一“数学化”的过程,体会分式方程的模型在解决实际生活问题中作用,利用第一节《分式》中一个熟悉的问题,引导学生努力寻找问题中的所有等量关系,发展学生分析问题.解决问题的能力.二、合作探究探究点一:分式方程的概念下列关于x的方程中,是分式方程的是( )A.4+x5=2+3x6B.2x-17=x2+3C.xπ+1=7x-12D.12+x=1-2x解析:A中方程分母不含未知数,故不是分式方程;B中方程分母不含未知数,故不是分式方程;C中方程分母不含表示未知数的字母,π是常数;D中方程分母含未知数x,故是分式方程.故选D.方法总结:判断一个方程是否为分式方程,主要是看分母中是否含有未知数(注意:仅仅是字母不行,必须是表示未知数的字母).探究点二:列分式方程某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x个,根据题意可列分式方程为( )A.20x+10x+4=15 B.20x-10x+4=15C.20x+10x-4=15 D.20x-10x-4=15解析:设原计划每天生产x个,则实际每天生产(x+4)个,根据题意可得等量关系:(原计划20天生产的零件个数+10个)÷实际每天生产的零件个数=15天,根据等量关系列出方程即可.设原计划每天生产x个,则实际每天生产(x+4)个,根据题意得20x+10x+4=15.故选A.方法总结:此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,找出题目中的等量关系,列出方程.三、板书设计1.分式方程的概念2.列分式方程四、教学反思虽然在课堂上做了很多,但也存在许多不足的地方,以下是教师在教学中应该注意的地方:第一,讲例题时,先讲一个产生增根的较好,这样便于说明分式方程有时无解的原因,也便于讲清分式方程检验的必要性,也是解分式方程与整式方程最大的区别所在,从而再强调解分式方程必须检验,不能省略不写这一步;第二,给学生的鼓励不是很多.鼓励可以让学生有充分的自信心.“信心是成功的一半”,在今后的课堂教学中,应尊重其差异性,尽可能分层教学,评价标准多样化,多鼓励,少批评;多肯定,少指责.用动态的、发展的、积极的眼光看待每个学生,帮助他们树立自信心.赞美的力量是巨大的,有时,一句赞美的话,可以改变人的一生.一句肯定的话、一个赞许的点头、一张表示优秀的卡片,都是很好的鼓励,会起到意想不到的良好结果.本课时的教学以学生自主探究为主,通过参与学习的过程,让学生感受知识的形成与应用的价值,增强学习的自觉性,体验类比学习思想的重要性,然后结合生活实际,发现数学知识在生活中的广泛应用,感受数学之美.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式方程
南郑县城关一中邓建丽
总体说明
本节共二个课时,它分为分式方程的认知,分式方程的解答,以及分式方程在实际问题中的应用。

彼此之间由浅入深。

是“实题——分式方程建模——求解——解释
解的合理性”过程。

本章在前面几节陆续介绍了分式,分式的乘除,分式的加减,为本节解分式方程打下了扎实的基础。

同时应注意对学生进行过程性评价,要延
迟评价学生运算的熟练程度,允许学生经过一定时间达到《标准》要求的目标,
把评价重点放在对算理的理解上。

一、学生知识状况分析
学生的知识技能基础:学生在小学以及七年级学过解应用题,以及在本章第三节
所讲述的分式加减时所引入的问题的提出及问题的解答。

对实际问题进行建模有
初步地了解,具备分析问题,处理问题的能力。

学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些问题建模活动,解决了一些简单的现实问题,感受到找出问题等量关系的作用。

获得了解决
实际问题所必须的一些数学活动经验基础。

同时在以前的数学学习中学生已经经
历了很多合作学习的经验,具备了一定的合作与交流的能力。

二、教学任务分析
教学时要有意识地进一步提高学生的阅读理解能力,鼓励学生从多角度思考
问题,解释所获得结果的合理性。

对于常用的数量关系,虽然学生以前大都接触过,但在本节的教学中仍要注意复习、总结,并抓住用两个已知量表示第三个量
的表达式,引导学生举一反三,进一步提高分析问题与解决问题的能力。

为此,
本课时的教学目标是:
知识与技能:
()通过对实际问题的分析,感受分式方程刻画现实世界的有效模型的意义。

()通过观察,归纳分式方程的概念。

相关文档
最新文档