泛函第九章习题答案
泛函习题答案(大部分)
ii) ∀ε > 0,∃N = N (ε ),使对任意 x = (ξ i ) ∈ A,当 n ≥ N时, 皆有 | ξi | p < ε . ∑
i=n ∞
必要性:i) 是显然的,下证 ii) 1 ε 设 ε > 0,取 A 的一个有限的 ( )1/ p − 网:x1 L xk, 2 4 设 x j = (ξ i( j ) ) ( j = 1, L , k ), ⎛ ( j) p ⎞ 取自然数 N,使 ⎜ ∑ | ξ i | ⎟ ⎝ i=N ⎠
11
58 . 证明可分距离空间的子 空间是可分的 .
设 X 是距离空间, X 0 是 X 的子空间,设 X 是可分的,取 X 的 一个可数稠集 { x1 , x 2 , L} = A ⊂ X,对每一对自然数 ( n, m ),记 1 Bn , m = B ( x n , ).令 B = { Bn , m | Bn , m I X 0 ≠ ϕ },则至多是一可列集, m 对每个 Bn , m ∈ B ,任取 x n , m ∈ Bn , m I X 0,则 { x n , m } 是一可数集或 1 ε 有限集 . 设 x ∈ X 0, ε > 0,取 m 满足 0 < < ,再取 x n 使 m 4 1 1 ρ ( x , x n ) < ,于是 Bn , m = B ( x n , ) I X 0 ≠ ϕ ,且 m m 1 1 2 ρ ( x , x n ,m ) ≤ ρ ( x , x n ) + ρ ( x n , x n ,m ) < + = < ε m m m 因为 ε > 0 是任意的,故 { x n , m } 在 X 0 中稠密, ({ x n , m } ⊂ X 0 ),即 X 0 是可分的 .
泛函分析习题答案第九章习题答案
|q
1/ q
i1
(i ) l p
( 3)
此 外 , 因 为(i ) l q, 故( i |i |q1 ) l p (其 中 i signi )
记x0 ( i | i |q1 ), 则 f ( x0 ) i |i |q1 i | i |q (4)
n
n
n
f ( x0 ) ici | ci | f x0 f , 故 | ci | f
( 2)
i 1
i 1
i 1
n
结 合(1)、(2)得 f | ci | (3) i 1
由 此 可 知 , 对 每 个RMn 上 的 有 界 线 性 泛 函 , 存在 唯 一 的(c1 ,, cn ) Rn,
n
上 的 一 个 有 界 线 性 泛 函, 记ci f (ei ), 则(ci ) Rn, 且 f ( x) ici i 1
n
n
x
(1 ,,n ),f
( x)
max
1 i n
|
i
|
| ci
i 1
|,
故
f | ci | i 1
(1)
又 当 f 0时 , 记 i signci , x0 (1 ,, n ), 则 x0 1, 且
令 x
x
f (x) f ( x )
x,
则
f
(
x
)
0, 故x
N,
从
而
x
x
(x, N )
所以 f (x) f ( x )
f (x) f ( x ) x
泛函分析习题
第七章 度量空间和赋范线性空间复习题:1。
设(,)X d 为一度量空间,令0000(,){|,(,)},(,){|,(,)},U x x x X d x x S x x x X d x x εεεε=∈<=∈≤问0(,)U x ε的闭包是否等于0(,)S x ε?2.设[,]C a b ∞是区间[,]a b 上无限次可微函数的全体,定义()()()()01|()()|(,)max.21|()()|r r r r r a t b r f t g t d f g f t g t ∞≤≤=-=+-∑ 证明[,]C a b ∞按(,)d f g 成度量空间.3。
设B 是度量空间X 中闭集,证明必有一列开集12,,,,n O O O 包含B ,而且1.n n O B ∞==4.设(,)d x y 为空间X 上的距离,证明(,)(,)1(,)d x y d x y d x y =+也是X 上的距离.5。
证明点列{}n f 按题2中距离收敛于[,]f C a b ∞∈的充要条件为n f 的各阶导数在[,]a b 上一致收敛于f的各阶导数.6.设[,]B a b ⊂,证明度量空间[,]C a b 中的集 {|t , (t)=0}fB f ∈当时为[,]C a b 中的闭集,而集 {||()|}(0)A ft B f t a a =∈<>当时,为开集的充要条件是B 为闭集。
7。
设E 及F 是度量空间中两个集,如果(,)0d E F >,证明必有不相交开集O 及G 分别包含E 及F 。
8.设[,]B a b 表示[,]a b 上实有界函数全体,对[,]B a b 中任意两元素,[,]f g B a b ∈,规定距离为(,)sup |()()|.a t bd f g f t g t ≤≤=-证明[,]B a b 不是可分区间.9.设X 是可分距离空间,f 为X 的一个开覆盖,即f 是一族开集,使得对每个x X∈,有f 中开集O ,使x O ∈,证明必可从f 中选出可数个集组成X 的一个覆盖. 10。
《泛函分析》习题解答(不完全版)
第一章 练习题1. 记([,])C a b 是闭区间[,]a b 上连续函数全体构成的集合, 在([,])C a b 上定义距离如下:(,)|()()|,,([,])baf g f x g x dx f g C a b ρ=-∀∈⎰,(1)([,])C a b 按ρ是否完备?(2)(([,]),)C a b ρ的完备化空间是什么? 答:(1) 不完备, 例如对于[,][0,2]a b =以及1,2,n =,定义,01,():1,1 2.n n x x f x x ⎧≤<=⎨≤≤⎩则{()}([0,2])n f x C ⊂在本题所定义的距离的意义下是Cauchy 列, 因为111(,)|()()|110,(,).11n m n m n m f f f x f x dxx dx x dxm n n m ρ=-≤+=+→→∞++⎰⎰⎰另一方面, 点列{()}n f x 并不能在本题所定义的距离的意义下收敛到([0,2])C 中的某个元. 事实上, 在几乎处处收敛的意义下, 我们有0,[0,1)()()1,[1,2].n x f x g x x ∈⎧→=⎨∈⎩因此, 根据Lebesgue 有界收敛定理, 可以得到11100(,)|()()|1|0|0.1n n nnf g f x g x dxx dx x dx n ρ=-=-==→+⎰⎰⎰但()([0,2])g x C ∉.(2) ([,])C a b 的完备化空间是1([,])L a b . 因为(i) 在距离ρ的意义下, ([,])C a b 是1([,])L a b 的稠密子集. 事实上, 任意取定一个1()([,])f x L a b ∈, 需要证明: 对于任意的0ε>, 存在()[,]g x C a b ∈, 使得[,](,)|()()|a b f g f x g x dx ρε=-<⎰.事实上, 首先根据积分的绝对连续性, 存在0δ>, 使得当[,]E a b ⊂, 只要mE δ<, 就有|()|3Ef x dx ε<⎰.因为()f x (Lebesque)可积, 故几乎处处有限, 即10N N mE ∞==,其中{[,]||()|}N E x a b f x N =∈>. 由此可以得到 lim ()0N N m E →∞=(因为{}N E 是渐缩集列并且[,]a b 的测度有限),故存在某个自然数N , 使得N mE δ<且|()|3NE f x dx ε<⎰,因此有|()|f x N ≤,[,]\N x a b E ∈.引入一个新函数定义为(),[,]\():0,,NN f x x a b E f x E ∈⎧=⎨⎩显然对于[,]x a b ∈恒有|()|f x N ≤. 由Lusin 定理, 存在连续函数()(,)g x C ∈-∞+∞和闭集[,]F a b ⊂, 使得([,]\)min{,/3}m a b F N δε<且|()|g x N ≤, 进而()()g x f x ≡,x F ∈.则()g x 限制在[,]a b 即为所求, 因为:[,](,)|()()|a b f g f x g x dx ρ=-⎰([,]\)|()()|a b F Ff xg x dx ⋃=-⎰[,]\|()()||()()|a b FFf xg x dx f x f x dx ≤-+-⎰⎰[,]\\(|()|)|()()||()()|NNa b FF E F E f x N dxf x f x dx f x f x dx⋂≤++-+-⎰⎰⎰[,]\|()|([,]\)a b Ff x dx Nm a b F ≤+⎰\|()|0NNF E F E f x dx dx ⋂++⎰⎰333εεεε<++=.(ii) 1(([,]),)L a b ρ是完备的空间.2. 设(,)X ρ是距离空间,A 是X 的子集,对任意的x X ∈,记(,)inf (,)y Ax A x y ρρ∈=,则(1)(,)x A ρ是x 的连续函数.(2) 若{}n x 是X 中的点列, 使(,)0n x A ρ→,{}n x 是否为Cauchy 列? 为什么? 证:(1) 任意取定12,x x X ∈, 对于任意的y X ∈根据三角不等式, 有1122(,)(,)(,)x y x x x y ρρρ≤+, 2211(,)(,)(,)x y x x x y ρρρ≤+.对两端关于y A ∈取下确界, 可以得到1122inf (,)(,)inf (,)y Ay Ax y x x x y ρρρ∈∈≤+, 2211inf (,)(,)inf (,)y Ay Ax y x x x y ρρρ∈∈≤+. 即1122(,)(,)(,)x A x x x A ρρρ≤+, 2211(,)(,)(,)x A x x x A ρρρ≤+.由此可得1212|(,)(,)|(,)x A x A x x ρρρ-≤.由此容易证明()f x (,)x A ρ=是X 上的连续函数, 实际上, (,)x A ρ还满足Lipschitz 常数等于1的Lipschitz 条件.(2) 答: 未必是Cauchy 列. 例如取X =R , 其中的距离是Euclid 距离. 对于{1,1}A =-, 对于1,2,n =, 定义点列为1(1).n n x n=-+对于点列{}n x ,不难验证,1(,)0n x A nρ=→; 但显然{}n x 不是Cauchy 列. 这里的原因就在于(,)x A ρ不是点到点之间的距离, 而是点到集合的距离, 当这个集合A 含有不止一个点时, (,)x A ρ不再具有点点之间距离的性质. 3. E 是nR 中的Lebesgue 可测集合, 试证()L E ∞按距离(,)esssup |()()|x Ef g f x g x ρ∈=-是不可分空间.证法一:记为方便起见, 设[,]E a b =. 定义[,]1,[,],()()0,(,].a x a f x x x b λλλχλ∈⎧==⎨∈⎩显然()f x λ有界,可测, 因此必属于([,])L a b ∞. 记{()|(,]}A f x a b λλ=∈.则([,])A L a b ∞⊂.既然对于不同的12,[,]a b λλ∈, 1f λ与2f λ不同的部分是正测度集, 容易看出A 的势是ℵ.进而有(不妨设12λλ<)1212121212[,][,]\0[,][,]\0[,][,][,][,]\0(,][,][,]\0(,)infsup |()()|inf sup |()()|inf sup |()()|infsup () 1.E a b x a b EmE E a b x a b E mE a a E a b x a b E mE E a b x a b E mE f f f x f x f x f x x x x λλλλλλλλλλρχχχ⊂∈=⊂∈=⊂∈=⊂∈==-=-=-==我们用反证法证明所需的结论.设([,])L a b ∞是可分的,则其必有可数的稠密子集123{,,,,,}i g g g g ,因此至少有一个i g 属于两个不同的1(,1/3)S f λ和2(,1/3)S f λ.而由三角不等式, 我们有12121(,)(,)(,)112.333i i f f f g g f λλλλρρρ=≤+≤+=这是一个矛盾. 因此([,])L a b ∞不可能是可分的.证法二:既然E 是正测度集,存在0R >使得((0,))0m S R E ⋂>. 不难验证, 存在一列正数1{}i i R ∞=满足:120i R R R R <<<<<<;且1([(0,)\(0,)])0i i m E S R S R +⋂>.对于每一个12(,,,,)i λλλλ=,其中0i λ=或1, 定义1(),[(0,)\(0,)]i i i f x x E S R S R λλ+=∈⋂,1,2,i =. 显然()f x λ有界,可测, 因此必属于()L E ∞. 记{()|{0,1}}A f x λλ=∈N ,其中{0,1}N 表示具有上述性质的λ的全体. 则()A L E ∞⊂.既然对于不同的,λμ∈{0,1}N , (不妨设1(,,,)i λλλ=, 1(,,,)i μμμ=且对于某个i ,0i λ=1i μ=)f λ与f μ不同的部分至少是正测度集1[(0,)\(0,)]i i E S R S R +⋂, 容易看出A 的势与{0,1}N 的势都是连续统的势ℵ.进而有11\0((0,)\(0,))\0((0,)\(0,))\01(,)inf sup |()()|infsup|()()|inf sup|| 1.i i i i F E x E F mF F E x E S R S R FmF i i F E x E S R S R F mF f f f x f x f x f x λμλμλμρλμ++⊂∈=⊂∈⋂=⊂∈⋂=≥=-≥-=-= 我们用反证法证明所需的结论.设()L E ∞是可分的,则其必有可数的稠密子集123{,,,,,}i g g g g , 因此至少有一个j g 属于两个不同的(,1/3)S f λ和(,1/3)S f μ.而由三角不等式, 我们有1(,)(,)(,)11.33j j f f f g g f λμλμρρρ=≤+≤+这是一个矛盾. 因此()L E ∞不可能是可分的. 补充题.证明[,]L a b ∞是不可分空间. 证:记{}[,]()a t K x a t b χ=<<,其中[,]1,,():0,.a t a x t x t x b χ≤≤⎧=⎨<≤⎩显然[,]K L a b ∞⊂, 且只要12,[,]t t a b ∈,12t t ≠, 则有12[,][,],a t a t K χχ∈, 且因为(不妨设12t t <)12(,]t t 的测度为正, 故1212[,][,][,][,][,]||||sup |()()|a t a t a t a t L a b ess x x χχχχ∞-=-1212(,](,]sup |()|1t t x t t x χ∈==.因此, 由(,)a b 是不可数集, 而K 的基数与(,)a b 的基数相同, 故也是不可数集,且K 中任何两个不同元的距离均为1.如果[,]L a b ∞是可分的, 因此有一个可数的稠密子集合{()|1,2,}k A f x k ==, 且11(,)3k k S f K ∞=⊇.但这是荒谬的, 因为上式左端只有可数多个开球, 右端有不可数多个元, 所以至少有K 中的两个不同的12[,][,],a t a t χχ属于同一个开球01(,)3k S f , 由此得到矛盾:121002[,][,][,][,][,][,][,]1||||||||||||112.333a t a t L ab a t k k a t L a b L a b f f χχχχ∞∞∞=-≤-+-<+= 此矛盾表明[,]L a b ∞不可能是可分的.4. 设([,])k C a b 是闭区间[,]a b 上具有k 阶连续导数的函数全体, 定义:()()[,](,)max |()()|,,([,])ki i k x a b i f g f x g x f g C a b ρ∈==-∈∑试证:(1)([,])kC a b 是完备的距离空间; (2)若定义||||(,0)f f ρ=,则(([,]),||||)kC a b ⋅是Banach 空间.证:(1) 这里只证明该距离是完备的. 设1{()}n n f x ∞=是([,])k C a b (0k =时, 0([,])C a b 就理解为[,]C a b )中该距离意义下的Cauchy 列. 因此当,m n →∞时,有()()[,]0(,)max |()()|0ki i m n m n x a b i f f f x f x ρ∈==-→∑.由此容易知道对于每一个0,1,,i k =, ()1{()}i n n f x ∞=是0([,])C a b 中的Cauchy 列. 根据0([,])C a b 的完备性,知()1{()}i n n f x ∞=收敛到0([,])C a b 中的某个元, 记其为()i f x , 则0()([,])i f x C a b ∈, 且()()()i i n f x f x −−→−−→,,0,1,,n i n →∞=,其中“−−→−−→”表示是一致收敛. 如果我们记0()()f x f x =,利用数学分析中函数序列一致收敛的分析性质, 可以得到12()()(),()(),,()().k kf x f x f x f x fx f x '''=== (*)例如, 因为1()()n f x f x −−→−−→', 故 1()()xxn aaf t dt f t dt −−→−−→'⎰⎰, 即1()()()xn n af x f a f t dt −−→−−→-⎰, 又0()()n f x f x −−→−−→及0()()nf a f a −−→−−→, 故 001()()()xaf x f a f t dt -=⎰.求导即可得到01()()f x f x '=, 即 1()()f x f x '=.归纳地可得(*).因此0()()f x f x =([,])kC a b ∈且()[,](,)max |()()|ki i n n x a b i f f f x f x ρ∈==-∑()()[,]max |()()|0ki i n x a b i f x f x ∈==-→∑.即([,])kC a b 是完备的距离空间. (2)证略.7. 证明有限维线性赋范空间是完备的.证:记该有限维(实)线性赋范空间为E , 是n 维的,范数记为||||x ,需要证明(,||||)E ⋅是完备的. 记E 中的一组基为:12,,,n v v v .因此对于任意的x E ∈, 存在唯一一组实数12,,,n x x x , 使得1122n n x x x x =+++v v v ,反之亦然.(i) 我们断言存在一个与x 无关的常数0K >, 使得||||||i x K x ≤, 1,2,,i n =. (*)首先定义一个映射:nf →为: 对于任意的12(,,,)n x x x n∈,121122(,,,):||||||||n n n f x x x x x x x ==+++v v v .则对于任意的,x y E ∈(1122n n y y y y =+++v v v )有1122||||(,,,)n n x y f x y x y x y -=---111||||||||||||n n n x y x y ≤-⋅++-⋅v v2222111()()||||||||n n n x y x y ≤-++-⋅++v v .由此容易知道f 是n R 上的连续函数. 记1B ∂是n R 中的单位球面, 即21121{(,,,)|1}nn k k B x x x x =∂==∑. 则对于任意的11(,,)n x x B ∈∂, 有1(,,)0n f x x >.(事实上, 若有1(,,)0n f x x =则111(,,)||||0n n n f x x x x =++=v v ,因此110n n x x ++=v v , 但12,,,n v v v 线性无关, 故必有120n x x x ====, 此与11(,,)n x x B ∈∂相矛盾. )注意到1B ∂是n R 中的有界闭集(紧子集), 连续函数f 必可在其上达到正的最小值1/0K >.现在我们可以证明式(*). 事实上, 对于任意的x E ∈,存在唯一的一组实数12,,,n x x x , 使得1122n n x x x x =+++v v v , 不失一般性, 可设0x ≠因此,12,,,n x x x 不全为零, 注意到111222111,,,n nnn kkk k k k x x x y B xxx ===⎛⎫ ⎪ ⎪=∈∂ ⎪ ⎪⎝⎭∑∑∑,故111222211111222111()1,,,,nn nnnkkkk k k n nnn kkk k k k x x x f y xxxx x x f K xxx ======+++=⎛⎫ ⎪⎪=≥ ⎪ ⎪⎝⎭∑∑∑∑∑∑v v v或2112211||||nn n kk x x x x xK==+++≥∑v v v .由此容易得出(*)式.(ii) 设()1{}k k x ∞=是E 中的基本列, 这里()()()()1122k k k k n n x x x x =+++v v v ,即()()||||0k l x x -→, 当,k l →∞.利用(*)式便可以得到对于每一个1,2,,i n =, 成立()()()()||||||0k l k l i i x x K x x -≤-→, 当,k l →∞.即()1{}k i k x ∞=是1中的基本列, 因此收敛. 设()(0)k i i x x →, (k →∞,1,2,,i n =).记(0)()(0)(0)1122k n n xx x x =+++v v v , 显然(0)x E ∈. 根据E 中收敛的等价性(即按范数收敛意味着每个分量收敛或即按坐标收敛), 容易得到()(0)||||0k x x -→, 当k →∞.因此(,||||)E ⋅是完备的.9. 设X 为线性赋范空间, 0X 是X 的线性闭子空间. 在X 中定义等价关系为0xy x y X ⇔-∈. 对任意的x X ∈, 以[]x 记x 的等价类, 令0/{[]|}X X x x X =∈.称0/X X 为商空间, 在0/X X 上定义线性运算如下: (i) [][][]x y x y +=+, ,x y X ∈, (ii) [][]x x λλ=, ,x X λ∈∈C .并定义0||[]||inf ||||y X x x y ∈=+.试证: 0/X X 按0||[]||x 也是一个线性赋范空间.证:(一) 0/X X 按照所定义的线性运算是线性空间 (证明略).(二) 0||[]||x 是0/X X 中的范数. 按照定义, 对于每一个 0[]/x X X ∈显然0||[]||inf ||||y X x x y ∈=+是一个确定的数, 因此00||||:/X X ⋅→R 是映射.(i) (非负性) 对于x X ∈, 显然0||[]||inf ||||0y X x x y ∈=+≥.(正定性) 当0[]=[0]=x X 时, 有00||[]||||[0]||inf ||||0y X x y ∈===.反之, 如果我们假设0000||[]||inf ||||0y X x x y ∈=+=, 需要证明 00[]=[0]=x X , 也只需证明00x X ∈. 事实上, 根据下确界的定义, 对每一个自然数1,2,k =, 存在0k y X ∈, 使得00000111||||||[]||inf ||||k y X x y x x y k k k∈+<+=++=, 由此得到一个序列0{}k y X ⊂且||||0k y x ⋅−−−→-.因为0X 是闭子空间因此00x X -∈故00x X ∈, 即00[]=[0]=x X . (ii) (正齐性) 对于,x X λ∈∈C , 如果0λ=, 则000x x X λ==∈, 故0[][0]0[][]x X x x λλ====. 如果0λ≠, 则当y 取遍0X 中的所有元时,yλ也取遍0X 中的所有元, 反之亦然, 因此 00||[]||inf ||||inf ||||||y X y X yx x y x λλλλ∈∈=+=⋅+||inf ||||||inf ||||yy X X yyx x λλλλλ∈∈=+=+||inf ||||||||[]||z X x z x λλ∈=+=⋅,(iii) (三角不等式) 设,x y X ∈. 设0,u v X ∈, 当,u v 取遍0X 中的所有元时, u v +也取遍0X 中的所有元, 反之亦然, 进而, ,u v 的取法是相互独立的, 因此0||[]||inf ||||u X x y x y u ∈+=++,inf ||||u v X x y u v ∈=+++()0,inf ||||||||u v X x u y v ∈≤+++inf ||||inf ||||u X v X x u y v ∈∈=+++00||[]||||||x y =+.也可用下面的证明方法: 对于任意的0ε>, 由下确界的定义, 存在0,u v X εε∈使得0||||||[]||x u x εε+<+, 0||||||[]||y v y εε+<+,因此可以得到0||[]||inf ||||||||u X x y x y u x y u v εε∈+=++≤+++||||||||x u y v εε≤+++ 00||[]||||[]||2x y ε<++.因为0ε>的任意性, 可得0||[]||x y +00||[]||||[]||x y ≤+.10. 设X 为线性赋范空间,1nn x∞=∑收敛, 即1kk nn S x==∑按X 中的范数收敛, 则11nn n n xx ∞∞==≤∑∑.证:记1kk n n S x ==∑.对于有限项之和, 利用三角不等式, 成立111||||kk k nn n n n n S xx x ∞====≤≤∑∑∑. (*)又因为1kk nn S x==∑在范数意义下收敛, 其极限自然可以记为1nn x∞=∑, 即1k n n S x ∞=→∑,再一次利用三角不等式, 可以得到当k →∞时11||||0k nk n n n S xS x ∞∞==-≤-→∑∑,即1||||k nn S x∞=→∑, 因此在(*)式中令k →∞, 可得11nn n n xx ∞∞==≤∑∑.11. 设{0}X ≠为线性赋范空间, 试证X 是Banach 空间当且仅当{|||||1}x X x ∈=是完备的.证:记{|||||1}T x X x =∈=.(必要性) 设X 是Banach 空间, {}n x T ⊂是T 中的Cauchy 列, 即||||1n x =且||||0m n x x -→(当,m n →∞).因为X 是Banach 空间, 故{}n x 收敛, 即存在0x X ∈, 使得||||0n x x ⋅−−→, 由三角不等式容易得到:||||||||||||x y x y -≤-,因此00||||||||||||0n n x x x x -≤-→,知0||||||||n x x →, 故0||||1x =因此0x T ∈, 即T 完备.(充分性) 设T 是完备的, 并设{}n x X ⊂是X 中的Cauchy 列, 即||||0m n x x -→当,m n →∞. 由||||||||||||0m n m n x x x x -≤-→,知{||||}n x 是1中的Cauchy 数列, 因此收敛, 即存在某个数A ∈使得||||n x A →.如果0A =, 显然{}n x 收敛于X 中的零元, 故不妨设0A >. 由此知当n 充分大时, 总有||||0n x >, 不失一般性, 可设对所有的n , 都有||||0n x >. 考虑新的点列:||||nn n x y x =, 显然n y T ∈. 进而 ||||||||||||m n m n m n x xy y x x -=- ||||||||||||||||m m m n m n n n x x x xx x x x ≤-+- 111||||||||||||||||m m n m n n x x x x x x =-+-, 由此易知{}n y T ⊂是T 中的Cauchy 列. 因为T 作为距离空间是完备的, 故{}n y 收敛, 即存在0y T ∈, 使得||||0n y y ⋅−−→. 最后我们断言: ||||0n x Ay ⋅−−→.事实上,0||||||||||||||||n n n n n x Ay x Ay x x x -=- 0||||||||n n n Ay x y x =-00||||||||n n n Ay x y y y x ⎛⎫≤-+-⎪⎝⎭00||||1||||n n n A x y y y x ⎛⎫=-+- ⎪⎝⎭0→.综上可得X 是Banach 空间.15.试证定理4中(f)式定义的(,)x y 的确满足内积分的定义.证明: 即要证明: 对于赋范线性空间(,||||)X ⋅, 如果范数满足平行四边形法则:2222||||||||2(||||||||)x y x y x y ++-=+(*)则由221(,):[||||||||]4x y x y x y =+--R (K =R 时) (f ’)或221(,):[||||||||4x y x y x y =+--C22||||||||]i x iy i x iy ++-- (K =C 时) (f)所定义的确实是内积. (i) 对于x X ∈,221(,)[||||||||4x x x x x x =+--C22||||||||]i x ix i x ix ++--2||||0x =≥,因为|1||1|i i +=-, 并且根据范数的性质2(,)00(,)||||0x x x x x x =⇔==⇔=C C .同理可证(,)0x x ≥R 且(,)00x x x =⇔=R . (ii)首先考虑K =R 时的情形, 对于,,x y z X ∈, 可将(,)(,)x z y z +R R 表示为如下形式: (,)(,)x z y z +R R221[||||||||4x z x z =+--22||||||||]y z y z ++-- ()()22221||||||||||||||||4x z y z x z y z ⎡⎤=+++--+-⎣⎦ 22142222x y x yx y x yz z ⎛⎫+-+-=++++-⎪ ⎪⎝⎭ 22142222x y x y x y x y z z ⎛⎫+-+---++--⎪ ⎪⎝⎭, 再由平行四边形法则222222x y x yx y x yz z +-+-++++-22222x y x y z ⎛⎫+-=++ ⎪ ⎪⎝⎭; 222222x y x yx y x yz z +-+--++--22222x y x y z ⎛⎫+-=-+ ⎪ ⎪⎝⎭. 因此(,)(,)x z y z +R R 221222x y x yz z⎛⎫++=+-- ⎪ ⎪⎝⎭2,2x y z +⎛⎫= ⎪⎝⎭R.进而, 令0y =可以得到(,)x z R 2,2x z ⎛⎫= ⎪⎝⎭R,这里利用了(0,)0z =R . 因为x 是任意的, 故可将x 换为x y +, 即可得到(,)x y z +R 2,2x y z +⎛⎫= ⎪⎝⎭R. 对照上述二式, 即有(,)(,)x z y z +R R =(,)x y z +R .(**)至于K =C 时的情形, 注意到从形式上看(,)=(,)(,)x y x y i x iy +C R R ,利用上述已经证明了的等式(**)不难得到(,)(,)x z y z +C C =(,)x y z +C .(iii) 首先考虑K =R 时的情形, 对于,x z X ∈和任意实数,s t ∈R , 由已经证明的(**)式有(,)(,)sx z tx z +R R =((),)s t x z +R ,可知函数():(,)f t tx z =R 满足如下的函数方程:()()()f s f t f s t +=+.(***)又():(,)f t tx z =R 关于t 是连续的, 因此必有()(1)(,)f t f t t x z ==R .(事实上, 由(***)式对于任意的正整数n 和m , 利用数学归纳法有()()f ns f s s s =+++()()()()f s f s f s nf s =+++=;进而取1s n =, 有11()(1)f f n n=, 因此 1()()(1)n nf nf f m m m==. 又(***)中取0s t ==可得(0)0f =, 取s t =-可得()()f s f s -=-. 因此对于所有的有理数, 均成立()(1)f s sf =.利用()f s 的连续性, 可知对所有的实数也成立. ) 因此得到(,)()(1)(,)tx z f t f t t x z ===R R .至于K =C 时的情形, 注意到由(f)221(,)[||||||||4ix y ix y ix y =+--C 22||||||||]i ix iy i ix iy ++--221[||||||||4ix y ix y =+--22||||||||]i x y i x y ++-- 22221[||||||||4i ix y i ix y =-++-22||||||||]i x y i x y ++-- 22[||||||||4ii x iy i x iy =--++22||||||||]x y x y ++-- (,)i x y =C .由此也容易得到, 对于t ∈C(,)(,)tx z t x z =C C .(iv) 当K =R 时, 容易知道221(,)[||||||||](,)4x y x y x y y x =+--=R R ;而当K =C 时, 直接计算也可得到221(,)[||||||||4x y x y x y =+--C 22||||||||]i x iy i x iy -++-221[||||||||4y x y x =+--22||||||||]i y ix i y ix --++ (,)y x =C .16.设D 是C 中单位开圆盘, 即{|||1}D z z =∈<C . dA 是D 上的面积测度, 2()a L D 定义为22(){|()|}a L D f f Df z dz =<∞⎰在中解析且|. (见课本第六页例4)在2()a L D 中定义内积为,()()Df g f z g z dA =⎰.试证(1)1()n n nz z ϕπ-=(1,2,n =)构成2()a L D 的正交基.(2) 若2()a f L D ∈的Taylor 展开式是0()kk k f z a z∞==∑, 则21kk a k ∞=<∞+∑;(3) 若2()ag L D ∈的展开式是0()kk k g z b z∞==∑, 则0,1k kk a b f g kπ∞==+∑.证:先给出一个预备性结果: 对于2()a f L D ∈,因为()f z 是解析函数, 因此可以展开为幂级数: 0()kk k f z a z∞==∑.由此可以断言:(),()n f z z ϕ=1.n a nπ- (*)事实上,因为()f z 是解析函数,幂级数kk k a z∞=∑在D 中内闭一致收敛, 即对于D 的任意闭子集F ,kk k a z∞=∑在F 上一致收敛. 对于01ε<<, 以下取闭子集F 为:{|||1}D z D z εε=∈≤-.容易知道D ε是D 中的闭子集.对于每一个1,2,n =, 注意到级数10kn k k a z z π-=∑在D ε中仍旧一致收敛, 以下的积分号和求和号可以交换顺序:(),()()()n n Df z z f z z dA ϕϕ=⎰0lim ()()n D f z z dA εεϕ→=⎰100lim kn k D k na z z dA εεπ∞-→==∑⎰10limk n k D k na z z dA εεπ∞-→==∑⎰10lim(cos sin )(cos(1)sin(1))k n k D k na r k i k n i n dAεεθθπθθ∞+-→==+⋅⋅---∑⎰2110lim(cos sin )(cos(1)sin(1))k n k k na d r k i k n i n rdrπεεθθθπθθ∞-+-→==+⋅⋅---∑⎰⎰1210lim(cos sin )(cos(1)sin(1))k n k k na r rdr k i k n i n d επεθθπθθθ∞-+-→==+⋅⋅---∑⎰⎰12110lim2n n na r dr εεππ---→=⎰210(1)lim 22nn n a nεεππ-→-= 1.n a nπ-=因此(*)式得证.(1) 首先证明{}111()n n n n n z z ϕπ∞∞-==⎧⎫⎪⎪=⎨⎬⎪⎪⎩⎭是正交集.事实上, 对于复数(cos sin )z r i θθ=+,根据所给的定义11112(),()(cos sin )(cos sin )m n m n Dm n n m Dz z z z dAmni i r dAϕϕππθθθθππ----+-==+-⎰⎰2(cos(1)sin(1))(cos(1)sin(1))n m Dmnr m i m n i n dAθθπθθ+-=-+-⋅⋅---⎰2120(cos(1)sin(1))(cos(1)sin(1))n m mnd r m i m n i n rdrπθθθπθθ+-=-+-⋅⋅---⎰⎰122(cos(1)(1)sin )(cos(1)sin(1))n m mnrrdr m i m n i n d πθθπθθθ+-=-+-⋅---⎰⎰121,,20,.mm m n mm n ππ⎧==⎪=⎨⎪≠⎩因此{}1()n n z ϕ∞=是正交集. 因为2()a L D 是完备的空间, 故只需再证{}1()n n z ϕ∞=是完备的即可得知其也是正交基. 设有2()a f L D ∈且{}1()()n n f z z ϕ∞=⊥. 因为()f z 是解析函数, 因此可以展开为幂级数:()k k k f z a z ∞==∑.根据(*)式,可以得到,对于每一个1,2,n =,0(),()n f z z ϕ=1.n a nπ-=由此即得10n a -=, (1,2,n =). 所以()0f z ≡. 即{}1()n n z ϕ∞=是完备的, 因此是2()a L D 中的正交基.(2) 既然{}1()n n z ϕ∞=是基,由Parseval 等式可以得到221(),()||||n n f z z f ϕ∞==<∞∑.利用(*)式,上式的左端可以表示为:2122211110(),().1n n n n n n n n f z z a aa nn n ϕπππ∞=∞∞∞--======+∑∑∑∑由此可得所预期的结论. (3) 对于0()kk k f z a z∞==∑和0()kk k g z b z∞==∑, 有10()()1kk k f z a z k πϕ∞+==+∑和10()()1kk k g z b z k πϕ∞+==+∑,利用内积的连续性和(*)式,10,(),()1kk k f g a z g z k πϕ∞+==+∑10(),()1kk k a z g z k πϕ∞+==+∑10(),()1kk k a g z z k πϕ∞+==+∑11kk k a b k k ππ∞=⎛⎫= ⎪++⎝⎭∑0.1k kk a b k π∞==+∑18.设H 是内积空间,{}n e 是H 中的正交集, 求证:1(,)(,)||||||||nnn x e y e x y ∞=≤⋅∑, (,x y H ∀∈).证: 对于任意的正整数k , 由Cauchy 不等式和Bessel 不等式可以得到22111(,)(,)(,)(,)kkkn n n n n n n x e y e x e y e ===≤⋅∑∑∑2211(,)(,)n n n n x e y e ∞∞==≤⋅∑∑||||||||x y ≤⋅,由k 的任意性, 知正项级数1(,)(,)nnn x e y e ∞=∑收敛, 因此级数1(,)(,)nnn x e y e ∞=∑绝对收敛,并且11(,)(,)(,)(,)||||||||nnnnn n x e y e x e y e x y ∞∞==≤≤⋅∑∑.19.试证2sin nt π⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭构成2([0,])L π的正交基, 但不是2([,])L ππ-的正交基. 证:(1) 首先证明{}112()sin n n n t nt ϕπ∞∞==⎧⎫⎪⎪=⎨⎬⎪⎪⎩⎭是2([0,])L π中的正交集. 事实上,[]022(),()sin sin 2cos()cos()2m n t t mtntdtm n t m n t dtππϕϕπππ==-+--⎰⎰1()1,,0,.m n m n ππ⎧--==⎪=⎨⎪≠⎩因此{}1()n n t ϕ∞=是2([0,])L π中的正交集. 同理, 也容易证明{}1()n n t ϕ∞=还是2([,])L ππ-中的正交集.(2) 因为2([0,])L π是完备的空间, 故只需再证{}1()n n t ϕ∞=是完备的即可得知其也是正交基.设有2([0,])f L π∈且{}1()()n n f t t ϕ∞=⊥. 将()f t 做奇延拓成为()f t :(),[0,],():(),[,0).f t t f t f t t ππ∈⎧=⎨--∈-⎩则()f t ∈2([,])L ππ-. 注意到对于1,2,n =, 利用{}1()()n n f t t ϕ∞=⊥,,()sin n f f t ntdt ππϕ-=⋅⎰()sin ()sin f t ntdt f t ntdt ππ-=⋅+⋅⎰⎰()sin ()sin f t ntdt f t ntdt ππ-=--⋅+⋅⎰⎰()sin ()sin f t ntdt f t ntdt ππ-=--⋅+⋅⎰⎰00()sin ()()sin f s n s ds f t ntdt ππ=-⋅-+⋅⎰⎰2()sin 0f t ntdt π=⋅=⎰.设{}{}00()cos n n n t nt ψ∞∞===,对于0,1,2,n =,利用()f t 是奇函数, 可得,()cos 0n f f t ntdt ππψ-=⋅=⎰.因此{}{}()10()()()n n n n f t t t ϕψ∞∞==⊥⋃.进而也容易得到()f t ⊥1cos sin cos sin ,,,,,,2t tnt ntπππππ⎧⎫⎨⎬⎩⎭. 又已经知道与{}{}{}{}1010()()sin )cos n n n n n n t t t nt ϕψ∞∞∞∞====⋃=⋃仅相差一个常数因子的三角函数系1cos sin cos sin ,,,,,,2t tnt ntπππππ⎧⎫⎨⎬⎩⎭是2([,])L ππ-中的正交基, 因此()0f t =, a.e. [,]t ππ∈-,即有()0f t =, a.e. [0,]t π∈.因此{}1()n n t ϕ∞=是2([0,])L π中的正交基.(3) 注意到2sin nt π⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭在2([,])L ππ-中不是完备的, 例如对于恒等于常数1的函数2()1([,])f t L ππ≡∈-是非零元, 但对于1,2,n =,,1sin 0n f ntdt ππϕ-=⋅=⎰.因此, 2sin nt π⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭虽然是2([,])L ππ-的正交集, 但不是正交基.24. 试给出1([,])C a b 中列紧集的判别条件. 证:设子集1([,])A C a b ⊂且0x 是[,]a b 中一个数. 记{()|()}A f x f x A ''=∈及0{()|()}B f x f x A =∈.则A 是1([,])C a b 中的列紧集的充分必要条件是 (i) A '在([,])C a b 中有界; (ii) B 是R 中的有界集;(iii) A '是([,])C a b 中等度连续的集合.[充分性] 设1([,])A C a b ⊂满足条件(i), (ii)和(iii). 根据1([,])C a b 中范数的定义: 对于1([,])f C a b ∈,1([,])[,][,]:max |()|max |()|C a b x a b x a b ff x f x ∈∈'=+,容易看出,1([,])([,])C a b C a b k k f f f f −−−−→⇔−−−−→且([,])C a b k f f ''−−−−→因此只需证明A 和A '分别是([,])C a b 中的列紧集即可, 根据Arzela-Ascoli 定理, 这也只需证明A 和A '分别在([,])C a b 中有界且等度连续即可. 事实上, A '在([,])C a b 中有界性和等度连续已由所给条件得到保证(即(i)和(iii)). 还需证明A 在([,])C a b 中的有界性和等度连续性. 记A '在([,])C a b 中的一个界为A M ',B 作为R 中的有界集, 一个界纪为B M .对于任意的[,]x a b ∈, 利用中值定理, 有0000|()||()()||()||()()||()|().A B f x f x f x f x f x x f x M b a M ξ'≤-+'=-+≤-+ 此即表明[,]m a x |()|()A B x a b f x Mb a M '∈≤-+, 所以A 在([,])C a b 中有界,且界为()A B M b a M '-+. 进而对于,[,]x y a b ∈|()()||()()|||.A f x f y f x y M x y ξ''-=-≤-由此易知A 具有等度连续性.[必要性] 设A 是1([,])C a b 中的列紧集, 即对于A 的任何点列1{()}n n f x ∞=, 1{()}n n f x ∞=在1([,])C a b 中的范数(距离)1([,])[,][,]:max |()|max |()|C a b x a b x a b ff x f x ∈∈'=+意义下都有收敛的子列1{()}k n k f x ∞=. 因此, 1{()}n n f x ∞=和1{()}n n f x ∞='分别在([,])C a b 中有收敛的子列的1{()}k n k f x ∞=和1{()}k n k f x ∞='. 这表明, 根据Arzela- Ascoli 定理, A 和A '均是([,])C a b 中的列紧集, 因此A 和A '均在([,])C a b 中有界且等度连续, 因此得到(i)和(iii). 由A 的有界性, 可以知道集合0{()|()}B f x f x A =∈对于任意的0x [,]a b ∈都是R 中的有界集, 因此得到(ii). 26. 设(,)X ρ是紧距离空间,映射:f X X →满足1212((),())(,)f x f x x x ρρ<. (12x x ≠)则(1) f 是否有唯一的不动点? (2) f 是否为压缩映射?解答: (1) f 存在唯一的不动点, 证明如下: (存在性) 定义映射:h X →R 为()(,())h x x f x ρ=.由所给条件知此映射是连续的, 而X 是紧空间表明此映射能在X 中取得上下确界. 因此存在y X ∈, 使得()(,())inf ()x Xh y y f y h x ρ∈==.断言()inf ()0x Xh y h x ∈==,则y 是f 的不动点:()y f y =. 若不然, ()0h y >, 则在所给的条件中取()x f y =有(())((),(()))(,())()h f y f y f f y y f y h y ρρ=<=,此与y 达到()h x 的下确界相矛盾.(唯一性) 若还有z X ∈使得()z f z =但z y ≠. 仍由所给的条件, 有0(,)((),())(,)z y f z f y z y ρρρ<=<.这是个矛盾. 故必有z y =.(2) f 可以不是压缩映射. 反例如下:[反例1] 记[0,1]X =, 其中距离定义为两点之间的Euclid 距离: ,x y X ∀∈,(,):||x y x y ρ=-.因为X 是R 的闭子集, 因此是完备的, 显然也是紧的. 定义映射:T X X →为: 对于x X ∈,():1x T x x=+. 显然T 是自映射, 且有唯一的不动点0.对于任意的,x y X ∈, 设x y ≠, 则,x y 中至少有一个不为零, 由此容易得到||(,)11(1)(1)x y x y Tx Ty x y x y ρ-=-=++++ ||x y <-(,)x y ρ=.所以T 满足所需的条件, 但T 不是压缩映射, 因为,[0,1],[0,1](,)1supsup 1(,)(1)(1)x y x y x yx yTx Ty x y x y ρρ∈∈≠≠==++.因此不存在常数[0,1)α∈, 使得对于所有的,x y X ∈,(,)(,)Tx Ty x y ραρ≤.[反例2] 记1{0}1,2,X n n ⎧⎫=⋃=⎨⎬⎩⎭, 其中距离定义为两点之间的Euclid 距离: ,x y X ∀∈, (,):||x y x y ρ=-.因为X 是R 的闭子集, 因此是完备的, 显然也是紧的. 定义映射:T X X →为: 对于x X ∈,11,,():10,0,x T x n n x ⎧=⎪=+⎨⎪=⎩显然T 是自映射, 且有唯一的不动点0.对于任意的,x y X ∈, 设x y ≠, 如果,\{0}x y X ∈, 则有正整数,m n , m n ≠, 使得11,x y n m==, 且11||(,)11(1)(1)m n Tx Ty n m n m ρ-=-=++++ ||m n nm -<11(,)x y n mρ=-=; 如果,x y 中有一个为零, 例如0x =, 也有11(,)011Tx Ty m m ρ=-=++1m<(,)x y ρ=. 所以T 满足所需的条件, 但T 不是压缩映射, 因为例如对于 11,x y n m==, 当,m n →∞时, 成立11(,)11111(,)(1)(1)Tx Ty mnn m x y n m n mρρ-++==→++-,即不存在[0,1)α∈, 使得(,)(,)Tx Ty x y ραρ≤..补充题. 设二元函数(,)([,][,])g x y C a b a b ∈⨯,A 是([,])C a b 中的一个有界集, 记():(,)()()ba A F x g x y f y dy f x A ⎧⎫⎪⎪==∈⎨⎬⎪⎪⎩⎭⎰.(i) 证明A 是([,])C a b 中的列紧集;(ii) 问当A 还是([,])C a b 中的闭集时, A 是不是紧集?证:(i) 因为(,)([,][,])g x y C a b a b ∈⨯, 不难得知A ⊆ ([,])C a b . 根据Arzela-Ascoli 定理, 只需再证明A 在([,])C a b 中有界且等度连续即可.(a) A 在([,])C a b 中有界, 即A 作为由连续函数组成的集合是一致有界的. 事实上, 如果记A 的一个界为M , |(,)|g x y 在[,][,]a b a b ⨯上的最大值为K , 则对于任意取定的()F x A ∈, 有某个()f x A ∈, 使得()(,)()baF x g x y f y dy =⎰, 由此得知|()|(,)()baF x g x y f y dy =⎰|(,)()|bag x y f y dy ≤⎰max |(,)|max |()|ba xb a y ba a y bg x y f y dy ≤≤≤≤≤≤≤⎰[,]||||bC a b af Kdy =⎰[,]||||()C a b f K b a ≤- ()KM b a ≤-.因此A 是([,])C a b 中有界集, 且A 的一个界为()KM b a -.(b) A 在([,])C a b 中等度连续. 对于()F x A ∈,有某个()f x A ∈, 使得()(,)()baF x g x y f y dy =⎰. 因为(,)([,][,])g x y C a b a b ∈⨯, 因此在[,][,]a b a b ⨯上一致连续, 故对于任意的0ε>,存在0δ>, 当,[,]x x a b '∈且||x x δ'-<时, 有|(,)(,)|g x y g x y ε'-< ([,]y a b ∀∈),由此可以得到|()()|(,)()(,)()bbaaF x F x g x y f y dy g x y f y dy ''-=-⎰⎰[(,)(,)]()bag x y g x y f y dy '=-⎰|(,)(,)||()|ba g x y g x y f y dy '≤-⎰max |()||(,)(,)|ba y ba f y g x y g x y dy ≤≤'≤-⎰[,]|||||(,)(,)|bC a b af g x y g x y dy '=-⎰()M b a ε≤-. 由此易知A 具有等度连续性.(ii) 当A 还是([,])C a b 中的闭集时, A 未必是紧集! 反例可以构造如下: 考虑([0,1])C 中的集合{|1,2,}k A x k ==,显然A 是([0,1])C 中的有界集, 一个界可以取为1.可以断言A 是([0,1])C 中的闭集, 因为对于任意的,klx x A ∈, 不妨设l k >, 则[0,1][0,1]max ||k lk l C x x x x x ∈-=-1k l k l kl kl kk k k k l l l l ---⎛⎫⎛⎫⎛⎫⎡⎤=-=- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 对于任意固定的k , 当l 趋于无穷大时, 右端项趋向于1, 由此容易知道, 作为([0,1])C 中的子点列, 集合A 不是Cauchy 列, 因此不可能在([0,1])C 中有收敛的子列, 故集合A 没有聚点, 因此是([0,1])C 中的闭集.定义(,)1K x y =,显然(,)([0,1][0,1])K x y C ∈⨯. 对于上述的集合A , 不难计算{}11()|1,2,|1,2,1k A F x x dx k k k ⎧⎫=====⎨⎬+⎩⎭⎰ 显然, A 是([0,1])C 中列紧集,唯一的聚点是零函数,但零函数不在A 中,因此不是闭集. 补充题. 设A 是([,])C a b 中的一个有界集, 记():()()xa B F x f t dt f x A ⎧⎫⎪⎪==∈⎨⎬⎪⎪⎩⎭⎰.证明B 是([,])C a b 中的列紧集.证:根据Arzela-Ascoli 定理, 需证明B 在([,])C a b 中有界且等度连续即可.(i) B 在([,])C a b 中有界, 即B 作为由函数组成的集合是一致有界的. 事实上, 如果记A 的界为M ,则对于任意取定的()F xB ∈, 有某个()f t A ∈, 使得()()xaF x f t dt =⎰, 由此得知|()|()|()|xxaaF x f t dt f t dt =≤⎰⎰[,]max |()|||||x xC a b a t baaf t dt f dt ≤≤≤=⎰⎰[,]||||()()C a b f b a M b a ≤-≤-.因此B 是([,])C a b 中有界集, 且B 的界为()M b a -.(ii) B 在([,])C a b 中等度连续. 对于()F x B ∈,有某个()f t A ∈, 使得()()xaF x f t dt =⎰.对于,[,]x x a b ∈|()()|()()xxaaF x F x f t dt f t dt -=-⎰⎰()|()|xxxxf t dt f t dt =≤⎰⎰[,]max |()|||||xxC a b a t bxxf t dt f dt ≤≤≤=⎰⎰||M x x ≤-. 由此易知B 具有等度连续性.补充题.证明课本20页定理8:对于距离空间(,)X ρ中的任何集合G , G '与G 均是闭集. 证:(i) 根据闭集的定义, 仅需证明()G G '''⊆.事实上, 设()y G ''∈, 则对于任意的0ε>((,)\{})S y y G ε'⋂≠∅.设((,)\{})x S y y G ε'∈⋂, 根据极限点的定义, 对于min{(,),(,)}0x y x y δρερ=->,有((,)\{})S x x G δ⋂≠∅.又(,)(,)S x S y δε⊆,因此有((,)\{})((,)\{})S y y G S x x G εδ⋂⊇⋂≠∅.注意到0ε>的任意性, 即可得到y G '∈. 因此G '是闭集. (ii) 需证明的是G G '⊆. 因为G G G '=⋃, 又()A B A B '''⋃⊆⋃,(*)故由(i)中已经证明了的结果, 有()G G G G G G G '''''''=⋃⊆⋃⊆⊆,因此G 是闭集.如下证明(*): 设y A B ''∉⋃, 则y A '∉, 且 y B '∉.由前者知存在某个00ε>, 使得0((,)\{})S y y A ε⋂=∅;由后者知存在某个10ε>, 使得1((,)\{})S y y B ε⋂=∅.取001min{,}δεε=, 则00δ>, 且0((,)\{})()S y y A B δ⋂⋃=∅,所以()y A B '∉⋃, 即(*)得证.。
(3修改后)2010年下学期数学院研究生《泛函分析》复习与练习3答案
2011年下学期数学院研究生《泛函分析》复习与练习31、设X 为完备度量空间,A 是X 到X 中的映射,记),(),(sup 11x x d x A x A d a n n zx n ≠=若∞<∑∞=n n a 1,则映射A 有唯一不动点。
(第七章:P216,#18)证明 因∞<∑∞=n n a 1,则必有N ,使1<N a 。
这样对任意x, 1x ∈X,若x ≠1x ,则),(),(11x x d a x A x A d N nN ≤这样由压缩映射原理N A 有不动点*x ,即*x =N A *x 。
由于N A *x =A N A *x =A *x , A *x 也是N A 的不动点。
N A 的不动点是唯一的,因此*x = A *x ,即*x 是A 的不动点。
若x ’是A 的任意一个不动点,即A x ’= x ’。
于是N A x ’=1-n A x ’=…= A x’= x’。
这样x’也是N A 的不动点,由于NA 的不动点是唯一的,因此*x = x’。
即A 的不动点也是唯一的。
证毕。
2、按范数max j jx ξ=,()12,,n x ξξξ=成赋范线性空间,问n R 的共轭空间是什么?(第八章:P236,#8)解 记nR 按范数max i x ξ=组成赋范线性空间为nR ,nR 按范数x 1nii ξ==∑组成赋范线性空间为Y ,我们来证明X ' = Y 。
定义X ' 到Y 的映射。
任意f X '∈,()()()1,n Tf f e f e =,其中0,0,1,0,,0i i e ⎛⎫= ⎪⎪⎝⎭1,2,,i =n 。
对任意1ni ii x e ξ==∑, ()()()11max nni i i ii i f x f e f e Tf x ξξ===≤=∑∑ 于是f Tf ≤反之,对任意()1n y ηη=Y ∈。
定义f X '∈:对任意1ni i i x e ξ==∑,()1ni i i f x ξη==∑,则Tf y =。
泛函分析习题答案第九章习题答案
必 有y L{ xn }.
3. 设 f E *,f 1,N {x E | f ( x) 0},
证明:x E,| f ( x) | ( x, N ).
设x E, 则y N, 有 | f ( x) || f ( x y) | f x y x y
故 | f ( x) | inf x y ( x, N ) (1) yN
x
x
f1( x) f1( x0 )
x0,
则
f1( x) 0, 所 以 f2 ( x) 0, 即
f2( x)
f1( x) f1( x0 )
f2( x0 ) 0
所 以 f1( x) kf2( x) x E
即 f1 kf2 , 其 中k
f1( x0 ) . f2( x0 )
2.设{ xn }是赋范线性空间E中一元素列,证明y L{ xn }的充分必要 条件是:对任何f E *,若f ( xn ) 0 (n 1,2, ),则 f ( y) 0.
2
f0
2
E0
此 与 题 设 条 件 矛 盾.
5.记l02 {(1 ,2 , ) | 只 有 有 限 个i 0},l02上 元x (i )
的 范 数 定 义 为x
=
i 1
|i
|2
1
/
2
,
试
在l02上
造
出
一
个
无
界
的 线 性 泛 函.
x (i ) l02 ,定 义 :
f ( x) nn n1
i 1
i 1
但 f ( x0 )
f x0
f
|i
|(q1) p
1/
p
f
|i
《应用泛函分析》习题解答
1泛函分析与应用-国防科技大学 第 一 章第 一 节3.设}{k x 是赋范空间E 中的Cauchy 列,证明}{k x 有界,即∞<N∈k k x sup 。
证明:0>∀ε,0N ∃,当0,N n m >时,有εε<-⇒<-m n m n x x x x ,不妨设m n x x ≥,则0, ,N n m x x m n >+<ε。
取0N m =,则有0 ,0N n x x N n >+<ε,令},,,,max{0021ε+=N N x x x x c ,则1 ,≥<n c x n 。
6.设E 是Banach 空间,E 中的点列满足∞<∑∞=1k kx(此时称级数∑∞=1k k x 绝对收敛),证明存在E ∈x ,使∑∞=∞→=1lim k kn xx (此时记x 为∑∞=1k kx,即∑∞==1k kxx ).证明:令∑==nk kn xy 1,则∑∑++=++=+≤=-pn n k kpn n k kn p n xxy y 11。
由于∞<∑∞=1k kx绝对收敛,则它的一般项0→k x 。
因此0>∀ε,总0N ∃,当0,N p n ≥时,有ε<-+n p n y y ,所以}{n y 是E 中的Cauchy 列,又因为E 是Banach 空间,则必存在E ∈x ,使得∑∑∞==∞→==11limk k nk kn x xx 。
9.(Hamel 基)设A 是线性空间E 的非空子集,若A 中任意多个元素都是线性无关的,则称A 是线性无关的。
若A 是线性无关的,且E =A span ,则称A 是E 是的一个Hamel 基。
此时若A 是无穷集,则称E 是无穷维的;若A 是有限集,则称E 是有限维的,并定义E 的维数为A 中所含有的元素个数。
通常用E dim 表示E 的维数,并约定当}0{=E 时,0dim =E ,可以证明任何线性空间都存在Hamel 基。
泛函分析习题及参考答案
En
∫x
n
− x dt +
p
Fn
∫x
n
− x dt 。此时,
p
1 1 ⎡ ⎤ p p p p p p x x dt ( x dt ) ( x dt ) − ≤ + ⎢ ⎥ , ∫ x n − x dt < (b − a ) ⋅ ε 。 n n ∫ ∫ ∫ ⎢ En ⎥ Fn En En ⎣ ⎦
泛函分析习题及参考答案
一、在 R 中定义如下三种距离: x = ( x1 , x2 ), y = ( y1 , y2 ) ∈ R ,
2
2
d1 ( x, y ) = ( x1 − y1 ) 2 + ( x2 − y2 ) 2 , d 2 ( x, y ) = max{ x1 − y1 , x2 − y2 } ,
i =1
= ∑ ξi( n ) − ξi +
p i =1
K
i = K +1∑∞ξi( n ) − ξi
p
≤∑ξ
i =1
K
(n) i
− ξi
p
∞ p 1 ⎛ ∞ p 1 ⎞ + ⎜ ( ∑ ξi( n ) ) p + ( ∑ ξi ) p ⎟ < 2ε p 。 i = K +1 ⎝ i = K +1 ⎠
1
取 δ = min(δ 1 , δ 2 ) ,则 e ⊂ E , me < δ 时,
∫
e
x n (t ) dt ) p < ε ,对每个自然数 n 成立。
p
即 {x n (t )} 在 [a, b] 上具有等度绝对连续的积分。 充分性证明,对任何 ε > 0 ,令 E n (ε ) = E ( x n − x ≥ ε ) ,则 mE n (ε ) → 0 。由此可知, 对任何 δ > 0 ,存在 N > 0 ,使得 n > N 时, mE n (ε ) < δ 。 令 Fn (ε ) = E ( x n − x < ε ) ,则 ρ ( x n , x ) =
泛函分析试卷与答案
泛函分析试卷与答案【篇一:泛函分析习题参考答案】证明:显然为空间x上的距离,试证:~d(y,x)也是xd(y,x)?1?d(y,x)上的距离。
~~d(x,y)?0,并且d(x,y)?0d(x,y)0xy。
~~d(y,x)d(x,y)d(y,x)d(x,y);1?d(y,x)1?d(x,y)t1?1?1?t1?t的单调增加性及再者,最后,由d(x,y)?d(x,z)?d(z,y),可得~d(x,y)d(x,z)?d(z,y)d(x,z)d(z,y)d(x,y)1?d(x,y)1?d(x,z)?d(z,y)1?d(x,z)?d(z,y)1?d(x,z)?d(z,y)~~d(x,z)d(z,y)d(x,z)?d(z,y)。
1?d(x,z)1?d(z,y)、设二p?1,xn?(?1(n),?,?i(n),?)?lp,n?1,2,?,x?(?1,?,?i,?)?lp,则n??时,p??d(xn,x)i(n)??i??0的充要条件为(1)n??时,?i(n)??i,i?1,2,?;(2)0,i1存在n?0,使得i?n?1i(n)p对任何自然数n成立。
(n)(n)必要性证明:由d(x,x)?ni??i??0可知,?i??i,i?1,2,?。
i1p由x?(?1,?,?i,?)?l。
p可知,,存在n1?0,使得i?n1?1p?(n)ii?(p?i?1pi(p2,并且n?n1时,2p由此可得,i?n1?1i(n)ppppi(n)??ii????p对n?n1成立。
i?n1?1i?n1?1p对于n?1,2,?n1,存在n2?0,i?n2?1i(n)pp。
取n?max?n1,n2?,则i?n?1(n)pip对任何自然数n成立。
0,存在k?0,使得充分性证明:由条件可知,i?k?1时,k(n)pi(2ip对任何自然数n成立,并且i?k?1pi(p2。
由(n)i??i可知,存在n?0,使得n?n i?1(n)ipp,并且d(xn,x)pi?1(n)i??ipi?1k(n)i??i?pi?k?1pi(n)ipi(n)??ii?1kp(n)ppp?(i)?(i)p2?p。
泛函分析9§1-5,习题选讲与答案
第九章 内积空间和希尔伯特空间例题选讲例1. Hilbert 是X 可分的充分必要条件X 存在一个可数的完全规范正交系{}n e证明:若X 是可分的,设{}n x 是X 的一个可数稠密子集。
不妨设{}n x 是线性无关的。
用Gram Schmidt -方法,存在可数的完全规范正交系{}n e ,使span{}1,,n e e L = {}1,,n span x x L 。
这样。
因此{}n e 是完全的。
反之,若{}n e 是X 的一个完全规范正交系,则span {}n e 在X 中稠密。
()01,,1,2,3,n k k k k k k X a ib e a b Q N =⎧⎫=+∈=⎨⎬⎩⎭∑L 是X 中的可数稠密子集,因此 X 是可分的。
证毕例2.求证:P 是Hilbert 空间X 上的投影算子的充分必要条件是:2P P =且*P P =证明:设P 是X 中相对应与闭线性子空间Y 的投影算子。
对任意x ∈X ,存在1x Y∈,2x ∈Y ⊥,使12x x x =+,1Px x =。
对于1x ,1x =10x +,其中1x Y ∈,0Y ⊥∈。
因此11Px x =,即21P x Px Px ==,因此2P P = 设,x y X ∈,12x x x =+,12y y y =+。
其中11,x y Y ∈,22,x y Y ⊥∈。
这样()()()()()1121112,,,,,Px y x y y x y x x Py x Py =+==+=。
这就证明了*P P =。
反之,若P 满足*P P =,*P P =。
令{}Y x Px x ==,则Y 是X 中的线性子空间。
Y 还是闭的。
事实上,若n x Y ∈,0lim n n x x →∞=,则00lim lim n n n n Px Px x x →∞→∞===。
故0x Y ∈,因此Y 是闭的线性子空间,我们要证明P 是Y 上的投影算子。
设x X ∈,则()x Px x Px =+-。
北大出版社 泛函分析 习题答案
4.3 紧算子的谱理论 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.4 Hilbert-Schmidt 定理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
由习题 1.4.7, 存在 x0 ∈ X , 使 x0 ≤ 2 [x0] 0 ≤ 2M y0 .
若 y0 = 0, 由习题 1.4.7, 存在 xn ∈ [xn], xn ≤ 2 [xn] 0 ≤ 2M yn → 0.
在
若 y0 [zn] ∈
= 0, 由 yn X /N (A), 使
→ y0, 则存在 k, 当 n A˜[zn] = yn − y0. 由习题
4 紧算子与 Fredholm 算子
8
4.1 紧算子的定义和基本性质 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.2 Riesz-Fredholm 理论 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
泛函分析部分课后习题答案
T : R n E ,对于 1 , 2 n R n , 。
下证 T 为同构映射。 显 然 T 为 单 射 , 容 易 证 T 也 为 满 射 。 事 实 上 , 对 于 x E , 令
n
ci x, ei R, i 1, 2, n ,必有 T c1 , c2 cn ci ei x 。
f x 为
n
Cauchy 列 , 则 f n x , f n1 x 0 n , 由
f ni x f ni1 x f n , f n 1 0 n 知 f ni x 也为 Cauchy 列。由 Cauchy
由于时间和能力有限,只完成了部分习题,仅供参考,有错误的请指出,大家共同进步!——陈建军
习题 1 1、解: C a,b 按 是非完备的。
n1
令函数列 Pn x
i 0
b
xi ,显然 Pn C a,b ,且有 2i
b
Pn , Pn1 Pn1 Pn dx
T x1 , x2 , xn 0, x1 , x2 , xn 1 , S x1 , x2 , xn 0, x2 , xn 。易证 T,S 为线性算
子。取点 1,0, 0 R n ,显然有 TS 1, 0, 0 T 0,0, 0 0, 0, 0 ,
n k 1
fi x f ek ,显然 f X 且 fi i 1 为 X 的基。令 T : X X ,使得
f f e1 , f e2 , f en ,易证 T 为双射。命题得证。
微积分(二)课后题答案,复旦大学出版社 第九章
第9章习题9 11. 判定下列级数的收敛性:(1) 115nn a ∞=⎛⎫⋅ ⎪⎝⎭∑(a >0); (2) ∑∞=-+1)1(n n n ;(3) ∑∞=+131n n ; (4)∑∞=-+12)1(2n nn; (5) ∑∞=+11ln n n n; (6)∑∞=-12)1(n n;(7) ∑∞=+11n nn ; (8)0(1)21n n nn ∞=-⋅+∑. 解:(1)该级数为等比级数,公比为1a ,且0a >,故当1||1a <,即1a >时,级数收敛,当1||1a≥即01a <≤时,级数发散.(2)n S =+++1= lim n n S →∞=∞∴1n ∞=∑发散.(3)113n n ∞=+∑是调和级数11n n ∞=∑去掉前3项得到的级数,而调和级数11n n∞=∑发散,故原级数113n n ∞=+∑发散. (4) 1112(1)1(1)222n n nn n n n ∞∞-==⎛⎫+--=+ ⎪⎝⎭∑∑ 而1112n n ∞-=∑,1(1)2mnn ∞=-∑是公比分别为12的收敛的等比级数,所以由数项级数的基本性质知111(1)22n n n n ∞-=⎛⎫-+ ⎪⎝⎭∑收敛,即原级数收敛.(5) lnln ln(1)1nn n n =-++ 于是(ln1ln 2)(ln 2ln3)[ln ln(1)]n S n n =-+-+-+ ln1ln(1)ln(1)n n =-+=-+ 故lim n n S →∞=-∞,所以级数1ln1n nn ∞=+∑发散. (6) 2210,2n n S S +==-∴lim n n S →∞不存在,从而级数1(1)2n n ∞=-∑发散.(7) 1lim lim10n n n n U n→∞→∞+==≠∴ 级数11n n n ∞=+∑发散. (8) (1)(1)1, l i m 21212n n n n n n U n n →∞--==++∴ l i m 0n x U →∞≠,故级数1(1)21n n nn ∞=-+∑发散. 2. 判别下列级数的收敛性,若收敛则求其和:(1) ∑∞=⎪⎭⎫ ⎝⎛+13121n n n ; (2)∑∞=++1)2)(1(1n n n n ; (3) ∑∞=⋅12sin n n n π; (4)πcos2n n ∞=∑. 解: (1)1111, 23n n n n ∞∞==∑∑都收敛,且其和分别为1和12,则11123n n n ∞=⎛⎫+ ⎪⎝⎭∑收敛,且其和为1+12=32. (2)11121(1)(2)212n n n n n n ⎛⎫=-+ ⎪++++⎝⎭∴121112111211121122322342345212n S n n n ⎛⎫⎛⎫⎛⎫⎛⎫=-++-++-+++-+ ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭⎝⎭11112212n n ⎛⎫=-+ ⎪++⎝⎭1lim 4n n S →∞=故级数收敛,且其和为14. (3)πsin 2n U n n =,而πsinππ2lim lim 0π222n n n U n→∞→∞=⋅=≠,故级数1πsin 2n n n ∞=⋅∑发散.(4)πcos 2n n U =,而4lim lim cos 2π1k k k U k →∞→∞==,42lim lim cos(21)π1k k k U k +→∞→∞=+=-故lim n n U →∞不存在,所以级数πcos2n n ∞=∑发散. 3. 设1nn U∞=∑ (U n >0)加括号后收敛,证明1nn U∞=∑亦收敛.证:设1(0)nn n UU ∞=>∑加括号后级数1n n A ∞=∑收敛,其和为S .考虑原级数1n n U ∞=∑的部分和1n k k S U ∞==∑,并注意到0(1,2,)k U k >= ,故存在0n ,使11n n k t k t S U A s ∞===<<∑∑又显然1n n S S +<对一切n 成立,于是,{}n S 是单调递增且有上界的数列,因此,极限lim nn S →∞存在,即原级数1nn U∞=∑亦收敛.习题9-21. 判定下列正项级数的收敛性:(1) ∑∞=++1n n n )2)(1(1; (2)∑∞=+1n n n 1; (3) ∑∞=++1n n n n )2(2; (4)∑∞=+1n n n )5(12;(5) 111nn a∞=+∑ (a >0); (6) ∑∞=+1n nba 1(a , b >0);(7)()∑∞=--+1n a n a n 22 (a >0); (8)∑∞=-+1n nn 1214; (9) ∑∞=⋅1n nnn 23; (10) ∑∞=1n nn n !; (11) ∑∞=+⋅⋅⋅⋅+⋅⋅⋅⋅1n n n )13(1074)12(753 ; (12)∑∞=1n nn 3; (13)∑∞=1n n n 22)!(2; (14) ∑∞=⎪⎭⎫⎝⎛+1n nn n 12;(15)∑∞=1πn nn3sin2; (16) ∑∞=1πn nn n 2cos 32. 解:(1)因为211(1)(2)n n n <++而211n n∞=∑收敛,由比较判别法知级数11(1)(2)n n n ∞=++∑收敛.(2)因为lim 10n n n U →∞==≠,故原级数发散. (3)因为21(1)(1)1n n n n n n n +>=+++,而111n n ∞=+∑发散,由比较判别法知,级数12(1)n n n n ∞=++∑发散. (4)321n<=,而1n ∞=p -级数3(1)2p =>,由比较判别法知,级数1n ∞=.(5)因为111lim lim lim(1)111n n n n n n n a a a aa→∞→∞→∞+==-++ 11112001a a a >⎧⎪⎪==⎨⎪<<⎪⎩而当1a >时,11n n a ∞=∑收敛,故111nn a∞=+∑收敛; 当1a =时,11n n a∞=∑=11n ∞=∑发散,故111nn a ∞=+∑发散; 当01a <<时1lim101n n a →∞=≠+,故1lim 1nn a →∞+发散;综上所述,当01a <≤时,级数1lim 1n n a →∞+发散,当1a >时,1lim 1nn a →∞+收敛.(6)因为1lim lim lim(1)n n n nn n n nb a a b a b a b b →∞→∞→∞+==-++1111101b b a b >⎧⎪⎪==⎨+⎪<<⎪⎩ 而当1b >时, 11n n b ∞=∑收敛,故11nn a b ∞=+∑收敛; 当1b =时,1111n n n b ∞∞===∑∑发散,故而由0a >, 101a <<+∞+,故11nn a b ∞=+∑也发散; 当01b <<时,11lim 0n n a b a →∞=≠+故11n n a b ∞=+∑发散; 综上所述知,当01b <≤时,级数11n n a b ∞=+∑发散;当b >1时,级数11nn a b∞=+∑收敛. (7)因为n n n→∞=0n a ==>而11n n∞=∑发散,故级数10)n a ∞=>∑发散.(8)因为434431121lim lim 212n n n n n n n n→∞→∞++-==-而311n n ∞=∑收敛,故级数21121n n n ∞=+-∑收敛.(9)因为1113233lim lim lim 1(1)232(1)2n n n n n n n n nU n n U n n +++→∞→∞→∞⋅⋅==>+⋅+由达朗贝尔比值判别法知,级数132nnn n ∞=⋅∑发散. (10)因为11(1)!1lim lim lim(1)1(1)!n n n n n n n nU n n e U n n n ++→∞→∞→∞+=⋅=+=>+,由达朗贝尔比值判别法知,级数1!nn n n ∞=∑发散.(11)因为1357(21)(23)4710(31)limlim 4710(31)(34)357(21)n n n nU n n n U n n n +→∞→∞⋅⋅⋅⋅+⋅+⋅⋅⋅⋅+=⋅⋅⋅⋅⋅+⋅+⋅⋅⋅⋅+ 232lim1343n n n →∞+==<+,由达朗贝尔比值判别法知原级数收敛.(12)因为111311lim lim lim 1333n n n n n n nU n n U n n ++→∞→∞→∞++=⋅==<,由达朗贝尔比值判别法知,级数13nn n∞=∑收敛. (13)因为22221221(1)[(1)!]2(1)lim lim lim (!)22n n n n n n n nU n n U n +++→∞→∞→∞++=⋅= 由2212121(1)2(1)1lim lim lim 222ln 22ln 2x x x x x x x x x +++→∞→+∞→+∞+++==⋅⋅2121lim 022(ln 2)x x +→+∞==⋅知2121(1)lim lim 012n n n n nU n U ++→∞→∞+==<由达朗贝尔比值判别法知,级数221(!)2n n n ∞=∑收敛.(14)因为1lim 1212n n n n →∞==<+,由柯西根值判别法知级数121nn n n ∞=⎛⎫⎪+⎝⎭∑收敛.(15)因为ππ2sinsin 33lim lim 1π2π33n n nn n n n n→∞→∞==⋅而112233nn n n n ∞∞==⎛⎫= ⎪⎝⎭∑∑是收敛的等比级数,它的每项乘以常数π后新得级数12π3n n n ∞=⋅∑仍收敛,由比较判别法的极限形式知,级数1π2sin3n nn ∞=∑收敛. (16)因为2πcos 322n n n n n ≤而与(12)题类似地可证级数12n n n ∞=∑收敛,由比较判别法知级数1πcos 32nn n n ∞=∑收敛. 2. 试在(0,+∞)内讨论x 在什么区间取值时,下列级数收敛:(1) ∑∞=1n nn x ; (2)nn x n ∑∞=⎪⎭⎫ ⎝⎛123. 解:(1)因为11lim lim lim 11n n n n n n nU x n nxx U n x n ++→∞→∞→∞=⋅==++由达朗贝尔比值判别法知,当1x >时,原级数发散;当01x <<时,原级数收敛; 而当1x =时,原级数变为调11n n ∞=∑,它是发散的. 综上所述,当01x <<时,级数1nn x n ∞=∑收敛.(2)因为1313(1)2limlim 22n n n n n nx n U xU x n ++→∞→∞⎛⎫+⋅ ⎪⎝⎭==⎛⎫⋅ ⎪⎝⎭,由达朗贝尔比值判别法知,当12x >即2x >时,原级数发散;当012x<<即02x <<时,原级收敛. 而当12x =即 2x =时,原级数变为31n n ∞=∑,而由3lim n n →∞=+∞知31n n ∞=∑发散,综上所述,当02x <<时,级数31()2nn x n ∞=∑收敛.习题9-31. 判定下列级数是否收敛,如果是收敛级数,指出其是绝对收敛还是条件收敛:(1) ∑∞=--1121)1(n nn ; (2)11(1)2(1)2n n n n ∞-=-+-⋅∑; (3) ∑∞=12sin n n nx; (4) 111π(1)sin πn n n n∞+=-∑; (5) ∑∞=-⎪⎭⎫ ⎝⎛-11210121n n n ; (6)∑∞=+-1)1(n n xn ; (7) ∑∞=⋅1!)2sin(n n n x ; (8)∑∞=1sin n n nx(0<x <π). 解:(1)这是一个交错级数121n U n =-, 1lim lim021n n n U n →∞→∞==-, 1112121n n U U n n +=>=-+ 由莱布尼茨判别法知11(1)21n n n ∞=--∑.又1111(1)2121n n n n n ∞∞==-=--∑∑,由1121lim 12n n n→∞-=,及11n n ∞=∑发散,知级数1121n n ∞=-∑发散,所以级数11(1)21nn n ∞=--∑条件收敛. (2)因为2111(1)211(1)22(1)2n n n n n ----+-=+-⋅-⋅,故 11111(1)21111(1)22(1)22(1)2n n n n n n n n n ------+--=+≤+-⋅-⋅-⋅ 1113222n n n-=+=而112n n ∞=∑收敛,故132n n ∞=∑亦收敛,由比较判别法知11(1)2(1)2n n nn ∞-=-+-⋅∑收敛,所以级数11(1)2(1)2n n n n ∞-=-+-⋅∑绝对收敛. (3)因为22sin 1,nx n n ≤而级数211n n∞=∑收敛,由比较判别法知21sin n nx n ∞=∑收敛,因此,级数21sin n nxn ∞=∑绝对收敛. (4)因为121ππ|(1)sin |sin πlimlim 11πn n n n n n n n+→∞→∞-==而211n n∞=∑收敛,由比较判别法的极限形式知,级数111π|(1)sin |πn n n n ∞+=-∑收敛,从而级数11π(1)sin πn n n+-绝对收敛. (5)因为212121111111210210210n n n n n n ----≤+=+,而级数112nn ∞=∑收敛的等比级数1()2q =;由比值判别法,易知级数211110n n ∞-=∑收敛,因而21111210n n n ∞-=⎛⎫+ ⎪⎝⎭∑收敛,由比较判别法知级数21111210n n n ∞-=-∑收敛,所以原级数21111210n n n ∞-=-∑绝对收敛. (6)当x 为负整数时,级数显然无意义;当x 不为负整数时,此交错级数满足莱布尼茨判别法的条件,故它是收敛的,但因11n x n ∞=+∑发散,故原级数当x 不为负整数时仅为条件收敛.(7)因为sin(2)1!!n x n n ⋅≤ 由比值判别法知11!n n ∞=∑收敛( 1(1)!lim 01!n n n →∞+=),从而由比较判别法知1sin(2)!n n x n ∞=⋅∑收敛,所以级数1sin(2)!n n x n ∞=⋅∑,绝对收敛.(8)因为1n 单调下降趋于零,且部分和1sin Nn nx =∑有界(0π)x <<,故由迪里黑里判别法知级数1sin n nxn ∞=∑收敛. 又2sin sin 1cos 21cos 2222nx nx nx nxn n n n n -≥==-,由于112n n ∞=∑发散,因12n 单调趋于零,且1cos 2Nn nx =∑有界,故由迪里黑里判别法知1cos 22n nx n ∞=∑收敛,从而11cos 222n nx nn ∞=⎛⎫- ⎪⎝⎭∑发散,由比较判别法知,1sin n nx n ∞=∑发散,所以,原级数1sin n nxn ∞=∑ (0π)x <<条件收敛. 注:迪里黑里判别法,若级数1n nn u v∞=∑满足条件:(1)部分和1nn ii S u==∑是有界的;(2)当n →∞时,n v 单调地趋于零; 则级数1n nn u v∞=∑收敛.2. 讨论级数∑∞=--111)1(n p n n的收敛性(p >0). 解:当1p >时,由于11111(1)n p p n n n n ∞∞-==-=∑∑收敛,故级数111(1)n p n n ∞-=-∑绝对收敛. 当01p <≤时,由于111,(1)n n p p u u n n +=>=+ lim 0n n u →∞=,由莱布尼茨判别法知交错级数111(1)n pn n ∞-=-∑收敛,然而,当01p <≤时,11111(1)n p p n n n n∞∞-==-=∑∑发散,故此时,级数111(1)n pn n ∞-=-∑条件收敛. 综上所述,当01p <≤时,原级数条件收敛;当p >1时,原级数绝对收敛.3. 设级数∑∞=12n na及∑∞=12n nb都收敛,证明级数∑∞=1n nn ba 及()∑∞=+12n n nb a也都收敛.证:因为2222||||110||222n n n n n n a b a b a b +≤≤=+ 而由已知1nn a ∞=∑及21n n b ∞=∑都收敛,故221111,22n n n n a b ∞∞==∑∑收敛,从而2211122n n n a b ∞=⎛⎫+ ⎪⎝⎭∑收敛,由正项级数的比较判别法知1n nn a b∞=∑也收敛,从而级数1n nn a b∞=∑绝对收敛.又由222()2,n n n n n n a b a a b b +=++及2211,n n n n a b ∞∞==∑∑,以及1n n n a b ∞=∑收敛,利用数项级数的基本性质知,221(2)nn n n n aa b b ∞=++∑收剑,亦即21()n n n a b ∞=+∑收敛.习题9-41. 指出下列幂级数的收敛区间:(1) ∑∞=0!n nn x (0!=1); (2)∑∞=0!n nnx nn ; (3) ∑∞=⋅022n n nnx ; (4)∑∞=++-01212)1(n n nn x . (5) ∑∞=⋅+02)2(n n nn x ; (6)∑∞=-0)1(2n n nx n. 解:(1)因为111(1)!limlim lim 011!n n n n na n p a n n +→∞→∞→∞+====+,所以收敛半径r =+∞,幂级数1!nn x n ∞=∑的收敛区间为(,)-∞+∞. (2)因为-111lim lim lim 1e 11n nn n n n na n p a n n +→∞→∞→∞⎛⎫===-= ⎪++⎝⎭,所以收敛半径1e r p ==. 当x =e 时,级数01!!e n n n n n n n n x n n ∞∞===∑∑,此时11(1)n n n u eu n+=+,因为1(1)n n +是单调递增数列,且1(1)nn+<e 所以1n nu u +>1,从而lim 0n n u →∞≠,于是级数当x =e 时,原级数发散.类似地,可证当x =-e 时,原级数也发散(可证lim ||0n n u →∞≠),综上所述,级数!nn n n x n ∞=∑的收敛区间为(-e,e).(3)因为2111limlim ()212n n n n a n p a n +→∞→∞===+,所以收敛半径为r =2. 当2x =时,级数221012n n n n x n n∞∞===⋅∑∑是收敛的p 一级数(p =2>1);当x =-2时,级数22011(1)2n n n n n x n n ∞∞===-⋅⋅∑∑是交错级数,它满足莱布尼茨判别法的条件,故它收敛.综上所述,级数202nn n x n∞=⋅∑的收敛区间为[-2,2].(4)此级数缺少偶次幂的项,不能直接运用定理2求收敛半径,改用达朗贝尔比值判别法求收敛区间.令21(1)21n nn x u n +=-+,则22121lim lim 23n n n nu n x x u n +→∞→∞+=⋅=+.当21x <时,即||1x <时,原级数绝对收敛.当21x >时,即||1x >时,级数0||n n u ∞=∑发散,从而21(1)21n nn x n +∞=-+∑发散,当1x =时,级数变为01(1)21nn n ∞=-+∑;当1x =-时,级数变为11(1)21n n n ∞+=-+∑;它们都是交错级数,且满足莱布尼茨判别法的条件,故它们都收敛.综上所述,级数21(1)21n nn x n +∞=-+∑的收敛区间为[-1,1].(5)此级数为(x +2)的幂级数. 因为11limlim 2(1)2n n n n a n p a n +→∞→∞===+. 所以收敛半径12r p==,即|2|2x +<时,也即40x -<<时级数绝对收敛.当|2|2x +>即4x <-或0x >时,原级数发散.当4x =-时,级数变为1(1)nn n∞=-∑是收敛的交错级数, 当x =0时,级数变为调和级数11n n ∞=∑,它是发散的. 综上所述,原级数的收敛区间为[-4,0).(6)此级数(x -1)的幂级数12limlim 21n n n n a np a n +→∞→∞===+ 故收敛半径12r =. 于是当1|1|2x -<即1322x <<时,原级数绝对收敛.当1|1|2x ->即12x <或32x >时,原级数发散.当32x =时,原级数变为01n n ∞=∑是调和级数,发散.当12x =时,原级数变为11(1)n n n ∞=-∑,是收敛的交错级数. 综上所述,原级数的收敛区间为13,22⎡⎫⎪⎢⎣⎭. 2. 求下列幂级数的和函数:(1) ∑∞=-1)1(n nnn x ; (2)∑∞=-1122n n nx;(3) n n x n n ∑∞=+1)1(1; (4)∑∞=+0)12(n nxn .解:(1)可求得所给幂级数的收敛半径r =1.设1()(1)nnn x S x n ∞==-∑,则1111()(1)(1)1n n n n n n x S x x n x ∞∞-=='⎡⎤'=-=-=-⎢⎥+⎣⎦∑∑ ∴001()()d d ln(1) (||1)1x x S x S x x x x x x-'===-+<+⎰⎰又当x =1时,原级数收敛,且()S x 在x =1处连续.∴1(1)l n (1) (11)nnn x xx n ∞=-=-+-<≤∑(2)所给级数的收敛半经r =1,设211()2n n S x nx∞-==∑,当||1x <时,有2121011()d 2d 2d xx xn n n n S x x nxx nx x ∞∞--====∑∑⎰⎰⎰22211nn x x x ∞===-∑ 于是22222()1(1)x xs x x x '⎛⎫== ⎪--⎝⎭ 又当1x =±时,原级数发散.故2122122 (||1)(1)n n xnx x x ∞-==<-∑(3)可求所给级数的收敛半径为1.令1111()(0)(1)(1)n n n n x x s x x n n x n n +∞∞====≠++∑∑令11()(1)n n x g x n n +∞==+∑,则111()1n n g x x x ∞-=''==-∑01()d ()(0)d 1xxg x x g x g x x''''=-=-⎰⎰(0)0,()ln(1)g g x x ''==--()d ()(0)ln(1)d ,(0)0xxg x x g x g x x g '=-=--=⎰⎰所以0()ln(1)d ln(1)ln(1)xg x x x x x x x =--=+---⎰;所以1()11ln(1),||1,S x x x x ⎛⎫=+--<⎪⎝⎭且0x ≠. 当1x ±时,级数为11(1)n n n ∞=+∑和11(1)(1)nn n n ∞=-+∑,它们都收敛.且显然有(0)0S =.故111ln(1)(1,0)(0,1)()00,1x x S x x x x ⎧⎛⎫+--∈-⋃⎪ ⎪=⎝⎭⎨⎪=±⎩. (4)可求得所给级数的收敛半径为r =1且1x ±时,级数发散,设1()n n S x nx∞-==∑,则1()d .1xn n s x x x x∞===-∑⎰于是211()()1(1)S x x x '==--,即1211(1)n n nx x ∞-==-∑. 所以111(21)2nn n n n n n xx nxx ∞∞∞-===+=+∑∑∑221112(1)1(1)xx x x x +=⋅+=--- (||1)x <3. 求下列级数的和:(1) ∑∞=125n n n ; (2)∑∞=-12)12(1n nn ; (3) ∑∞=--112212n n n ; (4)1(1)2nn n n ∞=+∑. 解:(1)考察幂级数21nn n x ∞=∑,可求得其收敛半径1r = ,且当1x ±时,级数的通项2n n u n x =,2lim ||lim n n n u n →∞→∞==+∞,因而lim 0n n u →∞≠,故当1x ±时,级数21n n n x ∞=∑发散,故幂级数21nn n x∞=∑的收敛区间为(-1,1).设21() (||1)nn S x n xx ∞==<∑,则211()n n S x x n x ∞-==∑令2111()n n S x n x∞-==∑,则11011()d xnn n n S x x nx x nx ∞∞-====∑∑⎰.再令121()n n S x nx∞-==∑,则201()d 1xn n xS x x x x∞===-∑⎰.故221()(||1)1(1)x S x x x x '⎛⎫==< ⎪--⎝⎭,从而有120()d (1)x x S x x x =-⎰. 1231() (||1)(1)(1)x xS x x x x '⎛⎫+==< ⎪--⎝⎭ 于是 213()() (||1)(1)x x S x xS x x x +==<-取15x =,则223111()11555()5532115n n n S ∞=+===⎛⎫- ⎪⎝⎭∑. (2)考察幂级数21121n n x n ∞=-∑,可求得收敛半径r =1,设 2211111() (||1)2121nn n n S x x x x x n n ∞∞-====<--∑∑令21111()21n n S x x n ∞-==-∑,则221211()1n n S x x x ∞-='==-∑. 1200d 11()d ln 1-21xxx x S x x x x+'==-⎰⎰即 1111()(0)ln (,(0)0)21xS x S s x+-==-. 于是 111()ln,(||<1)21xS x x x+=-,从而 11()()ln (||1)21x xS x xS x x x+==<-取x =则11(21)21nn S n ∞===-∑=+ (3)考察幂级数211(21)n n n x∞-=-∑,可求得其级数半经为r =1,因为212121111(21)2n n n n n n n xnxx ∞∞∞---===-=-∑∑∑令2111()2n n S x nx∞-==∑,则22121()d 1xnn x S x x x x ∞===-∑⎰. 所以212222() (||1)1(1)x xS x x x x '⎛⎫==< ⎪--⎝⎭,于是212121111(21)2n n n n n n n xn xx ∞∞∞---===-=-∑∑∑3222222 (||1)(1)1(1)x x x x x x x x +=-=<--- 取12x =,得 3212111()121102212291()2n n n S ∞-=+-⎛⎫=== ⎪⎛⎫⎝⎭-⎪⎝⎭∑.(4)考察幂级数1(1)nn n n x∞=+∑,可求得其收敛半径r =1.设1()(1) (||1)nn S x n n xx ∞==+<∑则12111()d xn n n n S x x nxxnx∞∞+-====∑∑⎰.又设111()n n S x nx∞-==∑则101()d 1xn n x S x x x x∞===-∑⎰. 从而121()1(1)x S x x x '⎛⎫== ⎪--⎝⎭, 2212()d ()(1)xx S x x x S x x ==-⎰2232() ||1(1)(1)x x S x x x x '⎛⎫==< ⎪--⎝⎭取12x =,则31121(1)2822112n n n n S ∞=⨯+⎛⎫=== ⎪⎝⎭⎛⎫- ⎪⎝⎭∑ 习题9-51. 将下列函数展开成x 的幂级数: (1) 2cos2x ; (2) 2sin x ; (3) 2x x -e ; (4) 211x -; (5)πcos()4x -. 解:(1)2201cos 11cos (1)2222(2)!nn n x x x n ∞=+==+-∑ 211(1) (-)2(2)!nnn x x n ∞==+-∞<<+∞∑(2)2101sin (1) ()2(21)!2n nn x x x n +∞=⎛⎫=--∞<<+∞ ⎪+⎝⎭∑(3)22210011e()(1) ()!!x nn n n n x x x x x n n ∞∞-+===-=--∞<+∞∑∑(4)211111211x x x ⎡⎤=+⎢⎥--+⎣⎦002011(1)221[(1)]2 ||1n n n n n nn n n n n x x x x x x ∞∞==∞=∞==+-=+-=<∑∑∑∑(5)πππcos cos cos sin sin 444x x x ⎛⎫-=+ ⎪⎝⎭2210sin )(1) ()2(2)!(21)!n n n n x x x x x n n +∞==+⎡⎤=-+-∞<<+∞⎢⎥+⎣⎦2. 将下列函数在指定点处展开成幂级数,并求其收敛区间: (1)x -31在x 0=1; (2) cos x 在x 0=3π;(3)3412++x x 在x 0=1; (4) 21x 在x 0=3. 解:(1)因为11113212x x =⋅---,而 0111 (||112212nn x x x ∞=--⎛⎫=< ⎪-⎝⎭-∑即13x -<<). 所以100111(1) (13)3222nnn n n x x x x ∞∞+==--⎛⎫=⋅=-<< ⎪-⎝⎭∑∑. 收敛区间为:(-1,3). (2)πππ2π2cos cos ()cos cos()sin sin()333333x x x x ⎡⎤=+-=---⎢⎥⎣⎦22100()()133(1)(1)2(2)!(21)!n n n n n n x x n n ππ+∞∞==--=-+-+∑221011(1)())2(2)!33nn n n x x n ππ∞+=⎡⎤=--+-⎢⎥⎣⎦∑ ()x -∞<<+∞ 收敛区间为(,)-∞+∞. (3)211111111()1143213481124x x x x x x =-=⋅-⋅--++++++ 001111(1)(1)4284n nn n n n x x ∞∞==--⎛⎫⎛⎫=--- ⎪ ⎪⎝⎭⎝⎭∑∑223011(1)(1)22n n n n n x ∞++=⎛⎫=--- ⎪⎝⎭∑由112x -<且114x -<得13x -<<,故收敛区间为(-1,3) (4)因为011113(1)()333313n nn x x x ∞=-=⋅=-⋅-+∑ 1(3)(1)3n nn n x ∞+=-=-∑而21011(3)(1)3n n n n x x x ∞+=''⎡⎤-⎛⎫=-=-- ⎪⎢⎥⎝⎭⎣⎦∑ 111(1)(3)3nn n n n x ∞-+=-=-⋅-∑1111(1)(3)3n n n n n x +∞-+=-=-∑ 2(1)(1)(3)3n n n n n x ∞+=-+=-∑ 由313x -<得06x <<. 故收敛区间为(0,6).3. 求下列各数的近似值,精确到104: (1) e ; (2) I =⎰+41031x x d .解:(1)2e 1 (-)2!!nxx x x x n =+++++∞<-<+∞ 令1x =得111e 112!3!!n =++++++ 取前1n +项作为e 的近似值,有111e 112!3!!n ≈+++++ . 其误差为 111(1)!(2)!n R n n +=++++1111(1)!2(2)(3)n n n n ⎡⎤=+++⎢⎥++++⎣⎦ 2311111(1)!1(1)(1)n n n n ⎡⎤<++++⎢⎥++++⎣⎦1111(1)!!11n n n n =⋅=+⋅-+ 要求误差不超过10-4,而4111066!4320-=>⋅, 54113101077!35230--=<⨯<⋅. 故取7n =,即取级数的前8项作近似值计算.11111111 2.718282!3!4!5!6!7!e ≈+++++++≈(2)由公式21 222(21)2(21)(21)(1)12 112!!nn x x x x x n ---++=+++++-<<有1336912211 1.3135(1)12242462468x x x x x ⋅⋅=+=+-+-+⋅⋅⋅⋅⋅⋅136912401113135(1)d 2242462468I x x x x x x ⋅⋅⋅=+-+-+⋅⋅⋅⋅⋅⋅⎰144710130111113113512424724610246813x x x x x ⋅⋅⋅⎡⎤=+⋅-⋅+⋅-⋅+⎢⎥⋅⋅⋅⋅⋅⋅⎣⎦4710131111131151484564480449924⎛⎫⎛⎫⎛⎫⎛⎫=+⋅-⋅+-⋅+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 因为74110.0000010910564-⎛⎫⋅=< ⎪⎝⎭.由交错级数的理论知,取前两项作为近似值,可保证误差74211||10564r -⎛⎫<⋅< ⎪⎝⎭ 所以41110.25049484I ⎛⎫=+⋅≈ ⎪⎝⎭.。
刘炳初泛函分析部分习题解答
. 要证 x0 A ,即证 F x 0 k . 由
xn x0 , n 且 F 连 续 F xn F x0 . 由 于
xn A
, 故
F xn k F x0 k x0 A . 故 x X : F x k 为闭集 . 所以每一个 wk 为
d x,0 d x,0 d 0,0 即 7 3 3 6 . 矛盾
(7)证明在空间 S 中,按距离收敛等价于按坐标收敛. 证 设 x x 1 ,x 2 , ,x n S , y y1 , y2 ,, yn S , 则
d x, y
d xn , xm .
(1)
由 rn 0 , n 知, 对上述 0, N 2 , 当 n N 2 时有 rn . 而当 m n 时,
som , rm son , rn ,从而 xm son , rn , 有
d xn , xm rn .
பைடு நூலகம்
d x n , x0 0 ,
即
n .
1 xi x 0 0 , n . i n n x0 i 1 2 1 xi
n
n
故有
xi
n
0 xi , i 1,2, , n .
(1)
反之若(1)成立,从(1)依次递推可得 xn x0 , n . 即 S 中点列若按坐 标收敛, 则按距离收敛. (8)试举例说明有界集不是全有界集. 证 取 C 0, 1 中的点列 xn ,
0
Sx 0 ,r U , M k 0 ,命题得证.
(16)举例说明,在压缩映射原理中, 1)空间完备性条件不可少; 2)映射 T 所满足的条件不能代之以条件: d Tx, Ty d x, y 解 1) 设T : 0, 0, 且Tx x ,x 0, ,其中 0 1 . 可以 看出 T 为 0, 上的压缩映射. 事实上 x ,y 0, 有
泛函分析作业题答案(改)
泛函分析作业题答案(改)P46:第⼀章习题:1.验证(),()d m 满⾜距离定义。
解:设{}i x ξ=,{}i y η=属于X ,α是数,()1,sup .j j j d x y ξη≥=-(1)对j ?,有0j j ξη-≥,所以1sup j j j ξη≥-,(),0d x y ≥,且1sup 00j j j j j j j ξηξηξη≥-=?-=?=,即(),0d x y =当且仅当.x y =(2) ()()11,sup sup ,j j j j j j d x y d y x ξηηξ≥≥=-=-=;(3)设{}i z ζ=()()1111,sup sup ()()sup sup ,(,)j j j j j j j j j j j j j j d x z d x y d y z ξζηξξζηξξζ≥≥≥≥=-≤-+-≤-+-=+综上(1),(2),(3),(),d 满⾜距离定义。
3.试证明:在空间()s 中的收敛等价于坐标收敛。
证:设{}()(),1,2,n n j x s n ξ=∈=,{}()(0)0j x s ξ=∈,()?若0n x x →,则必有()(0)lim ,1,2,n j j n j ξξ→∞==,否则,j N +∈,00ε>,与正整数列的⼦序列{}1k k n ∞=,使()因为()1tf t t=+是单调递增,所以()()(0)00()(0)11,,1,2,2211k k k n j j n j j n j j d x x k ξξεεξξ-≥?≥?=++-,这与()0,0k n d x x →⽭盾,故()s 中的收敛可推出坐标收敛。
()?若()(0)lim ,1,2,n j j n j ξξ→∞==,则对j ?,0ε?>,0N N +∈,0n N ?>,1,2,,2,,则存在故命题得证。
4.证明:空间()c 是可分的。
证:令0s 表⽰所有形如12{,,,,,,}m m m r r r r r 的元素的集合,m 为任意正整数,(1,2,)j r j m =是任意的有理数,所以0s 可数。
刘炳初等 《泛函分析》第二版课后习题答案
刘炳初等 《泛函分析》第二版课后习题答案习题二1.设(,)X 是赋范空间. 对于,,x y X ∈令10,,1,,x y d x y x y =⎧=⎨-+≠⎩ 证明:1d 是X 上的距离但不是由范数诱导的距离.证明:显然1d 满足距离公理1)、2). 若x y =,显然有111(,)0(,)(,)d x y d x z d z y =≤+; 若x y ≠,则当,x z z y ≠≠时,111(,)112(,)(,)d x y x y x z z y x z z y d x z d z y =-+≤-+-+≤-+-+≤+; 当,x z z y =≠时,1111(,)11(,)(,)(,)d x y x y z y d z y d x z d z y =-+=-+==+; 当,x z z y ≠=时,1111(,)11(,)(,)(,)d x y x y x z d x z d x z d z y =-+=-+==+; 因此,1(,)d x y 满足距离公理3).但10,,(,)1,,x d x x x θθθ=⎧=⎨+≠⎩显然不满足11(,)(,)d x d x αθαθ=,因此1d 不是由范数诱导的距离.2.在l ∞中,按坐标定义线性运算且对,k x l x ξ∞∈=定义sup n nx ξ=,证明l ∞是一个赋范空间.证明:显然这是一个范数.3.设M 是空间l ∞中除有穷个坐标之外为0的元之全体构成的子空间. 证明M 不是闭子空间.证明:令01111111,,,,,0,0,,1,,,,,2323n x x nn⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,则显然我们有n x M ∈,且01110,0,,,,0()121n x x n n n n ⎛⎫-==→→∞ ⎪+++⎝⎭,但0x M ∉,因此M 不是l ∞得闭子空间.4.试举例说明,在赋范空间中,由1n n x ∞=<∞∑,一般地不能推出1n n x ∞=∑收敛.例: 5. 设(,)X 是赋范空间,0X 是X 中的稠密子集,证明:对于每一x X ∈,存在{}0n x X ⊂,使得1n n x x ∞==∑,并且1n n x ∞=<∞∑.证明:取10x X ∈,使得112x x -<,则112x x ≤+;0X X =,∴可取20x X ∈,使得12212x x x --<,则2121211122x x x x x x ≤--+-<+<;同理可取30x X ∈,使得123312x x x x ---<,则31231223111222x x x x x x x x ≤---+--<+<;继续此法,可得{}0n x X ⊂,使得112ni ni x x =-<∑,且21(2,3,)2nn x n -<=,由此知1n n x x ∞==∑,并且1n n x ∞=<∞∑11112n n x ∞-=⎛⎫≤++ ⎪⎝⎭∑.6. 设(,)X 是赋范空间,{}0X ≠,证明:X 是Banach 空间,当且仅当,X 中的单位球面{}:1S x X x =∈=是完备的.证明:必要性是显然的(S 为X 中闭集),下证充分性.若S 是完备的,设{}n x 为X 中的Cauchy 列,由于m n m n x x x x -≤-,从而lim n n x →∞存在,不妨设lim n n x a →∞=. 若0a =,则显然0()n x n →→∞.若0a ≠,不妨设0n x ≠,则n n x S x ⎧⎫⎪⎪⊂⎨⎬⎪⎪⎩⎭,因为11()0m n n m m n n m n m nn m nm nm nx xx x x x x x x x x x x x x x x x -=-≤-+-→也即n n x x ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭为S 中的Cauchy 列,由S 的完备性,lim n n n x x →∞存在,不妨设limn n n x x S x →∞=∈,从而有1lim 0n n n nn n x a ax ax x x x x x x a →∞-=-→-=,故lim 0n n x ax →∞-=,即{}n x 收敛,从而证得X 是Banach 空间.7. 证明0c 是可分的Banach 空间. 证明:分以下三步来证明:1). 证明0c 是l ∞的线性子空间. 事实上收敛列必有界,从而显然0c l ∞∈,且设()()12120,,,,,,,,,n n x y c ξξξηηη==∈,则()1122,,,,n n x y αβαξβηαξβηαξβη+=+++,由于lim 0n x y αβ→∞+=,从而我们有0x y c αβ+∈,即0c 是l ∞的线性子空间.2). 证明0c 是l ∞的闭子空间. 事实上,设()()()()120,,,,,k k k k n x c ξξξ=∈()(0)(0)(0)012,,,,n x ξξξ=,并且()(0)0sup 0()k k n n nx x k ξξ-=-→→∞,因此0ε∀>,1N ∃,使得当1k N >时,()(0)0sup 2k k n n nx x εξξ-=-<. 由于(0)()()(0)()1()2k k k n n n n n k N εξξξξξ≤+-<+>,又因0k x c ∈,()0()k n n ξ→→∞,故存在()1N N ≥,使得当n N >时恒有()2k n εξ<,从而(0)n ξε<,n N ∀>,即00x c ∈,由此知0c 是l ∞的闭子空间.3). 由于l ∞为Banach 空间,而0c 是l ∞的闭子空间,从而0c 是Banach 空间,下证0c 是可分的. 设M 为一切有限有理数列全体,即()12,,,,n n x M ξξξξ=∈⇔全为有理数,且存在x N ,使得当x n N >时,0n ξ=. 显然1n n MQ ∞=,可知M 可数.()1200,,,,,n y c εηηη∀>=∈,由于0n η→,故存在N ,使得当n N >时,n ηε<. 对()12,,,N N R ηηη∈,存在()12,,,N N Q ξξξ∈,使得1sup n n n Nηξε≤≤-<,从而存在()012,,,,0,0,N x M ξξξ=∈,使得0y x ε-<,即M 在0c 中稠密.综上可知0c 是可分的Banach 空间. 8. 设(,)n nX 是一列赋范空间,{}(),1,2,n n n x x x X n =∈=且满足条件1pkk x ∞=<∞∑,用X 表示所有x 的全体,按坐标定义线性运算构成的线性空间,在X 中定义11(1)ppkk x x p ∞=⎛⎫=≥ ⎪⎝⎭∑,证明(,)X 是一个赋范空间.证明:只需证明是一个范数即可. 事实上,显然0x ≥,且0x =,即10pkk x ∞==∑,从而有0(1,2,)kkx k ==,又k X 是赋范空间,故(1,2,k x k θ==,从而可得x θ=,即证明了范数公理的条件1)成立,而条件2)显然成立,下证条件3)成立. 设{}{}(),,,1,2,n n n n n x x y y x y X n ==∈=,由离散情形的Minkowski 不等式,我们有111111ppppp p kk kk k k k x y x yx y x y ∞∞∞===⎛⎫⎛⎫⎛⎫+=+≤+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑,从而证得是一个范数,从而(,)X 是一个赋范空间.9. 证明:1) 离散情形的Hölder 不等式与Minkowski 不等式;2) ()1p l p ≥是可分的Banach 空间.证明:1). 首先证明离散情形的Hölder 不等式,即证明下列不等式成立:11111pqp q k k k k k k k ξηξη∞∞∞===⎛⎫⎛⎫≤ ⎪ ⎪⎝⎭⎝⎭∑∑∑,其中111,1p p q ≥+=. 令11,pqpqk kk k A B ξη∞∞====∑∑,由不等式pqabab p q ≤+可得11p qk kk kAB p A q Bξηξη≤+从而有1111111111pqpq pqk kk kkk k k k k k A B AB p A q Bpqp qξηξηξη--∞∞∞∞∞=====≤+=+=+=∑∑∑∑∑,所以11111pqp q k k k k k k k AB ξηξη∞∞∞===⎛⎫⎛⎫≤= ⎪ ⎪⎝⎭⎝⎭∑∑∑. 由离散情形的Hölder 不等式,我们可以推导相应的Minkowski 不等式:111111pppp p p k k k k k k k ξηξη∞∞∞===⎛⎫⎛⎫⎛⎫+≤+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑事实上,由Hölder 不等式,我们得到111111111(1)(1)1111111111,pp p k k k k kk k kk k k pqpqp q p p q p k k k k k k k k k k qp p p p pk k k k k k k ξηξξηηξηξξηηξηξηξη∞∞∞--===∞∞∞∞--====∞∞∞===+≤+++⎛⎫⎛⎫⎛⎫⎛⎫≤+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫ ⎪=++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑∑∑∑∑∑∑∑∑∑由此即可得到111111pppp p p k k k k k k k ξηξη∞∞∞===⎛⎫⎛⎫⎛⎫+≤+ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑.2). 首先,由于(){}12,,,,,1,2,,n n i Q r r r r r Q i n ==∈=为n R 中全体有理点集,它是n R 中稠密的可数集,因此n R 是可分空间. 令(){}12,,,,;,,1,2,,n i M r r r r n N r Q i n ==∈∈=,易知M 为p l 的可数子集,下证p M l =. 事实上,设()12,,,,,0,p n x l ξξξε=∈∀>存在()N ε,使得12ppi i N εξ∞=+<∑,从而有()12,,,,0,N y r r r M =∈,使得111122p ppNpp p i i i pi i N x yr εεξξε∞==+⎛⎫⎛⎫-=-+<+= ⎪⎪⎝⎭⎝⎭∑∑,因此p M l =,即()1p l p ≥是可分的Banach 空间.10. 证明任意线性空间中存在Hamel 基.证明:设E 是线性空间X 中的线性无关集,令集合M 为包含E 的所有线性无关集全体,在M 上定义偏序关系为''''⊂,显然M 的全序子集都有上界(所有集合的并集),由Zorn 引理,M 有极大元,不妨设为B ,下证B 即为X 的Hamel 基,如若不然,则存在y X ∈,但y B ∉,即y 与B 中任何元素都线性无关,从而{}y B M ∈,这与B 的极大性矛盾.11. 设A 是线性空间X 中的子集. 证明:111():,01.nn n k k k k Co A x x X n x A αααα=⎧⎫=++∈∈≥=⎨⎬⎩⎭∑是任意自然数,且证明:若令S 表示上式右端,则A S ⊂而且S 是凸集,从而()Co A S ⊂. 反之,设F 是包含A 的任一凸集,那么(1,2,,)i x F i n ∈=,从而1ni i i x F α=∈∑,即得S F ⊂,从而()S Co A ⊂.12. 设E 是直线上的Lebesgue 可测集,且mE <∞,用p表示()(1)p L E p ≥的范数,∞表示()L E ∞的范数. 证明:对于每一()x L E ∞∈,lim pp x x ∞→∞=.证明:设xM ∞=,若0mE =或0M =,显然成立,下设0,0mE M ≠≠:i). 根据本性上确界的可达性,即存在0E E ⊂,使得00mE =,并且0\sup ()E E M x t =,所以0\\()d ()d d ppp pEE E E E x t t x t t M t M mE =≤=*⎰⎰⎰,所以()1ppxM mE ≤*. 因为当p →∞时,()11pmE →,即lim pp xM x ∞→∞≤=;ii). 对任意的0ε>,令{}1:()E t E x t M ε=∈>-,由上确界定义易知10mE >,从而11()d ()d ()ppp EE x t t x t t M mE ε≥≥-*⎰⎰,令p →∞,则lim pp xM ω→∞≥-,由ε的任意性,知lim pp xM →∞≥.从而lim pp xM x ∞→∞==.13. 设()11,X ,()22,X 是赋范空间,在乘积线性空间12XX ⨯中定义()1212112212,max ,z x x z x x =+=,其中()1212,,z X X z x x ∈⨯=.证明1z ,2z 是12X X ⨯上的等价范数.证明:显然2122z z z ≤≤,从而它们是等价范数.14.设X 是区间[],a b 上所有连续函数全体按通常方式定义线性运算所成的线性空间,对于x X ∈定义1sup ();()d ba a t bx x t x x t t ≤≤==⎰.证明:和1是X 上两个不等价的范数. 证明:显然和1是X 上的两个范数,且1()x b a x ≤-,要证两个范数不等价,则只需证明不存在0c >,使得1x c x ≥,即证明存在[]C ,n x a b ∈,使得1n nx x →∞.令()()(),,2()2,,20,,n b aa n t a a t a nb a nbb ax t a b a t a b a n nb a a t b n-⎧+-≤≤+⎪⎪--⎪=--++≤≤+⎨-⎪⎪-+≤≤⎪⎩则()()12,,2n n b a b a x x b n-+==()()122n nx nx b b a b a =→∞-+.15. 设Banach 空间(,)X 具有Schauder 基{}n e ,用M 表示所有使得1k k k e ξ∞=∑在X 中收敛的数列{}k ξ的全体,按通常方式定义线性运算构成的线性空间,对于每一{}k x M ξ=∈,定义11supnk knk x eξ==∑,证明(,)M 是Banach 空间.证明:首先易知1是范数.设{}()m x M ∈是Cauchy 列,()()()()()12,,,,m m m m n x ξξξ=16. 设(,)X 是赋范空间,Y 是X 的子空间,对于x X ∈,令(),inf y Yd x Y x y δ∈==-.如果存在0y Y ∈,使得0x y δ-=,称0y 是x 的最佳逼近. 1) 证明:如果Y 是X 的有穷维子空间,则对每一x X ∈,存在最佳逼近.2) 试举例说明,当Y 不是有穷维空间时,1)的结论不成立. 3) 试举例说明,一般地,最佳逼近不惟一.4) 证明对于每一点x X ∈,x 关于子空间Y 的最佳逼近点集是凸集.证明:1).有下确界定义,0,n y Y ε∀>∃∈,使得n x y δδε≤-<+.因为Y 是有穷维子空间,从而存在子列{}{}k n n y y ⊂,使得0k n y y →,将上面不等式中的n 改为k n ,并令k →∞,便有0x y δδε≤-<+,由ε的任意性即可得到0x y δ-=,即0y 就是x 的最佳逼近元.2).例:在0c 空间中,令{}011:02n n nn n M x c ξξ∞∞==⎧⎫==∈=⎨⎬⎩⎭∑,则易证M 是0c 的闭子空间. 设()02,0,,0,x =,下面说明对此0x ,M 中不存在最佳逼近元. 事实上,N m ∀∈,令()111,1,,1,0,0,2m m m x M -⎛⎫⎪=---∈ ⎪ ⎪⎝⎭个,则()00111(,)12m m m x x d x M →∞--=+⇒≤.下证0,1y M x y ∀∈->.用反证法.假设存在()12,,,,k y M ξξξ=∈,使得01x y -≤,则()0122,,,,k x y ξξξ-=---,011,2,12 1.kk x y ξξ⎧≤≥-≤⇒⎨-≤⎩又由()12211,21222kkk kkk k k ξξξξ∞∞==≤≥⇒≤<⇒<∑∑.这与121ξ-≤矛盾.所以0,1y M x y ∀∈->.两边取下确界,得到0(,)1d x M ≥,从而我们可以得到0(,)1d x M =,即在M 上找不到一点,使得该点是0x 的最佳逼近. 3).例:在2R 中,对()212,x x x R ∀=∈,定义范数12max(,)x x x =,并设()00,1x =,()11,0e =,a R ∈,则(){}01,1max ,1x ae a a -=-=,从而01min 1a Rx ae ∈-=,但最佳逼近元{}11a ae ≤不惟一.4).设M 为x 关于子空间Y 的最佳逼近点集,则对[]12,,0,1y y M λ∀∈∈,12(,)x y x y d x Y -=-=,从而()()()121212(1)(1)(1)(,)x y y x y x y x y x y d x Y λλλλλλ-+-=-+--≤-+--=又显然()12(1)(,)x y y d x Y λλ-+-≥,从而()12(1)(,)x y y d x Y λλ-+-=,即12(1)y y M λ+-∈,所以M 是凸集.17. 设(,)X 是赋范空间,如果对任意,,x y X x y ∈≠且1x y ==必有2x y +<,称(,)X 是严格凸赋范空间. 1) 证明赋范空间(,)X 是严格凸的,当且仅当,对任意,x y X ∈,x y x y +=+必有(0)x y αα=>.2) 证明在严格凸赋范空间中,对于每一个x X ∈,x 关于任意子空间Y 的最佳逼近是惟一的.证明:1). 必要性. 设x y x y +=+,则11x y x y xyx y x y x x yy+=⇒+=+++,由严格凸性,x y c x y =,即c x x y y=,令c x yα=,即可得到x y α=.充分性.用反证法,如果存在,,x y X x y ∈≠且1x y ==,使得(1)1x y ββ+-=,即(1)(1)x y x y ββββ+-=+-,由假设,必存在α,使得(1)x y βαβ=-,又因为1x y ==,从而可得x y =,矛盾.2).用反证法.事实上,若(),0d x Y >,并有12(,)x y x y d x Y -=-=,则对[]0,1α∀∈,由严格凸性有()()()12121211(1)(1)(,)(,)(1)1(,)(,)x y y x y x y d x Y d x Y x y x y d x Y d x Y αααααα-+-=-+--⎛⎫⎛⎫--=+-< ⎪ ⎪⎝⎭⎝⎭即()12(1)(,)x y y d x Y αα-+-<,这显然与(,)d x Y 的定义矛盾.但若(),0d x Y =,12,y y 是相应的最佳逼近元,则必有12y x y ==,从而最佳逼近元必是惟一的.18.设(,)X 是赋范空间,如果对任意0ε>,存在0δ>,当x y ε-≥,1x y ==时必有2x y δ-≤-,称(,)X 是一致凸的. 证明: 1) 一致凸赋范空间必是严格凸的. 2) [],C a b 不是一致凸的. 3) []1,L a b 不是一致凸的.证明:设X 是一致凸的赋范空间,,,x y X x y ∈≠且1x y ==,则必存在00ε>,使得0x y ε-≥(若不然,对0ε∀>,都有x y x y ε-<⇒=,矛盾). 由一致凸性,对此00ε>,必存在0δ>,使得22x y δ-≤-<,从而X 是严格凸的. 2). 由1),只需证明[],C a b 不是严格凸的即可.以[]0,1C 为例.取()1,()x t y t t ≡= 都满足1x y ==,但2x y +=.从而不是严格凸的.3). 同理. 取()1,()2x t y t t ≡=,都满足1x y ==,但2x y +=.从而不是严格凸的.习题三1. 设1sup n n α≥<∞,在1l 上定义算子:T y Tx =,其中{}{},k k x y ξη==,k k k ηαξ=(1,2,)k =. 证明T 是1l 上的有界线性算子并且1sup n n T α≥=.证明:111,sup k k k k k k k k k k x ηαξηαξα∞∞≥====≤∑∑,()112,,,,,k x l ξξξ∀=∈()112,,,,k y l ηηη∴=∈,且1sup k k Tx x α≥≤,1sup k k T α≥∴≤.另一方面,由上确界定义,对任意的n ,存在k n ,使得11sup k n k k nαα≥>-. 取()010,0,,1,0,k n x =第项为,则显然01x =,且00k n Tx T x T α=≤=,从而11sup k k T nα≥-<. 令n →∞,则有1sup k k T α≥≤. 所以1sup k k T α≥=.3. 证明Banach 空间X 是自反的,当且仅当*X 是自反的.证明:必要性. 设X 是自反的,:**()J X X J X →=为典型映射,现证*X 也自反. 任取****:x x J X =→k ,显然**x X ∈. 因为()****()()(*)x Jx x x Jx x ==,及X 的自反性得()**R J X =,因此对任意的****x X ∈,()*******(*)x x x x =,由此知1****J x x =,其中1:****J X X →为典型映射,且()1***R J X =,从而*X 是自反的.充分性. 设*X 自反,假设X 不是自反的,即0()J X X =为**X 的真闭子空间(因为J 是X 到0X 上的等距同构映射,且X 完备),由Hann —Banach 定理,存在0******x X ∈,满足0***1x =,且()**x J X ∀∈,()0*****0x x =. 因为()1****J X X =,故存在*0*x X ∈,使得********001001,()x x J x x ===,********001001,()x x J x x ===,因而对任意的****x X ∈,()****00(**)**x x x x =,但()()*****000()0,x x x x Jx x X ===∀∈,因此*0*x X θ=∈,这与*01x =矛盾,从而设X 是自反的.20. 设X 是一致凸赋范空间,()0,1,2,n x x X n ∈=. 证明如果()0Wn x x n −−→→∞且 ()0n x x n →→∞,则()0n x x n →→∞.证明:不妨设00,n x x θ≠≠,用反证法. 为简单起见,设01n x x ==,且n x 不按范数收敛于0,那么可设00ε∃>,使得00n x x ε-≥,由空间的一致凸性,0δ∃>,使得02n x x δ+≤-. 由于0Wn x x −−→,故*f X ∀∈,且1f =有()()0n f x f x →,从而有()()002n f x x f x +→. 由于()002n n f x x f x x δ+≤+≤-及()()0001112sup sup lim22n n f fx f x f x x δ→∞==-==+≤知01x <,这与01x =矛盾,从而必有()0n x x n →→∞.22. 证明空间(1)pl p <<∞上的有界线性泛函的一般形式为()1k kk f x αξ∞==∑,其中{}pk x l ξ=∈,{}111qk y l p q α⎛⎫=∈+= ⎪⎝⎭并且11q k k f q α∞=⎛⎫= ⎪⎝⎭∑,()*p q l l =.证明:令()0,,0,1,0,n e =,显然()12,,,,pn x lξξξ∀=∈,有1i ii x eξ∞==∑. 设()1i i i f x ξη∞==∑,其中()12,,,,q n y l ηηη=∈,则由Hölder 不等式,我们可以得到 ()11111qpqpi i i i i i i f x y x ξηηξ∞∞∞===⎛⎫⎛⎫=≤= ⎪ ⎪⎝⎭⎝⎭∑∑∑,从而可知()*pf l ∈,且f y ≤.反之,对任一()*p f l ∈,()()1,2,i i f e i η==,()12,,,,n y ηηη=,下证qy l ∈且()1i i i f x ξη∞==∑及f y =. 事实上,令11sgn nq p n ii i i x e l ηη-==∈∑,则()()111sgn nnq qn ii i i n i i f x f e fx ηηη-====≤∑∑. 由于()11111nnppp q q n ii i i x ηη-==⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭∑∑,因此()111,2,nqq i i fn η=⎛⎫≤= ⎪⎝⎭∑,令n →∞得11nqq i i y fη=⎛⎫=≤ ⎪⎝⎭∑,令(),:*p q Tf y T l l =→,则y T f f =≤,从而y T f f ==. 又显然T 是线性算子,且为满射,故为()*p l 到q l 上的等距同构映射,从而()*p q l l =.习题四1. 设12,,,,n H H H 是一列内积空间,令{}21:,.n n n nn H x x H x ∞=⎧⎫=∈<∞⎨⎬⎩⎭∑对于{}{},n n x y H ∈,定义{}{}{}(,)n n n n x y x y αβαβαβ+=+∈k ,{}{}(),n n x y ()1,n n n x y ∞==∑.证明H 是内积空间,并且当每一个n H 都是Hilbert 空间时,H 是Hilbert 空间. 证明:先证H 是内积空间. 因为()()11222211111,,n n n n n n n n n n n n n x y x y x y x y ∞∞∞∞∞=====⎛⎫⎛⎫≤≤≤<∞ ⎪ ⎪⎝⎭⎝⎭∑∑∑∑∑, 故定义{}{}(),nnx y ()1,nnn x y ∞==∑是有意义的. 又由{}{}{}()()()(){}{}(){}{}()111,,,,,,nnnnn n n n n n n n n n n n n x y z xy z x z y z x z y z αβαβαβαβ∞∞∞===+=+=+=+∑∑∑及{}{}()()()(){}{}()111,,,,,nnnnnnnnnnn n n x y x y y x y x y x ∞∞∞=======∑∑∑,而且{}{}()()1,,0nnnnn x x x x ∞==≥∑及{}{}()()(),0,01,2,n n n n x x x x n =⇔==⇔(){}1,2,n n x n x θθ==⇔=,由内积定义可知H 是内积空间.再证H 是完备的. 设{}()1i i x ∞=是H 中的Cauchy 列,其中()()()()()12,,,,i i i i n x x x x =.由定义00,i ε∀>∃,使得当0,i j i >时,有()()i j x x ε-<,即122()()1i jn nn x x ε∞=⎛⎫-< ⎪⎝⎭∑,于是()()i j n nx x ε-<,所以{}()1i nn x ∞=是n H 中的Cauchy 列(n 固定),设()(0)i n n x x →,并令()(0)(0)(0)12,,,,n x x x x =,由前证122()()1i j n n n x x ε∞=⎛⎫-< ⎪⎝⎭∑,0,i j i ∀>,故对固定的k 使得2()()21ki j n nn x x ε=-<∑. 令j →∞,则2()(0)21ki n nn x x ε=-≤∑,再令k →∞,就有2()(0)21i n nn x x ε∞=-≤<∞∑,即()i x x H -∈. 因为H 是线性空间,于是有()()()i i x x x x H =--∈,故点列()()1,2,i x i =按H 中范数收敛于x ,于是H 是完备的,即是Hilbert 空间.2. 设H 是Hilbert 空间,M 是H 的闭子空间. 证明M 是H 上某个非零连续线性泛函的零空间,当且仅当M ⊥是一维子空间.证明:必要性. 若M 是H 上某个非零连续线性泛函的零空间,由Riesz 表示定理知存在f y H ∈,使得()(),,f f x x y x H =∀∈,于是()(){}{}:,0,f f f M x f x x y y H y ⊥===∈=,由本节题4知.{}(){}span f fM y y ⊥⊥⊥==是一维子空间.充分性. 若M ⊥是非零元y 生成的一维子空间,,x H ∀∈令()(),f x x y =,则显然有()0f x x y =⇔⊥,即()x M M ⊥⊥∈=,所以M 是非零连续线性泛函f 的零空间.4. 设M 是Hilbert 空间H 上的非空子集,证明()M ⊥⊥是包含M 的最小闭子空间.证明:记span Y M =,则Y 是包含M 的最小闭子空间,故只需证()M Y ⊥⊥=.事实上,x Y ∀∈,有s p a n n x M ∈,使得n x x →. y M ⊥∀∈有()(),lim ,0n n x y x y →∞==,故()x M ⊥⊥∈,即有()Y M ⊥⊥⊂. 又因为Y 是闭子空间,故有()Y Y ⊥⊥=(证明见指南P63例5). 于是由M Y ⊂可得Y M ⊥⊥⊂,进而可得()()M Y Y ⊥⊥⊥⊥⊂=,所以可得()span M Y M ⊥⊥==.5. 设H 是内积空间,M 是H 的线性子空间. 证明如果对于每一个x H ∈,它在M 上的正交投影存在,则M 必是闭子空间.证明:x M ∀∈,存在{}n x M ⊂,使得lim n n x x →∞=. 由条件0101,,x x x x M x M ⊥=+∈∈,于是001n x x x x x M ⊥-→-=∈. 注意到0n x x M -∈,故有()()1101,lim ,0n n x x x x x →∞=-=即1x θ=,从而0x x M =∈,从而M 是闭子空间.6. 证明在可分内积空间中,任一标准正交系最多为一可数集.证明:设H 为可分的内积空间,{}1n n x ∞=为H 的可数稠密子集,又设{}:e λλ∈Λ为H 中任意一簇标准正交系,则,n x λ∀∈Λ∃,使得n x e λ-<. 若Λ不可数,则必有{}1k n n x x ∞=∈以及,','λλλλ∈Λ≠,使得'k k x e x e λλ-<-<''k k e e x e x e λλλλ-≤-+-<,但由勾股定理,有222''2e e e e λλλλ-=+=,即'e e λλ-=H 中的任一标准正交系最多为可数集. 7. 设{}e I αα∈是内积空间H 中的标准正交系. 证明对于每一个x H ∈,x 关于这个标准正交系的Fourier 系数(){},:x e I αα∈中最多有可数个不为零.证明:记{}:F e I αα=∈,由Bessel 不等式, x X ∀∈,若取n 个F 中元素e λ排成一列,不妨设为12,,,n e e e ,则有()221,ni i x e x =≤∑,于是在F 中使(),x e λ≥得e λ只能为有限个,记():,,n F e x e λλλ⎧=∈Λ≥⎨⎩及1ˆnn F F ∞==. 显然ˆF 为可数集,且当ˆe F F λ∈-时,(),0x e λ=,即x 的Fourier 系数(){},:x e I αα∈中最多有可数个不为零.8. 设H 为Hilbert 空间,()0,1,2,n x x H n ∈=.当n →∞时,0Wn x x −−→,且 0n x x →,证明()0n x x n →→∞.证明:由()()()()()2,,,,,n n n n n n n x x x x x x x x x x x x x x -=--=--+,故当n →∞时,()2222,0n x x x x x -→-=,即()0n x x n →→∞.11. 设T 是Hilbert 空间H 上的线性算子且对所有,x y H ∈,()(),,Tx y x Ty =.证明T 是有界算子.证明:只需证明T 是H 上的闭线性算子. 设n x H ∈,且满足00,n n x x Tx y →→,则y H ∀∈,由条件()(),,n n Tx y x Ty =. 令n →∞,则有()()()000,,,y y x Ty Tx y ==,故00y Tx =,即T 是闭线性算子,从而由闭图像定理可知T 有界.13. 设H 是Hilbert 空间,(),x y ϕ是定义在H H ⨯上的泛函且关于x 是线性的,关于y 是共轭线性的并且存在常数C ,使得()(),,x y C x y x y H ϕ≤∈.证明:存在惟一算子()A B H ∈,使得对所有,x y H ∈,()(),,x y Ax y ϕ=且A ϕ=,其中()11sup ,x y x y ϕϕ===.证明:因(),x y ϕ关于y 是共轭线性的,故(),x y ϕ关于y 是线性的,固定x H ∈,则(),x y ϕ为H 上的有界线性泛函,由Riesz 表示定理,存在惟一*x H ∈,使得()(),,*x y y x ϕ=,即()(),*,x y x y ϕ=. 作映射:*A xx ,有()()(),*,,x y x y Ax y ϕ== 由于()()()()()()()()1212121212,,,,,,,A x x y x x y x y x y Ax y Ax y Ax Ax y αβϕαβαϕβϕαβαβ+=+=+=+=+,即()1212A x x Ax Ax αβαβ+=+又因为()()2,,Ax Ax Ax x Ax x y ϕϕ==≤,即A ϕ≤,所以()A B H ∈.再由Schwartz 不等式,有()(),,x y Ax y Ax y A x y ϕ=≤≤,故A ϕ≤,于是 A ϕ=. 若设()T B H ∈,且满足()(),,x y Tx y ϕ=,则()(),,,,A xy T x y xy H =∀∈,即()(),0,,A T x y x y H -=∀∈. 特别地,令()y A T x =-,得()20A T x -=,因此(),A T x x H θ-=∀∈,故0A T -=,所以A T =.14. 设{}n T 是Hilbert 空间H 上的有界自共轭算子列且()0n T T n -→→∞. 证明T 也是自共轭的.证明:由()()***0n n n T T T T T T n -=-=-→→∞,即可得**n T T →,由n T 的自共轭性即可得T 也是自共轭的.2011年博士研究生第二次公开招考报考须知发布时间:2011-02-24 08:37 来源:本站点击量:303一、报名2011博士研究生第二次公开招考网上报名时间:2011年3月4日-13日,网址:/hityzb/zs.jsp?cla=2。
《泛函分析》课后习题答案(张恭庆)
2 a
n
fn
2 b
ba
.
1.4.6 设 X 1, X 2 是两个线性赋范空间,定义
X
X1 X2
x1, x2 | x1
X1, x2
X2 称
为 X1 与 X2 的 Decard笛卡尔空间. 规定线性运算如下:
x1, x2
y1, y2
x1
y1, x2
y2
5
,
K, x1, y1
X1, x2, y2
X 2 ,并赋以范数
n 1
x1
,
1
x
n 2
x2 2
2
n N.
1.4.7 设 X 是 B 空间,求证: X 是 B 空间,必须且仅须
对
6
xn
X,
xn
n1
mp
xn
n1 mp
收敛.
xn
xn
证
由
m
m
显然.
设 xn 是基本列, 由1.2.2 只要 xn 存在一
串收敛子列.
事实上, 对 k 是基本列,
, 取k
1 2k
,
因为
xn
所以 N k, 使得
但因为 F 2 紧, 存在它们的子序列 ynkj 收敛,设
y nk j
x2
F 2 , 即有
d
xnkj , ynkj
d
1
j
nkj
d
x1, x2 .
1.3.5 设 M 是 C a, b 中的有界集,求证集合
x
M
Fx
f t dt | f M
a
是列紧集.
证: 设 E
Fx
x f t dt | f
Rudin 泛函分析答案
Ý ñ¨ 0 < L < 6 î ùþ
1
(T y ) (x) = − T : C [0, 1] → C [0, 1]
k ( x , s ) F (s , y (s )) ds
ð
0
1
ø
1.
ËÃ
2010. 9
ýÝ
{(Xk , dk ) k ǫ N }
ðè¯
∞
ÐèÑ
2 −k
k =1
∞
X1 ⊃ X2 ⊃ · · ·
x 1+x
(x ≥ 0)
ÆÇ
k
ρk ( x , y ) =
2 −i
i=1
∀ x , y ∈ Xk
Ý
( Xk , ρk ) (k ∈ N)
{ xn }n ∈ N ⊂ X
ð (X , d)
n→∞
ð Ý
ρ1 ≤ ρ2 ≤ ρ3 · · · ≤ ρ
è Cauchy Ë ¯ Ù ¿ X ¿x ∈ X =X Ú
F (λ) :=
ap b q + , p q
∀a, b ≥ 0
ãÇ a
êÃ
2) H¨ older
N
ai bi ≤
i=1
àßµ
1 p N
bp p bq λ + − b2 λ p q
p, q > 1 ,
+
1 q
=1
1 p
Ã
N
ap i
i=1
bp i
i=1
1 p
∀ a1 , · · · , aN , a1 , · · · , bN ≥ 0
ø ñ
Lipschitz
ñ û
F : [0, 1] × R
张恭庆-泛函分析(上册答案)
课后习题解答与辅导张秀洲二 0 0 九年三月一十日1.1.51.1.61.1.71.2.21.2.31.2.41.3.31.3.41.3.51.3.71.3.81.3.91.4.11.4.5-61.4.91.4.111.4.121.4.131.4.141.4.151.4.171.5.1证明:(1) (⇒) 若x∈int(E),存在δ > 0,使得Bδ(x) ⊆E.注意到x + x/n→x ( n→∞ ),故存在N ∈ +,使得x + x/N ∈Bδ(x) ⊆E.即x/( N/( 1 + N ) ) ∈E.因此P(x) ≤N/( 1 + N ) < 1.(⇐) 若P(x) < 1.则存在a > 1,使得y = a x∈E.因θ∈int(E),故存在δ > 0,使得Bδ(θ) ⊆E.令η = δ(a - 1)/a,∀z∈Bη(x),令w = (a z-y )/(a - 1),则|| w || = || (a z-y )/(a - 1) || = || a z-y ||/(a - 1)= || a z-a x ||/(a - 1) = a || z-x ||/(a - 1) < aη/(a - 1) = δ.故w∈Bδ(θ) ⊆E.故z = ((a - 1)w + y )/a ∈E,因此,Bη(x) ⊆E.所以x∈int(E).(2) 因int(E) = E,故有cl(int(E)) ⊆ cl(E).下面证明相反的包含关系.若x∈cl(E),则∀ε > 0,存在y∈E,使得|| x -y || < ε/2.因ny/(n + 1) →y ( n →∞ ).故存在N ∈ +,使得|| Ny/(N + 1) -y || < ε/2.令z = Ny/(N + 1),则z∈E,且P(z) ≤N/(N + 1) < 1,由(1)知z∈int(E).而|| z -x || ≤ || z -y || + || y -x || < ε/2 + ε/2 = ε.故x∈cl(int(E)),因此cl(E) ⊆ cl(int(E))所以cl(int(E)) = cl(E).1.5.3证明:因为C是紧集,所以C是闭集.因为C是紧集,故C的任意子集都列紧.而T(C) ⊆C,故T(C)列紧.于是,由Schauder不动点定理,T在C上有一个不动点.[Schauder定理:B*空间中闭凸集C上使T(C)列紧的连续自映射T必有不动点] 1.5.41.5.5证明:设C = {x = (x1, x2, ..., x n)∈ n | ∑ 1 ≤i ≤n x i = 1,x i ≥ 0 ( i = 1, 2, ..., n) }.则C是有界闭集,且是凸集,因此C是紧凸集.因为∀x∈C,x i 不全为0,而a ij> 0,故Ax的各分量也非负但不全为零.∀x∈C,设f (x) = (Ax)/( ∑ 1 ≤i ≤n (Ax)i ),则f (x)∈C.容易验证f : C→C还是连续的.由Brouwer不动点定理,存在f的不动点x0∈C.即f (x0) = x0,也就是(Ax0)/( ∑ 1 ≤i ≤n (Ax0)i ) = x0.令λ= ∑ 1 ≤i ≤n (Ax0)i,则有Ax0 = λ x0.1.5.6证明:设B = { u∈C[0, 1] | ⎰[0, 1]u(x) dx = 1,u(x) ≥ 0 },则B是C[0, 1]中闭凸集.设max (x, y)∈[0, 1]⨯[0, 1]K(x, y) = M,min (x, y)∈[0, 1]⨯[0, 1]K(x, y) = m,⎰[0, 1] (⎰[0, 1]K(x, y) dy) dx = N,max x∈[0, 1] | ⎰[0, 1]K(x, y) dy |= P.令(S u)(x) = (⎰[0, 1]K(x, y) u(y) dy)/(⎰[0, 1] (⎰[0, 1]K(x, y) u(y) dy) dx )则⎰[0, 1] (S u)(x) dx = 1,u(x) ≥ 0;即S u∈B.因此S是从B到B内的映射.∀u, v∈B,|| ⎰[0, 1]K(x, y) u(y) dy -⎰[0, 1]K(x, y) v(y) dy ||= || ⎰[0, 1]K(x, y) (u(y)-v(y)) dy ||= max x∈[0, 1] | ⎰[0, 1]K(x, y) (u(y)-v(y)) dy |≤M · || u -v ||;因此映射u #⎰[0, 1]K(x, y) u(y) dy在B上连续.类似地,映射u #⎰[0, 1] (⎰[0, 1]K(x, y) u(y) dy) dx也在B上连续.所以,S在B上连续.下面证明S(B)列紧.首先,证明S(B)是一致有界集.∀u∈B,|| S u || = || (⎰[0, 1]K(x, y) u(y) dy )/(⎰[0, 1] (⎰[0, 1]K(x, y) u(y) dy) dx )||= max x∈[0, 1] | ⎰[0, 1]K(x, y) u(y) dy |/(⎰[0, 1] (⎰[0, 1]K(x, y) u(y) dy) dx )≤ (M ·⎰[0, 1]u(y) dy |/(m ⎰[0, 1] (⎰[0, 1]u(y) dy) dx ) = M/m,故S(B)是一致有界集.其次,证明S(B)等度连续.∀u∈B,∀t1, t2∈[0, 1],| (S u)(t1) - (S u)(t2)|= | ⎰[0, 1]K(t1, y) u(y) dy-⎰[0, 1]K(t2, y) u(y) dy |/(⎰[0, 1] (⎰[0, 1]K(x, y) u(y) dy) dx )≤⎰[0, 1] | K(t1, y) -K(t2, y) | u(y) dy /(m⎰[0, 1] (⎰[0, 1]u(y) dy) dx )≤ (1/m) · max y∈[0, 1] | K(t1, y) -K(t2, y) |由K(x, y)在[0, 1]⨯[0, 1]上的一致连续性,∀ε > 0,存在δ> 0,使得∀(x1, y1), (x2, y2)∈[0, 1],只要|| (x1, y1) - (x2, y2) || < δ,就有| K(x1, y1) -K(x2, y2) | < m ε.故只要| t1-t2 | < δ时,y∈[0, 1],都有| K(t1, y) -K(t2, y) | < m ε.此时,| (S u)(t1) - (S u)(t2)| ≤ (1/m) · max y∈[0, 1] | K(t1, y) -K(t2, y) |≤ (1/m) ·m ε = ε.故S(B)是等度连续的.所以,S(B)是列紧集.根据Schauder不动点定理,S在C上有不动点u0.令λ= (⎰[0, 1] (⎰[0, 1]K(x, y) u0(y) dy) dx.则(S u0)(x) = (⎰[0, 1]K(x, y) u0(y) dy)/λ= (T u0)(x)/λ.因此(T u0)(x)/λ= u0(x),T u0 = λ u0.显然上述的λ和u0满足题目的要求.1.6.1 (极化恒等式)证明:∀x, y∈X,q(x + y) -q(x-y) = a(x + y, x + y) -a(x-y, x-y) = (a(x, x) + a(x, y) + a(y, x) + a(y, y)) - (a(x, x) -a(x, y) -a(y, x) + a(y, y))= 2 (a(x, y) + a(y, x)),将i y代替上式中的y,有q(x + i y) -q(x-i y) = 2 (a(x, i y) + a(i y, x))= 2 (-i a(x, y) + i a( y, x)),将上式两边乘以i,得到i q(x + i y) -i q(x-i y) = 2 ( a(x, y) -a( y, x)),将它与第一式相加即可得到极化恒等式.1.6.2证明:若C[a, b]中范数|| · ||是可由某内积( · , · )诱导出的,则范数|| · ||应满足平行四边形等式.而事实上,C[a, b]中范数|| · ||是不满足平行四边形等式的,因此,不能引进内积( · , · )使其适合上述关系.范数|| · ||是不满足平行四边形等式的具体例子如下:设f(x) = (x–a)/(b–a),g(x) = (b–x)/(b–a),则|| f || = || g || = || f + g || = || f –g || = 1,显然不满足平行四边形等式.1.6.3证明:∀x∈L2[0, T],若|| x || = 1,由Cauchy-Schwarz不等式,有| ⎰[0, T]e- ( T-τ)x(τ) dτ|2≤ (⎰[0, T] (e- ( T-τ))2dτ) (⎰[0, T] ( x(τ))2dτ)= ⎰[0, T] (e- ( T-τ))2dτ = e- 2T ⎰[0, T]e 2τdτ= (1-e- 2T )/2.因此,该函数的函数值不超过M = ((1-e- 2T )/2)1/2.前面的不等号成为等号的充要条件是存在λ∈ ,使得x(τ) = λ e- ( T-τ).再注意|| x || = 1,就有⎰[0, T] (λ e- ( T-τ))2dτ= 1.解出λ= ±((1-e- 2T )/2)- 1/2.故当单位球面上的点x(τ) = ±((1-e- 2T )/2)- 1/2 ·e- ( T-τ)时,该函数达到其在单位球面上的最大值((1-e- 2T )/2)1/2.1.6.4证明:若x∈N⊥,则∀y∈N,(x, y) = 0.而M⊆N,故∀y∈M,也有(x, y) = 0.因此x∈M⊥.所以,N⊥⊆M⊥.1.6.51.6.6解:设偶函数集为E,奇函数集为O.显然,每个奇函数都与正交E.故奇函数集O ⊆E⊥.∀f∈E⊥,注意到f总可分解为f = g + h,其中g是奇函数,h是偶函数.因此有0 = ( f, h) = ( g + h, h) = ( g, h) + ( h, h) = ( h, h).故h几乎处处为0.即f = g是奇函数.所以有E⊥⊆O.这样就证明了偶函数集E的正交补E⊥是奇函数集O.1.6.7证明:首先直接验证,∀c∈ ,S = {e2π i n x| n∈ }是L2[c, c + 1]中的一个正交集.再将其标准化,得到一个规范正交集S1 = {ϕn(x) = d n e2π i n x| n∈ }.其中的d n= || e2π i n x|| (n∈ ),并且只与n有关,与c的选择无关.(1) 当b–a =1时,根据实分析结论有S⊥ = {θ}.当b–a <1时,若u∈L2[a, b],且u∈S⊥,我们将u延拓成[a, a + 1]上的函数v,使得v(x) = 0 (∀x∈(b, a + 1]).则v∈L2[a, a + 1].同时把S = {e2π i n x| n∈ }也看成L2[a, a + 1]上的函数集.那么,在L2[a, a + 1]中,有v∈S⊥.根据前面的结论,v = θ.因此,在L2[a, b]中就有u = θ.故也有S⊥ = {θ};(2) 分成两个区间[a, b– 1)和[b– 1, b]来看.在[a, b– 1)上取定非零函数u(x) = 1 ( ∀x∈[a, b– 1) ).记p n = ⎰[a, b– 1)u(x)ϕn(x) dx.我们再把u看成是[b– 2, b– 1]上的函数(u在[b– 2, a)上去值为0).那么p n就是u在L2[b– 2, b– 1]上关于正交集S1 = {ϕn(x)| n∈ }的Fourier系数.| p n |2 < +∞.由Bessel不等式,∑n∈再用Riesz-Fischer定理,在L2[b– 1, b]中,∑n∈ p n ϕn收敛.并且,若令v = -∑n∈p n ϕn,则(v, ϕn)= -p n (∀n∈ ).设f : [a, b] → 为:f(x) = u(x) (当x∈[a, b– 1)),f(x) = v(x) (当x∈[b– 1, b]).则f∈L2[a, b],f≠θ,但( f, ϕn) = ⎰[a, b– 1)f(x)ϕn(x) dx + ⎰[b– 1, b]f(x)ϕn(x) dx= ⎰[a, b– 1)u(x)ϕn(x) dx + ⎰[b– 1, b]v(x)ϕn(x) dx= p n -p n = 0,因此,f∈S1⊥= S⊥,故S⊥≠ {θ}.1.6.8证明:( z n/(2π)1/2, z n/(2π)1/2 ) = (1/i)⎰| z | = 1 ( z n/(2π)1/2 · (z*)n/(2π)1/2 )/z dz= (1/(2πi))⎰| z | = 1z n· (z*)n/z dz = (1/(2πi))⎰| z | = 1 1/z dz = 1.若n > m,则n- m - 1 ≥ 0,从z n -m - 1而解析.( z n/(2π)1/2, z m/(2π)1/2 ) = (1/i)⎰| z | = 1 ( z n/(2π)1/2 · (z*)m/(2π)1/2 )/z dz= (1/(2πi))⎰| z | = 1z n· (z*)m/z dz = (1/(2πi))⎰| z | = 1z n -m - 1dz = 0.因此,{ z n/(2π)1/2 }n ≥ 0是正交规范集.1.6.91.6.10证明:容易验证{e n}⋂{ f n}是正交规范集,下面只证明{e n}⋂{ f n}是X的基.∀x∈X,由正交分解定理,存在x关于X0的正交分解x = y + z,其中y∈X0,z∈X0⊥.因{e n}, { f n}分别是X0和X0⊥的正交规范基,( y, e n ) e n,z = ∑ n∈ ( z, f n ) f n.故y = ∑ n∈因z∈X0⊥,故(x, e n) = ( y + z, e n) = ( y, e n) + ( z, e n) = ( y, e n).因y∈X0,故(x, f n) = ( y + z, f n) = ( y, f n) + ( z, f n) = ( z, f n).( y, e n ) e n + ∑ n∈ ( z, f n ) f n故x = y + z = ∑ n∈= ∑ n∈ ( x, e n ) e n + ∑ n∈ ( x, f n ) f n.因此{e n}⋂{ f n}是X的正交规范基.1.6.11证明:首先,令ϕk (z) = (( k +1 )/π)1/2 z k ( k≥ 0 ),则{ ϕk }k≥ 0是H2(D)中的正交规范基.那么,∀u(z)∈H2(D),设u(z) = ∑k≥ 0 a k z k,则∀k∈ ,有(u, ϕk) = ⎰D u(z) ·ϕk(z)*dxdy= ⎰D (∑j≥ 0 a j z j) ·ϕk(z)*dxdy= ∑j≥ 0 a j(π/( j +1 ))1/2⎰D (( j +1 )/π)1/2 z j ·ϕk(z)*dxdy= ∑j≥ 0 a j(π/( j +1 ))1/2⎰Dϕj(z) ·ϕk(z)*dxdy= ∑j≥ 0 a j(π/( j +1 ))1/2 (ϕj, ϕk)= a k(π/( k +1 ))1/2.即u(z)的关于正交规范基{ ϕk }k≥ 0的Fourier系数为a k(π/( k +1 ))1/2( k≥ 0 ).(1) 如果u(z)的Taylor展开式是u(z) = ∑k≥ 0 b k z k,则u(z)的Fourier系数为b k(π/( k +1 ))1/2( k≥ 0 ).由Bessel不等式,∑k≥ 0| b k(π/( k +1 ))1/2|2≤ || u || < +∞,于是有∑k≥ 0| b k|2/( k +1 ) < +∞.(2) 设u(z), v(z)∈H2(D),并且u(z) = ∑k≥ 0 a k z k,v(z) = ∑k≥ 0 b k z k.则u(z) = ∑k≥ 0 a k(π/( k +1 ))1/2ϕk (z),v(z) = ∑j≥ 0 b j(π/( j +1 ))1/2ϕj (z),(u, v) = ( ∑k≥ 0 a k(π/( k +1 ))1/2ϕk (z), ∑j≥ 0 b j(π/( j +1 ))1/2ϕj (z) )= ∑k≥ 0∑j≥ 0 (a k(π/( k +1 ))1/2ϕk (z), b j(π/( j +1 ))1/2ϕj (z))= ∑k≥ 0∑j≥ 0 (a k(π/( k +1 ))1/2 ·b j*(π/( j +1 ))1/2) (ϕk (z), ϕj (z))= ∑k≥ 0 (a k(π/( k +1 ))1/2 ·b k* (π/( k +1 ))1/2) = π∑k≥ 0 (a k·b k* )/( k +1 ).(3) 设u(z)∈H2(D),且u(z) = ∑k≥ 0 a k z k.因1/(1 -z) = ∑k≥ 0z k,1/(1 -z)2 = ∑k≥ 0 (k +1) z k,其中| z | < 1.故当| z | < 1时,有1/(1 - | z | )2 = ∑k≥ 0 (k +1) | z | k.根据(2),|| u(z) ||2 = π∑k≥ 0 (a k·a k* )/( k +1 ) = π∑k≥ 0 | a k|2/( k +1 ).|| u ||2/(1 - | z |)2 = (π∑k≥ 0 | a k|2/( k +1 )) · ( ∑k≥ 0 (k +1) | z | k )≥ (π∑k≥ 0 | a k|2/( k +1 ) | z | k) · ( ∑k≥ 0 (k +1) | z | k )≥π ( ∑k≥ 0 ( | a k|/( k +1 )1/2 | z | k/2) · ((k +1)1/2 | z | k/2))2 (Cauchy-Schwarz不等式)= π ( ∑k≥ 0 | a k| · | z | k )2≥π | ∑k≥ 0a k z k |2 = π | u(z)|2,故| u(z) | ≤ || u ||/(π1/2 ( 1 - | z | )).(4) 先介绍复分析中的Weierstrass定理:若{ f n }是区域U ⊆ 上的解析函数列,且{ f n }在U上内闭一致收敛到f,则f在U上解析.(见龚升《简明复分析》)回到本题.设{ u n }是H2(D)中的基本列.则∀z∈D,由(3)知{ u n(z) }是 中的基本列,因此是收敛列.设u n(z) →u(z).对 中任意闭集F⊆D,存在0 < r < 1使得F⊆B(0, r) ⊆D.∀ε > 0,存在N∈ +,使得∀m, n > N,都有|| u n-u m|| < επ1/2 ( 1 -r ).再由(3),∀z∈F,| u n(z) -u m(z) | ≤ || u n-u m||/(π1/2 ( 1 - | z | )) ≤ || u n-u m||/(π1/2 ( 1 -r )) < ε.令m→∞,则| u n(z) -u(z) | ≤ε.这说明{ u n }在D上内闭一致收敛到u.由前面所说的Weierstrass定理,u在D上解析.把{ u n }看成是L2(D)中的基本列,因L2(D),故{ u n }是L2(D)中的收敛列.设{ u n }在L2(D)中的收敛于v.则v必然与u几乎处处相等.即{ u n }在L2(D)中的收敛于u.因此{ u n }在H2(D)中也是收敛的,且收敛于u.所以,H2(D)完备.1.6.12证明:由Cauchy-Schwarz不等式以及Bessel不等式,∀x, y∈X,有| ∑n≥ 1 (x, e n) · (y, e n)* |2≤ (∑n≥ 1 | (x, e n) |· | (y, e n)* | )2= (∑n≥ 1 | (x, e n) |· | (y, e n) | )2≤ (∑n≥ 1 |(x, e n) |2) · (∑n≥ 1 | (y, e n)|2)≤ || x ||2 · || y ||2.因此,| ∑n≥ 1 (x, e n) · (y, e n)* | ≤ || x || · || y ||.1.6.13证明:(1) 因范数是连续函数,故C = { x ∈X | || x - x0 || ≤r }是闭集.∀x, y∈C,因|| x - x0 || ≤r,|| x - x0 || ≤r },故∀λ∈[0, 1],|| (λ x + (1-λ) y ) - x0 || = || λ( x-x0 ) + (1-λ) (y - x0)||≤ || λ( x-x0 ) + (1-λ) (y - x0)|| ≤λ|| x-x0 || + (1-λ) || y - x0 || ≤λ r + (1-λ) r = r.所以,C是X中的闭凸集.(2) 当x ∈C时,y = x.显然y是x在C中的最佳逼近元.当x ∈C时,y = x0 + r (x - x0)/|| x - x0 ||.∀z∈C,|| x-y || = || ( x-x0 -r (x - x0)/|| x - x0 ||) ||= || (1 -r/|| x - x0 ||) (x - x0) || = || x - x0 || -r.≤ || x - x0 || - || z - x0 || ≤ || x - z||.因此,y是x在C中的最佳逼近元.1.6.14解:即是求e t在span{1, t, t2}中的最佳逼近元(按L2[0, 1]范数).将{1, t, t2}正交化为{1, t- 1/2, (t- 1/2)2 - 1/12 } (按L2[0, 1]内积)再标准化为{ϕ0(t), ϕ1(t), ϕ2(t)},则所求的a k= (e t, ϕ k(t)) = ⎰[0, 1]e tϕ k(t) dt,k = 0, 1, 2.1.6.15证明:设g(x) = (x-a) (x-b)2,则g(a) = g (b) = 0,g’(a) = (b-a)2,g’(b) = 0.由Cauchy- Schwarz不等式,我们有(⎰[a, b] | f’’(x) |2 dx)· (⎰[a, b] | g’’(x) |2 dx)≥ (⎰[a, b]f’’(x) ·g’’(x) dx )2.因g’’(x) = 3x- (a + 2b),故⎰[a, b] | g’’(x) |2 dx = ⎰[a, b] (3x- (a + 2b))2 dx = (b-a)3;又⎰[a, b]f’’(x) ·g’’(x) dx = ⎰[a, b] (3x- (a + 2b)) ·f’’(x) dx = ⎰[a, b] (3x- (a + 2b))d f’(x)= (3x- (a + 2b)) ·f’(x)| [a, b] - 3⎰[a, b]f’(x) dx = 2(b-a);故(b-a)3 ·⎰[a, b] | f’’(x) |2 dx ≥ (2(b-a))2 = 4(b-a)2.所以⎰[a, b] | f’’(x)|2 dx≥ 4/(b-a).1.6.16 (变分不等式)证明:设f(x)= a(x, x) - Re(u0, x).则f(x) = a(x, x) - Re(u0, x) ≥δ || x ||2 - | (u0, x) |≥δ || x ||2 - || u0 || · || x || ≥- || u0 ||2/(4δ) > -∞.即f在X上有下界,因而f在C有下确界μ = inf x∈C f(x).注意到a(x, y)实际上是X上的一个内积,记它所诱导的范数为|| x ||a = a(x, x)1/2,则|| · ||a与|| · ||是等价范数.因此f(x) = a(x, x) - Re(u0, x) = || x ||a2- Re(u0, x).设C中的点列{ x n }是一个极小化序列,满足μ≤f(x n ) < μ + 1/n ( ∀n∈ + ).则由平行四边形等式,|| x n-x m ||a2 = 2(|| x n ||a2 + || x m ||a2 ) - 4|| (x n + x m)/2||a2= 2( f(x n) + Re(u0, x n) + f(x m) + Re(u0, x m) ) - 4( f((x n + x m)/2) + Re(u0, (x n + x m)/2)) = 2( f(x n) + f(x m)) - 4 f((x n + x m)/2) + 2 Re( (u0, x n) + (u0, x m) - (u0, x n + x m) )= 2( f(x n) + f(x m)) - 4 f((x n + x m)/2)≤ 2( μ + 1/n + μ + 1/m ) - 4 μ= 2(1/n + 1/m) → 0 ( m, n→∞ ).因此|| x n-x m ||2≤ (1/δ) || x n-x m ||a2→ 0 ( m, n→∞ ).即{ x n }为X中的基本列.由于X完备,故{ x n }收敛.设x n→x0 ( n→∞ ).则|| x n-x0 ||a2≤M || x n-x0 ||2→ 0 ( m, n→∞ ).而由内积a( · , ·),( · , ·)的连续性,有a( x n , x n) →a( x0 , x0 ),且(u0, x n) → (u0, x0),( n→∞ ).因此f(x n) = a(x n, x n) - Re(u0, x n) →a(x0, x0) - Re(u0, x0) = f(x0),( n→∞ ).由极限的唯一性,f(x0) = μ = inf x∈C f(x).至此,我们证明了f在C上有最小值.下面说明最小值点是唯一的.若x0, y0都是最小值点,则交错的点列{ x0, y0, x0, y0, x0, ... }是极小化序列.根据前面的证明,这个极小化序列必须是基本列,因此,必然有x0 = y0.所以最小值点是唯一的.最后我们要证明最小点x0∈C满足给出的不等式.∀x∈C,∀t∈[0, 1],有x0 + t ( x - x0)∈C,因此有f(x0 + t ( x - x0)) ≥f(x0).即|| x0 + t ( x - x0) ||a2- Re(u0, x0 + t ( x - x0)) ≥ || x0 ||a2- Re(u0, x0).展开并整理得到t Re ( 2a(x0, x - x0) - (u0, x - x0) ) ≥-t2 || x - x0 ||a2.故当∀t∈(0, 1],有Re ( 2a(x0, x - x0) - (u0, x - x0) ) ≥-t|| x - x0 ||a2.令t→ 0就得到Re ( 2a(x0, x - x0) - (u0, x - x0) ) ≥ 0.2.1.22.1.32.1.42.1.52.1.62.1.72.1.82.1.92.2.22.2.52.3.12.3.3-22.3.42.3.52.3.72.3.82.3.92.3.112.3.122.3.132.3.142.4.42.4.52.4.62.4.72.4.82.4.92.4.102.4.112.4.122.4.132.4.142.5.42.5.52.5.72.5.82.5.10。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(10) (11)
|
i 1 i
i
|
于 是 , x ( i ) l , f n ( x ) || i i | | i i | ( n 1,2,) (12) |
i 1 i 1 1/ q n q 由 共 鸣 定 理 ,f n }有 界 , 即 | i | 有 界 , 故 | i |q , { i 1 i 1 由 此 可 知 ( i ) l q, 且 f ( i ) l q , 结 合 o ,o 所 证 即 知 :p * l q . 1 2 l
E0
f1 f 2 f1 f 2 2 f 0
此与题设条件矛盾 .
2
2 2 5.记l0 {( 1 , 2 ,) | 只 有 有 限 个 i 0},l0 上 元x ( i )
2 的 范 数 定 义 为 = | i | , 试 在 0 上 造 出 一 个 无 界 x l2 i 1 的线性泛函 . 2 x ( i ) l0 , 定 义 :
1/ 2
f ( x ) n n
n 1 2 则 易 知 是l0 上 的 线 性 泛 函 , 因 为 en (0, ,0, 1,0,) l0 f 2 对 2 有 en 1, 而f (en ) n, 故 f 是l0 上 无 界 线 性 泛 函 . ( n 1 ) 个 0
4. 设E是 赋 范 线 性 空 间 , 又 当f1、f 2 E *, 设 f1 f 2 1,f1 f 2时 恒 有 f1 f 2 2, 若f 0是 定 义 在 的 子 空 间 0上 的 有 界 线 性 泛 函 , 明f 0的 E E 证 保范延拓是唯一的 . 若 f 0 E 0, 则 结 论 显 然 成 立 , 设 f 0 下
故(η i ) (η 'i ).
9. 设X是 赋 范 线 性 空 间 , , xn是X中n个 线 性 无 关 的 元 ,1 , , n x1 是一组数,证明 (1)存 在 f X * 使 f ( xi ) i (1 i n) ( 2)对(1)中 的f, f M的 充 要 条 件 是 : 对 任 数t1 , , t n都 成 立 , 何 | t i i | M
3. 设 f E *,f 1,N { x E | f ( x ) 0}, 证明: x E, f ( x ) | ( x, N ). |
设x E, 则y N, 有 | f ( x ) || f ( x y ) | f x y x y 故 | f ( x ) | in f x y ( x , N )
i f
m
( 4)
m
结 合(1)、 )即 得 f i (4 则 i ( 'i i ) 0
i 1
满 足1)、2)的 (η i ) m 显 然 是 唯 一 的 , 事 实 , 若 (η 'i ) m 也 满 足 、 , 上 1) 2) x ( i ) l 1 特 别 有 'i i 0,i 1,2,,
2.设{ x n }是赋范线性空间E中一元素列,证明y L{ x n } 的充分必要 条件是:对任何 f E * ,若f ( x n ) 0 ( n 1,2,),则 f ( y ) 0.
必 要 性 , 设 L{ xn } f E *,f ( xn ) 0 ( n 1,2,), 则 对 x L{ xn }, y , 必 有f ( x )=0, 现 在 取 i L{ xn }, 使yi y, 则 f ( y ) lim f ( yi ) 0. y
8. 设 f是l 1上 的 有 界 线 性 泛 函 , 存 在 唯 一 的 ( i ) m , 适 合 则 y 1) f ( x ) i i
i 1 m
x ( i ) l 1
2) f y
记 en (0, ,0, 0, ),f (en ) n, 则η n f(en ) f en f 1, 故 (η i ) m
y N
(1)
又 因 为 f 1, 故 对 任 意 1, 存 在 E,x 1使f ( x ) 1 , 0 x f ( x) 令 x x x, 则 f ( x ) 0, 故x N, 从 而 x x ( x , N ) f ( x ) f ( x) f ( x) 所以 x x x ( x , N ) f ( x ) f ( x ) | f ( x ) | f ( x ) ( x , N ) (1 ) ( x , N ) 令 0 , 即 得| f ( x ) | ( x , N ) ( 2) 结 合 () ( ) 即 得| f ( x ) | ( x , N ). 1 2
(x ( i ) m ),
故 f是 有 界 的 , 且f 1, 现 在 , 特 别 取0 ( i0 i ), x
0 当i i 0 其 中 i0 i , 则 x0 1, 且 f ( x0 ) i0 i0 1, 1 当i i 0 故 f f ( x0 )=1, 因 此 f 1.
i 1 n
t x
i 1 i
n
i
(1) 设X 0为 由x1 , , x n所 张 成 的 的 子 空 间 , 对 x t i x i X 0, 令 : X
i 1
n
f ( x ) t i i
i 1
n
则 f 是X 0上 的 有 界 线 性 泛 函 , 把 保 范 地 延 拓 成 上 的 有 界 线 性 泛 函 f X 仍 记 为 f, 则 此 f 满 足 要 求1), 即 f X *, 且 f ( x i ) i (1 i n). (
1/ q 1/ q lp 1/ p
( 2)
p | i | i 1
可 知 f | i |q ( i ) l p ( 3) i 1 此 外 , 因 为 i ) l q, 故( i | i |q 1 ) l p (其 中 i sign i ) ( 记x0 ( i | i |
q 1
), 则 f ( x0 ) i | i |
i 1
q 1
i | i |q
i 1
( 4)
1/ p
但 f ( x0 ) f x0
| i |( q 1) p f i 1
1/ q lp
1/ p
| i |q f i 1
6. 设f ( x )为m上 的 线 性 泛 函 :x ( i ) m , 有 f ( x ) i0 ( i0为 固 定 自 然 数 试 证 f是m上 有 界 线 性 泛 函 , ), 并 求 出 f的 范 数 .
因 为| f ( x ) || i0 | su p| i | x
p i 1 ( n 1 ) 个 0
( 8)
lp
下 证 ( i ) l q, 然 后 由o 中 所 证 , 即 得 f ( i ) 1 令 f n ( x ) i i
i 1 n
x ( i ) l p
( 9)
1/ q
n o p | i |q 由1 所 证 , n是l 上 的 有 界 线 性 泛 函 , 且n f f i 1 此 外 , 由 () 易 知 , x ( i ) l , 必 有 8
7.设p 1 , 试 证 p * l q (q l
o q
p ). p1
i 1
1 首 先 证 明 : 若 i ) l , 令f ( x ) i i x ( i ) l p (1) ( 则 f ( x )是l p 上 的 有 界 线 性 泛 函 , 且 ( i ) f q 事 实 上 , 由 f ( x ) || i i | | i | | i 1 i 1
i
充 分 性 , 如 果 L{ x n } 则 ( y , L{ xn }) d 0, 根 据 y , Hahn- Banach 定 理 的 系 , 存 在 E *, 满 足 x L{ xn } f ( x ) 0; f 1)
1 2) f ( y ) 1; 3) f , 特 别 必 存 在f E *, 使f ( xn ) 0( n 1,2,), d 而f ( y ) 0, 故 若 f E *,f ( xn ) 0 ( n 1,2,) f ( y ) 0 必 有y L{ x n }.
0
E0
0.
如 果 f 0的 保 范 延 拓 不 是 唯 一 , 的 则 有 f1、f 2 E * 它 们 都 是 0的 保 范 延 拓 f . 则 f1 f 2 f1 f 2 取 f 0
1 E0 E0
2 f0
E0
2 f1 2 f 2
, 则 f1 f 2 1, 而
第九章
则 f1 kf2 .
线性泛函
1 1
1.设 f1,f 2是 线 性 空 间 上 两 个 线 性 泛 函 , 证 ; 若 f1 (0) f 2 (0), E 明
如 果 f11 (0) E, 则 f1 f 2 0, 下 设 f11 (0) E, 取x0 E, f 1 ( x0 ) f1 ( x0 ) 0, 依 条 件 f 2 ( x0 ) 0, 令 k , x E, 令 f 2 ( x0 ) f1 ( x ) x x x0, 则 f1 ( x ) 0, 所 以 f 2 ( x ) 0, 即 f1 ( x0 ) f1 ( x ) f2 ( x) f 2 ( x0 ) 0 f1 ( x0 ) 所 以 f1 ( x ) kf2 ( x ) x E f1 ( x0 ) 即 f1 kf2 , 其 中k . f 2 ( x0 )