核反应堆物理分析课后答案(更新版)(1)
核反应堆物理分析习题答案
核反应堆物理分析习题答案第四章1.试求边长为,,a b c (包括外推距离)的长⽅体裸堆的⼏何曲率和中⼦通量密度的分布。
设有⼀边长0.5,0.6a b m c m ===(包括外推距离)的长⽅体裸堆,0.043,L m =42610m τ-=?。
(1)求达到临界时所必须的k ∞;(2)如果功率为15000, 4.01f kW m -∑=,求中⼦通量密度分布。
解:长⽅体的⼏何中⼼为原点建⽴坐标系,则单群稳态扩散⽅程为:222222()0a a D k x y zφφφφφ∞++-∑+∑= 边界条件: (/2,,)(,/2,)(,,/2)0a y z x b z x y c φφφ===(以下解题过程都不再强调外推距离,可认为所有外边界尺⼨已包含了外推距离)因为三个⽅向的通量拜年话是相互独⽴的,利⽤分离变量法:(,,)()()()x y z X x Y y Z z φ=将⽅程化为:22221k X Y ZX Y Z L∞-++=- 设:222222,,x y z X Y Z B B B X Y Z=-=-=- 想考虑X ⽅向,利⽤通解:()cos sin x x X x A B x C B x =+代⼊边界条件:1cos()0,1,3.5,...2x nx x a n A B B n B a aππ=?==?=同理可得:0(,,)cos()cos()cos()x y z x y z aaaπππφφ=其中0φ是待定常数。
其⼏何曲率:22222()()()106.4g B m a b cπππ-=++=(1)应⽤修正单群理论,临界条件变为:221gk B M∞-= 其中:2220.00248M L m τ=+=1.264k ∞?=(2)只须求出通量表达式中的常系数0φ3222002222cos()cos()cos()()a bc a b c f f f f f f VP E dV E x dx y dy z dz E abc a b c πππφφφπ---=∑=∑=∑??3182102() 1.00710f f P m s E abcπφ--?==?∑2.设⼀重⽔—铀反应堆的堆芯222221.28, 1.810, 1.2010k L m m τ--∞==?=?。
核反应堆物理分析习题答案第四章
第四章1.试求边长为,,a b c (包括外推距离)的长方体裸堆的几何曲率和中子通量密度的分布。
设有一边长0.5,0.6a b m c m ===(包括外推距离)的长方体裸堆,0.043,L m =42610m τ-=⨯。
(1)求达到临界时所必须的k ∞;(2)如果功率为15000, 4.01f kW m -∑=,求中子通量密度分布。
解:长方体的几何中心为原点建立坐标系,则单群稳态扩散方程为:222222()0a a D k x y zφφφφφ∞∂∂∂++-∑+∑=∂∂∂ 边界条件: (/2,,)(,/2,)(,,/2)0a y z x b z x y c φφφ===(以下解题过程都不再强调外推距离,可认为所有外边界尺寸已包含了外推距离) 因为三个方向的通量拜年话是相互独立的,利用分离变量法:(,,)()()()x y z X x Y y Z z φ=将方程化为:22221k X Y ZX Y Z L∞-∇∇∇++=- 设:222222,,x y z X Y Z B B B X Y Z∇∇∇=-=-=- 想考虑X 方向,利用通解:()cos sin x x X x A B x C B x =+代入边界条件:1cos()0,1,3.5,...2x nx x a n A B B n B a aππ=⇒==⇒=同理可得:0(,,)cos()cos()cos()x y z x y z aaaπππφφ=其中0φ是待定常数。
其几何曲率:22222()()()106.4g B m a b cπππ-=++=(1)应用修正单群理论,临界条件变为:221g k B M∞-= 其中:2220.00248M L m τ=+=1.264k ∞⇒=(2)只须求出通量表达式中的常系数0φ3222002222cos()cos()cos()()a bc a b c f f f f f f VP E dV E x dx y dy z dz E abc a b c πππφφφπ---=∑=∑=∑⎰⎰⎰⎰3182102() 1.00710f f P m s E abcπφ--⇒==⨯∑2.设一重水—铀反应堆的堆芯222221.28, 1.810, 1.2010k L m m τ--∞==⨯=⨯。
核反应堆物理分析修订版(课后习题答案)
由于外推距离很小可以忽略,可以只考虑堆体积内的吸收反应率: Ra
a
( x , y , z ) dxdydz
2a
ቤተ መጻሕፍቲ ባይዱ
0 .274 3 10 17 ( 1 .55 10 s
19 1
)3
(
a a ) 2 2
3-9,解:根据课本中(3-23)式和(3-24)式得:
第一章 核反应堆的核物理基础
1-2,解: 235U 单位体积内的原子核数:
N 235U 19.05 106 6.02 1028 4.88 1028 m 3 , a, 235U 680.9 10 28 m 2 235
通过以上方法求,也可以查附录 3 得:
H 2 O 单位体积内的分子数: N H 2O 3.34 10 28 m 3 , a, H 2O 0.664 10 28 m 2 ;
当 A>10 时
( A 1) 2 A 1 ), ln =1+ ln ( 1 A 1 2A
2
。
2 A 3
所以 H =1+
( A 1) 2 A 1 ) 1, ln ( 2A A 1
2 2 A 3
=0.12。
H O =
2
2 H H O O 0.57。 2 H O
293 ( TM 为介质的温度 570 K ) 6.1m 1 , TM
计算此反应堆的慢化能力:
S N H O ( S ) H O N Al ( S ) Al N
2 2
235
U
( S )U 1.16m 1
课本中(2-79)中子温度: Tn TM (1 C
【免费下载】核反应堆物理分析课后答案更新版1
1-2.某反应堆堆芯由 U-235,H2O 和 Al 组成,各元素所占体积比分别为 0.002,0.6 和 0.398,计算堆芯的总吸收截面 (E=0.0253eV)。
可得天然 U 核子数密度 N (U ) 1000(U )N A / M (U ) 4.82 1028 (m3 ) 则纯 U-235 的宏观吸收截面: a (U 5) N (U 5) a (U 5) 4.82 680.9 3279.2 (m1) 总的宏观吸收截面: a 0.002a (U 5) 0.6a (H2O) 0.398a ( Al) 8.4 (m1)
富集度
1-12 题
235N (U 5)
235N (U 5) 238N (U 8)
每秒钟发出的热量: E PT 1000106 3.125109 J
2.7
每秒钟裂变的 U235: N 3.1251010 3.125109 9.7656 1019 (个)
每秒钟发出的热量: E PT 150 106 5.00 108 J 0.30
每秒钟裂变的 U235: N 3.1251010 E 1.56 1019 (个)
运行 1h 的裂变的 U235: N ' N T 1.56 1019 3600 5.616 1022 (个)
100%
0.32
a
(U
5))
1.7
运行一年的裂变的 U235: N ' N T 9.76561019 365 24 3600 3.0797 1027 (个)
核反应堆物理分析课后习题及答案
核反应堆物理分析答案第一章1-1.某压水堆采用UO 2作燃料,其富集度为2.43%(质量),密度为10000kg/m3。
试计算:当中子能量为0.0253eV 时,UO 2的宏观吸收截面和宏观裂变截面。
解:由18页表1-3查得,0.0253eV 时:(5)680.9,(5)583.5,(8) 2.7a f a U b U b U b σσσ=== 由289页附录3查得,0.0253eV 时:()0.00027b a O σ=以c 5表示富集铀内U -235与U 的核子数之比,ε表示富集度,则有:555235235238(1)c c c ε=+-151(10.9874(1))0.0246c ε-=+-=255283222M(UO )235238(1)162269.91000()() 2.2310()M(UO )Ac c UO N N UO m ρ-=+-+⨯=⨯==⨯所以,26352(5)() 5.4910()N U c N UO m -==⨯ 28352(8)(1)() 2.1810()N U c N UO m -=-=⨯2832()2() 4.4610()N O N UO m -==⨯2112()(5)(5)(8)(8)()()0.0549680.9 2.18 2.7 4.460.0002743.2()()(5)(5)0.0549583.532.0()a a a a f f UO N U U N U U N O O m UO N U U m σσσσ--∑=++=⨯+⨯+⨯=∑==⨯=1-2.某反应堆堆芯由U -235,H 2O 和Al 组成,各元素所占体积比分别为0.002,0.6和0.398,计算堆芯的总吸收截面(E=0.0253eV)。
解:由18页表1-3查得,0.0253eV 时: (5)680.9a U b σ=由289页附录3查得,0.0253eV 时:112() 1.5,() 2.2a a Al m H O m --∑=∑=,()238.03,M U =33()19.0510/U kg m ρ=⨯可得天然U 核子数密度283()1000()/() 4.8210()A N U U N M U m ρ-==⨯则纯U -235的宏观吸收截面:1(5)(5)(5) 4.82680.93279.2()a a U N U U m σ-∑=⨯=⨯=总的宏观吸收截面:120.002(5)0.6()0.398()8.4()a a a a U H O Al m -∑=∑+∑+∑=1-3、求热中子(0.025电子伏)在轻水、重水、和镉中运动时,被吸收前平均遭受的散射碰撞次数。
核反应堆物理分析习题答案
1、 H 和O 在1000eV 到1eV 能量范围内的散射截面似为常数,分别为20b 和38b.计算2H O 的ξ以及在2H O 和中子从1000eV 慢化到1eV 所需要的碰撞次数。
解:不难得出,2H O 的散射截面与平均对数能降应有下列关系: 222H O H O H H O O σξσξσξ⋅=⋅+⋅即2(2)2H O H O H H O O σσξσξσξ+⋅=⋅+⋅2(2)/(2)H O H H O O H O ξσξσξσσ=⋅+⋅+查附录3,可知平均对数能降: 1.000H ξ=,0.120O ξ=,代入计算得:2(220 1.000380.120)/(22038)0.571H O ξ=⨯⨯+⨯⨯+= 可得平均碰撞次数: 221ln()/ln(1.0001)/0.57112.0912.1C H ON E E ξ===≈2.设()f d υυυ''→表示L 系中速度速度υ的中子弹性散射后速度在υ'附近d υ'内的概率。
假定在C 系中散射是各向同性的,求()f d υυυ''→的表达式,并求一次碰撞后的平均速度。
解: 由: 212E m υ'=' 得: 2dE m d υυ'=''()(1)dE f E E dE Eα'→''=-- E E E α≤'≤()f d υυυ''→=22,(1)d υυαυ''-- αυυυ≤'≤()f d αυυυυυυ='→'' 322(1)3(1)υαα=--6.在讨论中子热化时,认为热中子源项()Q E 是从某给定分解能c E 以上能区的中子,经过弹性散射慢化二来的。
设慢化能谱服从()E φ/E φ=分布,试求在氢介质内每秒每单位体积内由c E 以上能区,(1)散射到能量为()c E E E <的单位能量间隔内之中子数()Q E ;(2)散射到能量区间1gg g E E E -∆=-的中子数g Q 。
核反应堆物理分析作业一答案谢仲生
1-1.一出土文物中C-14与C-12质量之比为6.56:1013,而大气正常的C-14与C-12比值为1.2:1012,已知T1/2(C-14)为5730年,试计算该文物距今历史年代。
解:设大气正常的C-14与C-12的核密度分别为N 14与N 12,文物中C-14核密度为'14N ,则由衰变规律有:1/20.693/'1414t T N N e −×= 根据题意,0.693/57301314141212 6.56:10t M N e M N −×=,其中12141412121.2:10M N M N = 故有:130.693/57301213126.56:101.2:105730 6.56:10ln(5000()0.693 1.2:10t e t a −×==−×≈1-2.一核弹头中含有1.4kgU-235,其半衰期为7亿年,试计算100年后该弹头剩余U-235的质量(精确到8位有效数字)。
如果换为Pu-239,又会是多少(半衰期2.4万年)?Pu-240呢(半衰期6.6千年)?解:由衰变规律,有:'82352351/2exp(0.693/) 1.4exp(0.693100/710)m m t T =−×=−××=1.3999999 (kg) 同理可得:'4239239'3240240exp(0.693100/2.410) 1.3959795(kg)exp(0.693100/6.610) 1.3853748 (kg)m m m m =−××==−××=1-3.U-238半衰期为45亿年,当今地球上天然U-238与U-235质量份额分别为99.28%和0.72%。
试求45亿年前二者的质量份额。
解:设45亿年前地球上U-238和U-235质量分别为5m 和8m ,当今则为'5m 和'8m , 由'5''58100%0.72%m m m ×=+,可得:''85137.89m m = 由衰变规律,有:'555,1/2exp(0.693/)m m t T =−×''555exp(0.69345/7)83.91m m m =×= 同理,''8852275.78m m m ==所以45亿年前U-235质量份额为55883.91100%23.3%83.91275.78m m m ×==++ 相应U-238质量份额为76.7%。
核反应堆物理分析课后习题参考答案
核反应堆物理分析答案第一章1-1.某压水堆采用UO 2作燃料,其富集度为2.43%(质量),密度为10000kg/m3。
试计算:当中子能量为0.0253eV 时,UO 2的宏观吸收截面和宏观裂变截面。
解:由18页表1-3查得,0.0253eV 时:(5)680.9,(5)583.5,(8) 2.7a f a U b U b U b σσσ=== 由289页附录3查得,0.0253eV 时:()0.00027b a O σ=以c 5表示富集铀内U-235与U 的核子数之比,ε表示富集度,则有:555235235238(1)c c c ε=+-151(10.9874(1))0.0246c ε-=+-=255283222M(UO )235238(1)162269.91000()() 2.2310()M(UO )Ac c UO N N UO m ρ-=+-+⨯=⨯==⨯所以,26352(5)() 5.4910()N U c N UO m -==⨯ 28352(8)(1)() 2.1810()N U c N UO m -=-=⨯2832()2() 4.4610()N O N UO m -==⨯2112()(5)(5)(8)(8)()()0.0549680.9 2.18 2.7 4.460.0002743.2()()(5)(5)0.0549583.532.0()a a a a f f UO N U U N U U N O O m UO N U U m σσσσ--∑=++=⨯+⨯+⨯=∑==⨯=1-2.某反应堆堆芯由U-235,H 2O 和Al 组成,各元素所占体积比分别为0.002,0.6和0.398,计算堆芯的总吸收截面(E=0.0253eV)。
解:由18页表1-3查得,0.0253eV 时: (5)680.9a U b σ=由289页附录3查得,0.0253eV 时:112() 1.5,() 2.2a a Al m H O m --∑=∑=,()238.03,M U =33()19.0510/U kg m ρ=⨯可得天然U 核子数密度283()1000()/() 4.8210()A N U U N M U m ρ-==⨯则纯U-235的宏观吸收截面:1(5)(5)(5) 4.82680.93279.2()a a U N U U m σ-∑=⨯=⨯=总的宏观吸收截面:120.002(5)0.6()0.398()8.4()a a a a U H O Al m -∑=∑+∑+∑=1-3、求热中子(0.025电子伏)在轻水、重水、和镉中运动时,被吸收前平均遭受的散射碰撞次数。
《核反应堆物理分析_谢仲生修订版_部分习题...
裂变U235数:
Pth nf 200 10 6 1.6 10 19 3.125 109 0.977 10 20 / s 200 10 6 1.6 10 19
第一章、核反应堆的核物理基础
年U235消耗量
m year 5
a nf 365 24 3600 f
NA
M5
680.9 365 24 3600 583.5 235 23 6.02 10 1403 103 g 1.403t 0.977 10 20
∴
5 1017 r (0) lim (r ) lim sin( ) r 0 r 0 r R 5 1017 r lim r 0 r R
5 10
17
R 3.14 1018中子 / 米2 秒
(b)中子流密度
J (r ) Dgrad
( r ) D e r
e 为径向单位矢量
5 1017 r 5 1017 r 2 ∴ J (r ) 0.8 10 sin( ) cos( ) e 2 R r R R r
解:热功率:
990 106 Pth 3.1109W 0.32 Pe
衰变热功率:
Pd 4.11011 Pth [ 0.2 ( T ) 0.2 ]( MeV / s) 6.6 102 Pth[ 0.2 ( T ) 0.2 ](W ) 2.1108 [ 0.2 ( T ) 0.2 ](W )
反应堆物理分析课后习题
第一章、核反应堆的核物理基础
1、某压水堆采用二氧化铀作燃料,其富集度为2.43%(重 量),密度为104公斤/米3,计算:当中子能量为0.025电 子伏时,二氧化铀的宏观吸收截面和宏观裂变截面。 1 解: c5 [1 0.9874( 1)]1 1 [1 0.9874( 1)]1 0.0243 0.0246
(整理)核反应堆物理分析课后习题参考答案[1]
核反应堆物理分析答案第一章1-1.某压水堆采用UO 2作燃料,其富集度为2.43%(质量),密度为10000kg/m3。
试计算:当中子能量为0.0253eV 时,UO 2的宏观吸收截面和宏观裂变截面。
解:由18页表1-3查得,0.0253eV 时:(5)680.9,(5)583.5,(8) 2.7a f a U b U b U b σσσ=== 由289页附录3查得,0.0253eV 时:()0.00027b a O σ=以c 5表示富集铀内U-235与U 的核子数之比,ε表示富集度,则有:555235235238(1)c c c ε=+-151(10.9874(1))0.0246c ε-=+-=255283222M(UO )235238(1)162269.91000()() 2.2310()M(UO )Ac c UO N N UO m ρ-=+-+⨯=⨯==⨯所以,26352(5)() 5.4910()N U c N UO m -==⨯ 28352(8)(1)() 2.1810()N U c N UO m -=-=⨯2832()2() 4.4610()N O N UO m -==⨯2112()(5)(5)(8)(8)()()0.0549680.9 2.18 2.7 4.460.0002743.2()()(5)(5)0.0549583.532.0()a a a a f f UO N U U N U U N O O m UO N U U m σσσσ--∑=++=⨯+⨯+⨯=∑==⨯=1-2.某反应堆堆芯由U-235,H 2O 和Al 组成,各元素所占体积比分别为0.002,0.6和0.398,计算堆芯的总吸收截面(E=0.0253eV)。
解:由18页表1-3查得,0.0253eV 时: (5)680.9a U b σ=由289页附录3查得,0.0253eV 时:112() 1.5,() 2.2a a Al m H O m --∑=∑=,()238.03,M U =33()19.0510/U kg m ρ=⨯可得天然U 核子数密度283()1000()/() 4.8210()A N U U N M U m ρ-==⨯则纯U-235的宏观吸收截面:1(5)(5)(5) 4.82680.93279.2()a a U N U U m σ-∑=⨯=⨯=总的宏观吸收截面:120.002(5)0.6()0.398()8.4()a a a a U H O Al m -∑=∑+∑+∑=1-61171721111PV V 3.210P 2101.2510m 3.2105 3.210φφ---=∑⨯⨯⨯===⨯∑⨯⨯⨯⨯1-12题每秒钟发出的热量: 69100010 3.125100.32PTE J η⨯===⨯ 每秒钟裂变的U235:109193.12510 3.125109.765610()N =⨯⨯⨯=⨯个运行一年的裂变的U235:1927'N T 9.765610365243600 3.079710()N =⨯=⨯⨯⨯⨯=⨯个 消耗的u235质量:27623A (1)'(10.18) 3.079710235m A 1.422810g 1422.8kg N 6.02210N α++⨯⨯⨯=⨯==⨯=⨯ 需消耗的煤: 9967E'110365243600m 3.398310Kg 3.398310Q 0.32 2.910⨯⨯⨯⨯===⨯=⨯⨯⨯吨 1-10.为使铀的η=1.7,试求铀中U-235富集度应为多少(E=0.0253eV)。
核反应堆物理分析习题答案
第8页/共19页
解: 停堆后氙平衡被打破,氙浓度变化为:
对上式求导,令t=0,可以求出停堆瞬间氙的变化率。结论是:当Φ0>2.76×1015中
子/米2秒时会出现停堆瞬间氙浓度增加,对于大型核动力反应堆通常在功率工况下
Φ0>>2.76×1015中子/米2秒.
对上式求导,令导函数为零,求最大氙浓度时间
Xe-135浓度随时间变化:
先解出方程(9),代入(10),求解 *注意初始条件:NI(0)=NI(∞);NXe(0)=NXe(∞)
第6页/共19页
(9) (10)
突然提升功率时I-135和Xe-135的浓度变化曲线
第7页/共19页
12.试证明在恒定中子通量密度φ0下运行的反应堆,停堆以后出现最大氙-135值的
由: 得:
第14页/共19页
△ρmax=?
第15页/共19页
12.试证明在恒定中子通量密度φ0下运行的反应堆,停堆以后出现最大氙-135值的
时间为tmax为
第16页/共19页
15.一座反应堆在1018中子/米2秒热中子通量密度下运行了很长时间,然后完全停
堆。试问氙浓度升到最大值将需要多长时间?此时氙中毒的数值为多少?(设Σ f/Σa=0.6)
由△ φ引致的消失率率:
λI是碘的衰变常量,
表示衰变概率,恒 小于1
(4) (5)
(6)
在开始阶段I-135的浓度是净增长的!
第2页/共19页
增大通量密度瞬间碘的 消失率:
在经历时间t后, 消失率为:
(7)
平衡碘消失项
由中子通量密度增大,导致的I-135增量 对于t时刻碘衰变的率的贡献
第3页/共19页
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
核反应堆物理分析答案第一章1-1.某压水堆采用UO 2作燃料,其富集度为2.43%(质量),密度为10000kg/m3。
试计算:当中子能量为0.0253eV 时,UO 2的宏观吸收截面和宏观裂变截面。
解:由18页表1-3查得,0.0253eV 时:(5)680.9,(5)583.5,(8) 2.7a f a U b U b U b σσσ=== 由289页附录3查得,0.0253eV 时:()0.00027b a O σ=以c 5表示富集铀内U-235与U 的核子数之比,ε表示富集度,则有:555235235238(1)c c c ε=+-151(10.9874(1))0.0246c ε-=+-=255283222M(UO )235238(1)162269.91000()() 2.2310()M(UO )Ac c UO N N UO m ρ-=+-+⨯=⨯==⨯所以,26352(5)() 5.4910()N U c N UO m -==⨯ 28352(8)(1)() 2.1810()N U c N UO m -=-=⨯2832()2() 4.4610()N O N UO m -==⨯2112()(5)(5)(8)(8)()()0.0549680.9 2.18 2.7 4.460.0002743.2()()(5)(5)0.0549583.532.0()a a a a f f UO N U U N U U N O O m UO N U U m σσσσ--∑=++=⨯+⨯+⨯=∑==⨯=1-2.某反应堆堆芯由U-235,H 2O 和Al 组成,各元素所占体积比分别为0.002,0.6和0.398,计算堆芯的总吸收截面(E=0.0253eV)。
解:由18页表1-3查得,0.0253eV 时: (5)680.9a U b σ=由289页附录3查得,0.0253eV 时:112() 1.5,() 2.2a a Al m H O m --∑=∑=,()238.03,M U =33()19.0510/U kg m ρ=⨯可得天然U 核子数密度283()1000()/() 4.8210()A N U U N M U m ρ-==⨯则纯U-235的宏观吸收截面:1(5)(5)(5) 4.82680.93279.2()a a U N U U m σ-∑=⨯=⨯=总的宏观吸收截面:120.002(5)0.6()0.398()8.4()a a a a U H O Al m -∑=∑+∑+∑=1-6题1171721111PV V 3.210P 2101.2510m 3.2105 3.210φφ---=∑⨯⨯⨯===⨯∑⨯⨯⨯⨯1-7.有一座小型核电站,电功率为150MW ,设电站的效率为30%,试估算该电站反应堆额定功率运行一小时所消耗的铀-235数量。
每秒钟发出的热量: 6815010 5.00100.30PTE J η⨯===⨯ 每秒钟裂变的U235:10193.12510 1.5610()N E =⨯⨯=⨯个运行1h 的裂变的U235:1922'N T 1.56103600 5.61610()N =⨯=⨯⨯=⨯个 消耗的u235质量:2223A (1)'(10.18) 5.61610235m A 25.9g 0.0259kg N 6.02210N α++⨯⨯⨯=⨯===⨯1-10.为使铀的η=1.7,试求铀中U-235富集度应为多少(E=0.0253eV)。
解:由18页表1-3查得,0.0253eV 时:(5)680.9,(5)583.5,(8) 2.7a f a U b U b U b σσσ===,(5) 2.416v U =由定义易得:(5)(5)(5)(5)(5)(5)(8)(8)ff aa a v U v U N U U N U U N U U σησσ⨯∑==∑+(5)(5)(5)(8)((5))(8)f a a v U U N U N U U U σσση⇒=-为使铀的η=1.7, (5) 2.416583.5(8)(680.9)54.9(5)2.7 1.7N U N U N U ⨯=-= 富集度235(5)235100% 1.77%235(5)238(8)23523854.9N U N U N U ε=⨯==++⨯1-12题每秒钟发出的热量: 69100010 3.125100.32PTE J η⨯===⨯ 每秒钟裂变的U235:109193.12510 3.125109.765610()N =⨯⨯⨯=⨯个运行一年的裂变的U235:1927'N T 9.765610365243600 3.079710()N =⨯=⨯⨯⨯⨯=⨯个 消耗的u235质量:27623A (1)'(10.18) 3.079710235m A 1.422810g 1422.8kg N 6.02210N α++⨯⨯⨯=⨯==⨯=⨯需消耗的煤: 9967E'110365243600m 3.398310Kg 3.398310Q 0.32 2.910⨯⨯⨯⨯===⨯=⨯⨯⨯吨. 一核电站以富集度20%的U-235为燃料,热功率900MW,年负荷因子(实际年发电量/额定年发电量)为0.85, U-235的俘获-裂变比取0.169,试计算其一年消耗的核燃料质量。
解:该电站一年释放出的总能量=616900100.8536006024365 2.412510J ⨯⨯⨯⨯⨯⨯=⨯对应总的裂变反应数=16266192.4125107.541020010 1.610-⨯=⨯⨯⨯⨯ 因为对核燃料而言:t f γσσσ=+核燃料总的核反应次数=26267.5410(10.169)8.8110⨯⨯+=⨯消耗的U-235质量=26238.8110235344()6.02101000kg ⨯⨯=⨯⨯ 消耗的核燃料质量=344/20%1720()kg =第二章.某裂变堆,快中子增殖因数1.05,逃脱共振俘获概率0.9,慢化不泄漏概率0.952,扩散不泄漏概率0.94,有效裂变中子数1.335,热中子利用系数0.882,试计算其有效增殖因数和无限介质增殖因数。
解: 无限介质增殖因数: 1.1127k pf εη∞== 不泄漏概率:0.9520.940.89488s d Λ=ΛΛ=⨯= 有效增殖因数:0.9957eff k k ∞=Λ=2-1.H 和O 在1000eV 到1eV 能量范围内的散射截面近似为常数,分别为20b 和38b 。
计算H 2O 的ξ以及在H 2O 中中子从1000eV 慢化到1eV 所需的平均碰撞次数。
解:不难得出,H2O 的散射截面与平均对数能降应有下述关系:σH2O ∙ξH2O = 2σH ∙ξH + σO ∙ξO即:(2σH + σO ) ∙ξH2O = 2σH ∙ξH + σO ∙ξO ξH2O =(2σH ∙ξH + σO ∙ξO )/(2σH + σO )查附录3,可知平均对数能降:ξH =1.000,ξO =0.120,代入计算得:ξH2O = (2×20×1.000 + 38×0.120)/(2×20 + 38) = 0.571可得平均碰撞次数:Nc = ln(E 2/E 1)/ ξH2O = ln(1000/1)/0.571 = 12.09 ≈ 12.12-2.设f(v->v’)dv’表示L 系中速度v 的中子弹性散射后速度在v’附近dv’内的几率。
假定在C 系中散射是各向同性的,求f(v->v’)的表达式,并求一次碰撞后的平均速度。
解:212E mv ''=,dE mv dv '''=代入(),(1)dE f E E dE aE E E a E''''→=-≤≤-得到:22()(1)v dv f v v dv v v a v '''''→=-≤≤-,22()(1)v f v v v v a v'''→=-≤≤-322()(1)3(1)vvv v f v v dv a a '''=→=--2-6.在讨论中子热化时,认为热中子源项Q(E)是从某给定分界能E c 以上能区的中子,经过弹性散射慢化而来的。
设慢化能谱服从Ф(E)=Ф/E 分布,试求在氢介质内每秒每单位体积内由E c 以上能区,(1)散射到能量E (E<E c )的单位能量间隔内之中子数Q(E);(2)散射到能量区间ΔE g =E g-1-E g 内的中子数Q g 。
解:(1)由题意可知:()(')(')(')'cE s Q E E E f E E dE φ∞=∑→⎰对于氢介质而言,一次碰撞就足以使中子越过中能区,可以认为宏观截面为常数:/()(')(')'cE s E aQ E E f E E dE φ=∑→⎰在质心系下,利用各向同性散射函数:'(')'(1)'dE f E E dE E α-→=-。
已知(')'E E φφ=,有:/'()'(1)'cE sE adE Q E E E φα-=∑-⎰2/()'11()(1)'(1)/(1)c E s c s s E a c c E E dE E E E EE φαφφαααα∑-∑-=∑=-=---⎰ (这里隐含一个前提:E/α>E ’)(2)利用上一问的结论:111111()(ln )(1)(1)(1)g g g gg gE E E g gg ss s g E E cc gE E E E EQ Q E dE dE E E E E φφφααααα------∑∑∑==-=----⎰⎰2-8.计算温度为535.5K ,密度为0.802×103 kg/m 3的H 2O 的热中子平均宏观吸收截面。
解:已知H 2O 的相关参数,M = 18.015 g/mol ,ρ = 0.802×103 kg/m 3,可得:362328100.80210 6.02310 2.681018.015A N N M ρ⨯⨯===⨯ m -3已知玻尔兹曼常数k = 1.38×10-23 J •K -1,则:kT M = 1.38 ×10-23×535.5 = 739.0×10-23 (J) = 0.4619 (eV);1eV=1.602×10-19J查附录3,得热中子对应能量下,σa = 0.664 b ,ξ = 0.948,σs = 103 b ,σa = 0.664 b ,由“1/v ”律:()a M a kT σσ==0.4914 (b)由56页(2-81)式,中子温度:2()2180.4914[10.46]535.5[10.46]103a M n M s A kT N T T N ∑⨯⨯⨯=++=∑⨯577.8 (K)对于这种”1/v ”介质,有:a σ=== 0.4192 (b)所以:2232422.68100.419210a a N cm cm σ--∑==⨯⨯⨯=1.123 (m -1)第三章3.1 有两束方向相反的平行热中子束射到235U 薄片上,设其上某点自左面入射的中子束强度为1012 cm -2·s -1。