全因子DOE试验 Minitab软件Report

合集下载

MinitabDOE操作说明全因子实验范例

MinitabDOE操作说明全因子实验范例

Minitab DOE操作說明:範例:全因子實驗設計法3因子2水準實驗設計:因子—A.時間 ,B.溫度 ,C.催化劑種類Step 1:決定實驗設計開啟Minitab R14版1.選擇Stat > DOE > Factorial > Create Factorial Design2.點擊因所要討論的因子有三個 , 由表中可以作二種選擇:選擇Ⅲ作4次實驗選擇Full作8次實驗一個三因子2水準的設計共有23 (或8)種可能的組合 , 一個包含所有可能組合的設計 , 即稱之為全因子設計(Full Factorial Design) ,好處是可避免交絡(Confounding)的情況 ,也就是所有因子的效應無法與其它的效應明確分辨出來 ; 然而 ,使用較少的組合設計稱之為部份因子設計(Fractional Factorial Design)此範例決定是全因子設計 , 因在化學工廠內 , 要控制這些因子(時間/壓力/催化劑種類)並不耗費時間及成本 , 且實驗可在非尖峰時間進行 , 避免打斷生產線的進度 , 如果這實驗所需成本很高或困難執行 , 你可能需做不同決定。

3.點擊回到主對話框中4.選擇5.點擊,選取Full factorial6.在Number of replicates選項中選2 ,按Step 2:因子命名與因子水準的設定因子水準的設定可以是文字或數值若因子為連續性→使用數值水準設定 ,可為量測的任意值(ex.反應時間)若因子為類別變數→使用文字水準設定 ,為有限的可能值(ex.催化劑種類)就一個2水準的因子設計 , 因子水準設定為兩個值 , 建議數值儘可能分開:1.點擊Factors按鈕2.輸入因子名稱及水準 , 完成後按Create Factorial Design主對話框1.按Options選項鈕2.在Base for random data generator的欄位 , 輸入9 ,可控制隨機化的結果 ,讓每次3.確定有選取Store design in worksheet的選項後 ,並按4.回到Create Factorial Design主對話框按,就會產生設計的內容並儲存在工作表單Step 4:瀏覽設計的內容(直交表形成)若要切換工作表單以RanOrder/StdOrder 以及Coded/Uncoded 的呈現 ,可由功能表Stat →DOE →Display Design 來選擇另外若要修改因子名稱或設定 , 有兩種方式:(1)可由功能表Stat →DOE →Modify Design 來選擇(2)直接修改資料視窗中相對的因子列Step 5:資料收集與輸入1.在資料視窗中C8的變數名稱位置輸入Yield2.可將此實驗工作表列印出來並收集數據結果Step 6:篩選實驗目的是利用效應圖來選取對於提高產能較大效應的因子配置一個模型(Fit a model)1.在功能表點選Stat→DOE→Factorial→Analyze Factorial Design2.在3.點取4.繪製Normal(常態機率圖)及Pareto(柏拉圖) ,協助找到顯著因子5.按OK 鍵 ,回到Analyze Factorial Design 主對話框 ,再按主對話框OK 鍵 ,即會將分析 結果及繪圖在視窗中 效應圖(Effect Plots)Normal(常態機率圖) Pareto(柏拉圖) 確認重要的效應在圖中偏離直線較遠的點(紅色)為顯著因子 , 即為依圖中影響效應程度大小排列並數值因使用為全因子設計 ,故包含3個單一之主效應、3個二次的(two-way)交互作用及1個三次的(three-way)交互作用Step 7:配置一個較簡單的模型接下來 ,要由全因子模型所找到的重要因子再重新設定一個較簡單的模型 ,也就是去除不顯著之因子 ,評估適合度、圖示解析及殘差分析1.Start→DOE→Factorial→Analyze Factorial Design2.選取Terms選項鈕3.設定內容將原本在Selected Terms欄位中的不顯著因子移到Available Terms欄位中4.按OK鍵 ,回到Analyze Factorial Design主對話框5.點取Graphs選項鈕 ,取消勾選Normal與Pareto圖6.勾選Four in one相關分析圖 ,按OK鍵回主對話框7.按Analyze Factorial Design的主對話框分析的結果會列在程序視窗中 ,主效應是否選取適當??設定的模型是否恰當??Step 8:評估調整後的模型而殘差分析圖的結果也是令人滿意的Step 9:結論之描述因子圖(Factorial Plots)以繪製主效應圖(Main Effect Plot)及交互作用圖(Interaction Plot)可以用目視的方法來決定效應分析1.點選功能表Stat→DOE→2.勾選Main Effects Plot ,再按下Setup3.在Response輸入Yield4.將顯著因子B(Pressure)及C(Catalyst)自Available欄位中2.勾選Interaction Plot ,再按下,重複3與4步驟檢視繪圖內容在繪圖視窗中會個別列出主效應圖及交互作用圖--主效應圖(Main Effects Plot)分析壓力圖催化劑圖(Catalyst Plot)→比較催化劑在兩種類別的差異(1)由圖中顯示 ,差異性比較:催化劑主效應>壓力主效應 ,也就是說催化劑斜率的絕對值 大於壓力斜率的絕對值 ,由於Yield 為望大值(越大越好) ,故壓力在4大氣壓較1大氣 壓有較高的良率 ; 催化劑的種類使用A 較B 有較高的良率(2)若因子之間沒有交互作用存在 ,由主效應圖即可找到使良率較高的最佳組合 ,此範例 有BC 交互作用顯著差異存在 ,故接下來再由交互作用圖來分析--交互作用圖(Interaction Plot)分析交互作用圖可看出因子間水準設定互相造成之衝擊性 ,有加乘或抵消作用(1)由圖中顯示 ,不論壓力值在1大氣壓或4大氣壓 ,使用A 催化劑的Yield 皆大於B 催化 劑 ;但是以A 催化劑而言 ,壓力設定在4大氣壓比1大氣壓有明顯Yield 變化 (2)綜合以上分析 ,使Yield 最大的最佳組合為壓力4大氣壓與A 催化劑。

Minitab实验设计DOE操作步骤(PPT 64张)

Minitab实验设计DOE操作步骤(PPT 64张)

• • • • • • • • • • • • • • • • • • • •
1、想要体面生活,又觉得打拼辛苦;想要健康身体,又无法坚持运动。人最失败的,莫过于对自己不负责任,连答应自己的事都办不到,又何必抱怨这个世界都和你作对?人生的道理很简单,你想要什么,就去付出足够的努力。 2、时间是最公平的,活一天就拥有24小时,差别只是珍惜。你若不相信努力和时光,时光一定第一个辜负你。有梦想就立刻行动,因为现在过的每一天,都是余生中最年轻的一天。 3、无论正在经历什么,都请不要轻言放弃,因为从来没有一种坚持会被辜负。谁的人生不是荆棘前行,生活从来不会一蹴而就,也不会永远安稳,只要努力,就能做独一无二平凡可贵的自己。 4、努力本就是年轻人应有的状态,是件充实且美好的事,可一旦有了表演的成分,就会显得廉价,努力,不该是为了朋友圈多获得几个赞,不该是每次长篇赘述后的自我感动,它是一件平凡而自然而然的事,最佳的努力不过是:但行好事,莫问前程。愿努力,成就更好的你! 5、付出努力却没能实现的梦想,爱了很久却没能在一起的人,活得用力却平淡寂寞的青春,遗憾是每一次小的挫折,它磨去最初柔软的心智、让我们懂得累积时间的力量;那些孤独沉寂的时光,让我们学会守候内心的平和与坚定。那些脆弱的不完美,都会在努力和坚持下,改变模样。 6、人生中总会有一段艰难的路,需要自己独自走完,没人帮助,没人陪伴,不必畏惧,昂头走过去就是了,经历所有的挫折与磨难,你会发现,自己远比想象中要强大得多。多走弯路,才会找到捷径,经历也是人生,修炼一颗强大的内心,做更好的自己! 7、“一定要成功”这种内在的推动力是我们生命中最神奇最有趣的东西。一个人要做成大事,绝不能缺少这种力量,因为这种力量能够驱动人不停地提高自己的能力。一个人只有先在心里肯定自己,相信自己,才能成就自己! 8、人生的旅途中,最清晰的脚印,往往印在最泥泞的路上,所以,别畏惧暂时的困顿,即使无人鼓掌,也要全情投入,优雅坚持。真正改变命运的,并不是等来的机遇,而是我们的态度。 9、这世上没有所谓的天才,也没有不劳而获的回报,你所看到的每个光鲜人物,其背后都付出了令人震惊的努力。请相信,你的潜力还远远没有爆发出来,不要给自己的人生设限,你自以为的极限,只是别人的起点。写给渴望突破瓶颈、实现快速跨越的你。 10、生活中,有人给予帮助,那是幸运,没人给予帮助,那是命运。我们要学会在幸运青睐自己的时候学会感恩,在命运磨练自己的时候学会坚韧。这既是对自己的尊重,也是对自己的负责。 11、失败不可怕,可怕的是从来没有努力过,还怡然自得地安慰自己,连一点点的懊悔都被麻木所掩盖下去。不能怕,没什么比自己背�

Minitab DOE数据分析

Minitab DOE数据分析

欢迎使用 Minitab,请按 F1 获得有关匡助。

强度的估计效应和系数(已编码单位)系数标项效应系数准误T P 常量541.319 1.841 293.98 0.000 加热温度20.038 10.019 1.841 5.44 0.032 加热时间16.887 8.444 1.841 4.59 0.044 转换时间 3.813 1.906 1.841 1.04 0.409 保温时间11.113 5.556 1.841 3.02 0.095 加热温度*加热时间0.737 0.369 1.841 0.20 0.860 加热温度*转换时间-0.487-0.244 1.841 -0.130.907 加热温度*保温时间 3.062 1.531 1.841 0.83 0.493 加热时间*转换时间 1.263 0.631 1.841 0.34 0.764 加热时间*保温时间7.113 3.556 1.841 1.93 0.193 转换时间*保温时间0.837 0.419 1.841 0.23 0.841 加热温度*加热时间*转换时间 2.612 1.306 1.841 0.71 0.552 加热温度*加热时间*保温时间-5.288-2.644 1.841 -1.440.288 加热温度*转换时间*保温时间 1.787 0.894 1.841 0.49 0.675 加热时间*转换时间*保温时间 1.038 0.519 1.841 0.28 0.805 加热温度*加热时间*转换时间*保温时间 1.838 0.919 1.841 0.50 0.667 Ct Pt 1.981 4.634 0.43 0.711S = 7.36546 (是西格玛希翼越小越好) PRESS = *R-Sq = 97.17% R-Sq (预测) = *% R-Sq (调整) = 74.56%(step1:至少有两个主效应因子的P值大于等于0.05) (Step2:观察回归效果)(Step3:回归系统的统计质量)强度的方差分析(已编码单位)来源自由度Seq SS Adj SS Adj MS F 主效应 4 3298.85 3298.85 824.71 15.20 加热温度 1 1606.01 1606.01 1606.01 29.60 加热时间 1 1140.75 1140.75 1140.75 21.03 转换时间 1 58.14 58.14 58.14 1.07 保温时间 1 493.95 493.95 493.95 9.11 2因子交互作用 6 252.17 252.17 42.03 0.77 加热温度*加热时间 1 2.18 2.18 2.18 0.04 加热温度*转换时间 1 0.95 0.95 0.95 0.02 加热温度*保温时间 1 37.52 37.52 37.52 0.69 加热时间*转换时间 1 6.38 6.38 6.38 0.12 加热时间*保温时间 1 202.35 202.35 202.35 3.73 转换时间*保温时间 1 2.81 2.81 2.81 0.05 3因子交互作用 4 156.22 156.22 39.05 0.72 加热温度*加热时间*转换时间 1 27.30 27.30 27.30 0.50 加热温度*加热时间*保温时间 1 111.83 111.83 111.83 2.06 加热温度*转换时间*保温时间 1 12.78 12.78 12.78 0.24 加热时间*转换时间*保温时间 1 4.31 4.31 4.31 0.08 4因子交互作用 1 13.51 13.51 13.51 0.25 加热温度*加热时间*转换时间*保温时间 1 13.51 13.51 13.51 0.25 弯曲 1 9.92 9.92 9.92 0.18 残差误差 2 108.50 108.50 54.25 纯误差 2 108.50 108.50 54.25合计18 3839.16来源P主效应0.063加热温度0.032加热时间0.044转换时间0.409保温时间0.0952因子交互作用0.658加热温度*加热时间0.860加热温度*转换时间0.907加热温度*保温时间0.493加热时间*转换时间0.764加热时间*保温时间0.193转换时间*保温时间0.8413因子交互作用0.652加热温度*加热时间*转换时间0.552加热温度*加热时间*保温时间0.288加热温度*转换时间*保温时间加热时间*转换时间*保温时间4因子交互作用加热温度*加热时间*转换时间*保温时间弯曲残差误差纯误差合计0.675 0.805 0.667 0.667 0.711强度的异常观测值拟合值标准化观测值标准序强度拟合值标准误残差残差2 11 549.000 549.000 7.365 0.000 * X3 8 553.000 553.000 7.365 0.000 * X4 9 518.300 518.300 7.365 0.000 * X5 14 548.300 548.300 7.365 0.000 * X6 5 528.300 528.300 7.365 0.000 * X7 10 549.100 549.100 7.365 0.000 * X9 16 574.500 574.500 7.365 0.000 * X10 3 526.800 526.800 7.365 -0.000* X11 1 522.500 522.500 7.365 -0.000* X12 6 536.200 536.200 7.365 0.000 * X13 12 561.800 561.800 7.365 0.000 * X14 4 551.300 551.300 7.365 0.000 * X15 7 531.500 531.500 7.365 -0.000* X16 15 550.200 550.200 7.365 0.000 * X17 13 523.800 523.800 7.365 -0.000* X19 2 536.500 536.500 7.365 0.000 * XX 表示受 X 值影响很大的观测值。

minitab doe案例

minitab doe案例

minitab doe案例
以下是一个使用Minitab进行DOE(实验设计)的案例:
案例:PCB板的镀铜线质量优化
1. 确定每个因子的高低水平,例如温度、时间、电流等。

2. 打开Minitab软件,创建一个新的DOE计划。

3. 选择合适的因子数、区组中心点数、角点仿行数和区组数,以满足实验需求。

4. 生成正交试验矩阵,并按照计划进行实验。

5. 将实验数据复制到Minitab中进行DOE分析。

6. 选择因子和响应,进行效应图和方差分析。

7. 根据分析结果,优化因子水平,以提高镀铜线的质量。

通过以上步骤,可以使用Minitab进行DOE,优化PCB板的镀铜线质量。

DOE基础知识minitab软件操作实例讲解DOE

DOE基础知识minitab软件操作实例讲解DOE
●Vital Few X的确认和影响程度的掌握 ●掌握选中的重要的X之间的交互作用 ●树立使用X的Y的预测模型 ●决定使Y最适合的X的条件
DO实E基验础计知划识 法概要
DOE用语整理
●因子(Factors) --是指影响输出变量(Y)的输入变量(X),即具有温度/压力/作业方法等技术水准
意义的母数因子(Fix Factor)。如计量因子:温度/压力等;计数因子:原料种类等 ●水准(LEVEL)
阶段4 通过图表分析,分析主效果和交互作用效果
stat/DOE/Factorial Plots/Main Effects Plot(for a graphical interpretation)
stat/DOE/Factorial Plots/Interaction Plot(for 2-way interactions) stat/DOE/Factorial Plots/Cube Plot
追定
为了改善的大概方 主效果和局部交 所有的主效果和 输出变量的预测

互作用
交互作用 模型(曲率效果)
(线形效果)
说明:考虑实验的目的和预算等来选择DOE
DO完E基全础要知因识 实验
定义
Kn要因配置法 不按因子数为N个,因子的水准数为K的实验计划法重复实验, 也应该可以实施Kn个的实验次数 2k要因实验是由具有2水准的K个因子构成
p-值不有意的结果,或者 阶段4的“效果图表”中显现为低 效果
由上图分析,可对A*B两交互作用排除再进行分析
Normal Probability Plot of the Standardized Effects
(response is r, Alpha = .10)

Minitab DOE操作说明(全因子实验范例)

Minitab DOE操作说明(全因子实验范例)

Minitab DOE操作說明:範例:全因子實驗設計法3因子2水準實驗設計:因子—A.時間,B.溫度,C.催化劑種類Step 1:決定實驗設計開啟Minitab R14版1.選擇Stat > DOE > Factorial > Create Factorial Design2.點擊Display Available Designs因所要討論的因子有三個, 由表中可以作二種選擇:選擇Ⅲ作4次實驗選擇Full作8次實驗一個三因子2水準的設計共有23 (或8)種可能的組合, 一個包含所有可能組合的設計,即稱之為全因子設計(Full Factorial Design) ,好處是可避免交絡(Confounding)的情況,也就是所有因子的效應無法與其它的效應明確分辨出來; 然而,使用較少的組合設計稱之為部份因子設計(Fractional Factorial Design)此範例決定是全因子設計, 因在化學工廠內, 要控制這些因子(時間/壓力/催化劑種類)並不耗費時間及成本, 且實驗可在非尖峰時間進行, 避免打斷生產線的進度, 如果這實驗所需成本很高或困難執行, 你可能需做不同決定。

3.點擊OK , 回到主對話框中4.選擇2-level factorial (default generators), 在因子數選擇35.點擊Designs ,選取Full factorial6.在Number of replicates選項中選2 ,按OKStep 2:因子命名與因子水準的設定因子水準的設定可以是文字或數值若因子為連續性使用數值水準設定,可為量測的任意值(ex.反應時間)若因子為類別變數使用文字水準設定,為有限的可能值(ex.催化劑種類)就一個2水準的因子設計, 因子水準設定為兩個值, 建議數值儘可能分開:Factor Low Setting High SettingTemperature20° C40° CPressure 1 atmosphere 4 atmospheresCatalyst A B1.點擊Factors按鈕2.輸入因子名稱及水準, 完成後按OK回到Create Factorial Design主對話框Step 3:隨機化與儲存設計的內容1.按2.在Base for random data generator的欄位, 輸入9 ,可控制隨機化的結果,讓每次都可得到一致的模型3.確定有選取Store design in worksheet的選項後,並按OK4.回到Create Factorial Design主對話框按OK ,就會產生設計的內容並儲存在工作表單中Step 4:瀏覽設計的內容(直交表形成)若要切換工作表單以RanOrder/StdOrder以及Coded/Uncoded的呈現,可由功能表Stat DOE Display Design來選擇另外若要修改因子名稱或設定, 有兩種方式:(1)可由功能表Stat DOE Modify Design來選擇實驗原有順序隨機後實驗順序依實驗原有順序執行依隨機後實驗順序執行因子水準以代號顯示因子水準以真實Data顯示Step 5:資料收集與輸入1.在資料視窗中C8的變數名稱位置輸入Yield2.可將此實驗工作表列印出來並收集數據結果輸入Yield資料列中Step 6:篩選實驗目的是利用效應圖來選取對於提高產能較大效應的因子1.在功能表點選Stat DOE Factorial Analyze Factorial Design2.在Responses欄位輸入Yield3.點取Graphs選項鈕4.繪製Normal(常態機率圖)及Pareto(柏拉圖) ,協助找到顯著因子5.按OK鍵,回到Analyze Factorial Design主對話框,再按主對話框OK鍵,即會將分析結果及繪圖在視窗中效應圖(Effect Plots)Normal(常態機率圖)Pareto(柏拉圖)在圖中偏離直線較遠的點(紅色)為顯著因子, 即為依圖中影響效應程度大小排列並數值超出紅色參考線即為顯著因子確認重要的效應因使用為全因子設計,故包含3個單一之主效應、3個二次的(two-way)交互作用及1個三次的(three-way)交互作用以表列中可由P值來找出哪些因子為顯著的效應P值> 非顯著P值< 顯著Step 7:配置一個較簡單的模型接下來,要由全因子模型所找到的重要因子再重新設定一個較簡單的模型,也就是去除不顯著之因子,評估適合度、圖示解析及殘差分析1.點選功能表選單Start DOE Factorial Analyze Factorial Design2.選取Terms選項鈕3.設定內容將原本在Selected Terms欄位中的不顯著因子移到Available Terms欄位中4.按OK鍵,回到Analyze Factorial Design主對話框5.點取Graphs選項鈕,取消勾選Normal與Pareto圖6.勾選Four in one相關分析圖,按OK鍵回主對話框7.按Analyze Factorial Design的主對話框OK鍵分析的結果會列在程序視窗中,殘差分析圖及相關圖將可進一步評估主效應是否選取適當設定的模型是否恰當Step 8:評估調整後的模型由ANOVA表中主效應及交互作用P值皆< ,代表這是一個很好的模型而殘差分析圖的結果也是令人滿意的Step 9:結論之描述因子圖(Factorial Plots)以繪製主效應圖(Main Effect Plot)及交互作用圖(Interaction Plot)可以用目視的方法來決定效應分析1.點選功能表Stat DOE Factorial Factorial Plots2.勾選Main Effects Plot ,再按下Setup3.在Response輸入Yield4.將顯著因子B(Pressure)及C(Catalyst)自Available欄位到> Selected欄位中2.勾選Interaction Plot ,再按下Setup,重複3與4步驟檢視繪圖內容在繪圖視窗中會個別列出主效應圖及交互作用圖--主效應圖(Main Effects Plot)此線代表所有實驗值平均數此點代表壓力在低水準時所有實驗值平均數分析壓力圖(Pressure Plot)比較壓力在高及低水準設定的差異催化劑圖(Catalyst Plot)比較催化劑在兩種類別的差異由圖中顯示,差異性比較:催化劑主效應>壓力主效應,也就是說催化劑斜率的絕對值大於壓力斜率的絕對值,由於Yield為望大值(越大越好) ,故壓力在4大氣壓較1大氣壓有較高的良率; 催化劑的種類使用A較B有較高的良率若因子之間沒有交互作用存在,由主效應圖即可找到使良率較高的最佳組合,此範例有BC交互作用顯著差異存在,故接下來再由交互作用圖來分析--交互作用圖(Interaction Plot)縱座標代表Yield此點代表Yield在低水準的壓力與A催化劑時的均值分析交互作用圖可看出因子間水準設定互相造成之衝擊性,有加乘或抵消作用由圖中顯示,不論壓力值在1大氣壓或4大氣壓,使用A催化劑的Yield皆大於B催化劑;但是以A催化劑而言,壓力設定在4大氣壓比1大氣壓有明顯Yield變化(2)綜合以上分析,使Yield最大的最佳組合為壓力4大氣壓與A催化劑。

Minitab 19 DOE 设计范例 3因子2水平

Minitab 19 DOE 设计范例 3因子2水平

Minitab 19 DOE实验操作实例实验使用3个因子,两个水平的方式来实现。

因子:温度,压力,催化剂响应量:合格率实验目的:评估哪个因子对合格率有较大的影响,从而优化工艺。

详细的实验步骤:1.打开Minitab 19 版本软件。

2.依次点击菜单:统计>DOE>因子>创建因子设计3.在打开的窗口中点击图示的两水平因子,选择3因子。

点击显示可用设计即可看到此次实验设计的实验次数。

在此次实验中可以选择4次和8次两种实验方案,如果选择4次的方案,它的分辨率是3级(总级别为5级),将会造成实验因子效果的不明确。

在此选择全因子实验,有最高的分辨率。

点击图示的确定后,进入下一步。

4.点击设计菜单,按照图示点击设置相关参数之后,点击确定。

角点的仿行数设置为2,表示给实验参数重复两次。

中心点数0表示:没有设置高和低水平之间的中间水平或者理解为当前现实参数。

区组数1:只有一组实验。

5.点击因子菜单,即可对因子及水平具体的输入:按照图示样式输入实验参数后,点击确定。

6.在图示的选项及结果菜单中,默认参数即可。

7.点击确定之后,即可看到软件自动生成的实验方案,详细的实验次数,因子分组,实验顺序等,如右图所示。

保存实验方案,待实验后输入数据。

8.按照上述方案完成实验后,打开上次的实验表格,输入合格率数据如图示。

9. 依次点击菜单:统计>DOE>因子>分析因子设计10.在响应栏中选择合格率,再点击图形,在打开的菜单中,按照图示设置参数后,依次点击两次确定。

11. 在效应图中我们可以看到图示显示红色的ABC 的交互作用和C因子的作用是有明显的影响,即是我们需要重点关注的因子。

12.经过上一步分析得出ABC和C是我们的重要因子,现在继续对重要因子分析,列出因子图更加直观的看到因子对合格率影响效果。

依次点击菜单:统计>DOE>因子>因子图13.在打开的因子窗口中,如图所示设置,点击确定。

DOE-全因子试验设计及Minitab操作ppt课件

DOE-全因子试验设计及Minitab操作ppt课件

600
480
500
80.35%
100.00% 90.35%
400
312
68.60%
300
55.38%
200
33.57%
189
168
143
138
100
0 粘電極棒 火花大
脫點
爆點 不放電 Others
數列2
3
100.0% 80.0% 60.0% 40.0% 20.0% 0.0%
數列1
cum
Stage-1:Define
KPIV
Process Parameter
Material Quality Control
Pressure
Welding Voltage
Welding Time
Factor & level
DOE 4
Stage-2:Measure
2.1. MSA Plan:
目的:對拉力測試機執行量測系統分析,以確認測試 儀器的准確性,以及確定不同人員對測試無影響
郝尚書
Xbar Chart by I nspector
Components of Variation
100
50
% Contribution % StudyVar
0 Gage R&R
Repeat
Reprod
Part-to-Part
郝尚書 0.4 0.2 0.0
S Chart by I nspector
常鵬
劉澤文
UCL=0.2939 _ S=0.1712
LCL=0.0486
2.5 Gage R&R Chart:
Gage R&R (Nested) for Data

全因子DOE试验 Minitab软件Report

全因子DOE试验 Minitab软件Report

6
7
8
分析结果:通过柏拉图得知:A B D的主效应及BD的交互 效应对强度有显著影响!
删减后的数据输出
拟合因子: 强度 与 加热温度, 加热时间, 保温时间
强度 的估计效应和系数(已编码单位) 系数标 项 效应 系数 准误 T P 常量 541.632 1.220 443.85 0.000 加热温度 20.037 10.019 1.330 7.53 0.000 加热时间 16.888 8.444 1.330 6.35 0.000 保温时间 11.112 5.556 1.330 4.18 0.001 加热时间*保温时间 7.113 3.556 1.330 2.67 0.018
强度 交互作用图
数据均值
2.0 2.5 3.0 50 55 60 560
加热温度
540
加热 温度 820 840 860
点类型 角点 中心 角点
520 560
加热时间
540
加热 时间 2.0 2.5 3.0
点类型 角点 中心 角点
520
保温时间
强度 主效应图
数据均值
加热温度 550 545 540 535 加热时间 点类型 角点 中心
系数 541.319 10.019 8.444 1.906 5.556 0.369 -0.244 1.531 0.631 3.556 0.419 1.981
中心点 P=0.633>0.05,表 示中心点不显著!
S = 6.30446 R-Sq = 92.75%
PRESS = 1874.81 R-Sq(预测) = 51.17%
分析路径
统计 > DOE > 因子 > 分析因子设计
图形输出

DOE案例(minitab实验设计)

DOE案例(minitab实验设计)
从(c)可以看出强度的最大值为574.5MPa,它对应的各因素水平分别是:热处理温度860℃、处理时间1.6h、升温时间3min、恒温时间60min;即:当选择热热处理温度860℃、处理时间1.6h、升温时间3min、恒温时间60min,可获得较好的强度结果。
(5)作标准化效应的Pareto图和正态图,如图1-2(a)、(b)所示。
(1)确定响应变量、试验因子和因子水平,编制因子水平表,见表1-1.
因子
水平
-1
+1
A(恒温时间)/min
50
60
B(热处理温度)/(°)
820
860
C(升温时间)/min
2
3
D(处理时间)/h
1.4
1.6
表1-1
(2)按4因子2水平的全因子试验编制试验计划表(考虑中心点重复和随机化)得到下述试验计划(采用Minitab软件)见表1-2。
(3)按计划表完成试验并将试验结ቤተ መጻሕፍቲ ባይዱ填入表中。
(4)利用Minitab软件,对结果做因子主效图、交互效应图和立方图。如图1-1(a)、(b)、(c)所示:
从(a)图可以看出:A(热处理温度)、B(升温时间)及D(恒温时间时间)主效应显著。
从(b)图可以看出B(升温时间)跟D(恒温时间)存在明显交互作用。
从上两图可以看出A、B、D显著,C不显著,BD交互作用处于临界点,做显著处理。
(6)作残差图,如图1-3所示。
从上图可以看出:残差满足正态分布和随机波动的要求。无异常现象。
(7)增加B*D项,对实验结果最方差和回归分析。如图1-4所示。
图1-4
从上图可以看出C(处理时间)不显著,需重新修订。
(8)去掉C项,作再次回归分析。如图1-5所示。

Minitab实验设计DOE操作步骤(精选)

Minitab实验设计DOE操作步骤(精选)

然后点击选项
Minitab实验设计DOE操作步骤
44
取消勾选后,标准序C1 可以按照顺序排列
然后点击确定
Minitab实验设计DOE操作步骤
45
点击结果
Minitab实验设计DOE操作步骤
46
2、出现此
1、点击
3、再点击
对话框
确定
Minitab实验设计DOE操作步骤
47
确定
在工作表中输入每次试验 的结果“距离”
27
点击编辑上一对话框图标 先选中立方图
显示出以下对话框 第二步点击设置
Minitab实验设计DOE操作步骤
28
双击此标识处
显示出以下对话框
单击标识处
显示到此对话框
最后点击确定
Minitab实验设计DOE操作步骤
29
再点击确定
Minitab实验设计DOE操作步骤
30
图示解析:通过实验设计分析, 试验结果显示出门磁角度在92, 前半平面度在0.3时,漏波值是最
再点击确定
Minitab实验设计DOE操作步骤
22
图示解析:门磁 角度越大漏波值 越小;反之,门 磁角度越小漏波 值越大,且门磁 角度的大小对漏
波值影响很大
图示解析:前半平面 度越大漏波值越小; 反之,前半平面度越 小漏波值越大,前半 平面度的大小对漏波
值影响较小
Minitab实验设计DOE操作步骤
23
点击编辑上一对话框图标
Minitab实验设计DOE操作步骤
24
先选中交互作用图
第二步点击设置
Minitab实验设计DOE操作步骤
25
点击确定
显示此图形
再点击确定

Minitab实验设计操作

Minitab实验设计操作

与拟合值
百分比
50 10 1 -2 -1 0 残差 1 2
残差
0
-1 20 25 30 拟合值 35 40
直方图
2.0 1 1.5
与顺序
频率
残差
-1.5 -1.0 -0.5 0.0 残差 0.5 1.0 1.5
1.0 0.5 0.0
0
-1 1 2 3 4 5 观测值顺序 6 7 8
残差满足以上的三个条件吗?
标准次序 运行次序
利用Minitab中设计DOE 在“因子”选项中设置因子名称和水平
实验的直观分析(Minitab)
利用Minitab做出实验结果的主效应图和交互作用图。 选择命令:“统计>方差分析>主效应图和交互作用图”
使用文件:全因子.mtw
实验的直观分析(Minitab)
平均值 主效应图
期望值
实验的统计分析第2步:分析模型的有效型
一个有效的实验模型其残差满足以下三个条件:
残差呈正态分布 残差和为零 残差没有明显的模式或者趋势
Minitab为我们制作了四合一残差图进行模型的有效性判定:
实验的统计分析第2步:分析模型的有效型
平均值 残差图
正态概率图
99 90 1
X2
均值 主效应图
数据平均值
X2
信噪比 的平均值
-10 -11 X3 -7 -8 -9 -10 -11 1 2
信噪: 望目(-10*Log10(s**2))
最大化SN比: X1:水平2 X3:水平1
均值 的平均值
1
2
1
2
调整调节因子至目标值: X2:水平1
利用Minitab建立控制图

Minitab中的全因子试验

Minitab中的全因子试验

R Square-adj 86.74%
Step 7 Choose improved model
通过1-6步, 从各种图形和报告分析中可以选择
最好的模型. 本例的预测方程是:
Height=7.615+0.0989X1+0.0848X2+0.0558X4+0.0370X2*X4
预测响应
Stat DOE Factorial Analyze Factorial Design 例如X1=-0.25, X2=-0.75, X4=0.50
Step 2&3 Create & Fit the Model
首先创建一个4因子 和他们的6个两因子 交互作用的模型.
Step 2&3 Create & Fit the Model
选择相应项目包括设计矩阵 画出残差和变量的图形
Step 2&3 Create & Fit the Model (分析结果)
四个p-value依然远小 于0.05, 显示为显著因 素. 解释和图标分析同full model 的step 3, 4, 5.
Reduced model Full model R square 89.68% 92.9% 84.0%
Reduced model的调整 前后R square是更接近 表明它是一个更好的模 型.
Step 6 移去非显著terms/重新匹配
在step 3中发现在10个term中有6个为非显著
性的(a=0.1). 但是移去哪些非显著term取决于:
Do not remove a non-significant effect from the model if there is at least one significant higher-order term involving that effect remaining in the reduced model.

Minitab实验设计DOE操作步骤

Minitab实验设计DOE操作步骤
互联网出现在20世纪90年代。 答案:B
4.下列不属于通讯工具变迁和电讯事业发展影响的是( A.信息传递快捷简便 B.改变着人们的思想观念
)
C.阻碍了人们的感情交流
D.影响着人们的社会生活 解析:新式通讯工具方便快捷,便于人们感情的沟通和交流。 答案:C
关键词——交通和通讯不断进步、辛亥革命和国民大革命顺应 时代潮流 图说历史 主旨句归纳 (1)近代交通由传统的人力工具逐渐演变为 机械动力牵引的新式交通工具,火车、 汽车、电车、轮船、飞机先后出现。 (2)通讯工具由传统的邮政通信发展为先进 的电讯工具,有线电报、电话、无线电
19
结果显示到此框内
双击标 识处 单击标 识处
20
结果显示到此框内
点击确定
21
回到此页面,再 点击确定。如图
再点击确定
22
图示解析:门磁 角度越大漏波值 越小;反之,门 磁角度越小漏波 值越大,且门磁 角度的大小对漏 波值影响很大
图示解析:前半平面 度越大漏波值越小; 反之,前半平面度越 小漏波值越大,前半 平面度的大小对漏波 值影响较小
(2)1924年国民党“一大”召开,标志着第 一
关键词——交通和通讯不断进步、辛亥革命和国民大革命顺应 时 代潮流 图说历史 主旨句归纳 (1)20世纪初,孙中山提出“民族、民权、 民生”三民主义,成为以后辛亥革命 的
指导思想。 (2)三民主义没有明确提出反帝要求,也 没 有提出废除封建土地制度,是一个 不彻 底的资产阶级革命纲领。
然后点击确定
45
点击结果
46
3、再点 击确定
2、出现 此对话框
1、点击 确定
47
在工作表中输入每次 的结果“距离”
1、出现此对话 框,全因子试验 次数8次

minitab正交分析报告、响应分析报告

minitab正交分析报告、响应分析报告
步骤2:拟合选定模型
按照上图的试验计划进展试验,将结果填入上表的最后一列,如此可以得到试验的结果数据〔数据文件:DOE_热处理〔全因〕〕,如下:
拟合选定模型的主要任务是根据整个试验的目的,选定一个数学模型。通常首先可以选定“全模型〞,就是在模型中包含全部因子的主效应与全部因子的二阶交互效应。在经过细致的分析之后,如果发现某些主效应和二阶交互效应不显著,如此在下次选定模型的时候,应该将不显著的主效应和二阶交互效应删除。
〔2〕看方差分析表中的失拟现象。方差分析表中,失拟项的P值为0.709,无法拒绝原假设,认为回归方程并没有因为漏掉高阶交互作用项而产生失拟现象。
〔3〕看方差分析表中的弯曲项。方差分析表中,弯曲项对应的概率P值0.633,明确无法拒绝原假设,说明本模型中没有弯曲现象。
分析要点二:分析评估回归的总效果
〔1〕两个确定系数R-Sq与R-Sq〔调整〕,计算结果显示,这两个值分别为92.49%和83.11%,二者的差距比拟大,说明模型还有待改良的余地。
〔4〕观察残差对于以各自变量为横轴的散点图,重点观察此散点图中是否有弯曲趋势。
从上面这些图可以看到,这些图形都显示残差是正常的。
步骤4:判断模型是否需要改良
这一步需要综合前面的分析:包括残差诊断和显著性分析。从上面的分析我们得知,在模型中包含不显著项,应该予以删除,所以需要建立新的模型。
选择[统计]=>[DOE]=>[因子]=>[分析因子设计],打开分析因子设计对话框。主要是修改“项〞选项中的设置,在选取的项中将加热温度、加热时间和保温时间保存,其他项皆删去,操作中的其余各项都保持不变。单节确定。
Minitab实验之试验设计
实验目的:
本实验主要引导学生利用Minitab统计软件进展试验设计分析,包括全因子设计、局部因子设计、响应曲面设计、混料设计、田口设计以与响应优化,并能够对结果做出解释。

DOE Minitab 操作教程

DOE Minitab 操作教程

Six Sigma-10
5、图形
(with Ho and 95% t-confidence interval for the mean) 3.0 2.5 2.0
Histogram of Differences
Frequency
1.5 1.0 0.5 0.0 -0.5
_ X Ho
-1.2
gma-16
1、建构实验设计
方法论:
Stat>DOE>Factorial>Create Factorial Design Type of Design:选择设计种类 Number of Factors:选择因子数目 Design:选择设计(解析度、中心点、反复数)
Factor:输入名称和水准
超过红线代表效应显著
Six Sigma-28
常态机率图
Normal Probability Plot of the Effects
(response is Yield, Alpha = .05)
99 95 90 80 AC A Effect Ty pe Not Significant Significant
Stat>DOE>Factorial>Factorial Plots
分别选择Setup
Six Sigma-30
选择Responses及因子
Six Sigma-31
Inter action Plot
Interaction Plot (data means) for Yield
20 40 A B 75 T emper atur e 65 55
F actor A B C N ame Temperature C oncentration C ataly st

DOE-全因子试验设计及Minitab操作

DOE-全因子试验设计及Minitab操作
行拉力測試並記錄數據.
2.2 Pulling Test Machine
設備編號:54W0600144 保養日期:2009/02/29 校驗日期:2009/06/06 效驗編號:830179
Stage-2:Measure
2.3 Pulling Test method:
2.4 Test Flow CCuhpaperrt: Top View Ni-tab Side View
200
200
5.6
4
3
80
80
180
200
4.6
5
2
80
100
200
230
6
6
3
100
80
180
230
6.2
7
2
80
100
180
200
5.4
8
3
80
80
200
230
6.4
9
2
100
80
200
230
6
10
2
100
100
180
230
5.6
11
3
100
80
180
230
6
12
2
80
80
180
230
5.8
13
2.5 Gage R&R Chart:
G age R & R (N ested) for D ata
Gage name: Pulling force machine Date of study: 2009/04/15
R eported by: Tolerance: M isc:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

强度 交互作用图
数据均值
2.0 2.5 3.0 50 55 60 560
加热温度
540
加热 温度 820 840 860
点类型 角点 中心 角点
520 560
加热时间
540
加热 时间 2.0 2.5 3.0
点类型 角点 中心 角点
520
保温时间
强度 主效应图
数据均值
加热温度 550 545 540 535 加热时间 点类型 角点 中心
均值
530 820 550 545 540 535 530 1.4 1.5 1.6 50 55 60 840 转换时间 860 2.0 2.5 保温时间 3.0
强度 与 加热时间, 加热温度 的曲面图
保持值 保温时间 50
பைடு நூலகம்
550 540 530 520 820 840 加热温度 2.0 860 3.0 2.5加 热 时 间
简化后数学模型
回归方程为
强度 = 213 + 0.501 加热温度 - 61.4 加热时间 - 2.45
保温时间 + 1.42 加热时间*保温时间
强度 的立方图(数据均值)
中心点 因子点
549.60
568.15
529.15 3
552.15
543.30 加热时间 521.05 548.70 60 保温时间 525.40 2 820 加热温度 860 536.35 50
强度
强度 与 加热时间, 加热温度 的等值线图
3.0
525 530 535 540 545 强度 < – – – – – > 525 530 535 540 545 550 550
2.8
加热时间
2.6
2.4
保持值 保温时间 50
2.2
2.0 820
830
840 加热温度
850
860
优化 高 D 曲线 1.0000 低
系数 541.319 10.019 8.444 1.906 5.556 0.369 -0.244 1.531 0.631 3.556 0.419 1.981
中心点 P=0.633>0.05,表 示中心点不显著!
S = 6.30446 R-Sq = 92.75%
PRESS = 1874.81 R-Sq(预测) = 51.17%
R-Sq(调整) = 81.36%
R-SQ(预测)明显低于R-SQ(调整), 说明回归模型中包含了不显著项。
删减后的图形输出
标准化效应的 Pareto 图
(响应为 强度,Alpha = 2.145
因子 A B D 名称 加热温度 加热时间 保温时间
0.05)
A
B

D BD 0
1
2
3
4 5 标准化效应
加热时间和保温时间存 在交互影响
S = 5.31913 R-Sq = 89.68%
PRESS = 704.408 R-Sq(预测) = 81.65%
R-Sq(调整) = 86.73%
R-SQ(预测)接近于R-SQ(调整), 且大于80%,说明回归模型可用。
数学模型:强度=541.632+10.019*加热温度+8.444*加热时间+5.556*保温时间 +3.556*加热时间*保温时间
6
7
8
分析结果:通过柏拉图得知:A B D的主效应及BD的交互 效应对强度有显著影响!
删减后的数据输出
拟合因子: 强度 与 加热温度, 加热时间, 保温时间
强度 的估计效应和系数(已编码单位) 系数标 项 效应 系数 准误 T P 常量 541.632 1.220 443.85 0.000 加热温度 20.037 10.019 1.330 7.53 0.000 加热时间 16.888 8.444 1.330 6.35 0.000 保温时间 11.112 5.556 1.330 4.18 0.001 加热时间*保温时间 7.113 3.556 1.330 2.67 0.018
分析路径
统计 > DOE > 因子 > 分析因子设计
图形输出
强度 残差图
正态概率图
99 5 90
与拟合值
百分比
50 10 1 -10 -5 0 残差 5 10
残差
0 -5 -10 520 540 拟合值 560 580
直方图
4 3 5 0 -5 -10 -8 -6 -4 -2 0 残差 2 4 6 2 4 6
项 常量 加热温度 加热时间 转换时间 保温时间 加热温度*加热时间 加热温度*转换时间 加热温度*保温时间 加热时间*转换时间 加热时间*保温时间 转换时间*保温时间 Ct Pt
效应 20.037 16.887 3.813 11.113 0.737 -0.488 3.062 1.263 7.113 0.837
0C
分钟 分钟 分钟
试验计划与试验数据
• • • • • • • • • • • • • • • • • • • • 标准序 17 10 18 1 4 12 11 8 14 15 6 16 7 3 19 13 2 9 5 运行序 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 中心点 0 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 区组 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 加热温度 840 860 840 820 860 860 820 860 860 820 860 860 820 820 840 820 860 820 820 加热时间 2.5 2.0 2.5 2.0 3.0 3.0 3.0 3.0 2.0 3.0 2.0 3.0 3.0 3.0 2.5 2.0 2.0 2.0 2.0 转换时间 1.5 1.4 1.5 1.4 1.4 1.4 1.4 1.6 1.6 1.6 1.6 1.6 1.6 1.4 1.5 1.6 1.4 1.4 1.6 保温时间 55 60 55 50 50 60 60 50 60 60 50 60 50 50 55 60 50 60 50 强度 535.3 549.1 549.8 522.5 551.3 561.8 549.0 553.0 548.3 550.2 536.2 574.5 531.5 526.8 544.8 523.8 536.5 518.3 528.3
DOE Report
1.
2. 3. 4. 5.
试验目的:验证因子对强度的影响,并建立数学模型,找出最佳因 子设置值。 试验类型:全因子加中点心试验 响应(Y):强度 因子(X):加热温度、加热时间、转换时间、保温时间 水平(Level):
低水平 X1加热温度 X2加热时间 X3转换时间 X4保温时间 820 2 1.4 50 高水平 860 3 1.6 60 单位
与顺序
频率
2 1 0
残差
8 10 12 观测值顺序
14
16
18
分析结果:通过残差图得知:残差是正态的且是随机的!
图形输出
标准化效应的 Pareto 图
(响应为 强度,Alpha = 2.365 A B D BD
因子 A B C D 名称 加热温度 加热时间 转换时间 保温时间
0.05)

C AD BC CD AB AC 0 1 2 3 4 标准化效应 5 6 7
加热温度 860.0 [860.0] 820.0
加热时间 3.0 [3.0] 2.0
保温时间 60.0 [60.0] 50.0
复合 合意性 1.0000
强度 最大值 y = 569.2066 d = 1.0000
响应优化
参数
目标 下限 强度 最大值 540 望目 上限 550 550 权重 1 重要性 1
整体解 加热温度 加热时间 保温时间 = = = 860 3 60
合意性=1,表示可以 100%达到目标值550
预测的响应 强度 = 569.207 , 合意性 = 1.000000
复合合意性 = 1.000000
确认试验
分析结果:通过柏拉图得知:A B D的主效应对强度有显 著影响!
拟合因子: 强度 与 加热温度, 加热时间, 转换时间, 保温时间
强度 的估计效应和系数(已编码单位) 系数标 准误 T P 1.576 343.45 0.000 1.576 6.36 0.000 1.576 5.36 0.001 1.576 1.21 0.266 1.576 3.53 0.010 1.576 0.23 0.822 1.576 -0.15 0.881 1.576 0.97 0.364 1.576 0.40 0.701 1.576 2.26 0.059 1.576 0.27 0.798 3.966 0.50 0.633
相关文档
最新文档