【2013备考】高考数学各地名校试题解析分类汇编(一)4 数列2 文
2013年高考真题理科数学解析分类汇编4-数列附答案解析
2013年高考真题理科数学解析分类汇编4 数列一选择题1,[新课标I],7、设等差数列{a n }的前n 项和为S n ,1m S -=-2,m S =0,1m S +=3,则m = ( ) A 、3 B 、4错误!未找到引用源。
C 、5D 、6【解析】有题意知m S =1()2m m a a +=0,∴1a =-m a =-(m S -1m S -)=-2, 1m a += 1m S +-m S =3,∴公差d =1m a +-m a =1,∴3=1m a +=-2m +,∴m =5,故选C.2.[新课标I]12、设△A n B n C n 的三边长分别为a n ,b n ,c n ,△A n B n C n 的面积为S n ,n=1,2,3,…若b 1>c 1,b 1+c 1=2a 1,a n +1=a n ,b n +1=c n +a n 2,c n +1=b n +a n2,则() A 、{S n }为递减数列 B 、{S n }为递增数列错误!未找到引用源。
C 、{S 2n -1}为递增数列,{S 2n }为递减数列D 、{S 2n -1}为递减数列,{S 2n }为递增数列 答案B【解析】错误!未找到引用源。
=c n +a n 2 + b n +a n2= 错误!未找到引用源。
错误!未找到引用源。
=2错误!未找到引用源。
,⟹ 错误!未找到引用源。
=2错误!未找到引用源。
=2错误!未找到引用源。
⋯⋯错误!未找到引用源。
,错误!未找到引用源。
= − 错误!未找到引用源。
⟹ 错误!未找到引用源。
=错误!未找到引用源。
⋯⋯错误!未找到引用源。
错误!未找到引用源。
错误!未找到引用源。
+2 错误!未找到引用源。
=4错误!未找到引用源。
⋯⋯错误!未找到引用源。
,错误!未找到引用源。
−2 错误!未找到引用源。
=错误!未找到引用源。
⋯⋯错误!未找到引用源。
错误!未找到引用源。
=错误!未找到引用源。
2013全国各地高考数学试卷9套附答案
1.2013年普通高等学校招生全国统一考试(安徽卷)数学(理科)本试卷分第Ⅰ卷和第II 卷(非选择题)两部分,第Ⅰ卷第1至第2页,第II 卷第3至第4页。
全卷满分150分,考试时间为120分钟。
参考公式:如果事件A 与B 互斥,那么()()()P A B P A P B +=+如果事件A 与B 相互独立,那么()()()P AB P A P B =第Ⅰ卷(选择题 共50分)一.选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) 设i 是虚数单位,_z 是复数z 的共轭复数,若|()>0I x f x =+2=2z zi ,则z = (A )1+i (B )1i - (C )1+i - (D )1-i -【答案】A 【解析】设2bi2a 2)i b (a 2bi)i -a (bi)+a (22z bi.z -a =z .bi,+a =z 22+=++=+⋅⇒=+⋅z i 则i zb a a+=⇒⎩⎨⎧==⇒⎩⎨⎧==+⇒111222b b a 22所以选A(2) 如图所示,程序框图(算法流程图)的输出结果是(A )16 (B )2524 (C )34 (D )1112【答案】D【解析】.1211,1211122366141210=∴=++=+++=s s ,所以选D(3)在下列命题中,不是公理..的是 (A )平行于同一个平面的两个平面相互平行(B )过不在同一条直线上的三点,有且只有一个平面(C )如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内(D )如果两个不重合的平面有一个公共点, 那么他们有且只有一条过该点的公共直线【答案】A【解析】B,C,D 说法均不需证明,也无法证明,是公理;C 选项可以推导证明,故是定理。
所以选A(4)"0"a ≤“是函数()=(-1)f x ax x 在区间(0,+)∞内单调递增”的 (A ) 充分不必要条件 (B )必要不充分条件(C )充分必要条件 (D )既不充分也不必要条件 【答案】C【解析】 当a=0 时,,时,且上单调递增;当,在x ax x f x a x f y x x f )1()(00)0()(||)(+-=><∞+=⇒= .)0()(0所以a .)0()(上单调递增的充分条件,在是上单调递增,在∞+=≤∞+=x f y x f y 0a )0()(≤⇒∞+=上单调递增,在相反,当x f y ,.)0()(0a 上单调递增的必要条件,在是∞+=≤⇒x f y故前者是后者的充分必要条件。
2013年全国各省(市)高考数学真题(文)分类汇编与解析(一)三角函数与数列
2013年全国各省(市)高考真题数学(文)分类汇编与解析(一)三角函数与数列(黑龙江zhnagyajun131@)2013年6月24日1.(2013年安徽卷16题)(本小题满分12分)设函数()sin sin()3f x x x π=++.(Ⅰ)求()f x 的最小值,并求使()f x 取得最小值的x 的集合; (Ⅱ)不画图,说明函数()y f x =的图像可由sin y x =的图象经过怎样的变化得到.【解析】(1)3sin cos 3cos sin sin )(ππx x x x f ++=x x x x x cos 23sin 23cos 23sin 21sin +=++= )6sin(3)6sin()23()23(22ππ+=++=x x当1)6sin(-=+πx 3,此时34,2236x k x =∴+=+ππππ所以,)(x f 的最小值为},234|Z k k x ∈+=ππ. (2)x y sin =倍,得x y sin 3=; 然后x y sin 3=6)6sin(3π+x【考点定位】本题主要考查三角恒等变形、三角函数的图像及性质与三角函数图像的变换.考查逻辑推理和运算求解能力,中等难度.2. (2013年北京卷18题) (本小题共13分)已知函数2()sin cos f x x x x x =++。
(Ⅰ)若曲线()y f x =在点(,())a f a 处与直线y b =相切,求a 与b 的值。
(Ⅱ)若曲线()y f x =与直线y b =有两个不同的交点,求b 的取值范围。
3.(2013年福建卷17题)(本小题满分12分)已知等差数列{}n a 的公差1d =,前n 项和为n S . (1)若131,,a a 成等比数列,求1a ; (2)若519S a a >,求1a 的取值范围.本小题主要考查等比等差数列、等比数列和不等式等基础知识,考查运算求解能力,考查函数与方程思想、化归与转化思想.满分12分. 解:(1)因为数列{}n a 的公差1d =,且131,,a a 成等比数列, 所以2111(2)a a =⨯+,即21120a a --=,解得11a =-或12a =. (2)因为数列{}n a 的公差1d =,且519S a a >,所以21115108a a a +>+; 即2113100a a +-<,解得152a -<<4. (2013年广东卷16题).(本小题满分12分)已知函数(),f x x x R π⎛⎫=-∈ ⎪⎝.(1) 求3f π⎛⎫ ⎪⎝⎭的值;(2) 若33cos ,,252πθθ⎛=∈⎝【解析】(1)13f π⎛⎫= ⎪⎝⎭(2)33cos ,,252πθθπ⎛⎫=∈ ⎪⎝⎭,4sin 5θ==-, 1cos cos sin sin 64445f ππππθθθθ⎛⎫⎛⎫⎫∴--=+=- ⎪ ⎪⎪⎝⎭⎝⎭⎭.【解析】这个题实在是太简单,两角差的余弦公式不要记错了.5.( 2013年广西卷17题).(本小题满分10分)等差数列{}n a 中,71994,2,a a a ==(I )求{}n a 的通项公式; (II )设{}1,.n n n nb b n S na =求数列的前项和6.(全国新课标二卷17题).(本小题满分12分)△ABC在内角A、B、C的对边分别为a,b,c,已知a=bcosC+csinB。
北京市各地市2013年高考数学 最新联考试题分类汇编(4)数列
北京市各地市2013年高考数学 最新联考试题分类汇编(4)数列 一、选择题:(7)(北京市东城区2013年4月高三综合练习一文)对于函数)(x f y =,部分x 与y 的对应关系x 1 2 3 4 5 6 7 8 9 y 7 4 5 8 1 3 5 2 6数列n 满足1,且对任意,点1+n n 都在函数)x 的图象上,则201320124321x x x x x x ++++++Λ的值为(A )9394 (B )9380 (C )9396 (D )9400 【答案】A2. (北京市房山区2013年4月高三第一次模拟理)已知{}n a 为等差数列,n S 为其前项和.若19418,7a a a +==,则10S = ( D ) A. 55 B. 81 C. 90 D. 1004.(北京市西城区2013年4月高三一模文)设等比数列{}n a 的公比为q ,前n 项和为n S ,且10a >.若232S a >,则q 的取值范围是(A )1(1,0)(0,)2-U (B )1(,0)(0,1)2-U (C )1(,1)(,)2-∞-+∞U(D )1(,)(1,)2-∞-+∞U【答案】B3. (北京市丰台区2013年高三第二学期统一练习一文)设n S 为等比数列{}n a 的前n 项和,3420a a +=,则31S a ( ) (A) 2 (B) 3 (C) 4 (D) 5 【答案】B(5)(北京市昌平区2013年1月高三期末考试理)设n S 是公差不为0的等差数列{}n a 的前n 项和,且124,,S S S 成等比数列,则21a a 等于 A.1 B. 2 C. 3 D. 4【答案】C【解析】因为124,,S S S 成等比数列,所以2142S S S =,即2111(46)(2)a a d a d +=+,即2112,2d a d d a ==,所以211111123a a d a a a a a ++===,选C. 二、填空题:(9)(北京市朝阳区2013年4月高三第一次综合练习理)在等比数列{}n a 中,32420a a a -=,则3a = ,{}n b 为等差数列,且33b a =,则数列{}n b 的前5项和等于 .【答案】2,10(11)(北京市朝阳区2013年4月高三第一次综合练习文)在等比数列{}n a 中,32420a a a -=,则3a = ,若{}n b 为等差数列,且33b a =,则数列{}n b 的前5项和等于 .【答案】2,1014.(北京市西城区2013年4月高三一模文)已知数列{}n a 的各项均为正整数,其前n 项和为n S .若1, ,231, ,nn n n n a a a a a +⎧⎪=⎨⎪+⎩是偶数是奇数且329S =, 则1a =______;3n S =______. 【答案】 5,722n +.10. (北京市海淀区2013年4月高三第二学期期中练习理)等差数列{}n a 中,34259,18a a a a +==, 则16_____.a a = 【答案】14三、解答题:20. (北京市房山区2013年4月高三第一次模拟理)(本小题满分13分)对于实数x ,将满足“10<≤y 且y x -为整数”的实数y 称为实数x 的小数部分,用记号x 表示.例如811.20.2 1.20.877=-==,,.对于实数a ,无穷数列{}n a 满足如下条件: 1a a =,11000n n nn a a a a +⎧≠⎪=⎨⎪=⎩,,其中123n =L ,,,.(Ⅰ)若2=a ,求数列{}n a 的通项公式;(Ⅱ)当41>a 时,对任意的n ∈*N ,都有a a n =,求符合要求的实数a 构成的集合A ; (Ⅲ)若a 是有理数,设qpa =(p 是整数,q 是正整数,p ,q 互质),对于大于q 的任意正整数n ,是否都有0=n a 成立,证明你的结论.20(本小题满分13分) (Ⅰ)1221a == ,2111212121a a ===+=- ……….2分若21k a =-,则112121k k a a +⎡⎤⎡⎤===⎢⎥⎣⎦⎣⎦所以21n a =- ……………………………………3分 (Ⅱ)1a a a ==Q ,14a >所以114a << ,从而114a<< ①当112a <<,即112a<<时,211111a a a a a ===-=所以210a a +-= 解得:15a -+=(151,12a --⎛⎫= ⎪⎝⎭,舍去) ……………….4分但小于q 的正整数共有1-q 个,矛盾. 故q a a a a ,,,,321⋅⋅⋅中至少有一个为0,即存在)1(q m m ≤≤,使得0=m a . 从而数列{}n a 中m a 以及它之后的项均为0,所以对于大于q 的自然数n ,都有0=n a ……………………………………………13分20.(北京市丰台区2013年高三第二学期统一练习一文)(本题14分)设满足以下两个条件的有穷数列12,,,n a a a ⋅⋅⋅为n (n=2,3,4,…,)阶“期待数列”:① 1230n a a a a ++++=L ; ②1231n a a a a ++++=L .(Ⅰ)分别写出一个单调递增的3阶和4阶“期待数列”;(Ⅱ)若某个2013阶“期待数列”是等差数列,求该数列的通项公式; (Ⅲ)记n 阶“期待数列”的前k 项和为(1,2,3,,)k S k n =L ,试证:21≤k S .∴(20)(北京市昌平区2013年1月高三期末考试理)(本小题满分14分)已知每项均是正整数的数列123100,,,,a a a a L ,其中等于i 的项有i k 个(1,2,3)i =L ,设j j k k k b +++=Λ21(1,2,3)j =L ,12()100m g m b b b m =+++-L (1,2,3).m =L(Ⅰ)设数列1240,30,k k ==34510020,10,...0k k k k =====,求(1),(2),(3),(4)g g g g ; (Ⅱ)若123100,,,,a a a a L 中最大的项为50, 比较(),(1)g m g m +的大小; (Ⅲ)若12100200a a a +++=L ,求函数)(m g 的最小值. (20)(本小题满分14分)解: (I) 因为数列1240,30,k k ==320,k =410k =, 所以123440,70,90,100b b b b ====,所以(1)60,(2)90,(3)100,(4)100g g g g =-=-=-=- …………………4分 (II) 一方面,1(1)()100m g m g m b ++-=-,根据j b 的含义知1100m b +≤,故0)()1(≤-+m g m g ,即 )1()(+≥m g m g , ① 当且仅当1100m b +=时取等号.。
无锡新领航教育特供:【2013备考】高考数学各地名校试题解析分类汇编(一)4 数列2 文
小升初 中高考 高二会考 艺考生文化课 一对一辅导 /wxxlhjy QQ:157171090- 1 - 无锡新领航教育特供:各地解析分类汇编:数列(2)1【天津市新华中学2012届高三上学期第二次月考文】等差数列{}n a 中,如果39741=++a a a ,27963=++a a a ,则数列{}n a 前9项的和为A. 297B. 144C. 99D. 66【答案】C【解析】由147=39a a a ++,得443=39=13a a ,。
由369=27a a a ++,德663=27=9a a ,。
所以194699()9()9(139)===911=99222a a a a S ++⨯+=⨯,选C. 2.【天津市新华中学2012届高三上学期第二次月考文】已知正项等比数列{}n a 满足:5672a a a +=,若存在两项n m a a ,使得14a a a n m =,则n m 41+的最小值为 A. 23 B. 35 C. 625 D. 不存在 【答案】A 【解析】因为765=2a a a +,所以2555=2a qa q a +,即220q q --=,解得2q =。
若存在两项,n m a a ,有14a =,即2116m n a a a =,2221116m n a q a +-=,即2216m n +-=,所以24,6m n m n +-=+=,即16m n +=。
所以14141413()()(5)6662m n m n m n m n n m ++=+=++≥,当且仅当4=m n n m 即224,2n m n m ==取等号,此时63m n m +==,所以2,4m n ==时取最小值,所以最小值为32,选A. 3.【山东省兖州市2013届高三9月入学诊断检测 文】等差数列{}n a 的前n 项和为n S ,若371112a a a ++=,则13S 等于( )()A 52 ()B 54 ()C 56 ()D 58【答案】在等差数列中37117312a a a a ++==,74a =,。
2013全国各地高考理科数学试题及详解汇编(一)
2013全国各地高考数学试题及详解汇编(理科●一)目录1.新课标卷1 (2)2.新课标Ⅱ卷 (10)3. 大纲卷 (21)4.北京卷 (27)5.山东卷 (37)6.陕西卷 (41)7.湖北卷 (49)8.天津卷 (61)9.重庆卷 (71)2013年高考理科数学试题解析(课标Ⅰ)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页,第Ⅱ卷3至4页。
全卷满分150分。
考试时间120分钟。
注意事项:1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至3页,第Ⅱ卷3至5页。
2. 答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置。
3. 全部答案在答题卡上完成,答在本试题上无效。
4. 考试结束,将本试题和答题卡一并交回。
第Ⅰ卷一、 选择题共12小题。
每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的一项。
1、已知集合A={x |x 2-2x >0},B={x |-5<x <5},则 ( ) A 、A∩B=∅ B 、A ∪B=R C 、B ⊆A D 、A ⊆B【命题意图】本题主要考查一元二次不等式解法、集合运算及集合间关系,是容易题. 【解析】A=(-∞,0)∪(2,+∞), ∴A ∪B=R,故选B. 2、若复数z 满足 (3-4i)z =|4+3i |,则z 的虚部为 ( )A 、-4 (B )-45 (C )4 (D )45【命题意图】本题主要考查复数的概念、运算及复数模的计算,是容易题.【解析】由题知z =|43|34i i +-=2243(34)(34)(34)i i i ++-+=3455i +,故z 的虚部为45,故选D.3、为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是 ( ) A 、简单随机抽样 B 、按性别分层抽样 C 、按学段分层抽样 D 、系统抽样 【命题意图】本题主要考查分层抽样方法,是容易题.【解析】因该地区小学、初中、高中三个学段学生的视力情况有较大差异,故最合理的抽样方法是按学段分层抽样,故选C.4、已知双曲线C :22221x y a b-=(0,0a b >>)的离心率为5,则C 的渐近线方程为A .14y x =±B .13y x =±C .12y x =± D .y x =±【命题意图】本题主要考查双曲线的几何性质,是简单题.【解析】由题知,5c a =,即54=22c a =222a b a +,∴22b a =14,∴b a =12±,∴C 的渐近线方程为12y x =±,故选C .5、运行如下程序框图,如果输入的[1,3]t ∈-,则输出s 属于A .[-3,4]B .[-5,2]C .[-4,3]D .[-2,5]【命题意图】本题主要考查程序框图及分段函数值域求法,是简单题.【解析】有题意知,当[1,1)t ∈-时,3s t =[3,3)∈-,当[1,3]t ∈时,24s t t =-[3,4]∈, ∴输出s 属于[-3,4],故选A .6、如图,有一个水平放置的透明无盖的正方体容器,容器高8cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm ,如果不计容器的厚度,则球的体积为 ( )A 、500π3cm 3B 、866π3cm 3C 、1372π3cm 3D 、2048π3cm 3【命题意图】本题主要考查球的截面圆性质、球的体积公式,是容易题.【解析】设球的半径为R ,则由题知球被正方体上面截得圆的半径为4,球心到截面圆的距离为R-2,则222(2)4R R =-+,解得R=5,∴球的体积为3453π⨯=500π33cm ,故选A.7、设等差数列{a n }的前n 项和为S n ,1m S -=-2,m S =0,1m S +=3,则m = ( )A 、3B 、4C 、5D 、6【命题意图】本题主要考查等差数列的前n 项和公式及通项公式,考查方程思想,是容易题.【解析】有题意知m S =1()2m m a a +=0,∴1a =-m a =-(m S -1m S -)=-2, 1m a += 1m S +-m S =3,∴公差d =1m a +-m a =1,∴3=1m a +=-2m +,∴m =5,故选C.8、某几何体的三视图如图所示,则该几何体的体积为 A .168π+ B .88π+ C .1616π+ D .816π+【命题意图】本题主要考查简单组合体的三视图及简单组合体体积公式,是中档题.【解析】由三视图知,该几何体为放到的半个圆柱底面半径为2高为4,上边放一个长为4宽为2高为2长方体,故其体积为21244222π⨯⨯+⨯⨯ =168π+,故选A . 9、设m 为正整数,2()mx y +展开式的二项式系数的最大值为a ,21()m x y ++展开式的二项式系数的最大值为b ,若13a =7b ,则m = ( )A 、5B 、6C 、7D 、8【命题意图】本题主要考查二项式系数最大值及组合数公式,考查方程思想,是容易题. 【解析】由题知a =2mm C ,b =121m m C ++,∴132mm C =7121m m C ++,即13(2)!!!m m m ⨯=7(21)!(1)!!m m m ⨯++, 解得m =6,故选B.10、已知椭圆x 2a 2+y 2b2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交椭圆于A 、B 两点。
2013年高考理科数学试题汇总解析--4数列
2013年高考理科数学试题汇总解析4、数列1.新课标1、7、设等差数列{}n a 的前n 项和为n s ,若,3,0,211==-=+-m m m s s s 则m= (A) 3 (B)4 (C)5 (D)6解:,3,2111=-==-=++-m m m m m m s s a s s a 则公差1=d ,021=⨯+=m a a s mm m m a a a a -=⇒=+⇒110,)1(2)1(21111+⨯+-=+⨯+=+++m a a m a a s m m m m 3)1(21=+⨯=m ,5=∴m 选C 2.新课标1、12、设n n n C B A ∆的三边长分别为n n n c b a ,,,n n n C B A ∆的面积为n s , ,3,2,1=n .若111112,a c b c b =+>,2,11n n n n n a c b a a +==++,21nn n a b c +=+,则 (A){}n s 为递减数列 (B){}n s 为递增数列 (C) {}12-n s 为递增数列, {}n s 2为递减数列 (D) {}12-n s 为递减数列, {}n s 2为递增数列解:取特殊值,以111C B A Δ的边111,,c a b 顺序设边长分别是:2.5,2,1.5;则第二个三角形 三边是:1.75,2,2.25;则第三个三角形三边是:2.15,2,1.875;……周长为定值4,形状越来越接近正三角形,也就是面积越来越大.选B.另解:设a a =1,则a c b 211=+,a a n =.由已知可得n nn n n a b c c b ++=+++211 当1=n 时,a a b c c b 2211122=++=+,当2=n 时,a a bc c b 2222233=++=+当3=n 时,,,2233344 a a b c c b =++=+即 a c b n n 2=+则n n n C B A ∆顶点n A 在以)(1n B B 也就是和)(1n C C 也就是为焦点,a 2为长轴的椭圆M 上,有因为n n n n c b c b -=-++2111,即11121c b c b n n n -⎪⎭⎫ ⎝⎛=--,n b 和n c 两边的差值越来越小,顶点n A 越来越靠近椭圆M 的上(或下)顶点,n n n C B A ∆边n n C B 上高越来越大,底边n n C B 长 为定值a ,所以面积越来越大.选B. 3.新课标1、14、若数列{}n a 的前n 项和3132+=n n a s ,则{}n a 的通项公式是n a . 解:1113132a a s =+=,所以11=a ,13132222+=+=a a s ,所以22-=a1>n 时,113232---=-=n n n n n a a s s a , 12--=∴n n a a 1)2(--=∴n n a4.新课标2、(3)等比数列{a n }的前n 项和为S n ,已知12310a a s += ,a 5 = 9,则a 1=(A )31 (B )-31 (C ) 91 (D )91- 解:12321310a a a a a s +=++= 99213=⇒=⇒q a a 又919811141=⇒==a a q a ,选C. 5.新课标2、(16)等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15 =25,则nS n 的最小值为________. 解:由S 10=0,S 15 =25,则09201101=+⇒=+d a a a ;5213251518=+⇒=d a a32,31=-=∴d a ,n n n n n d n n na s n 31031)1(313)1(2121-=-+-=-+= 2331031)(n n ns n f n -==,320,00320)(2==⇒=-='n n n n n f )(n f 在6≤n 时为递减,在7≥n 时为递增,所以 486310631)6(23-=-=f ,497310731)7(23-=-=f ,n ns 的最小值是-49. 6.安徽14、如图,互不-相同的点 n A A A A ,,,321和12,,,n B B B 分别在角O 的两条边上,所有n nA B 相互平行,且所有梯形11n n n n A B B A ++的面积均相等。
2013年高考真题解析分类汇编(理科数学)含解析
2013高考试题解析分类汇编(理数)5:平面向量一、选择题1 .(2013年高考上海卷(理))在边长为1的正六边形ABCDEF中,记以A为起点,其余顶点为终点的向量分别为;以D为起点,其余顶点为终点的向量分别为.若分别为的最小值、最大值,其中,,则满足()A. B. C. D.D.【解答】作图知,只有,其余均有,故选D.2 .(2013年普通高等学校招生统一考试辽宁数学(理)试题(WORD版))已知点()A. B. C. D.A,所以,所以同方向的单位向量是,选A.3 .(2013年普通高等学校招生统一考试浙江数学(理)试题(纯WORD版))设是边上一定点,满足,且对于边上任一点,恒有.则()A. B. C. D.D以AB所在的直线为x轴,以AB的中垂线为y轴建立直角坐标系,设AB=4,C(a,b),P(x,0)则BP0=1,A(﹣2,0),B(2,0),P0(1,0)所以=(1,0),=(2﹣x,0),=(a﹣x,b),=(a﹣1,b)因为恒有所以(2﹣x)(a﹣x)≥a﹣1恒成立整理可得x2﹣(a+2)x+a+1≥0恒成立所以△=(a+2)2﹣4(a+1)≤0即△=a2≤0所以a=0,即C在AB的垂直平分线上所以AC=BC故△ABC为等腰三角形故选D4 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD版))在四边形ABCD中,,,则四边形的面积为()A. B. C.5 D.10C由题意,容易得到.设对角线交于O点,则四边形面积等于四个三角形面积之和即S= .容易算出,则算出S=5.故答案C5 .(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD版))在平面直角坐标系中,是坐标原点,两定点满足则点集所表示的区域的面积是()A. B. C. D.D.在本题中,.建立直角坐标系,设A(2,0),所以选D6 .(2013年普通高等学校招生统一考试重庆数学(理)试题(含答案))在平面上,,,.若,则的取值范围是()A. B. C. D.D【命题立意】本题考查平面向量的应用以及平面向量的基本定理。
高考数学各地名校试题解析分类汇编(一)4 数列2 文
各地解析分类汇编:数列(2)1【天津市新华中学2012届高三上学期第二次月考文】等差数列{}n a 中,如果39741=++a a a ,27963=++a a a ,则数列{}n a 前9项的和为A. 297B. 144C. 99D. 66 【答案】C【解析】由147=39a a a ++,得443=39=13a a ,。
由369=27a a a ++,德663=27=9a a ,。
所以194699()9()9(139)===911=99222a a a a S ++⨯+=⨯,选C.2.【天津市新华中学2012届高三上学期第二次月考文】已知正项等比数列{}n a 满足:5672a a a +=,若存在两项n m a a ,使得14a a a n m =,则nm41+的最小值为A.23 B.35 C.625 D. 不存在【答案】A【解析】因为765=2a a a +,所以2555=2a q a q a +,即220q q --=,解得2q =。
若存在两项,n m a a ,有14a =,即2116m n a a a =,2221116m n a qa +-=,即2216m n +-=,所以24,6m n m n +-=+=,即16m n +=。
所以1414414()()5)(662m nn m nmnmnn m n++=+=++≥,当且仅当4=m n n m 即224,2n m n m ==取等号,此时63m n m +==,所以2,4m n ==时取最小值,所以最小值为32,选A.3.【山东省兖州市2013届高三9月入学诊断检测 文】等差数列{}n a 的前n 项和为n S ,若371112a a a ++=,则13S 等于( )()A 52 ()B 54 ()C 56 ()D 58【答案】在等差数列中37117312a a a a ++==,74a =, 所以113713713()132********2a a a S a +⨯====⨯=。
2013年全国高考数学试题分类解析——数列部分
实用文档 2013年全国高考数学试题分类解析——数列部分一、选择题1、(全国大纲理4、文6)设n S 为等差数列{}n a 的前n 项和,若11a =,公差2d =,224k k S S +-=,则k =(A )8 (B )7 (C )6 (D )52、(安徽文科第7题)若数列}{n a 的通项公式是()()n n a n =-1⋅3-2,则a a a 1210++=(A ) 15 (B) 12 (C ) -12 (D) -153、(四川文科9)数列{}n a 的前n 项和为n S ,若11=a ,n n S a 31=+(1≥n ),则=6a(A )443⨯ (B )1434+⨯ (C )44 (D )144+.4、(江西文科5).设{}n a 为等差数列,公差2-=d ,n S 为其前n 项和.若1011S S =,则1a =() A.18 B.20 C.22 D.245、(江西理科5)已知数列}{n a 的前n 项和n S 满足:m n m n S S S +=+,且11=a ,那么=10a ( )A. 1B. 9C. 10D. 55实用文档6、(上海理18)设{}n a 是各项为正数的无穷数列,i A 是边长为1,i i a a +的矩形的面积(1,2,i =),则{}n A 为等比数列的充要条件是 ( )(A ){}n a 是等比数列.(B )1321,,,,n a a a -或242,,,,n a a a 是等比数列. (C )1321,,,,n a a a -和242,,,,n a a a 均是等比数列. (D )1321,,,,n a a a -和242,,,,n a a a 均是等比数列,且公比相同.7、(陕西文10)植树节某班20名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距10米,开始时需将树苗集中放置在某一树坑旁边,现将树坑从1到20依次编号,为使各位同学从各自树坑前来领取树苗所走的路程总和最小,树苗可以放置的两个最佳....坑位的编号为( ) (A )⑴和⒇ (B )⑼和⑽ (C) ⑼和 ⑾ (D) ⑽和⑾8、(辽宁文5)若等比数列{}n a 满足n n n a a 161=⋅+,则公比为(A )2 (B )4 (C )8 (D )169、(四川理科8)数列{}n a 的首项为3,{}n b 为等差数列且)(*1N n a a b n n n ∈-=+ .若则23-=b ,1210=b ,则8a(A )0 (B )3 (C )8 (D )11实用文档二、填空题10、(重庆文1)在等差数列{}n a 中, 22a =,3104,a a =则=A .12B .14C .16D .1811、(湖南理科12)设n S 是等差数列*{}()n a n N ∈的前n 项和,且141,7a a ==,则5______S = 。
2013年全国高考理科数学试题分类汇编4:数列Word版含答案
2013 年全国高考理科数学试题分类汇编4:数列一、选择题1 .( 2013 年高考上海卷(理) ) 在数列 { a n } 中, a n2n 1 , 若一个 7 行 12 列的矩阵的第 i 行第 j 列的元素 a i , j a i a ja i a j ,( i 1,2,,7; j 1,2,,12 ) 则该矩阵元素能取到的不一样数值的个数为 ( )(A)18(B)28(C)48(D)63【答案】 A.2 .( 2013 年一般高等学校招生一致考试纲领版数学(理)WORD 版含答案(已校正) ) 已知数列a n 知足 3a n 1 a n 0,a 24的前 10, 则 a n项和等于3(A)61 310(B)1 1 3 10(C)3 13 10(D)3 1+3 10【答案】 C93 .( 2013 年高考新课标1(理)) 设A nB nC n 的三边长分别为 a n , b n ,c n , A n B n C n 的面积为S n , n 1,2,3,, 若 b 1 c 1,b 1 c 1 2a 1 , a n 1a n ,b n1c na n, c n 1b n an, 则 ( )A.{ S n } 为递减数列B.{ S n } 为递加数列 22C.{ S 2n-1 } 为递加数列 ,{ S 2n } 为递减数列D.{ S 2n-1 } 为递减数列 ,{ S 2n } 为递加数列【答案】 B4 .( 2013 年一般高等学校招生一致考试安徽数学(理)试题(纯WORD 版))函数 y=f (x) 的图像以下图 , 在区间a,b 上可找到 n(n2) 个不一样的数 x 1,x 2...,x n , 使得f (x 1 )f (x 2 ) f (x n )则 n 的取值范围是x 1 ==,x 2 x n(A) 3,4(B)2,3,4 (C)3,4,5(D)2,3【答案】 B5 .( 2013 年一般高等学校招生一致考试福建数学(理)试题(纯 WORD 版))已知等比数列 { a n }的公比为 q, 记 b nam( n 1) 1 a m( n 1) 2...am (n 1) m ,c n am(n 1) 1am( n 1) 2... am (n 1)m (m, nN * ), 则以下结论必定正确的选项是( )A. 数列{b n}为等差数列, 公差为q mB.数列 { b n} 为等比数列,公比为 q2mC.数列{ c n}为等比数列, 公比为q m2D.数列 { c n } 为等比数列,公比为 q m m【答案】 C6 (. 2013 年一般高等学校招生一致考试新课标Ⅱ卷数学(理)(纯 WORD版含答案))等比数列a n的前 n 项和为 S ,已知 S a210a , a9 ,则a1n3151(B)111(A)3(C)(D)399【答案】 C7 (. 2013年高考新课标1(理))设等差数列a的前 n 项和为 S n , S m 12, S m 0, S m 1 3,n则 m ( )A.3B.4C.5D.6【答案】C8 .( 2013 年一般高等学校招生一致考试辽宁数学(理)试题( WORD版))下边是对于公差d0的等差数列a n的四个命题:p1 : 数列a n是递加数列;p2 : 数列na n是递加数列;p3: 数列a nn是递加数列;p4 : 数列a n3nd是递加数列;此中的真命题为(A) p1, p2(B)p3 , p4(C)p2 , p3(D)p1 , p4【答案】 D9 .( 2013 年高考江西卷(理))等比数列x,3x+3,6x+6,..的第四项等于A.-24B.0C.12D.24【答案】 A二、填空题10.( 2013 年高考四川卷(理))在等差数列{ a n}中,a2a18 ,且 a4为 a2和 a3的等比中项,求数列 { a n} 的首项、公差及前n 项和.【答案】解 : 设该数列公差为 d ,前n项和为s n.由已知,可得2a1 2d8, a12a1 d a1 8d . 3d所以 a1d4,d d 3a10 ,解得 a14, d0 ,或 a11,d 3 ,即数列a n的首相为4,公差为0,或首相为1,公差为3.所以数列的前n 项和 s n 4n 或 s n 3n2n211(. 2013 年一般高等学校招生一致考试新课标Ⅱ卷数学(理)(纯 WORD版含答案))等差数列a n 的前 n 项和为 S n,已知 S100, S1525 ,则 nS n的最小值为________.【答案】4912.( 2013 年高考湖北卷(理))古希腊毕达哥拉斯学派的数学家研究过各样多边形数. 如三角形数 1,3,6,10,,第 n 个三角形数为n n 11 n21n .记第 n 个 k边形数为222N n,k k 3 ,以以下出了部分k 边形数中第 n 个数的表达式:三角形数N n,3 1 n2 1 n22正方形数N n,4n2五边形数N n,53n21n22六边形数N n,62n2n能够推断 N n,k 的表达式,由此计算 N 10,24___________.选考题【答案】 100013.( 2013 年一般高等学校招生全国一致招生考试江苏卷(数学)(已校正纯 WORD版含附带题))在正项等比数列{ a n} 中,a51, a6a7 3 ,则知足 a1a2a n a1a2a n的最大2正整数 n 的值为_____________.【答案】1214.( 2013 年高考湖南卷(理))设S n为数列a n的前 n 项和 , S n( 1)n a n1,n N , 则n2(1) a3_____; (2)S1S2S100___________.【答案】1;1 (10011)163215.( 2013 年一般高等学校招生一致考试福建数学(理)试题(纯 WORD版))当x R, x1时,有以下表达式 :1x x2...x n...11 . x111111两边同时积分得 :21dx2 xdx2 x2dx ...2 x n dx ...2dx.000001x进而获得以低等式 : 11 1 (1)2 1 (1)3 (1)1( 1 )n 1...ln 2.22232n2请依据以下资料所包含的数学思想方法,计算 :0 1 111212131n1n 1C n22 C n( 2)3 C n(2)...n1C n(2)_____【答案】n 1 [( 3)n 11] 1216.( 2013年一般高等学校招生一致考试重庆数学(理)试题(含答案))已知 a n是等差数列,a1 1 ,公差 d0, S n为其前n项和 , 若a1, a2, a5成等比数列 ,则 S8_____【答案】6417.( 2013 年上海市春天高考数学试卷( 含答案 ) )若等差数列的前6项和为23,前9项和为 57,则数列的前 n 项和 S n = __________.【答案】5n27 n 6618.( 2013 年一般高等学校招生一致考试广东省数学(理)卷(纯 WORD版))在等差数列a n中,已知a3a810,则3a5a7_____.【答案】2019.( 2013 年高考陕西卷(理))察看以下等式: 1211222322261231222324210照此规律 ,2- 2232-n -1n2 (- 1)n 1第 n 个等式可为___1( -1)2n(n 1) ____.【答案】222(n -1 2( -1)n 1(1)1- 23-)n n - 12n20.( 2013 年高考新课标2a n1,则数列{a n}的通项1(理))若数列{a n}的前n项和为S n=33公式是 a n=______.【答案】a n = ( 2)n 1 .21.( 2013年一般高等学校招生一致考试安徽数学(理)试题(纯WORD 版)) 如图 , 互不 - 同样的点 A 1 , A 2 , X n , 和 B 1, B 2 , B n , 分别在角 O 的两条边上 , 全部 A n B n 互相平行 , 且全部梯形 A n B n B n 1A n 1 的面积均相等 . 设 OA n a n . 若 a 1 1,a 22, 则数列 a n 的通项公式是_________.【答案】 a n3n 2, n N *22.( 2013 年高考北京卷(理) )若等比数列 { a n } 知足 a 2+a 4=20, a 3+a 5=40, 则公比 q =_______;前 n 项和 S n =___________.【答案】 2, 2n 1223.( 2013 年一般高等学校招生一致考试辽宁数学(理) 试题( WORD 版))已知等比数列a n 是递 增 数 列 , S n 是a的 前 n 项 和 , 若 a 1, a 3 是 方 程 x 25x 4 0 的 两 个 根 , 则nS 6 ____________.【答案】 63 三、解答题24.( 2013 年一般高等学校招生一致考试安徽数学(理)试题(纯WORD 版)) 设函数22nf n (x)1 xx 2 x 2 x2 (x R, n Nn ) , 证明 :2 3n( Ⅰ) 对每个( Ⅱ) 对随意nN n, 存在独一的 x n [ 2,1] , 知足 f n ( x n ) 0 ;31pN n , 由 ( Ⅰ ) 中x n 构成的数列x n 知足 0x nxn p.n【答案】解:( Ⅰ)x nx 2x 3x 4x n当 x 0时, y2 是单一递加的 f n ( x)1 x 222 2 是 x 的n2 34 n单一递加函数 , 也是 n 的单一递加函数 .且 f n (0)1 0, f n (1)1 10 .存在独一 x n (0,1], 知足 f n ( x n ) 0,且 1 x 1 x 2x 3 x n 0当 x(0,1).时, f n ( x)1 xx2x3x4xn22 22 22 220 f n ( x n )x n21(x n2)(3x n1 x nx n4 1综上 , 对每个 n N n, 存在独一的 x n[ 2,1] , 知足 f n ( x n )31x 21 x n 1x 21x1 1 x1 x4x 4 2) 0x n[2,1]30;( 证毕)(Ⅱ) 由题知 1x nxn p0, f n ( x n )1 x nx n 2 x n 3x n 4 x n n 022324 2n 2234nn 1npf n p ( x n p ) 1 x n pxn pxn pxn pxn pxn pxn p223242n2(n 1)2(n p)2上 式相减:x n2x n3x n4x nn2xn p 3xn p 4 xn p n xn p n 1n pxn pxn pxn px n23242n 22232 42 n 2( n 1) 2( n p) 22223344nnn 1n px n - x n p (x n p- x nx n p - x nx n p - x nx n p - x n )( x n px n p)2 23 24 2n 2(n 1) 2(n p) 21 1 1 x n - x n p1 . n n p nn法二 :25.(2013 年高考上海卷(理))(3分 +6分 +9分 ) 给定常数c0,定义函数f ( x) 2 | x c 4 | | x c |,数列 a1 , a2 , a3 ,知足 a n 1 f (a n ), n N *.(1)若 a1 c 2 ,求 a2及 a3;(2)求证 : 对随意n N * ,a n1 a n c ,;(3)能否存在 a1,使得 a1 , a2 ,a n ,成等差数列 ? 若存在 , 求出全部这样的a1,若不存在,说明原因 .【答案】 :(1)因为 c0 ,a1(c2) ,故 a2 f (a1) 2 | a1 c 4 | | a1 c | 2 ,a3 f (a1) 2 | a2 c 4 | | a2 c | c 10(2)要证明原命题 , 只要证明f ( x)x c 对随意x R都建立,f ( x) x c2 | x c 4 | | x c | x c即只要证明 2 | x c 4 | | x c | + xc若 x c 0 , 明显有 2 | x c 4 | | x c | + x c=0 建立 ;若 xc 0 , 则 2 | x c4 | | xc | + x cx c 4x c 明显建立 综上 , f ( x) x c 恒建立 , 即对随意的 nN * , a n1a nc(3) 由 (2) 知, 若 { a n } 为等差数列 , 则公差 d c 0 , 故 n 无穷增大时 , 总有 a n 0此时 , a n 1f (a n ) 2(a n c 4) (a nc) a n c8即 d c 8故 a 2 f (a 1 ) 2 | a 1 c 4 | | a 1 c | a 1 c 8,即 2 | a 1 c 4 | | a 1 c | a 1c 8,当a 1 c0 时 , 等式建立 , 且 n 2 时 , a n 0 , 此时 { a n } 为等差数列 , 知足题意 ; 若 a 1 c 0 , 则 | a 1 c 4 | 4 a 1c 8 ,此时 , a 20, a 3 c 8, , a n(n 2)(c 8) 也知足题意 ;综上 , 知足题意的 a 1 的取值范围是 [ c,) { c 8} .26.( 2013 年一般高等学校招生全国一致招生考试江苏卷(数学) (已校正纯WORD 版含附带题) )本小题满分 10 分 .k 个设 数 列:1, 2,2,3,,3,,3 ,4 , 4,,4( k- 1 k - 1,即 当a n -- -)4,,()- - - - 1 k - 1k( )() k 1k 1 k n k k 1k N时, an (- )记S n a 1a 2a n n N,对221 k ,于 lN , 定义会合 P ln S n 是a n 的整数倍, n N ,且1 nl(1) 求会合 P 11 中元素的个数 ; (2)求会合 P 2000 中元素的个数 .【答案】 此题主要观察会合. 数列的观点与运算 . 计数原理等基础知识, 观察研究能力及运用数学概括法剖析解决问题能力及推理论证能力.(1)解:由数 列a n的 定义得 : a 1 1, a 22 , a3 2 , a4 3 , a5 3 , a6 3 , a7 4 , a8 4 , a9 4 ,a10 4 , a115∴ S11, S21, S33, S40, S53, S66, S72, S82, S9 6 , S1010 , S115∴ S1 1 a1, S40 a4,S5 1 a5, S6 2 a6, S11 1 a11∴会合 P11中元素的个数为5(2) 证明 : 用数学概括法先证Si ( 2i1)i (2i1)事实上 ,①当 i 1时,Si( 2i 1)S31(21)3故原式建立②假定当 i m 时,等式建立,即S m(2 m 1)m(2m1)故原式建立则: i m 1,时,S( m1)[ 2( m 1) 1}S( m1)(2 m3}Sm(2m1)(2m1)2( 2m2)2m(2m1) ( 2m1)2(2m 2) 2( 2m25m 3)(m1)(2m 3)综合①②得 : S i ( 2i 1)i (2i1) 于是S( i 1)[ 2i1}Si ( 2i1}(2i1)2i (2i1)(2i 1)2(2i1)(i1)由上可知 : S i ( 2i1}是 ( 2i1) 的倍数而a( i 1)( 2i1}j2i1( j1,2, ,2i1) ,所以 S i (2i 1)j Si( 2i 1)j (2i1) 是a(i 1)( 2 i1}j( j1,2,,2i1)的倍数又S( i 1)[ 2i1}(i1)(2i1) 不是2i2的倍数 ,而a( i 1)( 2i1}j( 2i2)( j1,2,,2i2)所以S( i 1)( 2 i 1) j S(i 1)( 2 i 1)j(22) (2 1)(i1)j(22)不是i i ia(i 1)( 2 i1}j ( j1,2,,2i2)的倍数故当 l i(2i1) 时,会合 P l中元素的个数为 1 3(2i - 1) i 2于是当 l i( 2i1)j(1j2i1)时,会合 P l中元素的个数为 i 2j又 2000 31 (2 31 1) 47故会合 P2000中元素的个数为31247 100827.( 2013 年一般高等学校招生一致考试浙江数学(理)试题(纯WORD版))在公差为d的等差数列 { a n } 中,已知 a110 ,且 a1 ,2a22,5a3成等比数列.(1) 求d, a n ; (2)若d0 ,求| a1|| a2 | | a3 || a n | .【答案】解:( Ⅰ) 由已知获得:(2a22)25a a4(a d1)250(a2d )(11d)225(5 d )131112122d d 212525d d23d 4 0d4或d1a n a n4n611 n;(Ⅱ)由(1)知 , 当d0时 , a11n ,n①当 1n11时,a n0 | a1 | | a2 | | a3 || a n | a1 a2a3a n n(10 11n)n(21 n)22②当12n 时,a n0 | a1 | | a2 | | a3 || a n | a1 a2a3a11(a12a13a n )2( a1a2 a3a11 ) (a1 a2 a3a n ) 211(21 11)n(21n) n221n 220 222n(21n),(1 n 11)所以 , 综上所述 : | a || a || a || a2; |123n n221n2202,( n12) 28.( 2013 年高考湖北卷(理))已知等比数列a n知足 : a2a310 , a1a2 a3125 .(I)求数列 a n的通项公式;(II) 能否存在正整数m ,使得111 1 ?若存在,求 m 的最小值;若不存在,说a1a2a m明原因 .【答案】解 :(I)由已知条件得 :a2 5 ,又 a2 q 1 10 , q1或3,所以数列a n的通项或 a n 53n 2(II)若 q1,1111或 0 ,不存在这样的正整数m ;a1a2a m5m9, 不存在这样的正整数若 q3,111911m .a1a2a m1031029.( 2013 年一般高等学校招生一致考试山东数学(理)试题(含答案))设等差数列a n的前n 项和为S n , 且S44S2, a2 n2a n1.( Ⅰ) 求数列a n的通项公式 ;( Ⅱ) 设数列b n前 n 项和为Tn且 T na n1令cnb2n*. 求数,2n( 为常数 ).(n N )列 c n的前n项和R n.【答案】解:( Ⅰ) 设等差数列a n的首项为a1,公差为d,由S44S2,a2n2an1得4a16d 8a14da1(2 n 1) 2a12( n 1)d1,解得,a11, d2所以a n2n 1 ( n N * )T nn( Ⅱ) 由题意知 :2n1b n T n T n1n n 1所以 n 2 时,2n 12n 22n21n 1故,c n b2 n22n 1( n 1)(4)( n N * )所以R n0 (1)0 1 (1)1 2 (1)2 3 (1)3(n 1) (1)n 1, 444441R n 0 (1)11 (1)22 (1)3(n 2) ( 1)n 1( n 1) ( 1)n则 4444443R n(1)1 ( 1)2 (1)3( 1)n 1(n 1) ( 1) n两式相减得4444441 ( 1 )n14 4(n) n11)(144R n1 3n 1(44 n 1 ) 整理得9的前 n 项和R n1 3n 1所以数列数列c n 9 (44n 1)30.( 2013 年一般高等学校招生全国一致招生考试江苏卷(数学) (已校正纯WORD 版含附带题) )本小题满分16 分 . 设 { a n } 是首项为 a , 公差为 d 的等差数列 (d0) , S n 是其前 n 项和 . 记b nnS n , n N * , 此中 c 为实数 .n 2 c(1) 若 c 0 , 且 b 1, b 2, b 4 成等比数列 , 证明 :Snkn 2S k ( k,nN * );(2) 若 { b n } 是等差数列 , 证明 : c0 .【答案】 证明 : ∵ { a n } 是首项为 a , 公差为 d 的等差数列 ( d 0) , S n 是其前 n 项和∴S nna n(n 1) d2(1) ∵ c0 ∴ b nS nan 1 dn2∵b 1, b 2, b 4 成等比数列∴ b 2 2b 1b 4 ∴ (a 1 d )2a(a 3 d )22∴1ad 1 d 20 ∴ 1 d( a1d ) 0 ∵ d 0 ∴ a1d ∴ d 2a2 4222∴ S nna n(n 1) d nan(n 1)2a n 2 a22∴左侧 = S nk(nk) 2 a n 2 k 2a右侧 = n 2 S kn 2 k 2a∴左侧 =右侧∴原式建立(2) ∵ { b n } 是等差数列∴设公差为d 1 , ∴ b n b 1 (n1)d 1 带入 b nnS n 得:n 2cb 1 (n 1) d 1nS n 1 3(b 1 d 11 d ) n2 cd 1 n c(d 1 b 1 ) 对n 2 c∴ ( d 1d ) na22nN 恒建立d 11 d2∴ b 1d 1a 1 d 02 cd 1 0c(d 1b 1 ) 0由①式得 :d 11 d ∵ d 0 ∴ d 12 由③式得 :c法二 : 证 :(1) 若 c0 , 则 a n a(n 1) d , S nn[( n 1)d 2a], b n(n 1)d 2a22 .当 b 1, b 2,b 4 成等比数列 , b 22b 1b 4 ,d 23d即:a a a , 得 : d 2 2ad , 又 d0 , 故 d 2a .22由此 : S n n 2a ,Snk( nk) 2 a n 2 k 2 a , n 2 S k n 2 k 2 a .故: S nkn 2S k ( k, n N * ).nS n n 2 (n 1)d2a(2)b n2,n2cn2cn 2 (n 1)d 2ac (n1) d 2ac (n1)d 2a 2n 2 2 2c (n 1)d2a c (n 1) d 2a2 .( ※)2n 2c若 { b } 是等差数列 , 则 bn An Bn 型.n察看 ( ※) 式后一项 , 分子幂低于分母幂 ,(n 1) d 2a故有 : c 20 , 即 c (n 1)d 2a0 ( n 1)d2a≠0,n2c2, 而2故 c 0 .经查验 , 当 c0 时 {b n } 是等差数列 .31.( 2013 年一般高等学校招生一致考试纲领版数学(理)WORD版含答案(已校正))等差数列a n的前n 项和为S n,已知S3 =a22, 且S1,S2, S4成等比数列, 求a n的通项式.【答案】32.( 2013 年一般高等学校招生一致考试天津数学(理)试题(含答案))已知首项为3 的等比2数列 {a n }不是递减数列 ,其前335544成等差数n 项和为S n( n N*) ,且 S + a ,S+ a ,S +a列.( Ⅰ)求数列 { a n} 的通项公式 ;( Ⅱ )设 T n S n 1( n N*),求数列 { Tn } 的最大项的值与最小项的值 . S n【答案】33 .(2013年高考江西卷(理))正项数列 {a n} 的前项和 {a n}满足: s n2(n2n 1)s n( n2n) 0(1) 求数列 {a n} 的通项公式 a n;(2) 令b nn12, 数列 {b} 的前n项和为T n . 证明 : 对于随意的n*5 2n N, 都有T n(n2)a64【答案】 (1) 解 : 由S n2(n2n1)S n(n2n)0, 得S n(n2n)(S n1) 0.因为 a是正项数列 , 所以S n0, S n n2n .n于是 a1S12, n 2 时, a n S n S n 1n2n (n 1)2(n 1) 2n .综上 , 数列a n的通项 a n2n .(2) 证明 : 因为a n2n, b nn1. (n2)2 a n2则 b nn1111.16 n2(n2)24n2 (n 2)2111111⋯1111T n122423252(n 1)2(n 1)2n2(n 2)2 16321 11111 1516 2 22(n 2) 2(1 2 ).(n 1)16 26434.( 2013 年一般高等学校招生一致考试广东省数学(理)卷(纯 WORD 版))设数列a n 的前 n项和为 S n . 已知 a 11, 2S na n12n2, n N *n 13 n3 .( Ⅰ) 求 a 2 的值 ;( Ⅱ) 求数列 a的通项公式 ;n( Ⅲ) 证明 : 对全部正整数n , 有 111 7 .a 1 a 2a n 4【答案】 .(1)解 :2S nan 11 2 n2 , nN .nn33当 n1 时 , 2a 1 2S 1 a 21 1 2a 2233又 a 1 1, a 2 4(2) 解:2S na n 1 1 n 2 n 2 , n N .n3 32S n na n 11 n 3 n 22n na n 1 n n 1n 2①333当 n 2 时 , 2S n 1n 1 a nn 1 n n 1②3由① — ②, 得 2S n 2S n 1 na n 1n 1 a n n n 12a n 2S n 2S n 12a n na n 1n 1 a nn n 1a n 1 a n 1数列 a n 是以首项为a 11 , 公差为 1 的等差数列 .n 1 nn1a n 1 1 n 1 n, a n n 2 n 2n当 n1 时 , 上式明显建立 .a nn 2 , n N *(3) 证明 : 由(2) 知 , a n n 2 , n N *①当 n1时 , 11 7 原不等式建立 .,a 14②当 n2 时 , 11 117 , 原不等式亦建立 .a 1 a 24 4③当 n 3 时,n 2n 1 n 1 , 11n 1n 2n 111 1 1 11 11111a 1a 2a n1222n21 32 4 n 2 n n 1 n 11 1 11 1 11 1 11 1 1 1 1 1132 2 42 3 52 n 2 n2 n 1 n 12 11 1 11 11 11 1 1 1132435n 2 n n 1 n 12 11 11 1 17111712 n n 14 2n n 142 1当 n3 时 ,,原不等式亦建立 .综上 , 对全部正整数 n , 有11 1 7 .a 1a 2a n 435.( 2013 年高考北京卷(理) )已知 { a n } 是由非负整数构成的无量数列 , 该数列前 n 项的最大值记为 n , 第n 项以后各项an 1 ,an 2 , 的最小值记为n,n= n -n .AB d A B(I) 若{ a } 为 2,1,4,3,2,1,4,3,,是一个周期为 4 的数列 ( 即对随意*a n 4 a n ), 写出∈N ,nd 1, d 2 , d 3, d 4 的值 ;(II) 设 d 为非负整数 , 证明 : d n =- d ( n =1,2,3) 的充足必需条件为 { a n } 为公差为 d 的等差数列 ;(III) 证明 : 若 a 1=2, d =1( =1,2,3,), 则 { a } 的项只好是 1 或许 2, 且有无量多项为 1.nn【答案】 (I) d 1 d 2 1,d 3 d 4 3.(II)( 充足性 ) 因为 a n 是公差为 d 的等差数列 , 且 d 0 , 所以 a 1 a 2a n.所以 A na n , B n a n 1 , d n a na n1d (n 1,2,3, ) .( 必需性 ) 因为 d n d0 (n 1,2,3, ) , 所以 A n B n d n B n .又因为 a nA n , a n 1B n , 所以 a n a n 1 . 于是 A n a n , B n a n 1 .所以 a n 1 a n B n A nd nd , 即 a n 是公差为 d 的等差数列 .(III)因为 a12, d11,所以 A1a1 2 , B1A1d11.故对随意 n 1,a n B11.假定a n ( n 2) 中存在大于 2 的项 .设 m 为知足 a n 2 的最小正整数,则m2, 而且对随意1 k m, a k 2 ,.又因为 a1 2 ,所以 A m 1 2 ,且 A m a m2.于是 B m A m d m211,B min a , B 2 .m 1mm故 d m 1Am 1Bm 1 2 20 ,与 d m 11矛盾.所以对于随意 n1,有a n 2 ,即非负整数列a n的各项只好为1或2.所以对随意 n 1,a n2a1,所以 A n2.故 B n A n d n21 1 .所以对于随意正整数n ,存在 m 知足 m n ,且 a m 1,即数列 a 有无量多项为 1.n36.( 2013 年高考陕西卷(理))设 { a n } 是公比为q的等比数列 .( Ⅰ) 导 { a n } 的前n项和公式 ;( Ⅱ ) 设q≠ 1,证明数列 { a n1} 不是等比数列 .【答案】解:( Ⅰ) 分两种状况议论 .①当 q 1时,数列 { a n } 是首项为 a1的常数数列,所以 S n a1a1a1na1 .②当 q1时, S n a1a2an 1a n qS n qa1 qa2qa n 1 qa n.上面两式错位相减:(1- q)S n a1(a2qa1 ) (a3S n a1qa n.a1(1 qn).1 - q1- qna1 ,③综上 ,S n a1 (1q n )1,q ( Ⅱ)使用反证法.qa2 )(a n qa n 1 ) qa n a1qa n .(q 1)(q 1)设 { a n } 是公比q≠1的等比数列 , 假定数列 { a n1} 是等比数列 . 则①当 n N *,使得 a n 1 =0建立,则{ a n1}不是等比数列 .②当 n*,使得 a n1a n11a1q n1恒为常数N0建立,则1 a q n 11a n1a1q n1a1 q n 11当 a10时, q1.这与题目条件q≠1矛盾 .③综上两种状况 , 假定数列 { a n1}是等比数列均不建立 , 所以当q≠1时,数列 { a n1} 不是等比数列 .。
2013年高考真题解析分类汇编(理科数学)4:数列
2013高考试题解析分类汇编(理数)4:数列一、选择题1 .(2013年普通高等学校招生统一考试大纲版数学(理)WORD 版含答案(已校对))已知数列{}n a 满足12430,3n n a a a ++==-,则{}n a 的前10项和等于 (A)()10613--- (B)()101139-- (C)()10313-- (D)()1031+3-C所以3a n+1+a n =0 所以所以数列{a n }是以﹣为公比的等比数列 因为所以a 1=4由等比数列的求和公式可得,s 10==3(1﹣3﹣10)故选C2 .(2013年高考新课标1(理))设n n n A B C ∆的三边长分别为,,n n n a b c ,n n n A B C ∆的面积为n S ,1,2,3,n = ,若11111,2b c b c a >+=,111,,22n n n nn n n n c a b a a a b c +++++===,则( ) A.{S n }为递减数列 B.{S n }为递增数列C.{S 2n -1}为递增数列,{S 2n }为递减数列D.{S 2n -1}为递减数列,{S 2n }为递增数列B因为a n+1=a n ,,,所以a n =a 1,所以b n+1+c n+1=a n +=a 1+,所以b n+1+c n+1﹣2a 1=,又b 1+c 1=2a 1,所以b n +c n =2a 1, 于是,在△A n B n C n 中,边长B n C n =a 1为定值,另两边A n C n 、A n B n 的长度之和b n +c n =2a 1为定值, 因为b n+1﹣c n+1==,所以b n ﹣c n =,当n →+∞时,有b n ﹣c n →0,即b n →c n ,于是△A n B n C n 的边B n C n 的高h n 随着n 的增大而增大, 所以其面积=为递增数列,故选B .3 .(2013年普通高等学校招生统一考试安徽数学(理)试题(纯WORD 版))函数=()y f x 的图像如图所示,在区间[],a b 上可找到(2)n n ≥个不同的数12,...,,n x x x 使得1212()()()==,n nf x f x f x x x x 则n 的取值范围是(A){}3,4 (B){}2,3,4 (C) {}3,4,5 (D){}2,3 B由题知,过原点的直线y = x 与曲线=()y f x 相交的个数即n 的取值.用尺规作图,交点可取2,3,4. 所以选B4 .(2013年普通高等学校招生统一考试福建数学(理)试题(纯WORD 版))已知等比数列{}n a 的公比为q,记(1)1(1)2(1)...,n m n m n m n m b a a a -+-+-+=+++*(1)1(1)2(1)...(,),n m n m n m n m c a a a m n N -+-+-+=∙∙∙∈则以下结论一定正确的是( )A.数列{}n b 为等差数列,公差为mq B.数列{}n b 为等比数列,公比为2mq C.数列{}n c 为等比数列,公比为2m q D.数列{}n c 为等比数列,公比为mm qC等比数列{}n a 的公比为q,同理可得2222222,m m m mm m m a a a a a a ++++=∙=∙...m c a a a =∙∙∙,212...,m m m m c a a a +++=∙∙∙321222...,m m m m c a a a +++=∙∙∙2213c c c ∴=∙∴数列{}n c 为等比数列,2221212211212............mm m m m m m m m ma a a a a a q c q q c a a a a a a +++∙∙∙∙∙∙∙====∙∙∙∙∙∙ 故选C 5 .(2013年普通高等学校招生统一考试新课标Ⅱ卷数学(理)(纯WORD 版含答案))等比数列{}n a 的前n 项和为n S ,已知12310a a S +=,95=a ,则=1a(A)31 (B)31- (C)91 (D)91-C设等比数列{a n }的公比为q ,因为S 3=a 2+10a 1,a 5=9,所以,解得.所以.故选C .6 .(2013年高考新课标1(理))设等差数列{}n a 的前n 项和为11,2,0,3n m m m S S S S -+=-==,则m = ( ) A.3 B.4 C.5 D.6Ca m =S m ﹣S m ﹣1=2,a m+1=S m+1﹣S m =3,所以公差d=a m+1﹣a m =1,a m =﹣2+(m ﹣1)•1=2,解得m=5,故选C .(理)试题(WORD 版))下面是关于公差0d >{}2:n p na 数列是递增数列; {}4:3n p a nd +数列是递增数列; (A)12,p p (B)34,p p (C)23,p p (D)14,p p D设1(1)n a a n d dn m =+-=+,所以1P 正确;如果312n a n =-则2312n na n n =-并非递增所以2P 错;如果若1n a n =+,则满足已知,但11n a n n=+,是递减数列,所以3P 错;34n a nd dn m +=+,所以是递增数列,4P 正确,选D.8 .(2013年高考江西卷(理))等比数列x,3x+3,6x+6,..的第四项等于A.-24B.0C.12D.24A本题考查等比数列的运算。
2013年高考数学全国卷1(完整试题+答案+解析)
输出 a
1
1
第 14 题图
如图。F,H 是上下底的中心,O 是 FH 中点。则:
i i1 结束
AB=2 AE=√3, AF=2√3/3 OF=1/2
第13题图
OA=√﹙AF ²+O F ²﹙=√﹙1/ /12﹙
球的表面积=4π﹙1/ /12﹙=19 π/3≈1/ .89 675﹙面积单位﹙
向左转|向右转
∴ f (x)
cos(
2 3
sin(x
6)
1 2
2x) cos 2( 3
1,即sin(x ) 1 62
x) 2 cos2 ( x) 1 3
4 分 …………………………………………
2 sin 2 (x ) 1 1
6
2
6 分 …………………………………………
(Ⅱ)已知 2a cosC c 2b
由正弦定理得:
162
12
为双曲线上不同于 A1, A2 的任意一点,直线 A1P, A2 P 与直线 x a 分别交于两点 M , N ,若
FM FN 0 ,则 a 的值为(B)
16 A. 9
9 B. 5
25 C. 9
双曲线 x^2/9-y^2/16=1, 右焦点 F(5.0),A1(-3,0),A2(3,0) 设 P(x,y) M (a,m),N(a,n) ∵P,A1,M 三点共线, ∴m/(a+3)=y/(x+3) ∴m=y(a+3)/(x+3) ∵P,A2,N 三点共线, ∴n/(a-3)=y/(x-3) ∴n=y(a-3)/(x-3) ∵x^2/9-y^2/16=1 ∴(x^2-9)/9=y^2/16 ∴y^2/(x^2-9)=16/9 FM 向量=(a-5,y(a+3)/(x+3)) FN 向量=(a-5,y(a-3)/(x-3)) FM 向量*FN 向量 =(a-5)^2+y^2(a^2-9)/(x^2-9) =(a-5)^2+16(a^2-9)/9 ∵FM 向量*FN 向量=0 ∴(a-5)^2+16(a^2-9)/9=0
2013年高考真题理科数学解析分类汇编4-数列
( - 1) n +1 综上,第 n 个等式: 1 - 2 + 3 - ⋯ + ( - 1) n = n (n + 1) 2
2 2
5.江西 1 等比数列 x,3x+3,6x+6, …..的第四项等于 A.-24 B.0 C.12 D.24
6. 福 建 9. 已 知 等 比 数 列 {a n } 的 公 比 为 q , 记 bn = a m ( n−1) +1 + am ( n−1) +2 + ⋅ ⋅ ⋅ + a m ( n−1) + m ,
照此规律 , 第 n 个等式可为
n +1 n -1 2 ( - 1) 12 - 2 2 + 3 2 - ⋯ + ( - 1) n = n (n + 1) 2
.
( - 1) n +1 【答案】 1 - 2 + 3 - ⋯ + ( - 1) n = n (n + 1) 2
2 2 2 n -1 2
【解析】分 n 为奇数、偶数两种情况。第 n 个等式为 1
C、{S2n-1}为递增数列,{S2n}为递减数列 D、{S2n-1}为递减数列,{S2n}为递增数列 答案 B 【解析】 = cn+an bn+an + = 2 2
=2
,
=2
=2
,
=−
=
+2
=4
,
−2
=
=
−
,是正数递增数列
所以
=
=
=
−1(因为
边不是最大边,所以
是锐
角)是正数递减数列
是正数递增数列
2013高考数学真题分类汇编—数列模块
2013高考数学—数列分类汇编1.(2013江苏卷14)在正项等比数列}{n a 中,215=a ,376=+a a ,则满足n n a a a a a a 2121>+++的最大正整数n 的值为 .2。
(2013江苏卷19)设}{n a 是首项为a ,公差为d 的等差数列)0(≠d ,n S 是其前n 项和.记cn nS b n n +=2,*N n ∈,其中c 为实数. (1)若0=c ,且421b b b ,,成等比数列,证明:k nk S n S 2=(*,N n k ∈);(2)若}{n b 是等差数列,证明:0=c .3。
(2013山东卷理20)设等差数列}{n a 的前n 项和为n S ,244S S =,122+=n n a a (1)求数列}{n a 的通项公式; (2)设数列}{n b 的前n 项和为n T ,且λ=++nn n a T 21(λ为常数),令n n b c 2=(*∈N n ),求数列}{n c 的前n 项和n R 。
4。
(2013陕西卷理17)设}{n a 是公比为q 的等比数列. (1) 推导}{n a 的前n 项和公式;(2) 设1≠q ,证明数列}1{+n a 不是等比数列5。
(2013新课标1卷理7)设等差数列}{n a 的前n 项和n S ,21-=-m S ,0=m S ,31=+m S ,在=m.A 3 .B 4 .C 5 .D 66。
(2013新课标1卷理14)数列}{n a 的前n 项和为3132+=n n a S ,则数列}{n a 的通项公式为7.(2013江西卷理17)正项数列}{n a 的前n 项和n S 满足0)()1(222=+--+-n n S n n S n n(1)求数列}{n a 的通项公式n a ; (2)令22)2(1n n a n n b ++=,数列}{n b 的前n 项和为n T ,证明:对于任意*∈N n ,都有645<n T8。
2013年理科全国各省市高考真题——数列(解答题带答案)
2013年全国各省市理科数学—数列1、2013大纲理T17.(本小题满分10分)等差数列{}n a 的前n 项和为n S ,已知232=S a ,且124,,S S S 成等比数列,求{}n a 的通项式。
求数列{c n }的前n 项和R n .3、2013四川理T16.(本小题满分12分)在等差数列{}n a 中,138a a +=,且4a 为2a 和9a 的等比中项,求数列{}n a 的首项、公差及前n 项和。
4、2013天津理T19. (本小题满分14分)已知首项为32的等比数列{}n a 不是递减数列, 其前n 项和为(*)n S n ∈N , 且S 3 + a 3, S 5 + a 5, S 4 + a 4成等差数列.(Ⅰ) 求数列{}n a 的通项公式; (Ⅱ) 设*()1n n nT S n S ∈=-N , 求数列{}n T 的最大项的值与最小项的值.5、2013浙江理T18.在公差为d 的等差数列}{n a 中,已知101=a ,且3215,22,a a a +成等比数列。
(1)求n a d ,;(2)若0<d ,求.||||||||321n a a a a ++++6、2013广东理T19.(本小题满分14分) 设数列{}n a 的前n 项和为n S .已知11a =,2121233n n S a n n n +=---,*n ∈N . (Ⅰ) 求2a 的值;(Ⅱ) 求数列{}n a 的通项公式;(Ⅲ) 证明:对一切正整数n ,有1211174n a a a +++< .7、2013安徽理T20.(本小题满分13分)设函数22222()1(,)23n nn x x x f x x x R n N n=-+++++∈∈ ,证明:(Ⅰ)对每个nn N ∈,存在唯一的2[,1]3n x ∈,满足()0n n f x =; (Ⅱ)对任意np N ∈,由(Ⅰ)中n x 构成的数列{}n x 满足10n n p x x n+<-<。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
各地解析分类汇编:数列(2)1【天津市新华中学2012届高三上学期第二次月考文】等差数列{}n a 中,如果39741=++a a a ,27963=++a a a ,则数列{}n a 前9项的和为A. 297B. 144C. 99D. 66 【答案】C【解析】由147=39a a a ++,得443=39=13a a ,。
由369=27a a a ++,德663=27=9a a ,。
所以194699()9()9(139)===911=99222a a a a S ++⨯+=⨯,选C.2.【天津市新华中学2012届高三上学期第二次月考文】已知正项等比数列{}n a 满足:5672a a a +=,若存在两项n m a a ,使得14a a a n m =,则nm41+的最小值为A.23 B.35 C.625 D. 不存在【答案】A【解析】因为765=2a a a +,所以2555=2a q a q a +,即220q q --=,解得2q =。
若存在两项,n m a a ,有14a =,即2116m n a a a =,2221116m n a qa +-=,即2216m n +-=,所以24,6m n m n +-=+=,即16m n +=。
所以1414414()()5)(662m nn m nmnmnn m n++=+=++≥,当且仅当4=m n n m 即224,2n m n m ==取等号,此时63m n m +==,所以2,4m n ==时取最小值,所以最小值为32,选A.3.【山东省兖州市2013届高三9月入学诊断检测 文】等差数列{}n a 的前n 项和为n S ,若371112a a a ++=,则13S 等于( )()A 52 ()B 54 ()C 56 ()D 58【答案】在等差数列中37117312a a a a ++==,74a =, 所以113713713()132********2a a a S a +⨯====⨯=。
选A.4.【天津市新华中学2013届高三上学期第一次月考数学(文)】公差不为零的等差数列}{n a 的前n 项和为n S 。
若4a 是3a 与7a 的等比中项,328=S ,则10S 等于( )A. 18B. 24C. 60D. 90【答案】C【解析】因为4a 是3a 与7a 的等比中项,所以2374a a a =,又1888()322a a S +==,即188a a +=,解得13,2a d =-=,所以1011091031090602S a d ⨯=+=-⨯+=,选C.5.【山东省潍坊市四县一区2013届高三11月联考(文)】设等比数列{}n a 中,前n 项和为n S ,已知7863==S S ,,则=++987a a a A.81 B.81-C.857 D.855【答案】A【解析】因为78996a a a S S ++=-,在等比数列中36396,,S S S S S --也成等比,即968,1,S S -成等比,所以有968()1S S -=,即9618S S -=,选A.6.【山东省实验中学2013届高三第一次诊断性测试 文】在各项均为正数的等比数列{}n a 中,31,1,s a a ==则2326372a a a a a ++=A .4B .6C .8D .8-【答案】C【解析】在等比数列中,23752635,a a a a a a a ==,所以22232637335522a a a a a a a a a ++=++22235()11)8a a =+=-+==,选C.7.【山东省潍坊市四县一区2013届高三11月联考(文)】已知{}n a 中nn a )31(=,把数列{}n a 的各项排列成如下的三角形状,记),n m A (表示第m 行的第n 个数,则)(12,10A =A.9331)(B.9231)(C.9431)(D.11231)(【答案】A【解析】前9行共有(117)913517812+⨯++++== 项,所以)(12,10A 为数列中的第811293+=项,所以93931()3a =,选A.8.【天津市新华中学2013届高三上学期第一次月考数学(文)】等差数列}{n a 前n 项和为n S ,已知0211=-++-m m m a a a ,3812=-m S ,则=m【答案】10【解析】在等差数列中,由0211=-++-m m m a a a 得220m m a a -=,解得2m a =或m a =(舍去)。
又12`121(21)()2(21)(21)22m mm mm a a m a S m a ---+-===-,即(21)2mm a m -=-=,解得10m =。
9.【山东省烟台市莱州一中20l3届高三第二次质量检测 (文)】在等比数列{},n n a a 中>0,且12784516,a a a a a a ⋅⋅⋅⋅⋅⋅⋅=+则的最小值为________.【答案】【解析】在等比数列中由127816a a a a ⋅⋅⋅⋅⋅⋅⋅=得445()16a a =,所以452a a =,所以45a a +≥=45a a =时,取等号,所以45a a +的最小值为10.【山东省实验中学2013届高三第一次诊断性测试 文】数列{}n a 满足113,1,n n n n a a a a A +=-=表示{}n a 前n 项之积,则2013A = 。
【答案】1-【解析】由113,1,n n n a a a a +=-=得11n n na a a +-=,所以231233a -==,312a =-,43a =,所以{}n a 是以3为周期的周期数列,且1231a a a =-,又20133671=⨯,所以6712013(1)1A =-=-。
11.【山东省实验中学2013届高三第一次诊断性测试 文】(本小题满分12分)已知{}n a 是公比大于1的等经数列,13,a a 是函数9()10f x x x=+-的两个零点(1)求数列{}n a 的通项公式;(2)若数列{}n a 满足312312,80n n b og n b b b b =+++++≥ 且,求n 的最小值。
【答案】12.【山东省潍坊市四县一区2013届高三11月联考(文)】(本小题满分12分)已知各项均为正数的数列{}n a 前n 项和为n S ,首项为1a ,且n n S a ,,21等差数列.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若nb n a )21(2=,设nn n a b c =,求数列{}n c 的前n 项和n T .【答案】解(1)由题意知0,212>+=n n n a S a ………………1分当1=n 时,21212111=∴+=a a a当2≥n 时,212,21211-=-=--n n n n a S a S两式相减得1122---=-=n n n n n a a S S a ………………3分 整理得:21=-n n a a ……………………4分∴数列{}n a 是以21为首项,2为公比的等比数列.211122212---=⨯=⋅=n n n n a a ……………………5分(2)42222--==n b n na∴n b n 24-=,……………………6分nn n n n n n a b C 28162242-=-==-nn n n n T 28162824282028132-+-⋯+-++=- ①13228162824202821+-+-+⋯++=n nn n n T ②①-②得1322816)212121(8421+--+⋯++-=n nn nT ………………9分111122816)211442816211)2112184+-+-----=----⋅-=n n n n n n ((nn 24=.………………………………………………………11分.28nn n T =∴…………………………………………………………………12分13.【天津市新华中学2012届高三上学期第二次月考文】已知数列{}n a 中,,2,121==a a 且)0,2()1(11≠≥-+=-+q n qa a q a n n n 。
(1)设)(*1N n a a b n n n ∈-=+,证明{}n b 是等比数列;(2)求数列{}n a 的通项公式;(3)若3a 是6a 与9a 的等差中项,求q 的值,并证明:对任意的*N n ∈,n a 是3+n a 与6+n a 的等差中项。
【答案】解:(1)11)1(-+-+=n n n qa a q a ,)(11-+-=-n n n n a a q a a1-=n n qb b q b b n n =∴-10≠q ,{}n b ∴是等比数列(2)1-=n n q b ,21--=-n n n q a a ,321---=-n n n q a a ,112=-a a2211-++++=-∴n n qq q a1≠q 时qqa n n --+=-1111,1=q 时n a n =综上,⎪⎩⎪⎨⎧---=-q q q na n n 1211)1(≠=q q(3)9362a a a += ,1=q 时不会正面1≠∴q ,0)2(362=-+q q q 0)1)(2(033=-+∴≠q q q ,32-=q(3)n n n a a a 263-+++qqq qq qq n n n ------+--=-++1)1(222152qqq q n n n ---=++-12521qq q qn ---=-1)2(6310236=-+q q ,0263=-+∴++n n n a a a14 【山东省烟台市莱州一中20l3届高三第二次质量检测 (文)】(本小题满分12分) 在数列{}n a 中,已知()111411,,23log 44n n n n a a b a n N a *+==+=∈. (1)求数列{}n a 的通项公式; (2)求证:数列{}n b 是等差数列;(3)设数列{}n c 满足{},n n n n c a b c =+求的前n 项和S n . 【答案】15 【山东省兖州市2013届高三9月入学诊断检测 文】(本小题满分12分)已知{}n a 为等差数列,且13248,12,a a a a +=+= (1)求数列{}n a 的通项公式;(2){}n a 的前n 项和为n S ,若12,,k k a a S +成等比数列,求正整数k 的值。
【答案】(1)设数列{}n a 的公差为d,由题意知112282412a d a d +=⎧⎨+=⎩ 解得12,2a d ==…………3分所以1(1)22(1)2n a a n d n n =+-=+-=…………5分(2)由(Ⅰ)可得1()(22)(1)22n n a a nn nS n n ++===+ …………8分因12,,k k a a S + 成等比数列,所以212k k a a S +=从而2(2)2(2)(3)k k k =++ ,即 2560k k --=…………10分 解得6k = 或1k =-(舍去), 因此6k = 。