历年初三数学频率与概率练习题及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
频率与概率
【回顾与思考】
【例题经典】
能够理解用试验得到的频率当作概率用
例1含有4种花色的36张扑克牌的牌面都朝下,•每次抽出一张记下花色后再原样放回,洗匀牌后再抽.不断重复上述过程,•记录抽到红心的频率为25%,那么其中扑克牌花色是红心的大约有________张.
【点评】频率为25%,就作为概率即36×25%=9(即可)
能够根据实际情况制作模拟试验
例2你几月份过生日?和同学交流,看看6个同学中是否有2个人同月过生日,开展调查,看看6个月中2个人同月过生日的概率大约是多少?
【点评】以12月份为号码编球或用计算器作模拟试验.
能借助用频率估计理论概念的方法解决问题
例3为了估计池塘里有多少条鱼,从池塘里捕捞了1000条鱼做上标记,然后放回池塘里,经过一段时间,等有标记的鱼完全混合鱼群中以后,再捕捞200条,若其中有标记的鱼有10条,则估计池塘里有鱼________条.
【点评】这种方法本身就是一种估算,不能说它是一种准确值.
【考点精练】
一、基础训练
1.某市对2400名年满15岁的男生的身高进行了测量,结果身高(单位:m)在1.68~1.70这一小组的频率为0.25,则该组的人数为()
A.400人B.150人C.60人D.15人
2.有一个不透明的布袋中,红色、黑色、白色的玻璃共有40个,除颜色外其它完全相同.小李通过多次摸球试验后发现其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是()
A.6 B.16 C.18 D.24
3.右图是某中学七年级学生参加课外活动人数的扇形统计图,•
若参加舞蹈类的学生有42人,则参加球迷活动的学生人数有
()
A.145 B.147 C.149 D.151
4.甲、乙、丙、丁四名运动员参加4×100米接力赛,•甲必须为第一接力棒或第四接棒的运动员,那么这四名运动员在比赛过程的接棒顺序有()
A.3种B.4种C.6种D.12种
5.一个口袋中有12个白球和若干个黑球,•在不允许将球倒出来数的前提下,小亮为估计口袋中黑球的个数,采用了如下方法:•每次先从口袋中摸出10个球,求出其中白球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程5次,得到的白球数与10的比值分别为:0.4,0.1,0.2,0.1,0.2,根据上述数据,•小亮可估计口袋中大约有_______个黑球.
6.右图是由8•块相同的等腰直角三角形黑白瓷砖镶嵌而成的正方形示意
图,一只蚂蚁在上面自由爬动,并随机停留在某块瓷砖上,•蚂蚁留在
黑色瓷砖上的概率是_______.
7.在一个有10万人的小镇,随机调查了2000人,其中有250•人看中央电视台的早间新闻,在该镇随便问一个人,他看早间新闻的概率大约是________.
8.某口袋中有红色、黄色、蓝色玻璃球共72个.小明通过多次摸球试验后,发现摸到红球、黄球、蓝球的概率依次是35%,25%和40%,•试估计口袋中三种玻璃球的数目依次是______.
9.在一个不透明的箱子里放有除颜色外,其余都相同的4个小球,其中红球有3个、白球1个.搅匀后,从中同时摸出2个小球,•请你写出这个实验中的一个可能事件:_________.
二、能力提升
10.一枚均匀的正方体骰子,六个面分别标有数字1,2,3,4,5,6,连续抛掷两次,朝上的数字分别是m,n.若把m,n作为点A的横、纵坐标,那么点A(•m,n)在函数y=2x的图象上的概率是多少?
11.在围棋盒中有x颗黑色棋子和y颗白色棋子,从盒中随机地取出一个棋子,如果它是
黑色棋子的概率是3
8
.
(1)试写出y与x的函数关系式.
(2)若往盒中再放进10颗黑色棋子,则取得黑色棋子的概率变为1
2
,求x和y的值.
12.有2个信封,每个信封内各装有四张卡片,其中一个信封内的四张卡片上分别写有1,2,3,4四个数,另一个信封内的四张卡片上分别写出5,6,7,8四个数,甲、乙两人商定了一个游戏,规则是:从这两个信封中各随机抽取一张卡片,•然后把卡片上的两个数相乘,如果得到的积大于20,则甲获胜,否则乙获胜.
(1)请你通过列表(或画树状图)计算甲获胜的概率;
(2)你认为这个游戏公平吗?为什么?
13.在两个布袋中分别装有三个小球,这三个小球的颜色分别为红色、白色、绿色,其他没有区别,把两袋小球都搅匀后,再分别从两袋中各取出一个小球,试求取出两个相同颜色小球的频率(要求用树状图或列表方法求解).
14.将分别标有数字2,3,5的三张质地,•大小完全一样的卡片背面朝上放在桌面上.(1)随机抽取一张,求抽到奇数的概率;
(2)随机抽取一张作为个位上的数字(不放回),再抽取一张作为十位上的数字,•能组成哪些两位数?并求出抽取到的两位数恰好是35的概率.
三、应用与探究
15.在一个不透明的口袋里装有只有颜色不同的黑、•白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,•再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:
(1)请估计:当n很大时,摸到白球的频率将会接近_______;
(2)假如你去摸一次,•你摸到白球的概率是________,•摸到黑球的概率是_______;
(3)试估算口袋中黑、白两种颜色的球各有多少只?
(4)解决了上面的问题,小明同学猛然顿悟,过去一个悬而未决的问题有办法了.这个问题是:在一个不透明的口袋里装有若干个白球,•在不允许将球倒出来数的情况下,如何估计白球的个数(可以借助其他工具及用品)?请你应用统计和概率的思想和方法解决这个问题,写出解决这个问题的主要步骤及估算方法.