数理统计——假设检验

合集下载

概率论与数理统计(8)假设检验

概率论与数理统计(8)假设检验

概率论与数理统计(8)假设检验第八章假设检验第一节假设检验问题第二节正态总体均值的假设检验第三节正态总体方差的检验第四节大样本检验法第五节 p值检验法第六节假设检验的两类错误第七节非参数假设检验第一节假设检验问题前一章我们讨论了统计推断中的参数估计问题,本章将讨论另一类统计推断问题——假设检验.在参数估计中我们按照参数的点估计方法建立了参数的估计公式,并利用样本值确定了一个估计值,认为参数真值。

由于参数是未知的,只是一个假设(假说,假想),它可能是真,也可能是假,是真是假有待于用样本进行验证(检验).下面我们先对几个问题进行分析,给出假设检验的有关概念,然后总结给出检验假设的思想和方法.一、统计假设某大米加工厂用自动包装机将大米装袋,每袋的标准重量规定为10kg,每天开工时,需要先检验一下包装机工作是否正常. 根据以往的经验知道,自动包装机装袋重量X服从正态分布N( ).某日开工后,抽取了8袋,如何根据这8袋的重量判断“自动包装机工作是正常的”这个命题是否成立?请看以下几个问题:问题1引号内的命题可能是真,也可能是假,只有通过验证才能确定.如果根据抽样结果判断它是真,则我们接受这个命题,否则就拒绝接受它,此时实际上我们接受了“机器工作不正常”这样一个命题.若用H0表示“”,用H1表示其对立面,即“”,则问题等价于检验H0:是否成立,若H0不成立,则H1:成立.一架天平标定的误差方差为10-4(g2),重量为的物体用它称得的重量X服从N( ).某人怀疑天平的精度,拿一物体称n次,得n 个数据,由这些数据(样本)如何判断“这架天平的精度是10-4(g2)”这个命题是否成立?问题2记H0: =10-4,H1: ,则问题等价于检验H0成立,还是H1成立.某种电子元件的使用寿命X服从参数为的指数分布,现从一批元件中任取n个,测得其寿命值(样本),如何判定“元件的平均寿命不小于5000小时”这个命题是否成立?记问题3则问题等价于检验H0成立,还是H1成立.某种疾病,不用药时其康复率为,现发明一种新药(无不良反应),为此抽查n位病人用新药的治疗效果,设其中有s人康复,根据这些信息,能否断定“该新药有效”?记问题4则问题等价于检验H0成立,还是H1成立.自1965年1月1日至1971年2月9日共2231天中,全世界记录到震级4级及以上的地震共计162次,问相继两次地震间隔的天数X是否服从指数分布?问题5记服从指数分布,不服从指数分布.则问题也等价于检验H0成立,还是H1成立.在很多实际问题中,我们常常需要对关于总体的分布形式或分布中的未知参数的某个陈述或命题进行判断,数理统计学中将这些有待验证的陈述或命题称为统计假设,简称假设.如上述各问题中的H0和H1都是假设.利用样本对假设的真假进行判断称为假设检验。

概率论与数理统计-假设检验

概率论与数理统计-假设检验

14

取伪的概率较大.
15
/2
0.12 0.1
0.08 0.06 0.04 0.02
/2 H0 真
60 62.5 65 67.5 70 72.5 75
0.12 0.1
0.08 0.06 0.04 0.02
H0 不真
67.5 70 72.5 75 77.5 80 82.5
16
现增大样本容量,取n = 64, = 66,则
41
两个正态总体
设 X ~ N ( 1 1 2 ), Y ~ N ( 2 2 2 )
两样本 X , Y 相互独立, 样本 (X1, X2 ,…, Xn ), ( Y1, Y2 ,…, Ym ) 样本值 ( x1, x2 ,…, xn ), ( y1, y2 ,…, ym )
显著性水平
42
(1) 关于均值差 1 – 2 的检验
原假设 备择假设 检验统计量及其在
H0
H1
H0为真时的分布拒绝域 Nhomakorabea1 – 2 = 1 – 2
1 – 2 1 – 2 <
1 – 2 1 – 2 > ( 12,22 已知)
43
原假设 备择假设 检验统计量及其在
H0
H1
H0为真时的分布
1 – 2 = 1 – 2
拒绝域
1 – 2 1 – 2 <
1 – 2 1 – 2 >
12, 22未知
12
=
2 2
其中
44
(2)
关于方差比
2 1
/
2 2
的检验
原假设 备择假设 检验统计量及其在
H0
H1
H0为真时的分布

数理统计:假设检验

数理统计:假设检验
12
二 假设检验的思路、步骤和术语
由长期实践可知,标准差较稳定,设 15, 则 X ~ N (, 152 ), 其中未知.
1. 提出两个对立假设
H0 : 0 500
H1 : 0
原假设或零假设
备择假设
利用已知样本作出判断:是接受假设H0(拒绝假 设H1), 还是拒绝假设H0(接受假设H1). 如果作出的判 断是接受H0, 则认为 0 500 , 即认为机器工作是 正常的, 否则, 认为是不正常的.
13
2. 选择适当的统计量,称为检验统计量,
原则是 1°其中含着总体X的均值 好的估计 X ,
2° H0为真时,检验统计量分布确定。
因为 X是 的无偏估计量,
检验统计量
若 H0 为真, 则| x 0 | 不应太大,
当H0为真时, X ~ N (0 , 2 n),
Z X 0 ~ N (0,1), / n
P{拒绝H0 H0为真} (按“=”具体计算)
以假当真: 当μ≠500时,X 取值落在500附近的可能也存 在,此时将接受H0,认为μ=500,于是犯了取伪错误,称 为第二类错误,犯第Ⅱ类错误的概率
P{接受H0 H0不真}
23
两类错误的关系
以下述检验为例:X~N(, 2), 已知, 未知
率不超过 ,而犯第ⅠI类错误的概率无法控制。
25
【注】假设检验的结果与显著性水平α的大小有关: α越小越不易拒绝H0. 就引例而言:
当α=0.05时,则 临界值z /2 z0.025 1.96,
z x 0 2.2 1.96, 落入拒绝域 / n
于是拒绝 H0, 认为包装机工作不正常.
在实例中若取定 0.05,则 k z / 2 z0.025 1.96,

假设检验的基本概念与应用

假设检验的基本概念与应用

假设检验的基本概念与应用假设检验是数理统计学的一种重要方法,用于验证一个假设是否成立。

在科学研究、工程技术和社会经济等领域都得到了广泛应用。

本文将介绍假设检验的基本概念和应用。

一、基本概念1. 假设假设是对某个事物性质、规律等的一种猜测或假设。

在假设检验中,我们通常将这个猜测称为零假设,表示我们要验证的假设是无效的、错误的或不成立的。

而对立假设则表示与零假设相反的另一种情况。

2. 检验统计量检验统计量是根据样本数据计算出来的一个数值,用于确定零假设是否成立或应予以拒绝的标准。

在假设检验中,我们选择一个检验统计量,对样本数据进行计算,并与一个参照分布进行比较,从而判断假设是否成立。

3. 显著性水平显著性水平是做出假设检验决策时所允许的犯错误的概率。

通常,我们需要在显著性水平α 的置信水平下进行假设检验。

一般常用的显著性水平有 0.05 和 0.01。

4. P 值P 值是指在零假设成立的条件下,得到或更极端观测结果的概率。

P 值越小,表示得到这个结果的概率越小,从而更有可能拒绝零假设。

二、应用实例为了更好地理解假设检验的应用,我们可以通过一个实例来进行说明。

假设有一个医院想研究新型药物对癌症患者的治疗效果,现在他们进行了一项测试,选取了两组患者,其中一组使用新型药物,另一组使用传统药物。

需要进行假设检验,以确定新型药物的治疗效果是否比传统药物更好。

零假设:新型药物的治疗效果不比传统药物更好。

对立假设:新型药物的治疗效果比传统药物更好。

假设检验步骤:1. 确定显著性水平。

假定采用 0.05 级别的显著性水平。

2. 收集数据。

选取两组患者,其中一组使用新型药物,另一组使用传统药物。

对每一组患者的治疗效果进行测量,并记录数据。

3. 计算检验统计量。

在本例中,我们选择比较两组患者的平均治疗效果的差异。

计算公式为:t = (x1-x2)/ (s/√n)其中 x1 和 x2 分别表示两组患者的平均治疗效果,s 表示标准误差,n 表示样本容量。

《概率论与数理统计》第七章假设检验.

《概率论与数理统计》第七章假设检验.

《概率论与数理统计》第七章假设检验.第七章假设检验学习⽬标知识⽬标:理解假设检验的基本概念⼩概率原理;掌握假设检验的⽅法和步骤。

能⼒⽬标:能够作正态总体均值、⽐例的假设检验和两个正态总体的均值、⽐例之差的假设检验。

参数估计和假设检验是统计推断的两种形式,它们都是利⽤样本对总体进⾏某种推断,然⽽推断的⾓度不同。

参数估计是通过样本统计量来推断总体未知参数的取值范围,以及作出结论的可靠程度,总体参数在估计前是未知的。

⽽在假设检验中,则是预先对总体参数的取值提出⼀个假设,然后利⽤样本数据检验这个假设是否成⽴,如果成⽴,我们就接受这个假设,如果不成⽴就拒绝原假设。

当然由于样本的随机性,这种推断只能具有⼀定的可靠性。

本章介绍假设检验的基本概念,以及假设检验的⼀般步骤,然后重点介绍常⽤的参数检验⽅法。

由于篇幅的限制,⾮参数假设检验在这⾥就不作介绍了。

第⼀节假设检验的⼀般问题关键词:参数假设;检验统计量;接受域与拒绝域;假设检验的两类错误⼀、假设检验的基本概念(⼀)原假设和备择假设为了对假设检验的基本概念有⼀个直观的认识,不妨先看下⾯的例⼦。

例7.1 某⼚⽣产⼀种⽇光灯管,其寿命X 服从正态分布)200 ,(2µN ,从过去的⽣产经验看,灯管的平均寿命为1550=µ⼩时,。

现在采⽤新⼯艺后,在所⽣产的新灯管中抽取25只,测其平均寿命为1650⼩时。

问采⽤新⼯艺后,灯管的寿命是否有显著提⾼?这是⼀个均值的检验问题。

灯管的寿命有没有显著变化呢?这有两种可能:⼀种是没有什么变化。

即新⼯艺对均值没有影响,采⽤新⼯艺后,X 仍然服从)200 ,1550(2N 。

另⼀种情况可能是,新⼯艺的确使均值发⽣了显著性变化。

这样,1650=X 和15500=µ之间的差异就只能认为是采⽤新⼯艺的关系。

究竟是哪种情况与实际情况相符合,这需要作检验。

假如给定显著性⽔平05.0=α。

在上⾯的例⼦中,我们可以把涉及到的两种情况⽤统计假设的形式表⽰出来。

概率论与数理统计第八章假设检验

概率论与数理统计第八章假设检验
当总体分布函数完全未知或只知其形式、但 不知其参数的情况,为推断总体的性质,提出 某些关于总体的假设。
为判断所作的假设是否正确, 从总体中抽取 样本, 根据样本的取值, 按一定的原则进行检 验, 然后, 作出接受或拒绝所作假设的决定.
整理课件
2
我们主要讨论的假设检验的内容有
参数检验 总体均值、均值差的检验 总体方差、方差比的检验
H0: Θ0 vs H1: Θ1,
根据样本,构造一个检验统计量T 和检验法则: 若与T的取值有关的一个小概率事件W发生,则 否定H0,否则接受H0,而且要求
P(W|H0)
此时称W为拒绝域,整为理课检件 验水平。
11
例 3. 某厂生产的螺钉,按标准强度为68克/mm2,
而实际生产的螺钉强度 X 服从 N ( ,3.6 2 ). 若 E ( X ) = = 68, 则认为这批螺钉符合要求,否
7
所以我们否定H0, 认为隧道南的路面发生交 通事故的概率比隧道北大.
做出以上结论也有可能犯错误。这是因为 当隧道南北的路面发生交通事故的概率相同, 而3起交通事故又都出现在隧道南时, 我们才犯 错误。这一概率正是P=0.043.
于是, 我们判断正确的概率是1-0.043=95.7%
整理课件
8
假设检验中的基本概念和检验思想 (1) 根据问题的背景, 提出原假设
再作一个备择假设
H1: p> 0.35. 在本问题中,如果判定H0不对,就应当承认H1.
检验: 三起交通事故的发生是相互独立的, 他们
之间没有联系.
如果H0为真, 则每一起事故发生在隧道南的 概率都是0.35, 于是这三起交通事故都发生在隧
道南的概率是
P= 0.353 ≈ 0.043.

数理统计 (研究生课程) :第三章 假设检验

数理统计 (研究生课程) :第三章  假设检验
(1) 差异可能是由抽样的随机性引起的,称为 “抽样误差”或 随机误差 这种误差反映偶然、非本质的因素所引起的随机波动。然 而,这种随机性的波动是有一定限度的, (2) 如果差异超过了这个限度,则我们就不能用 抽样的随机性来解释了.
必须认为这个差异反映了事物的本质差别,即反映 了生产已不正常.
这种差异称作 “系统误差”
正确
第二类错误
人们总希望犯这两类错误的概率越小越好,但 对样本容量一定时,不可能使得犯这两类错误的 概率都很小。 往往是先控制犯第一类错误的概率在一定限度 内,再考虑尽量减小犯第二类错误的概率。
即: 较小的 (0,1) 使得 P{拒绝H0|H0为真}≤ ,
然后减小P{接受H0|H0不真} 犯两类错误的概率:
如发现不正常,就应停产,找出原因,排除 故障,然后再生产;如没有问题,就继续按规定 时间再抽样,以此监督生产,保证质量.
很明显,不能由5罐容量的数据,在把握不大 的情况下就判断生产 不正常,因为停产的损失是 很大的.
当然也不能总认为正常,有了问题不能及时 发现,这也要造成损失.
如何处理这两者的关系,假设检验面对的就 是这种矛盾.
如果H0不成立,但统计量的实测 值未落入否定域,从而没有作出否定 H0的结论,即接受了错误的H0,那就 犯了“以假为真”的错误 . “取伪错误” 这两类错误出现的可能性是不可能排除的。 原因在于:由样本推导总体
假设检验的两类错误
实际情况 H0为真 H0不真 第一类错误 正确
决定 拒绝H0 接受H0
在上面的例子的叙述中,我们已经初步介绍 了假设检验的基本思想和方法 .
基于概率反证法的逻辑的检验: 如果小概率事件在一次试验中居然发生, 我们就以很大的把握否定原假设.

概率论与数理统计参数假设检验

概率论与数理统计参数假设检验

μ=μ0=70
显然统计量的值t = -1.4在接受域内,所以接受H0,即可以认 为全体考生平均分为70分.
《概率统计》
返回
下页
结束
例2. 一种元件,要求使用寿命不得低于1000小时,现在从一批这种元件中随 机抽取25件,测得其使用寿命的平均值为950小时,已知该元件寿命服从标准 差σ=100小时的正态分布,试在显著性水平α=0.05下确定这批元件是否合 格.
| U |> u , U> uα , U<- uα
2
时拒绝H0,认为μ1与μ2有显著差异.
《概率统计》
返回
下页
结束
2、
2 1

2 2
均未知,但
2 1
=
2 2
时(t 检验)
当H0成立时,选统计量 t (n11)S12(X n2 Y1)S2 2(11)~t(n1n22)
n1n22
n1 n2
由样本计算出 t 值且对应于 α 查得临界值:
由样本观察值计 算统计量的值
第五步,作出统计推断.
统计量的值在接受域 内,则接受H0 ;在拒
绝域内,则拒绝H0
《概率统计》
返回
下页
结束
§8.2 正态总体均值的检验
一、单个正态总体均值μ的假设检验
设 X ~N(μ , σ2 ), X1,X2,…,Xn; μ0为已知数.
H0 : μ= μ0 ,
H1 : μ≠ μ0 (双侧)
结束
二、两个正态总体均值差的假设检验
设 X ~ N (μ1,σ12)
记 n X s2
1
1

2
X
~
N(1 ,
1
n
)

研究生应用数理统计假设检验

研究生应用数理统计假设检验

时,随机地抽取10块地,测得每块旳实际亩产量为 x1, x2 , , x10
计算出 x
1 10
10 i 1
xi
320 公斤,假如一直早稻产量 X
服从正态
分布 N (,122 ) ,试问所估产量是否正确?
解:因为亩产量X N (,122 ), 0 310 ,故可产生两个假设:
H0 : 0 310, H1 : 310
定义 检验的p值 设原假设为H0,T是检验 统计量,其观测值为t,H0的拒绝域为W , 则称如下定义的p值为原假设H0的检验的p值. 若W {T :T c},则p P{T t H0为真} 若W {T :T c},则p P{T t H0为真} 若W {T : T c1或T c2},则
pi P( X Ai )
当H0成立时, 2的渐近分布(关于n)是自由度为k -1的 2分布
k
,即lim P(
(ni npi )2 x)
x 2 (t; k 1)dt.其中k是分组的
n i1
npi
组数.
注:
(1)该检验方法称为 2拟合优度检验.
(2)统计量 2的定义与样本空间S的划分有关.只有当
P{ | U | u1- } . 2
2. 2未知 U = X 0 N (0,1)
S/ n
3.设X1,
, X n1是取自总体X
~
N
(
1,
2 1
)的样本,Y1,
,
Yn

2
取自总体Y
~
N
(
2
,
2 2
)的样本,X,Y相互独立,检验假设
H0 : 1 2 ,H1 : 1<2.
(1)
2 1

假设检验

假设检验

假设检验假设检验(Hypothesis Testing)是数理统计学中根据一定假设条件由样本推断总体的一种方法。

具体作法是:根据问题的需要对所研究的总体作某种假设,记作H0;选取合适的统计量,这个统计量的选取要使得在假设H0成立时,其分布为已知;由实测的样本,计算出统计量的值,并根据预先给定的显著性水平进行检验,作出拒绝或接受假设H0的判断。

常用的假设检验方法有u—检验法、t检验法、χ2检验法(卡方检验)、F—检验法,秩和检验等。

中文名假设检验外文名 hypothesis test提出者 K.Pearson 提出时间 20世纪初1、简介假设检验又称统计假设检验(注:显著性检验只是假设检验中最常用的一种方法),是一种基本的统计推断形式,也是数理统计学的一个重要的分支,用来判断样本与样本,样本与总体的差异是由抽样误差引起还是本质差别造成的统计推断方法。

其基本原理是先对总体的特征作出某种假设,然后通过抽样研究的统计推理,对此假设应该被拒绝还是接受作出推断。

[1]2、基本思想假设检验的基本思想是小概率反证法思想。

小概率思想是指小概率事件(P<0.01或P<0.05)在一次试验中基本上不会发生。

反证法思想是先提出假设(检验假设H0),再用适当的统计方法确定假设成立的可能性大小,如可能性小,则认为假设不成立,若可能性大,则还不能认为假设成立。

[2] 假设是否正确,要用从总体中抽出的样本进行检验,与此有关的理论和方法,构成假设检验的内容。

设A是关于总体分布的一项命题,所有使命题A成立的总体分布构成一个集合h0,称为原假设(常简称假设)。

使命题A不成立的所有总体分布构成另一个集合h1,称为备择假设。

如果h0可以通过有限个实参数来描述,则称为参数假设,否则称为非参数假设(见非参数统计)。

如果h0(或h1)只包含一个分布,则称原假设(或备择假设)为简单假设,否则为复合假设。

对一个假设h0进行检验,就是要制定一个规则,使得有了样本以后,根据这规则可以决定是接受它(承认命题A正确),还是拒绝它(否认命题A正确)。

假设检验

假设检验

产品检验: ■全数检验 ■抽样检验
能最真实、完整的反映所有产品的特性结果 GB/T2828.1-2003 存在抽样误差
总体与样本
判断
总体
随机抽取
样本
测量
数据
根据样本的信息推断总体
2. 假设检验的基本原理:小概率反证法 小概率原理:指小概率事件(通常概率 α≤0.05称为“小概率事件)在一次试 验中基本不会发生,反证法思想是先提 出某项假设(H0 ),用统计方法确定假 设的可能性(即检验假设是否正确): 可能性小,即假设不成立,应拒绝原假 设;如果可能性大,则接受假设,则假 设成立。
⑹根据显著性水平α 及统计量、样本自由 度查概率分布表。获取在此显著性水平α 下的置信区间,即临界值。 双侧检验:根据α/2或(1-α/2)确定临界值 单侧检验:根据α或(1 -α) 确定临界值
⑺做出判断:将计算出的统计量与查表得 出的临界值进行比较,作出拒绝或接受H0 的判断。
五、应用实例
1.单个正态总体的均值检验——t 检验
s12 0.0955 F 2 3.66 s2 0.0261 计算统计量:
n1=8,则样本的自由度 1 n1 1 7 n2=9,则样本的自由度 2 n2 1 8 α =0.05,查F检验临界值(F2)表,P(F >F2)= α 得到:F0.05(7、8)= 3.50 F在拒绝域内 结论:原假设H0不成立,即甲机床的精度比乙机床低。
因此,可用计算确定均值µ及1—α 置信区间的 方法来检验上述假设是否成立。 如果计算出来的置信区间包括µ 0 ,则接受H0 ; 如果计算出来的置信区间不包括µ 0 ,则拒绝H0
三、假设检验类型
• 参数假设:总体分布类型已知,对未知参数 的统计假设。检验参数假设问题称为参数假 设检验。当总体分布类型为正态分布时,则 为正态总体参数检验。 • 非参数假设:总体分布类型不明确,对参数 的各种统计假设。检验非参数假设问题称为 非参数假设检验,也称分布检验。参数假设 检验和非正态总体参数检验都比较复杂,在 QC小组活动中很少应用。

概率论与数理统计第八章假设检验

概率论与数理统计第八章假设检验

对于(a)小概率P{X 0 u }
u是所选取合适的统计量 U 的分位点
1
单侧检验
P{ X 0 u } x 0 u为拒绝区域
其含义是依这样本x所推断的

概率

件H
发生
0



绝H
0
u
拒绝

1
u 拒绝
对于(b)小概率P{X 0 u } (密度函数为对称时)
由 经 验 知 0.015公 斤 , 为 了 检 验 某 天 机器 工 作 是 否 正 常 , 抽 取其 所
包 装 的9袋 称 得 重 量 分 别 为0:.497,0.506,0.518,0.524,0.488,0.511,0.510,0.515,0.519; 问这天机器正常否?
现在另一天任然抽取9袋得样本均值x 0.511公斤,推断这天机器是否工作正常?
小 概 率 事 件 是: 样 本 均 值X与 所 假 设 的 期 望0相 差 X 0
不 能 太 大, 若 相 差 太 大 则 拒 绝H0
小概率事件P{ X 0 u }
u

2








量U
2


2



1
P{ X 0 u } x 0 u 为拒绝区域 2
较大、较小是一个相对的概念,合理的界限在何 处?应由什么原则来确定?
问题是:如何给出这个量的界限? 这里用到人们在实践中普遍采用的一个原则:
小概率事件在一次试验 中基本上不会发生(若发 生了则认为假设是错 )
在假设检验中,称这个小概率为显著性水平,用 表示.

东华大学《概率论与数理统计》课件 第七章 假设检验

东华大学《概率论与数理统计》课件 第七章 假设检验

1. 2为已知, 关于的检验(U 检验 )
在上节中讨论过正态总体 N ( , 2 ) 当 2为已知时, 关于 = 0的检验问题 :
假设检验 H0 : = 0 , H1 : 0 ;
我们引入统计量U
=
− 0 0
,则U服从N(0,1)
n
对于给定的检验水平 (0 1)
由标准正态分布分位数定义知,
~
N (0,1),
由标准正态分布分位点的定义得 k = u1− / 2 ,
当 x − 0 / n
u1− / 2时, 拒绝H0 ,
x − 0 / n
u1− / 2时,
接受H0.
假设检验过程如下:
在实例中若取定 = 0.05, 则 k = u1− / 2 = u0.975 = 1.96, 又已知 n = 9, = 0.015, 由样本算得 x = 0.511, 即有 x − 0 = 2.2 1.96,
临界点为 − u1− / 2及u1− / 2.
3. 两类错误及记号
假设检验是根据样本的信息并依据小概率原
理,作出接受还是拒绝H0的判断。由于样本具有 随机性,因而假设检验所作出的结论有可能是错
误的. 这种错误有两类:
(1) 当原假设H0为真, 观察值却落入拒绝域, 而 作出了拒绝H0的判断, 称做第一类错误, 又叫弃
设 1,2, ,n 为来自总体 的样本,
因为 2 未知, 不能利用 − 0 来确定拒绝域. / n
因为 Sn*2 是 2 的无偏估计, 故用 Sn* 来取代 ,
即采用 T = − 0 来作为检验统计量.
Sn* / n
当H0为真时,
− 0 ~ t(n −1),
Sn* / n
由t分布分位数的定义知

数理统计 第八章 假设检验

数理统计 第八章 假设检验
若原假设成立,那么当n 时,统计

渐近2 服从ik自1 (由fi度n为pni(pik)-21)的ik1 2nf分pi2i布. n
检验的拒绝域形为: W= 2 C
当显著性水平给定时,可得 C=2 (k 1).
12
如果根据所给的样本值 X1,X2, …,Xn算得
(2 n-1)
2 1
2 (n 1)
(n 1)S 2
2
t(n1 n2 2)
2 2 (n 1) (X Y ) (1 2 )
S 1 1 w n1 n2
t(n1 n2 2)
F1 2 (n1 1, n2 1)
F(n1 1,n2 1)
npi
近似服从 2(1)
按 0.05,查表得
2 0.05
(1)

3.841,拒绝域为
W= 2 3.841
这里,n=70+27=97, k=2,
实测频数为70,27.
理论频数为: np1=72.75, np2=24.25
由于统计量 2的实测值 2=0.4158<3.841,17
理论频数npˆi 217 149 51
12
3
22
战争次数x 实测频数 fi 概率估计 pˆi 理论频数npˆi
0
1
223 142
0.502 0.346
217 149
2 48 0.119 51
3 15 0.027
12
4
4
0.006
3
15
检验统计量的观察值为
2 k ( fi npi )2 k fi2 n
i 1
npi
i1 npˆi

概率论与数理统计教案假设检验

概率论与数理统计教案假设检验

概率论与数理统计教案-假设检验一、教学目标1. 理解假设检验的基本概念和原理;2. 学会使用假设检验方法对样本数据进行推断;3. 掌握假设检验的类型、步骤和判断准则;4. 能够运用假设检验解决实际问题。

二、教学内容1. 假设检验的基本概念和原理假设检验的定义假设检验的目的是什么假设检验的基本原理2. 假设检验的类型单样本检验双样本检验配对样本检验3. 假设检验的步骤建立假设选择检验统计量确定显著性水平计算检验统计量的值做出判断4. 假设检验的判断准则拒绝域和接受域检验的拒绝准则检验的接受准则5. 假设检验的应用实例应用假设检验解决实际问题实例分析与解答三、教学方法1. 讲授法:讲解假设检验的基本概念、原理、类型、步骤和判断准则;2. 案例分析法:分析实际问题,引导学生运用假设检验方法解决问题;3. 互动教学法:提问、讨论、解答学生提出的问题,促进学生理解和掌握知识;4. 练习法:布置课后作业,让学生巩固所学知识,提高运用能力。

四、教学准备1. 教案、教材、课件等教学资源;2. 投影仪、电脑等教学设备;3. 课后作业及答案。

五、教学过程1. 导入新课:回顾上一节课的内容,引入假设检验的基本概念和原理;2. 讲解假设检验的基本概念和原理,阐述其目的是什么;3. 讲解假设检验的类型,引导学生了解各种类型的假设检验;4. 讲解假设检验的步骤,让学生掌握进行假设检验的方法;5. 讲解假设检验的判断准则,使学生明白如何做出判断;6. 分析实际问题,引导学生运用假设检验方法解决问题;7. 布置课后作业,让学生巩固所学知识;8. 课堂小结,总结本节课的主要内容和知识点。

教学反思:在教学过程中,要注意引导学生理解和掌握假设检验的基本概念、原理和步骤,并通过实际问题让学生学会运用假设检验方法。

要关注学生的学习反馈,及时解答他们提出的问题,提高他们的学习兴趣和积极性。

六、教学评估1. 评估方式:课后作业、课堂练习、小组讨论、个人报告2. 评估内容:学生对假设检验基本概念的理解学生对假设检验类型和步骤的掌握学生对假设检验判断准则的应用学生解决实际问题的能力七、课后作业1. 完成教材后的练习题2. 选择一个实际问题,运用假设检验方法进行分析和解答3. 总结本节课的主要内容和知识点,写下自己的学习心得八、课堂练习1. 例题解析:分析教材中的例题,理解假设检验的步骤和判断准则2. 小组讨论:分组讨论课后作业中的问题,共同解决问题,交流学习心得3. 个人报告:选取一个实际问题,进行假设检验的分析和解题过程报告九、教学拓展1. 假设检验的扩展知识:学习其他类型的假设检验方法,如非参数检验、方差分析等2. 实际应用案例:搜集更多的实际问题,进行假设检验的分析和解答3. 软件操作实践:学习使用统计软件进行假设检验,提高数据分析能力十、教学计划1. 下一节课内容预告:介绍假设检验的扩展知识和实际应用案例2. 学习任务布置:预习下一节课的内容,准备相关问题和建议3. 课后自学计划:鼓励学生自主学习,深入了解假设检验的方法和应用教学反思:在完成本节课的教学后,要关注学生的学习情况,及时解答他们提出的问题,并提供必要的辅导。

数理统计之假设检验

数理统计之假设检验

数理统计之假设检验概述假设检验是数理统计学中的一个重要方法,用于根据样本数据对总体参数的假设进行推断。

通过对样本数据进行分析,判断总体参数是否符合我们所假设的条件。

本文将从假设检验的基本概念、假设检验的步骤和常见的假设检验方法进行介绍。

假设检验的基本概念假设检验分为原假设和备择假设。

原假设是对总体参数进行的假设,常用符号H0表示。

备择假设是对原假设的否定,常用符号H1或Ha表示。

在进行假设检验时,我们首先设立一个原假设,然后通过对样本数据的分析,对原假设进行推翻或接受。

假设检验的步骤假设检验的步骤一般包括以下几个步骤:1.建立假设:确定原假设H0和备择假设H1。

2.选择显著性水平:显著性水平(α)是在进行假设检验时拒绝原假设的临界点,常用的显著性水平有0.05和0.01。

3.选择检验统计量:根据研究问题和数据类型选择适当的检验统计量。

4.计算检验统计量的值:根据样本数据计算检验统计量的值。

5.做出决策:根据检验统计量的值和显著性水平,判断是否拒绝原假设或接受备择假设。

6.得出结论:根据决策结果得出对总体参数的推断结论。

常见的假设检验方法单总体均值检验单总体均值检验用于检验总体均值是否符合某个给定的值。

假设我们要检验一个药物的剂量对病人的平均生存时间是否有影响,我们可以采用单总体均值检验方法。

双总体均值检验双总体均值检验用于检验两个总体均值是否相等。

假设我们想知道男性和女性的平均身高是否有差异,我们可以使用双总体均值检验方法。

单总体比例检验单总体比例检验用于检验总体比例是否符合某个给定的比例。

假设我们想知道某品牌产品的整体满意度是否达到90%,我们可以采用单总体比例检验方法。

双总体比例检验双总体比例检验用于检验两个总体比例是否相等。

假设我们想知道男性和女性购买某款产品的比例是否相等,我们可以使用双总体比例检验方法。

卡方检验卡方检验用于检验两个或多个分类变量之间的关联性。

假设我们想知道吸烟与患某种疾病是否有关系,我们可以使用卡方检验方法。

数理统计学中的假设检验

数理统计学中的假设检验

数理统计学中的假设检验数理统计学是现代统计学中非常重要的部分,它主要研究如何通过数据来理解自然界的规律。

其中假设检验是其核心内容之一。

什么是假设检验?为什么它如此重要?下面让我们来仔细探讨。

一、假设检验的概念假设检验是指对一个已知的数据样本进行分析,并根据样本推断总体参数的过程。

具体地说,它涉及到两个假设:原假设和备择假设。

原假设指的是我们要检验的假设,一般是由问题的提出者提出;备择假设指的是与原假设相关的另外一种假设。

我们需要对这两个假设进行比较,判断样本的表现是否支持原假设。

如果不支持,那么我们就可以把原假设拒绝,并接受备择假设。

二、假设检验的应用假设检验在各个领域均有广泛的应用,例如医学、金融、政治等。

下面就以医学为例,来说明假设检验的应用。

例如,某个新药对特定疾病的治疗效果进行评估。

原假设是新药的治疗效果和传统药物相同,而备择假设是新药的治疗效果更好。

研究人员会在一定的样本规模内进行临床试验,然后根据试验结果进行假设检验。

如果结果表明新药的治疗效果显著超过传统药物,那么我们就可以拒绝原假设,接受备择假设。

在这个过程中,我们需要考虑到检验结果的可靠性,因此必须计算出显著性水平和P值。

三、假设检验的步骤通常来说,假设检验的步骤可以归纳为以下几步:1. 建立原假设和备择假设原假设通常是问题的提出者对研究对象的一种猜测或假设,而备择假设则是一个相关的假设,通常是对原假设的否定或拓展。

2. 设定显著性水平显著性水平是用于衡量研究结果是否达到了预期的水平。

通常,显著性水平被设定在0.05或0.01水平,也就是说,只有当P值小于0.05时,结果才会被认为是显著的。

3. 计算检验统计量检验统计量是指用来判断样本和原假设之间的差异程度的数值。

通常来说,检验统计量可以从样本中计算出来。

4. 计算P值P值是指在原假设成立的情况下,观察到的样本比当前样本更极端的概率。

通常,我们会根据检验统计量计算P值,并与显著性水平进行比较。

数理统计14:什么是假设检验,拟合优度检验(1),经验分布函数

数理统计14:什么是假设检验,拟合优度检验(1),经验分布函数

数理统计14:什么是假设检验,拟合优度检验(1),经验分布函数在之前的内容中,我们完成了参数估计的步骤,今天起我们将进⼊假设检验部分,这部分内容可参照《数理统计学教程》(陈希孺、倪国熙)。

由于本系列为我独⾃完成的,缺少审阅,如果有任何错误,欢迎在评论区中指出,谢谢!⽬录Part 1:什么是假设检验假设检验是⼀种统计推断⽅法,⽤来判断样本与样本、样本与总体的差异是由抽样误差引起还是本质差别造成的。

其步骤,其实就是提出⼀个假设,然后⽤抽样作为证据,判断这个假设是正确的或是错误的,这⾥判断的依据就称为该假设的⼀个检验。

假设检验在数理统计中有重要的⽤途,⽐如:橙⼦的平均重量是80⽄,这就是⼀个假设。

我们怎么才能知道它是对的还是错的?这需要我们对橙⼦总体进⾏抽样,然后对样本进⾏⼀定的处理,⽐如计算总体均值的区间估计,如果区间估计不包含80⽄,就认为原假设不成⽴,便拒绝原假设。

当然,由于样本具有随机性,因此我们只是对该假设进⾏检验⽽不是证明,也就是说不论假设检验的结果是接受假设还是拒绝假设,都不能认为假设本⾝是正确的或是错误的。

同时,假设的检验也不是唯⼀确定的,对任何假设都可以有⽆数种⽅案进⾏检验,⽐如上⾯的例⼦,95%的区间估计是⼀种检验,99%的区间估计也可以作为检验,90%的当然也可以,只要事先确定了即可。

总之,要将实⽤问题转化为统计假设检验问题处理,⼀般需要经历以下⼏个步骤:明确所要处理的问题,将其转化为⼆元问题,只能⽤“是”和“否”来回答。

设计适当的检验,规定假设的拒绝域,即拒绝假设时样本X 会落⼊的区域范围(当然也可以是统计量会落⼊的范围,这两个意思是⼀致的)。

抽取样本X 进⾏观测,计算需要的统计量的值。

根据样本的具体值作出接受假设或者否定假设的决定。

以下是假设检验问题的⼀些常⽤概念:零假设即原假设,指的是进⾏统计检验时预先建⽴的假设,⼀般是希望证明其错误的假设,⽤字母H 0表⽰。

这种区分⽅式⽐较⽞乎。

数理统计之假设检验

数理统计之假设检验
小概率事件在一次试验中几乎不会发生。
带概率性质的反证法 u 通常的反证法设定一个假设以后,如果出现的 事实与之矛盾,(即如果这个假设是正确的话,出现 一个概率等于0的事件)则绝对地否定假设.
u 带概率性质的反证法的逻辑是:
如果假设H0是正确的话,一次试验出现一个 概率很小的事件,则以很大的把握否定假设H0.
(3)拒绝域为
u
x 0 n
z
(4)取 , 查表确定临界值 k z z0.05 1.65
(5)计算
u x 0
2250
2000
5
1.65
n 250 25
则拒绝 H0 ,即认为这些产品较以往有显著提高.
2. 2未知时,的检验
未知
2,可用样本方差 S 2
1n n 1 k1 ( X k

H
为真时,
0
U
X 0 n
~
N(0,1)
衡量 u x 0 的大小 n
设一临界值 k>0,若
u x 0 k n
就认为有较大偏差;
则认为
H
不真,拒绝
0
H
0

u x 0 k
n
则接受 H0
显著性检验: P{拒绝H0| H0为真}
P
X
0
k
,
n
U X 0 ~ N(0,1) n
(6) t t , 则拒绝 H0 ,接受 H1;反之,接受 H0.
左边检验
(1)H0 : 0; H1 : 0
(2)选取统计量:T X 0
Sn
(3)拒绝域为
t
x 0
sn
t (n 1)
(4)取 , 查表确定临界值 k t (n 1)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
% Detailed explanation goes here
n=length(A);
c=sum(A)/n;
B=A-c;
C=B.*B;
S=sum(C);
s=sqrt(S);
t=tinv(a/2,n-1);
T=(c-u)*sqrt(n)/s;
ifT>=t
d=1;
else
d=0;
end
end
结果粘贴:
C1=A-c1;
C2=B-c2;
D1=C1.*C1;
D2=C2.*C2;
S1=sum(D1);
S2=sum(D2);
f1=min(finv(1-a/2,n1-1,n2-1),finv(a/2,n1-1,n2-1));
f2=max(finv(1-a/2,n1-1,n2-1),finv(a/2,n1-1,n2-1));
程序代码:
function[ d ] = kaf( A,B,a )
%UNTITLED2 Summary of this function goes here
% Detailed explanation goes here
n1=length(A);
n2=length(B);
c1=sum(A)/n1;
c2=sum(B)/n2;
F=S1/S2;
ifF>=f1|F<=f2
S=((n1-1)*S1+(n2-1)*S2)/(n1+n2-2);
T=(c1-c2)/(S*sqrt(1/n1+1/n2));
t=tinv(1-a/2,n1+n2-2);
T
ifT>=0
T=T;
else
T=-T;
end
ifT<t
d=1;
else
d=0;
end
z=norminv(a/2);
Z=(c-u)*sqrt(n)/s;
ifz<Z
d=1;
else
d=0;
end
end
结果粘贴:
3
解:假设检验: : , : ;
由于方差未知,故选择检验统计量
所以其拒绝域为
而统计量为|T|=
所以接受
程序代码:
function[ d ] = kaf( A,u,a )
%UNTITLED2 Summary of this function goes here
else
d=0;
end
end
结果粘贴:
4、
解:假设检验: : , : ;
由题意可知,此题为左侧检验,且方差未知,故采用检验统计量
其拒绝域为:
而统计量
所以接受
程序代码:
function[ d ] = kaf( A,u,a )
%UNTITLED2 Summary of this function goes here
1、
解:由题意可知,样本数据来自于服从指数分布的总体
假设检验: : , : ;
其拒绝域的形式为:
统计量为
所以拒绝 ,所以不能够认为这批货物平均寿命不低于1100h
程序代码:
function[ d ] = kaf( A,T,a )
%UNTITLED2 Summary of this function goes here
% Detailed explanation goes here
n=length(A);
c=sum(A)/n;
B=A-c;
C=B.*B;
S=sum(C);
s=sqrt(S);
t=tinv(1-a/2,n-1);
T=(c-u)*sqrt(n)/s;
ifT>0
T=T;
else
T=-T;
end
ifT<t
d=1;
5、
解:设甲机床 ,乙机床
因为此题不知道,两机床的方差是否相等,所以先对 作假设检验
(1)假设检验: : , :
选取统计量
ห้องสมุดไป่ตู้由题目所给数据可得
而由题目假设知
显然0.4539<0.7091<4.0260
所以应接受
即可以认为两者方差是相等的
(2)假设检验: , ;
由(1)知用t检验
拒绝域为:
其中
所以
所以拒绝原假设,故两机床加工的轴有显著的差异。
% Detailed explanation goes here
n=length(A);
c=sum(A)/n;
x=chi2inv(1-a,n);
X=2*n*c/T;
ifx<X
d=1;
else
d=0;
end
end
当d=1时表示接受 ,当d=0时表示拒绝
结果粘贴:
2、
解:假设检验: : , : ;
因为本题是左侧检验问题,故其拒绝域为:
else
fprintf('无法检验')
end
结果粘贴:
而统计量Z= -3.9754<-1.96
所以拒绝
程序代码:function[ d ] = kaf( A,u,a,s )
%UNTITLED2 Summary of this function goes here
% Detailed explanation goes here
n=length(A);
c=sum(A)/n;
相关文档
最新文档