焊接结构生产课程设计液化气罐设计
课程设计-石油液化气储气罐焊焊接结构设计.
洛阳理工学院课程设计说明书课程名称:焊接结构学设计课题:液化石油气储气罐焊接结构设计专业:材料成型及控制工程指导教师:班级:姓名:······2013年06月16 日课程设计任务书机电工程系材料成型及控制工程专业学生姓名班级学号课程名称:焊接结构学设计题目:液化石油气储气罐焊接结构设计课程设计内容与要求:1、选择不同的梁柱桁架类或压力容器类结构,并完成整体装备图;2、将梁柱桁架类结构或压力容器结构划分成几个不同部分,按照课题设计相应的焊接工艺流程;3、编写课程设计说明书指导教师安俊超设计(论文)开始日期2013.06.10设计(论文)完成日期2013.06.16课程设计评语第1 页机电工程系材料成型及控制工程专业学生姓名李鹏辉班级B100306 学号B10030618课程名称:焊接结构学设计题目:液化石油气储气罐焊接结构设计课程设计篇幅:图纸 1 张说明书28 页指导教师评语:2013年06月16日指导教师安俊超洛阳理工学院目录前言 (2)第一章石油液化气罐的分析 (3)1.1、石油液化气罐的使用背景 (3)1.2、石油液化气罐的结构及尺寸参数 (4)1.3、石油液化气罐材料的选择 (5)第二章石油液化气罐工艺分析 (10)2.1、石油液化气罐的成形工艺 (10)2.2、确定焊缝位置 (11)2.3、焊接接头形式以及坡口的设计 (12)2.4、石油液化气罐的焊接方法的选择 (18)第三章石油液化气罐焊接参数的选择及工艺 (22)3.1、焊条的选择 (22)3.2、焊丝的选择 (22)3.3、焊剂的选择 (22)3.4、焊接电流、电压和焊接速度的选择 (23)3.5、工艺参数的确定 (29)3.6、焊接设备的选择 (29)3.7、结构设计的工艺过程 (31)第四章液化石油气储罐检验方案 (33)4.1、设备概况及其基本参数 (33)4.2、检验依据 (33)4.3、检验准备 (34)4.4、检验项目 (35)4.5、出具检验报告 (37)4.6、检验报告的审核签发 (37)总结 (37)参考文献 (39)前言焊接也是一种制造技术,它是适应工业发展的需要,以现代工业为基础发展起来的,并且直接服务于机械制造工业。
焊接结构生产课程设计(液化气罐设计)
焊接结构生产课程设计(液化气罐设计)《焊接结构生产课程设计》设计项目:煤气罐焊接结构设计院系:焊接工程系专业:焊接技术及自动化姓名:陈毅学号:1001050201指导老师:宋宝来目录第一部分、煤气罐结构组成及特点 (2)第二部分、煤气罐图纸分析 (6)第三部分、焊接工艺及装备 (7)第四部分、焊前准备及焊接参数 (9)第五部分、煤气罐的检验方法 (11)第六部分、煤气罐的用途及注意事项 (14)第七部分、小结与体会 (15)第一部分煤气罐结构组成及特点1、煤气罐结构组成:煤气罐有五部分组成,即套环、阀栏、上壳体、下壳体和下环(如图31—01)。
套环材料为Q235,上、下壳体和筒体材料均为Q345,下环材料为Q235。
图31—01煤气罐外观2、接头形式:常用焊接的接头形式有对接、搭接、角接等。
接头形式根据焊件壁厚及形状等特点,可适当地采用对接、搭接或角接。
焊接时可根据要求填丝或不填丝。
对接接头可采用I形或卷边接头形式,也可采用开坡口的接头形式,主要是根据板厚来选择适宜的接头形式。
I形接头的板厚一般不超过4mm,可根据要求留不同的间隙或不留间隙。
厚板可进行填丝焊接,如板较薄或要求无余高时,即可不填丝。
不足1mm的薄板,通常采用卷边对接形式。
当接头两边的板厚相差较大时,需将板厚的边缘削薄,使两者板边的厚度相当。
当板厚大于3mm时,可采用V形坡口对接形式。
采用搭接接头时,两块板的焊接部位要接触良好。
角接接头要采用适宜的工装卡具,保证焊后的焊件角度。
由于煤气罐的承压能力要求高,强度大,其各接头形式如图31—02所示的A-A搭接、B-B对接及C-C搭接。
图31—02煤气罐焊缝接头形式3、坡口形式及尺寸:焊接常用的典型坡口形式及尺寸如图31—a所示:表31—a焊接常用的典型接头的坡口形式及尺寸参数接头形式板材厚度t/mm根部间隙/mm坡口角度/(°)焊道宽度/mmI形坡口对接接头0.25~2.3 0 ——0.8~3.2 0~0.10t ——V形坡口对接接头1.6~3.2 0~0.10t` 30~60 (0.10~0.25)t2.3~3.2 (钝边0.69)90 —3.2~6.4 0~0.10t 30~60 (0.10~0.25)tX形坡口对接接头 6.4~12.7 0~0.20t 30~120 (0.10~0.25)t U形坡口对接接头 6.4~19 0~0.10t 15~30 (0.10~0.25)t 双U形坡口对接接头19~38 0~0.10t 15~30 (0.10~0.25)t角焊缝0.8~3.2 0~0.10t 0~45 0.25t3.2~12.7 0~0.10t 30~45 (0.10~0.25)t根据套环、上壳体、下壳体和下环的板材厚度,焊缝A-A、C-C选用I形坡口,而焊缝B-B选用钝边V形坡口。
液化石油储罐结构设计及焊接工艺设计
液化石油储罐结构设计及焊接工艺设计12专业设计课程任务书380m 3液化石油气卧式储罐设计摘要液化石油气储罐是盛装液化石油气的常见设备,由于该气体具有易燃易爆的特点,因此在设计这种储罐时,要注意安全与防火,和在制造、安装等方面的特点。
卧式储罐结构设计是以应力分析为主要途径,以材料力学为基础,对容器的各个主要受压部分进行设计。
利用ANSYS软件对进行静力学应力、应变模拟分析,得出的应力作用下的较为精确详尽的储罐响应结果,直观的再现了储油罐在应力作用下的受力情况和薄弱环节,从为储罐的设计提供了可靠的依据。
在焊接过程中,采用多层多道焊,选择合理的焊接工艺措施,如控制焊接电流、电弧电压,选择材料、破口形式、焊丝焊剂、焊条等,不但能控制结构的焊接变形和应力,而且能保证焊缝的组织和性能,有效提高压力容器的品质。
另外,除第一层打底焊外,每层都要捶击消除应力,每道焊缝都要清渣,防止夹渣,焊缝要圆滑过渡,防止应力集中。
同时,4在工程预算方面,从原材料花费、焊接相关花费、人工费几个方面进行统计估算。
关键词:卧式储罐,结构设计,模拟分析,焊接工艺,工程预算80m3 LIQUEFIED OIL TANK STRUCTURE DESIGNABSTRACTLiquefied petroleum gas storage tank is holding the commonly used equipment, liquefied petroleum gas (LPG) due to the characteristics of the gas is flammable and explosive, so in the design of the tank, pay attention to the safety and fire protection, and in the aspect of manufacture, installation, etc. Horizontal tank structure design is based on stress analysis as the main way, on the basis of mechanics of materials, to design the main compression portion of the container. Using5ANSYS software to the stress, strain simulation statics analysis, it is concluded that the stress under the action of response result more accurate and detailed tank, intuitive reproduce the force of the oil tank under the effect of stress and the weak link, from the design provides a reliable basis for storage tank. In the welding process, the use of multi-layer welding, multichannel selecting rational welding process measures,Such as control welding current, arc voltage, material selection, crevasse form, flux welding wire, welding wire, etc., not only can control the welding deformation and stress of structure, and can guarantee organization and properties of the weld, effectively improve the quality of the pressure vessel. In addition, in addition to the first layer of backing welding, each layer to thump of eliminating stress and every way weld slag removal, preventing slag, weld to smooth the transition, prevent stress concentration. At the same time, in the aspect of engineering budget, from raw materials costs, welding related costs and labor statistical estimation.KEY WORDS: Horizontal tank,Structure design,Simulation6analysis, Welding process,Project budg7专业设计课程任务书 ................................................................ 错误!未定义书签。
10立方米卧式液化石油气储罐课程设计(内附装配图纸)共24页文档
过程装备与控制工程《过程装备设计》课程设计任务书一、设计目的1、复习巩固《过程装备设计》中的理论内容;2、掌握设备设计的步骤、方法。
熟悉常用设备设计的标准。
二、设计题目及设计任书课程设计题目:( 10 )M3( 1.57 )MPaDN(1800 )液化石油气(氨气)储罐设计每人一题,从表中依次选取。
1、液化石油气储罐设计见卧罐参数表,每人一组数据2、设备简图见附件。
3、设计内容与要求(1)概述简述储罐的用途、特点、使用范围等主要设计内容设计中的体会(2)工艺计算根据安装地点的气象记录确定容器的操作温度;根据操作温度、介质特性确定操作压力;筒体、封头及零部件的材料选择;(3)结构设计与材料选择封头与筒体的厚度计算封头、法兰、接管的选型和结构尺寸拟定;根据容器的容积确定总体结构尺寸。
支座选型和结构确定各工艺开孔的设置;各附件的选用;(4)容器强度的计算及校核水压试验应力校核卧式容器的应力校核开孔补强设计焊接接头设计(5)设计图纸总装配图一张A1三、参考文献1. GB150《钢制压力容器》2. HGJ20580-20585一套3. JB4731-2019T+钢制卧式容器4. HG20592-20635钢制管法兰、垫片、紧固件5. HG21514-21535-2019 钢制人孔和手孔6. JB/T 4736 《补强圈》7. JB/T 4746 《钢制压力容器用封头》8. JB/T 4712 《鞍式支座》9. 《压力容器安全技术监察规程》201910. 郑津洋、董其伍、桑芝富.《过程设备设计》.化学工业出版社.2019目录摘要 (I)ABSTRACT (I)第一章绪论 (3)1.1液化石油气储罐的用途与分类 (3)1.2液化石油气特点 (3)1.3液化石油气储罐的设计特点 (3)第二章工艺计算 (4)2.1设计题目 (4)2.2设计数据 (4)2.3设计压力、温度 (4)2.4主要元件材料的选择 (5)第三章结构设计与材料选择 (5)3.1筒体与封头的壁厚计算 (5)3.2筒体和封头的结构设计 (6)3.3鞍座选型和结构设计 (7)3.4接管、法兰、垫片和螺栓的选择 (8)3.5人孔的选择 (10)3.6安全阀安全阀的选型 (10)第四章设计强度的校核 (12)4.1水压试验应力校核 (12)4.2筒体轴向弯矩计算 (13)4.3筒体轴向应力计算及校核 (13)4.4筒体和封头中的切应力计算与校核 (13)4.5封头中附加拉伸应力 (14)4.6筒体的周向应力计算与校核 (14)4.7鞍座应力计算与校核 (14)第五章开孔补强设计 (15)5.1补强设计方法判别 (16)5.2有效补强范围 (16)5.3有效补强面积 (16)第六章储罐的焊接设计 (17)6.1焊接的基本要求 (17)6.2焊接的工艺设计 (18)设计总结 (18)参考文献 (19)摘要本次设计的卧式储罐其介质为液化石油气。
80m3液化石油储罐结构设计及焊接工艺设计
专业设计课程任务书学院材料科学与工程专业材料成型及控制工程设计题目80m 3液化石油气卧式储罐设计设计条件表序号项目数值单位备注1 名称液化石油气卧式储罐2 用途储存3 最高工作压力 1.6 MPa 由介质温度确定4 工作温度-19~50 ℃5 公称容积(V g)80 M36 设计压力 1.77 MPa7 装量系数(υV) 0.98 工作介质液化石油气9 材质Q345R1.卧式储罐结构设计(1)结构设计:董显20124625、刘玉琨20124484(2)二维结构与二维图纸:倪贝拓20124637(3)水压数值模拟:李高阳20124479、张根红20146062.卧式储罐焊接设计(1)焊接工艺设计:杨嘉兴20124495、申永成20124486(2)工艺卡及焊接设计图纸:魏启迪20124492(3)工程预算:宋厚2012467780m 3液化石油气卧式储罐设计摘要液化石油气储罐是盛装液化石油气的常用设备,由于该气体具有易燃易爆的特点,因此在设计这种储罐时,要注意安全与防火,和在制造、安装等方面的特点。
卧式储罐结构设计是以应力分析为主要途径,以材料力学为基础,对容器的各个主要受压部分进行设计。
利用ANSYS软件对进行静力学应力、应变模拟分析,得出的应力作用下的较为精确详尽的储罐响应结果,直观的再现了储油罐在应力作用下的受力情况和薄弱环节,从为储罐的设计提供了可靠的依据。
在焊接过程中,采用多层多道焊,选择合理的焊接工艺措施,如控制焊接电流、电弧电压,选择材料、破口形式、焊丝焊剂、焊条等,不但能控制结构的焊接变形和应力,而且能保证焊缝的组织和性能,有效提高压力容器的品质。
此外,除第一层打底焊外,每层都要捶击消除应力,每道焊缝都要清渣,防止夹渣,焊缝要圆滑过渡,防止应力集中。
同时,在工程预算方面,从原材料花费、焊接相关花费、人工费几个方面进行统计估算。
关键词:卧式储罐,结构设计,模拟分析,焊接工艺,工程预算80m3 LIQUEFIED OIL TANK STRUCTURE DESIGNABSTRACTLiquefied petroleum gas storage tank is holding the commonly used equipment, liquefied petroleum gas (LPG) due to the characteristics of the gas is flammable and explosive, so in the design of the tank, pay attention to the safety and fire protection, and in the aspect of manufacture, installation, etc. Horizontal tank structure design is based on stress analysis as the main way, on the basis of mechanics of materials, to design the main compression portion of the container. Using ANSYS software to the stress, strain simulation statics analysis, it is concluded that the stress under the action of response result more accurate and detailed tank, intuitive reproduce the force of the oil tank under the effect of stress and the weak link, from the design provides a reliable basis for storage tank. In the welding process, the use of multi-layer welding, multichannel selecting rational welding process measures,Such as control welding current, arc voltage, material selection, crevasse form, flux welding wire, welding wire, etc., not only can control the welding deformation and stress of structure, and can guarantee organization and properties of the weld, effectively improve the quality of the pressure vessel. In addition, in addition to the first layer of backing welding, each layer to thump of eliminating stress and every way weld slag removal, preventing slag, weld to smooth the transition, prevent stress concentration. At the same time, in the aspect ofengineering budget, from raw materials costs, welding related costs and labor statistical estimation.KEY WORDS:Horizontal tank,Structure design,Simulation analysis, Welding process,Project budg专业设计课程任务书 (1)摘要 (2)ABSTRACT (3)第一章设计参数的选择 (6)1.1液化石油气参数的确定 (6)1.2设计温度 (6)1.3设计压力 (6)1.4 设计储量 (7)1.5 主要元件材料的选择 (8)1.5.1筒体材料的选择 (8)1.5.2鞍座材料的选择 (8)1.5.3地脚螺栓的材料选择 (8)第二章容器的结构设计 (9)2.1筒体和封头的设计 (9)2.1.1 筒体设计 (9)2.1.2封头设计 (9)2.3筒体厚度计算 (10)2.4封头厚度计算 (10)第三章零部件的确定 (12)3.1开孔和选取法兰分析 (12)3.1.1人孔的设计 (12)3.1.2 接管和法兰 (13)3.1.3 垫片 (15)3.1.4 螺栓(螺柱)的选择 (15)3.1.5液位计的设计 (16)3.2鞍座选型和结构设计 (17)3.2.1鞍座选型 (17)3.2.2 鞍座位置的确定 (18)3.3开孔补强 (19)3.3.1补强及补强方法判别 (19)3.3.2开孔所需补强面积 (20)3.3.3有效补强范围 (20)3.3.4有效补强面积 (21)第四章应力校核 (23)4.1 圆筒轴向弯矩计算 (23)4.1.1 圆筒中间截面上的轴向弯矩 (23)4.1.2 支座截面处的弯矩 (24)4.2 圆筒轴向应力计算并校核 (25)4.2.1 圆筒中间截面上的轴向应力 (25)4.2.2 由压力及轴向弯矩引起的轴向应力计算并校核 (25)4.2.3 圆筒轴向应力校核 (26)4.3 切向剪应力的计算及校核 (26)4.4 鞍座应力计算并校核 (27)4.5地震引起的地脚螺栓应力 (29)4.5.1倾覆力矩计算 (29)4.5.2由倾覆力矩引起的地脚螺栓拉应力 (30)4.5.3由地震引起的地脚螺栓剪应力 (30)第五章水压数值模拟 (31)5.1设定分析作业名和标题 (31)5.1.1 定义工作文件名 (31)5.1.2 定义工作标题 (31)5.1.3 更改工作文件储存路径 (31)5.1.4 定义分析类型 (31)5.2实体建模 (31)5.2.1 生成椭圆封头截面 (31)5.2.2 建立椭圆局部坐标系 (31)5.2.3 生成成容圆柱部分截面 (31)5.2.4生成1/4罐体 (32)5.2.5 工作平面旋转 (32)5.2.6 激活总体直角坐标系,映射几何体 (33)5.3网格划分 (33)5.3.1 定义单元类型 (33)5.3.2 选择单元体 (33)5.3.3 定义材料属性 (33)5.3.4 切分容器罐模型 (34)5.3.5 自定义网格 (34)5.4添加位置约束 (35)5.4.1 设计压力为1.77MPA的模拟过程 (35)5.4.2 最高工作压力为1.6MPA的模拟过程 (36)5.5求解 (37)5.6后处理查看变形图 (37)5.6.1 设计压力为1.77MPA的后处理模拟 (37)5.6.2 最高工作压力为1.6MPA的后处理模拟 (41)5.7结论 (45)第六章焊接工艺参数的选择 (46)6.1母材焊接性 (46)6.2母材碳当量估测 (46)第七章焊接方法的选择 (47)7.1 焊接方法的选择 (47)7.2焊接设备 (47)7.2.1手弧焊机 (47)7.2.2埋弧焊机 (48)第八章焊接材料选择 (50)8.1焊接材料选用原则 (50)8.2焊条电弧焊焊接材料 (51)8.3埋弧焊焊接材料选择 (51)8.3.1焊丝的选择 (51)8.3.2焊剂的选择 (52)第9章焊接工艺参数的选择 (53)9.1埋弧焊工艺参数的选择 (53)9.1.1焊接电流 (53)9.1.2电弧电压 (53)9.1.3焊接速度 (53)9.1.4焊丝直径与伸出长度 (53)9.1.5其他 (53)9.2焊条电弧焊焊接工艺参数选择 (54)9.2.1确定焊条直径 (54)9.2.2焊接电流的确定 (54)9.2.3焊接电压的确定 (55)9.2.4焊接速度V的确定 (55)9.2.5层数的确定 (55)9.2.6焊钳,焊接电缆的确定 (56)第十章焊接顺序 (57)10.1焊缝位置及说明 (57)10.2焊接顺序 (58)第十一章焊接工艺 (59)11.1铁板弯曲成筒的焊接焊缝 (59)11.1.1 工艺要求 (59)11.1.2 工艺顺序 (59)11.2筒体环向焊缝 (60)11.2.1 工艺要求 (60)11.2.2 工艺顺序 (60)11.2.3焊接操作 (60)11.3法兰与接管焊缝 (61)11.4筒体与接管焊缝 (63)第十二章焊材的消耗及造价 (65)12.1原材料花费 (65)12.2 焊接相关花费 (65)12.3人工花费 (66)12.4工程预算表 (66)第十三章焊接工艺实施阶段 (68)13.1 焊前准备 (68)13.2成型 (68)13.2.1 筒体成型(卷板) (68)13.2.2 封头 (69)13.3 焊后处理 (70)13.3.1检验 (70)13.3.2技术要求 (70)13.3.3焊后热处理 (71)13.3.4涂装 (71)13.3.5返修 (71)结论 (72)参考文献 (73)谢辞 (74)第一章 设计参数的选择1.1液化石油气参数的确定液化石油气的主要组成部分由于石油产地的不同,各地石油气组成成分也不同。
焊接工艺课程设计-6m3立式储气罐的焊接工艺设计[管理资料]
目录一、设计的性质、目的及任务 (2)二、产品简介 (3)三、材料焊接性分析 (4)四、立式储气罐的设计 (5)五、焊接工艺的设计 (8)—焊条电弧焊 (9)—埋弧焊 (12)六、备料加工工艺 (13) (13) (13),边缘加工以及夹具的选择 (14) (16)焊后热处理 (16)七、焊缝的无损检验与耐压气密性检验 (16)八、参考文献 (17)一设计的性质、目的及任务性质:焊接工艺课程设计是焊接专业教学中综合性和实践性较强的教学环节,是理论联系实际的桥梁,是使学生体察工程实际问题复杂性的初次尝试;是对学生在规定的时间内完成指定的焊接工艺操作设计任务的初步训练。
、任务:(1)通过对压力容器生产线的总体设计,培养学生能综合运用本课程和前修课程的基础知识,进行融会贯通的独立思考能力,巩固和强化焊接原理有关课程的基本理论和基本知识,使同学们了解压力容器生产中的全过程,并培养同学们综合运用专业知识独立进行设计,特别是对工艺的设计,焊接原理焊接材料焊接电源焊接生产和焊接检验等方面的知识能力,让同学们结合自己的设计产品正确的选择焊接方法、焊接工艺参数、焊接设备及检测方法,并对生产车间进行合理的布局。
(2)培养学生焊接工艺设计的技能以及独立分析问题、解决问题的能力,了解工艺设计的基本内容,掌握焊接工艺设计的主要程序和方法,在规定的时间内完成指定的焊接工艺设计任务,从而得到焊接工艺设计的初步训练。
通过焊接专业课程设计,使学生在机械制图和机械零件课程设计的基础上,进一步学习和提高对各种焊接接头、焊接坡口、焊接结构的设计、焊接工艺以及各种焊接生产用机械装置图纸的看图、识图能力,合理结构形式的判断能力和具体焊接接头、焊接结构机械装置的生产设计能力。
(3)培养学生分析和解决工程实际问题的能力,树立正确的设计思想,培养实事求是、严肃认真、高度负责的工作作风,为学生后续课程及毕业设计打下一定的基础。
(4)使学生熟悉查阅并能综合运用各种有关的设计手册、规范、标准、图册等设计技术资料;进一步掌握识图、制图、运算、编写设计说明书等基本技能;完成作为工程技术人员在工艺设计方面所必备的设计能力的基本训练。
焊接结构课程设计_压力容器
前言1第1局部储罐设计阐发2第1章储罐总体阐发21.1 储罐底子设计要求21.2 储罐材料21.3储罐用钢板31.4 配用锻件51.5 配用螺栓、螺母5第2章储罐罐底设计62.1 储罐罐底板尺寸62.2 罐底布局7第3章罐壁布局设计103.1 罐壁的排板与连接103.2 罐壁厚度113.3 罐壁加强圈12第4章罐顶布局设计13第2局部储罐的焊接工艺阐发14第5章压力容器的焊接接头145.1 压力容器焊接接头的分类145.2 圆筒形容器焊接接头的设计15第6章压力容器的焊接方法176.1 熔化极氩弧焊17CO气体庇护焊186.22埋弧焊19第7章压力容器的焊接工艺21第3局部储罐的组装与查验22第8章储罐的安装施工挨次22储罐底板的焊接挨次22储罐壁板的焊接挨次22储罐固定顶的焊接挨次23第9章储罐焊缝的查验与修补24焊缝检测24焊缝修补25设计体会26参考文献27前言大型油气储罐是油气产物储存运输最便利、廉价的方式之一。
储罐的形式可跟据盖顶的样式不同分为浮顶式储罐〔包罗气柜〕和固定顶式储罐〔包罗内浮顶式储罐〕,而固定顶式储罐又包罗锥顶式储罐和拱顶式储罐两种。
目前原油的储罐使用中浮顶式储罐在不竭减少,液化气储运主要是球罐和立式筒形低压储罐。
常用的几种灌顶形式为双子午线网客机构拱顶、辐射网壳布局拱顶、短程线网壳布局拱顶和梁柱支撑布局拱顶,见图1。
本次课程设计主要讨论立式固定顶筒形钢制焊接储罐的施工工艺。
此中包罗储罐的材料选择、加工工艺路线选择、相关组件形式选择、机械加工装配、施焊成型、焊后检测调试等相关出产内容。
第1局部储罐设计阐发第1章储罐总体阐发1.1 储罐底子设计要求由石油化工立式筒形钢制焊接储罐设计尺度SH 3046-1992,储罐的设计条件不得少于以下内容:(一)地动设防烈度、风载、雪载等气候条件及地质条件;(二)储罐的操作温度及操作压力〔正负压〕;(三)介质的种类及密度;(四)腐蚀裕量;(五)储罐的容积;(六)灌顶形式;(七)开口接管尺寸、形式、数量及法兰规格;(八)附件的安装位置。
《焊接结构与工艺》课程设计---压力容器
《焊接结构与工艺》课程设计实训内容一、加氢反应器的焊接焊接结构设计简介1、加氢反应器结构的简介及设计要求该设计题目是:加氢反应器的焊接结构设计,压力容器的设计参数如表1所示。
表1. 设计数据2、加氢反应器结构的组成加氢反应器的结构如图1所示。
有顶部弯管、封头、筒节、热偶法兰、底部弯管、卸料管、冷氢法兰、裙底等几部分组成图1.加氢反应器压力容器结构示意图此压力容器焊缝有A、B、C、D类,各类焊缝的特点及要求;各焊缝的布置原则。
二、加氢反应器焊接结构材料选择及强度校核1、筒体及封头材料的选择、材料特点、力学性能、焊接性1)筒体及封头材料的选择序号项目数值单位备注1 名称加氢反应器的焊接结构设计2 用途普通低压压力容器3 最大工作压力0.8 MPa4 工作温度150 ℃5 公称直径600 mm6 壁厚8-10 mm2.9钢板厚度超过100毫米卷制时,需在加热炉升温到200度,出炉采用吊车4只板钩吊装,板钩在吊装过程中易发生滑脱现象,需要人工量尺寸或找吊装位置来掌握平衡。
卷制时,先进行板端压头,用样板测量弧度,板的两端达到标准要求后进行中间部位卷制。
卷制时开始水平部位使用普通钢管管辅助,吊车配合进行,板材的强度和厚度达到支持拱高塌陷幅度最小为止,卷制到可以合口的部位,吊车配合进行纵缝的点焊加固,吊装到焊接架上进行埋弧焊焊接。
3.1 钢板 80 毫米以下钢板卷制成筒节纵缝焊接好后,回圆时要比组对纵缝时多向下压。
2毫米,在卷板机上多转几圈,通过应力释放达到圆度值,回圆样板检查尤为重要,椭圆度最大值在焊道部分,直径超过4.5米的需要拼板形成两道纵缝,进行回圆必须进行焊道位置多方测量和压力调整,达到圆度值要求。
3.2 钢板厚度超过 100 毫米筒节焊接后还要进行二次加热,回圆时卷板机压力非常大,对钢板产生的外力会作用在筒体其它部位,所以要在钢板200度时尽快利用很短的时间回正、找圆。
3.3圆度达到标准规定(筒节内径的1%,尽量不大于15mm)或图样要求。
课程设计任务书液化石油气储罐设计模板
中北大学课程设计说明书学生姓名: 学号:学院: 机械工程与自动化学院专业: 过程装备与控制工程题目: ( 25) M3液化石油气储罐设计指导教师: 职称:06月22日中北大学课程设计任务书/ 年第二学期学院: 机械工程与自动化学院专业: 过程装备与控制工程学生姓名: 学号:课程设计题目: ( 25) M3液化石油气储罐设计起迄日期: 06 月08 日~06月22日课程设计地点: 校内指导教师:系主任:下达任务书日期: 06月08日课程设计任务书一.工艺设计1.液化石油气成分确定及其分析液化石油气是在开采和炼制石油的过程中产生的一部分气态, 经液化后分离出干气而得到的可燃液体。
它的主要成分是丙烷、丁烷、丙烯、丁烯; 其中丙烯、丁烯是重要的化工原料, 经把丙烯、丁烯提炼出去, 作为城市原料使用的液化石油气是丙烷、丁烷。
当前中国城市液化石油气系统供应的一般为丙烷、丁烷, 丙烯、丁烯为主要成分的液化烃类化合物。
由于石油产地的不同, 各地区液化石油气成分也各不相同。
本次设计的储罐在太原某储配站, 经走访了解到, 太原市地区的液化石油气大部分来自延安炼油厂, 少部分来自石家庄地区, 故此次设计关于石油气的成分采用延安炼油厂生产的石油气成分含量见下表1.1液化石油气主要组织成分的的比例表1.1各温度下各成分的饱和蒸气压力1.2从表1.2中能够看出, 温度从50℃降到-25℃时, 各成分的饱和蒸气压力下降得厉害。
据此推断。
在低温状态下, 由饱和蒸气压力引起的应力水平不会很高。
根据道尔顿分压定律, 不难计算出各温度下液化石油气中各成分的饱和蒸气分压( 表1.3)各成分在相应温度下的饱和蒸气分压1.3根据表1.3可算出各温度下液化石油气饱和蒸气压力( 表1.4)液化石油气在各温度下饱和蒸气压力1.42.设计温度与设计压力液化石油气储配站工作温度为-20-48℃,介质易燃易爆,为安全起见,设计温度应有一定富裕量,故,设计温度t=50℃该储罐用于液化石油气储配供气站,属于常温压力储存,工作压力为相应温度下的饱和蒸气压,故不设保温层.当液化气50℃的饱和蒸气压力高于50℃异丁烷的饱和蒸气压力时,无保冷设施,取50℃时丙烷的饱和蒸气压力.而50℃时,有P异丁烷(0.67)<P液化气(1.26041)<P 丙烷(1.77),则最高工作压力为1.77MPa.设计压力应为最高工作压力的1.05-1.1倍,故Pc=1.1*1.77=1.947MPa3.设计储量参考有关资料,石油液化气密度为500-600kg/m3,取其密度为580kg/m3,W=ΦVρt=0.9*25*580=13.05t二、机械设计1、筒体和封头的设计所设计压力容器承受内压, 且P c=1.947MPa<4MPa,根据化学工艺设计手册常见设备系列, 采用卧式椭圆封头容器a.筒体设计查GB150- , 为使筒体有较好的刚性, 一般L/D=3~6, 为方便计算, 取L/D=4, 则由πD2L/4=25 得D=1.996mm , 圆整得D= mmb.封头设计查标准JB/T4746- 《钢制压力容器用封头》中表B.1EHA得下表2.1椭圆封头内表面积、容积2.1椭圆形封头由2V封+πD2L/4=25得L=7421mm 圆整得L=7300mm则L/D=3.65,符合要求V计=2V封+πD2L/4=25.185m3>25m3,而且比较接近,故结构设计合理三、 结构设计1、 液柱静压力卧式容器的最高储存液体高度为筒体直径,故P(静)max ≤ρgD=11.368kPa而P( 静) max/P c =11.368/1947=0.06%<5%,静压力可忽略 2.筒体及封头厚度介质液化石油气易燃易爆, 有一定的腐蚀性, 存放温度为-20℃-48℃, 最大工作压力为P( 丙烷0=1.77MPa 。
【精品】液化石油气储罐设计课程设计
课程设计课程名称:过程设备课程设计设计名称:10m3液化石油气储罐设计专业班级:过控1203学号:21学生姓名:胡拯纲指导教师:孙海阳2015年6月19日课程设计任务书10M3液化石油气储罐设计课程设计要求及原始数据一、课程设计要求1、按照国家压力容器设计标准,规范进行设计,掌握典型过程设备设计的过程。
2、设计计算采用手算,要求设计思路清晰,计算数据准确、可靠。
3、工程图纸要求计算机绘图。
4、独立完成.二、原始数据:设计条件表课程设计主要内容:1、设备工艺设计2、设备结构设计3、设备强度设计4、技术条件编制5、绘制设备总装配图6、编制设计说明书学生应交出的设计文件(论文)1、设计说明书一份2、总装配图一张(折合A1图纸一张)摘要液化石油气贮罐是盛装液化石油气的常用设备,由于该气体具有易燃易爆的特点,因此在设计这种贮罐时,要注意与一般气体贮罐的不同点,尤其是安全与防火,还要注意在制造、安装等方面的特点.目前我国普遍采用常温压力贮罐,常温贮罐一般有两种形式:球形贮罐和圆筒形贮罐。
球形贮罐和圆筒形贮罐相比:前者具有投资少,金属耗量少,占地面积少等优点,但加工制造及安装复杂,焊接工作量大,故安装费用较高。
一般贮存总量大于500m3或单罐容积大于200m3时选用球形贮罐比较经济;而圆筒形贮罐具有加工制造安装简单,安装费用少等优点,但金属耗量大占地面积大,所以在总贮量小于500m3,单罐容积小于100m3时选用卧式贮罐比较经济.圆筒形贮罐按安装方式可分为卧式和立式两种。
在一般中、小型液化石油气站内大多选用卧式圆筒形贮罐,只有某些特殊情况下(站内地方受限制等)才选用立式。
本文主要讨论卧式圆筒形液化石油气贮罐的设计.液化石油气呈液态时的特点。
(1)容积膨胀系数比汽油、煤油以及水等都大,约为水的16倍,因此,往槽车、贮罐以及钢瓶充灌时要严格控制灌装量,以确保安全;(2)容重约为水的一半。
因为液化石油气是由多种碳氢化合物组成的,所以液化石油气的液态比重即为各组成成份的平均比重.卧式液化石油气贮罐设计的特点。
40(M3)液化石油气储罐设计
课程设计任务书1.课程设计要求:1)使用国家最新压力容器标准、规范进行设计,掌握典型过程设备设计的全过程。
2)广泛查阅综合分析文献资料的能力,进行设计方法和方案的可行性研究和论证。
3)设计计算尽量采用电算,要求设计思路清晰,计算数据准确、可靠,且正确掌握计算机操作和专业软件的使用。
4)工程图纸要求尽量采用手工绘图。
5)课程设计全部工作由学生本人独立完成。
6)按照标准格式编写说明书并装订成册。
2.原始数据:设计条件表序号项目数值单位备注1 名称液化石油气储罐2 用途储存3 最高工作压力 1.92 MPa 由介质温度确定4 工作温度-20~48 ℃5 公称容积(V g)20 M36 工作压力波动情况可不考虑7 装量系数(φV) 0.98 工作介质液化石油气(易燃)9 使用地点太原市,室外10 安装与地基要求储罐底壁坡度0.01~0.0211 其它要求管口表接管代号公称尺寸连接尺寸标准密封面形式用途或名称A 32 HG20592-1997 RF 液位计接口B 80 HG20592-1997 RF 液相进口管C 80 HG20592-1997 RF 液相出口管D 80 HG20592-1997 RF 安全阀接口E 80 HG20592-1997 RF 排污管F 80 HG20592-1997 RF 放气管G 20 HG20592-1997 RF 温度计接口H 20 HG20592-1997 RF 压力表接口I 500 HG/T21514-2005 / 人孔3.课程设计主要内容:1)1)设备工艺设计2)设备结构设计3)设备强度计算4)技术条件编制5)绘制设备总装配图6)编制设计说明书4.学生应交出的设计文件(论文):1)设计说明书一份;2)总装配图一张 (A1图纸一张);5.主要参考文献:[1] 国家质量技术监督局,GB150-1998《钢制压力容器》,中国标准出版社,1998[2] 国家质量技术监督局,《压力容器安全技术监察规程》,中国劳动社会保障出版社,1999[3] 全国化工设备设计技术中心站,《化工设备图样技术要求》,2000,11[4] 郑津洋、董其伍、桑芝富,《过程设备设计》,化学工业出版社,2001[5] 黄振仁、魏新利,《过程装备成套技术设计指南》,化学工业出版社,2002[6] 国家医药管理局上海医药设计院,《化工工艺设计手册》,化学工业出版社,1996[7] 闫康平,陈匡民,《过程装备腐蚀与防护》[M]第二版,北京:化学工业出版社[8] HG2059~20635-97.钢制法兰、垫片、紧固件[S].前言液化石油气贮罐是盛装液化石油气的常用设备, 由于该气体具有易燃易爆的特点, 因此在设计这种贮罐时, 要注意与一般气体贮罐的不同点, 尤其是安全与防火, 还要注意在制造、安装等方面的特点。
气液分离罐罐体制作工艺设计样本
《焊接构造课程设计阐明书》--------------------------气液分离器生产工艺姓名:班级:系部:学号:指引教师:-第二学期目录摘要 ............................................................... 错误!未定义书签。
1.气液分离器概述 (4)2.母材选取与检查 (5)表2 化学成分表 .......................................... 错误!未定义书签。
3.罐体制造工艺流程 ...................................... 错误!未定义书签。
4. 筒体制作工艺 (7)5. 封头压制 (15)6. 总装配焊接 (18)7. 检查 (21)8. 涂装及零件图 (22)9.参照文献....................................................... 错误!未定义书签。
摘要本设计编制是气液分离器制造工艺, 按照在承压级别基本上, 综合压力容器工作介质危害性(易燃、致毒等限度)进行分类, 此容器属于Ⅱ类容器。
此容器受压元件材料重要为Q245R, 故在讨论Q245R焊接性基本上对该容器进行制造工艺编制。
本产品制造、实验和验收按GB150—1998《钢制压力容器》中技术条件规定执行。
本次设计气液分离器筒体由ø426mm×14mm×2700mm厚筒体, 封头ø426mm×14mm由热压办法获得。
本设计一方面简介了气液分离器构造, 并分析了制造本产品材料如Q245R钢化学成分、力学性能及焊接性, 然后分析了该容器焊接制作工艺流程。
文中详细阐述了气液分离器加工、装配、焊接工艺。
同步对容器制作中容易浮现质量问题进行了分析阐明, 提出了相应解决办法。
文中重点阐述了装配焊接工艺, 涉及筒节纵缝装配焊接、筒节与封头环缝装配焊接、筒节与筒节环缝焊接等。
液化石油气瓶焊接设计
课程设计题目: 液化气瓶焊接工艺设计课程:热加工工艺课程设计摘要焊接是通过加热或加压,或两者并用,并且用或不用填充材料,使焊件达到原子结合的一种加工方法。
焊接过程的实质是两块金属的冶金结合,焊接属于不可拆连接。
焊接在制造业中具有十分重要的作用,广泛的运用于船体,炉壳,建筑构架,起重机械,锅炉,压力容器,运输车辆,家用电器等场合,焊接已普遍地取代了铆接。
焊接和铸,锻工艺结合起来,解决了大型设备制造的困难。
焊接还可用于铸,锻件缺陷的修补和机器零件磨损的修复。
本设计通过液化气瓶焊接的工艺设计,熟悉焊接方法的选择,焊接材料选择,焊接工艺要求等目录摘要一总述……………………………………二具体设计方案和步骤………………2.1 确定焊接方法及材料选择……2.2 工艺分析及说明………………2.3 确定焊接位置………………2.4 焊接接头及坡口形式…………三焊接工艺措施及要求………………四工艺卡………………………………五总结……………………………………鸣谢……………………………………关键词:焊接液化石油气瓶焊缝坡口工艺分析焊条一总述产品基本介绍结构名称:液化石油汽瓶体;组成:瓶体,甁嘴;材料:16MnR(R表示压力容器用刚);壁厚:3mm;生产类型:大量生产;工作压力为2.5Mpa,是由上下封头经冲压成形并焊接而成。
可知,该容器为中压容器,应采用薄壁构件接头形式。
二具体设计方案和步骤2.1确定焊接方法及材料选择,焊接方法的选择应充分考虑材料的焊接性,焊接厚度,焊缝长短,生产批量及焊接质量的因素任务容器用16MnR为低合金机构刚属于Q345,具有良好的综合力学性能,焊接性能,工艺性能及冲击性能。
16MnR低合金结构钢的化学成分机械性能头应与母材等强的原则,选用E5015(J507)型电焊条。
由于瓶体在运输和使用过程中均需承受一定冲撞和压力,质量要求较高且为批量生产,因此选用焊接质量稳定,生产率高的埋弧焊。
若无埋弧焊设备时,也可采用焊条电弧焊,瓶嘴装焊时由于其焊缝直径较小,可选用焊条电弧焊焊接。
液化石油气钢瓶的设计
焊接结构制造工艺及实施课程设计说明书系(部):机械工程系班级:焊接3101序号:13*名:***指导教师:***2011~ 2012学年第2 学期YSP—5液化石油气钢瓶的设计设计参数:介质:液化石油气;设计压力:1.6Mpa;使用温度:-40~60℃;几何容积12L;钢瓶内径:250;充装量5kg。
一、母材机械性能分析母材所用材料为Q235A,是普通碳素结构钢,抗拉强度为375~500MPa,不做冲击试验。
二、材料化学成分分析Q235A材料的化学成分见下表1。
表1 Q235A化学成分钢号化学成分(质量分数)%C Si Mn S PQ235A≤0.22% ≤0.35% ≤1.4% ≤0.050% ≤0.045%三、零部件组成瓶体焊缝布置有两种方案可供选择,如图1所示。
图1a方案共有三条焊缝:二条环缝和一条轴向焊缝。
图1b方案只有一条环形焊缝。
图1a方案的优点是上、下封头的拉伸变形小,容易成形;缺点是焊缝多,焊接工作量大,同时,筒体上的轴向焊缝处于拉应力最高位置(径向拉应力为轴向拉应力的两倍),破坏的可能性大。
图1b方案中部有一环缝,完全避免了图1a方案的缺点。
同时,据工件尺寸,瓶体半部可一次拉伸成形,因此,选用图1b方案适宜。
图1本次课程设计为了说明压力容器筒体的制造,仍采用图1a方案,因此主要零部件有底座、封头(上封头、下封头,采用长短轴比值为2的标准椭圆封头)、筒体、瓶阀座、护罩、瓶阀。
四、结构分析及制造关键点1.结构分析(1)封头椭圆形封头压制前的坯料为一个圆形,采用整块钢板,在油压机上,用凸凹模一次热压成形。
封头边缘用封头余量切割机进行加工,用等离子弧切割机开I形坡口。
(2)筒体筒节采用半自动切割机下料,下料前先划线。
筒节在卷板机上冷卷而成。
(3)底座平底型底座压制前的坯料为一个圆形,采用整块钢板,在油压机上,用凸凹模一次热压形成。
底座边缘用封头余量切割机进行加工,用等离子弧切割机开I形坡口。
30m3液化石油气储罐说明书
目录1.课程设计任务书2.设备的筒体和封头设计2.1筒体的径和长度的确定.2.2 筒体和封头的厚度设计计算2. 3厚度的校核计算3.其它零部件的设计3.1液位计的设计3.2 管口设计3.3人孔设计3.4 支座设计4.焊接结构设计5.焊条选择6.技术要求7. 参考资料及文献课程设计任务书题目 30m3液化石油气储罐设计设计条件表2.设备的筒体和封头设计2.1筒体的径和长度的确定 由设计任务书可知:V=30m 3设 L=3D 则有: 3043434322==⨯==D DD LD V πππm D 33.234303=⨯=π取径为2300mm ,由于筒体的径较大,所以采用钢板卷制,公称直径为其径DN2300mm. 选用标准椭圆形封头EHA 椭圆形封头表面积及容积则筒体长度mm D V L 63774230014.3107588.12103042V 2992=⨯⨯⨯-⨯=-='π封头总 取L ′=6400mm 则实际体积33922095.30107588.1246400230014.324m mm V L D V =⨯⨯-⨯⨯=+'=封头实际π则体积相对误差为:%5%003.0%1003030095.30%100<=⨯-=⨯-VV V 实际符合设计要求。
2.2筒体和封头的厚度设计计算 物料的物理及化学性质,按最危险工况设计采用常温常压储存。
根据上表的数据,取最高压力,即50℃丙烯的饱和蒸汽压19.99bar(绝压) 所以储罐的工作压力为:MPa MPa MPa P W 899.11.01.099.19=-⨯= 安全阀开启压力取:MPa MPa p 089.2899.110.1=⨯=开启 设计压力取:MPa p 1.2= 液柱压力(安装满时计算):MPa m kg N L kg gh p 810.41025.00/81.9/56.0-⨯=⨯⨯==ρ液0%1001.210.41%1008≈⨯⨯=⨯-p p 液所以可以忽略液柱的压力。
焊接结构课程设计 液化石油气瓶YSP-2设计
目录一、钢瓶瓶体的设计计算1.瓶体设计壁厚---------------------------------------------------32.瓶体名义厚度-------------------------------------------------- 33.瓶体刚度校核-------------------------------------------------- 34.钢瓶设计有效容积V -------------------------------------------- 35.钢瓶允许最大充装量W计算-------------------------------------- 36.钢瓶安全容积校核---------------------------------------------- 47.水压爆破试验压力计算------------------------------------------ 48.护罩设计 ----------------------------------------------------- 49.底座设计 ----------------------------------------------------- 410.瓶阀座设计 -------------------------------------------------- 411.瓶阀的要求 -------------------------------------------------- 512.计算封头与筒体坯料展开尺寸及绘制展开图----------------------- 513.总装配图 ---------------------------------------------------- 6二、钢瓶钢印标记三、制造技术工艺要求1.制造工艺 ----------------------------------------------------- 62.瓶体 --------------------------------------------------------- 73.阀门 --------------------------------------------------------- 74.瓶阀座 ------------------------------------------------------- 75.钢印标记 ----------------------------------------------------- 76.焊材 --------------------------------------------------------- 77.热处理 ------------------------------------------------------- 78.角阀安装 ----------------------------------------------------- 79.表面喷涂 ----------------------------------------------------- 710.成品检验 ---------------------------------------------------- 711.主要检验要求------------------------------------------------- 812、结构制造工艺流程及工艺卡------------------------------------ 813.封头加工工艺过程卡------------------------------------------- 914.筒体环缝焊接工艺-------------------------------------------- 1015.底座与下封头焊接工艺---------------------------------------- 10四、钢瓶的使用管理1.充装 -------------------------------------------------------- 112.定期检验 ---------------------------------------------------- 113.运输、储存和使用--------------------------------------------- 11五、焊接工艺评定附表一、钢瓶瓶体的设计计算按照19965842-GB 《液化石油气钢瓶》标准进行设计计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
焊接结构生产课程设计液化气罐设计
《焊接结构生产课程设计》
设计项目:煤气罐焊接结构设计
院系:焊接工程系
专业:焊接技术及自动化
姓名:陈毅
学号:
指导老师:宋宝来
目录
第一部分、煤气罐结构组成及特点 (2)
第二部分、煤气罐图纸分析 (6)
第三部分、焊接工艺及装备 (7)
第四部分、焊前准备及焊接参数 (9)
第五部分、煤气罐的检验方法 (11)
第六部分、煤气罐的用途及注意事项 (14)
第七部分、小结与体会 (15)
第一部分煤气罐结构组成及特点
1、煤气罐结构组成:
煤气罐有五部分组成,即套环、阀栏、上壳体、下壳体和下
环(如图31—01)。
套环材料为Q235,上、下壳体和筒体材料均为Q345,下环材料为Q235。
图31—01煤气罐外观
2、接头形式:
常见焊接的接头形式有对接、搭接、角接等。
接头形式根据焊件壁厚及形状等特点,可适当地采用对接、搭接或角接。
焊接时可根据要求填丝或不填丝。
对接接头可采用I
形或卷边接头形式,也可采用开坡口的接头形式,主要是根据板厚来选择适宜的接头形式。
I形接头的板厚一般不超过4mm,可根据要求留不同的间隙或不留间隙。
厚板可进行填丝焊接,如板较薄或要求无余高时,即可不填丝。
不足1mm的薄板,一般采用卷边对接形式。
当接头两边的板厚相差较大时,需将板厚的边缘削薄,使两者板边的厚度相当。
当板厚大于3mm时,可采用V形坡口对接形式。
采用搭接接头时,两块板的焊接部位要接触良好。
角接接头要采用适宜的工装卡具,保证焊后的焊件角度。
由于煤气罐的承压能力要求高,强度大,其各接头形式如图31—02所示的A-A搭接、B-B对接及C-C搭接。