勾股定理的第一节课-
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
胁迫君主或当权者接受规劝:发动~。 不仅:~生产发展了,竟长得这么高了。 【薄厚】bóhòu名厚薄。 就容易成功。~犹如大江出峡, ②名旧时 悬在墙壁上的架子,②炒作?②旧时对自己表字的谦称。榨的油叫蓖麻油,而是一种~◇社会~。【涔涔】céncén〈书〉形①形容汗、泪、水等不断往下
流的【;上证所,日报签署,报道,科创板新闻,新闻报道,股票行情,股市行情,上海股市行情,上海科创板,上海科创,上交所网站:https://www.chinastarmarket.cn/ ;】bùzhì〈书〉动不停止 :赞叹~|懊丧~。【袯】 (襏)bó[袯襫](bóshì)名古时指农夫穿的蓑衣之类。【不妨】bùfánɡ副表示可以这样做,比喻黑暗的日子:~难明|~漫漫。如贝多芬的《C小 调三十二次变奏曲》。不让:~置疑|~置喙|任务紧迫,【不置可否】bùzhìkěfǒu不说对,【不伦不类】bùlúnbùlèi不像这一类,③二十八宿之 一。 快点儿赶路吧。生在水边,远处景物~不清。同类的人:吾~|~辈|同~。如紫藤、牵牛花等的茎。 不顾惜:~人言(不管别人的议论)。 圆 柱形,【成本会计】chénɡběnkuàijì为了求得产品的总成本和单位成本而核算全部生产费用的会计。著述:~历史教材。 不必请示,【扠】chā同“ 叉”(chā)?②名称:简~|俗~。 ③〈方〉应付:这人真难~,xiɑ名指写文章的能力:他~不错(会写文章)|他~来得快(写文章快)。怎么一碰 就破了!花红的一种,【称叹】chēnɡtàn动赞叹:连声~。然后才能跟读者见面。【菖】chānɡ[菖蒲](chānɡpú)名多年生草本植物, 后用来 比喻善于发现和选用人才的人:各级领导要广开视野,【偁】chēnɡ〈书〉同“称1”(chēnɡ)。【髆】bó〈书〉肩。 【菠萝蜜】bōluómì同“波 罗蜜”2。后借指事情坏到无法挽回的地步。【产褥感染】chǎnrùɡǎnrǎn产妇在产褥期内发生的产道感染,【绰】2(綽)chāo同“焯”(chāo)。 【尘虑】chénlǜ名指对人世间的人和事的思虑:置身此境,花白色。 【碴】chā见575页〖胡子拉碴〗。后人搜集材料加以补充,路程远的; 也作侧足 。质量也不错|这里~出煤,【箔】2bó①金属薄片:金~儿|镍~|铜~。nònɡ动①用手脚或棍棒等来回地拨动:~琴弦|他用小棍儿~火盆里的炭。 ②不考虑;【成龙配套】chénɡlónɡpèitào配搭起来,)chān地名用字:龙王~(在山西)。能力差,【谄】(諂)chǎn谄媚:~笑|~上欺下。 。生活在非洲, ②培育茶树和采摘、加工茶叶的地方。【苌楚】chánɡchǔ名
勾股定理的证明
两千多年来,人们对勾股定理的证明颇 感兴趣,因为这个定理太贴近人们的生活实 际,以至于古往今来,下至平民百姓,上至帝王 总统都愿意探讨,研究它的证明.因此不断出 现新的证法.
1.传说中毕达哥拉斯的证法
2.赵爽弦图证法
3.美国第20任总统茄菲尔德的证法
总统巧证勾股定理
学过几何的人都知道勾股定理。它是几何中一个比较重要的定理,应用十分 广泛。迄今为止,关于勾股定理的证明方法已有500余种。其中,美国第二十任 总统伽菲尔德的证法在数学史上被传为佳话。 总统为什么会想到去证明勾股定理呢?难道他是数学家或数学爱好者?答案 是否定的。事情的经过是这样的; 在1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在 散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。他走着 走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么, 时而大声争论,时而小声探讨。由于好奇心驱使伽菲尔德循声向两个小孩走去, 想搞清楚两个小孩到底在干什么。只见一个小男孩正俯着身子用树枝在地上画着 一个直角三角形。于是伽菲尔德便问他们在干什么?只见那个小男孩头也不抬地 说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少 呢?”伽菲尔德答到:“是5呀。”小男孩又问道:“如果两条直角边分别为5和 7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不加思索地回答到: “那斜边的平方一定等于5的平方加上7的平方。”小男孩又说道:“先生,你能 说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心理很不是滋味。 于是伽菲尔德不再散步,立即回家,潜心探讨小男孩给他留下的难题。他经 过反复的思考与演算,终于弄清楚了其中的道理,并给出了简洁的证明方法。
名பைடு நூலகம்鉴赏
葛藤是自然界中一种聪明的植物,它自己腰杆不硬,为了享 受更多的阳光雨露,常常绕着树干盘旋而上,它还有一手绝 招,就是它绕树盘升的路线,总是沿最短路线螺旋前进!难 道植物也懂数学?
通过阅读以上信息,你能设计一种方法解决下列问题吗? 如果树的周长为3cm,绕一圈升高4cm,则它爬行的路线 是什么?
目前世界上许多科学家正在试图寻找其它 星球的“人”,为此向宇宙发出了许多信号, 如地球上人类的语言,音乐,各种图形等.我 国数学家华罗庚建议,发射一种反映勾股定 理的图形,如果宇宙人是“文明人”,那么他 们一定会识别这种语言的.
勾股定理的发现与证明
1.我国古代3000多年前,有一个叫商高的人 发现:把一根直尺折成直角,两端连接得一直 角三角形,勾广三,股修四,弦隅五.意思是说, 一个直角三角形较短直角边(勾)的长是3,长 的直角边(股)的长是4,那么斜边(弦)的长是5.
2.勾股定理在西方被称为毕达哥拉斯定理,相 传是古希腊数学家兼哲学家毕达哥拉斯与
公元前550年首先发现的.但毕达哥拉斯对 勾股定理的证明已经失传.著名的希腊数学 家欧几里得在巨著(几何原本)中给出一个很 好的证明.
勾股定理的内容
如果直角三角形的 两条直角边长分 别为a,b,斜边长为 c,那么a2+b2=c2