高中数学必修二知识点总结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必修二 第一章 空间几何体 1.1空间几何体的结构 1、棱柱
定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱'''''E D C B A ABCDE -
几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
2、棱锥
定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体
分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等
表示:用各顶点字母,如五棱锥'
''''E D C B A P -
几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相
似,其相似比等于顶点到截面距离与高的比的平方。
3、棱台
定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分
分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等
表示:用各顶点字母,如四棱台ABCD—A'B'C'D'
几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点
4、圆柱
定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体
几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
5、圆锥
定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体
几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
6、圆台
定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分
几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
球体
定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体
几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。
※空间几何体的结构特征:面(侧面、上底面、下底面)、棱、顶点、轴
1.2空间几何体的三视图和直观图
1、中心投影与平行投影
中心投影:把光由一点向外散射形成的投影叫做中心投影。
平行投影:在一束平行光照射下形成的投影叫做平行投影。
2、三视图
正视图:从前往后 侧视图:从左往右 俯视图:从上往下
画三视图的原则:长对齐、高对齐、宽相等 3、直观图:斜二测画法 斜二测画法的步骤:
(1).平行于坐标轴的线依然平行于坐标轴;
(2).平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变; (3).画法要写好。
用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图
1.3空间几何体的表面积与体积
(1)几何体的表面积为几何体各个面的面积的和。
(2)特殊几何体表面积公式(c 为底面周长,h 为高,'
h 为斜高,l 为母线)
ch
S =直棱柱侧面积
rh S π2=圆柱侧
'21
ch S =正棱锥侧面积 rl S π=圆锥侧面积 ')(21
21h c c S +=
正棱台侧面积
l
R r S
π)(+=圆台侧面积
()l r r S +=π2圆柱表 ()l r r S +=π圆锥表 ()22R Rl rl r S +++=π圆台表
(3)柱体、锥体、台体的体积公式
V Sh
=柱
2
V Sh r h
π==圆柱
1
3V Sh
=锥
h
r V 231
π=圆锥
''1
()3V S S S S h
=台
''2211
()()33V S S S S h r rR R h
π=++=++圆台
(4)球体的表面积和体积公式:V 球=343R π
; S 球面=2
4R π
第二章 点、直线、平面之间的位置关系 2.1空间点、直线、平面之间的位置关系
①平面:公理1:如果一条直线上的两点在一个平面内,那么这条直线在
此平面内。
公理2:过不在一条直线上的三点,有且只有一个平面
公理3:如果两个不重合的平面有一个公共点,那么它们有且只 只有一条过改点的公共直线
②线线关系:1 空间的两条直线有如下三种关系:
相交直线:同一平面内,有且只有一个公共点; 平行直线:同一平面内,没有公共点;
异面直线: 不同在任何一个平面内,没有公共点。 公理4:平行于同一条直线的两条直线互相平行。 符号表示为:设a 、b 、c 是三条直线
a ∥
b
c ∥b
强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都 适用。
公理4作用:判断空间两条直线平行的依据 ③线面位置关系
(1)直线在平面内 —— 有无数个公共点
(2)直线与平面相交 —— 有且只有一个公共点 (3)直线在平面平行 —— 没有公共点
指出:直线与平面相交或平行的情况统称为直线在平面外,可用a α来表示
a α a ∩α=A a ∥α 4、面面关系
平行——没有公共点;α∥β
相交——有一条公共直线。α∩β=b
2.2直线、平面平行的判定及其性质 1、线面平行判定
共面直线
=>a ∥c