直线的参数方程(DING)
直线的参数方程
直线的参数方程1.直线的参数方程经过点M 0(x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α(t 为参数).2.直线的参数方程中参数t 的几何意义(1)参数t 的绝对值表示参数t 所对应的点M 到定点M 0的距离.(2)当M 0M →与e (直线的单位方向向量)同向时,t 取正数.当M 0M →与e 反向时,t 取负数,当M 与M 0重合时,t =0.3.直线参数方程的其他形式对于同一条直线的普通方程,选取的参数不同,会得到不同的参数方程.我们把过点M 0(x 0,y 0),倾斜角为α的直线,选取参数t =M 0M 得到的参数方程⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α(t 为参数)称为直线参数方程的标准形式,此时的参数t 有明确的几何意义.一般地,过点M 0(x 0,y 0),斜率k =ba (a ,b 为常数)的直线,参数方程为⎩⎪⎨⎪⎧x =x 0+at y =y 0+bt (t为参数),称为直线参数方程的一般形式,此时的参数t 不具有标准式中参数的几何意义.1.已知直线l 的方程⎩⎪⎨⎪⎧x =1-t sin 25°,y =2+t cos 25°(t 为参数),则直线l 的倾斜角为( )A .65°B .25°C .155°D .115°解析:选D.方程⎩⎪⎨⎪⎧x =1-t sin 25°,y =2+t cos 25°(t 为参数),化为标准形式⎩⎪⎨⎪⎧x =1+t cos 115°,y =2+t sin 115°(t为参数),倾斜角为115°.故选D.2.已知直线l 的参数方程为⎩⎪⎨⎪⎧x =-1-22t ,y =2+22t (t 为参数),则直线l 的斜率为( )A .1B .-1 C.22D .-22解析:选B.直线l 的普通方程为x +y -1=0,斜率为-1.故选B.3.以t 为参数的方程⎩⎪⎨⎪⎧x =1-12t ,y =-2+32t表示( )A .过点(1,-2)且倾斜角为π3的直线B .过点(-1,2)且倾斜角为π3的直线C .过点(1,-2)且倾斜角为2π3的直线D .过点(-1,2)且倾斜角为2π3的直线解析:选C.化参数方程⎩⎪⎨⎪⎧x =1-12t ,y =-2+32t (t 为参数)为普通方程得y +2=-3(x -1).直线过定点(1,-2),斜率为-3,倾斜角为2π3,故选C.4.过抛物线y 2=4x 的焦点F 作倾斜角为π3的弦AB ,则弦AB 的长是________.解析:由已知焦点F (1,0),又倾斜角为π3,cos π3=12,sin π3=32.所以弦AB 所在直线的参数方程为⎩⎪⎨⎪⎧x =1+12t ,y =32t (t 为参数),代入抛物线的方程y 2=4x ,得⎝ ⎛⎭⎪⎫32t 2=4⎝ ⎛⎭⎪⎫1+12t .整理得3t 2-8t -16=0.设方程两根分别为t 1,t 2,则有⎩⎪⎨⎪⎧t 1+t 2=83,t 1·t 2=-163.由参数t 的几何意义得|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=⎝ ⎛⎭⎪⎫832+643=163.答案:163根据直线的参数方程求直线的倾斜角、斜率已知直线l 的参数方程是⎩⎪⎨⎪⎧x =1+t sin αy =-2+t cos α,(t 为参数),其中实数α的取值范围是⎝ ⎛⎭⎪⎫π2,π.求直线l 的倾斜角. [解] 设直线l 的倾斜角为θ,则由题意知tan θ=cos αsin α=1tan α=tan ⎝ ⎛⎭⎪⎫3π2-α,所以θ=3π2-α.所以直线l 的倾斜角为3π2-α.由直线的参数方程求倾斜角与斜率的方法已知直线l 的参数方程(1)若是标准式⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α(t 为参数),则可直接得出倾斜角即方程中的α,否则需化成标准式再求α.(2)若是一般式⎩⎪⎨⎪⎧x =x 0+at y =y 0+bt ,则当a ≠0时,斜率k =b a ,再由tan α=ba 及0≤α<π求出α,当a =0时,显然直线与x 轴垂直,倾斜角为α=π2.(3)若是其他形式,则通过消参化成普通方程,再求斜率及倾斜角.1.若直线的参数方程为⎩⎪⎨⎪⎧x =3+12t y =3-32t,(t为参数),则此直线的斜率为( )A. 3 B .- 3 C .33D .-33解析:选B.直线的参数方程⎩⎪⎨⎪⎧x =3+12t y =3-32t,(t为参数)可化为标准形式⎩⎪⎨⎪⎧x =3+⎝ ⎛⎭⎪⎫-12(-t )y =3+32(-t ),(-t 为参数). 所以直线的斜率为- 3.2.若直线的参数方程为⎩⎪⎨⎪⎧x =2-3ty =1+t ,(t 为参数),求直线的斜率.解:法一:把直线的参数方程⎩⎪⎨⎪⎧x =2-3ty =1+t ,消去参数t 得x +3y -5=0, 所以其斜率k =-13.法二:由⎩⎪⎨⎪⎧x =2-3t y =1+t ,得⎩⎪⎨⎪⎧x -2=-3ty -1=t ,所以k =y -1x -2=t -3t =-13. 直线参数方程中参数几何意义的应用已知过点M (2,-1)的直线l :⎩⎪⎨⎪⎧x =2-t2,y =-1+t2(t 为参数),与圆x 2+y 2=4交于A ,B 两点,求|AB |及|AM |·|BM |.[解] l 的参数方程为⎩⎪⎨⎪⎧x =2-22⎝ ⎛⎭⎪⎫t 2,y =-1+22⎝ ⎛⎭⎪⎫t 2(t 为参数).令t ′=t2,则有⎩⎪⎨⎪⎧x =2-22t ′,y =-1+22t ′(t ′为参数).其中t ′是点M (2,-1)到直线l 上的一点P (x ,y )的有向线段的数量,代入圆的方程x 2+y 2=4,化简得t ′2-32t ′+1=0.因为Δ>0,可设t 1′,t 2′是方程的两根,由根与系数的关系得t 1′+t 2′=32,t 1′t 2′=1.由参数t ′的几何意义得|MA |=|t 1′|,|MB |=|t 2′|,所以|MA |·|MB |=|t 1′·t 2′|=1,|AB |=|t 1′-t 2′|=(t 1′+t 2′)2-4t 1′t 2′=14.(1)在直线参数方程的标准形式下,直线上两点之间的距离可用|t 1-t 2|来求.本题易错的地方是:将题目所给参数方程直接代入圆的方程求解,忽视了参数t 的几何意义.(2)根据直线的参数方程的标准式中t 的几何意义,有如下常用结论: ①直线与圆锥曲线相交,交点对应的参数分别为t 1,t 2,则弦长l =|t 1-t 2|; ②定点M 0是弦M 1M 2的中点⇒t 1+t 2=0;③设弦M 1M 2中点为M ,则点M 对应的参数值t M =t 1+t 22(由此可求|M 1M 2|及中点坐标).在极坐标系中,已知圆心C ⎝⎛⎭⎪⎫3,π6,半径r =1.(1)求圆的直角坐标方程;(2)若直线⎩⎪⎨⎪⎧x =-1+32t ,y =12t(t 为参数)与圆交于A ,B 两点,求弦AB 的长.解:(1)由已知得圆心C ⎝ ⎛⎭⎪⎫332,32,半径为1,圆的方程为⎝⎛⎭⎪⎫x -3322+⎝ ⎛⎭⎪⎫y -322=1,即x 2+y 2-33x -3y +8=0.(2)由⎩⎪⎨⎪⎧x =-1+32t ,y =12t (t 为参数)得直线的直角坐标方程x -3y +1=0,圆心到直线的距离d =⎪⎪⎪⎪⎪⎪332-332+12=12,所以⎝ ⎛⎭⎪⎫|AB |22+d 2=1,解得|AB |= 3. 直线参数方程的综合应用已知直线l 过定点P (3,2)且与x 轴和y 轴的正半轴分别交于A ,B 两点,求|PA |·|PB |的值为最小时的直线l 的方程.[解] 设直线的倾斜角为α,则它的方程为⎩⎪⎨⎪⎧x =3+t cos α,y =2+t sin α(t 为参数).由A ,B 是坐标轴上的点知y A =0,x B =0,所以0=2+t sin α, 即|PA |=|t |=2sin α,0=3+t cos α,即|PB |=|t |=-3cos α,故|PA |·|PB |=2sin α·⎝ ⎛⎭⎪⎫-3cos α=-12sin 2α. 因为90°<α<180°,所以当2α=270°,即α=135°时, |PA |·|PB |有最小值.所以直线方程为⎩⎪⎨⎪⎧x =3-22t ,y =2+22t (t 为参数),化为普通方程为x +y -5=0.利用直线的参数方程,可以求一些距离问题,特别是求直线上某一定点与曲线交点距离时使用参数的几何意义更为方便.在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =3-22t ,y =5+22t (t 为参数).在极坐标系(与直角坐标系xOy 取相同长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,圆C 的方程为ρ=25sin θ.(1)求圆C 的直角坐标方程;(2)设圆C 与直线l 交于点A ,B .若点P 的坐标为(3,5),求|PA |+|PB |. 解:(1)由ρ=25sin θ,得ρ2=25ρsin θ. 所以x 2+y 2-25y =0,即x 2+(y -5)2=5. (2)法一:直线l 的普通方程为y =-x +3+5,与圆C :x 2+(y -5)2=5联立,消去y ,得x 2-3x +2=0,解之得⎩⎨⎧x =1y =2+5或⎩⎨⎧x =2,y =1+ 5.不妨设A (1,2+5),B (2,1+5). 又点P 的坐标为(3,5), 故|PA |+|PB |=8+2=3 2.法二:将l 的参数方程代入x 2+(y -5)2=5,得⎝⎛⎭⎪⎫3-22t 2+⎝ ⎛⎭⎪⎫22t 2=5,即t 2-32t +4=0,① 由于Δ=(32)2-4×4=2>0. 故可设t 1,t 2是①式的两个实根. 所以t 1+t 2=32,且t 1t 2=4. 所以t 1>0,t 2>0.又直线l 过点P (3,5),所以由t 的几何意义,得|PA |+|PB |=|t 1|+|t 2|=3 2.1.对直线参数方程标准形式中参数t 的理解从参数方程推导的过程中可知参数t 应理解为直线l 上有向线段M 0M →的数量,它的几何意义可以与数轴上点A 的坐标的几何意义作类比,|t |=|M 0M →|代表有向线段M 0M →的长度.另外,将直线的点斜式方程y -y 0=k (x -x 0)改写成y -y 0sin α=x -x 0cos α,其中k =tan α,α为直线倾斜角,则t =y -y 0sin α=x -x 0cos α,则有⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α,从中不难看出直线的普通方程(点斜式)与参数方程(标准式)的联系.2.化直线的参数方程一般式⎩⎪⎨⎪⎧x =x 0+at y =y 0+bt (t 为参数)为标准式⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α(t 为参数),由⎩⎪⎨⎪⎧x =x 0+aty =y 0+bt 变形为⎩⎪⎨⎪⎧x =x 0+a a 2+b 2·a 2+b 2ty =y 0+b a 2+b2·a 2+b 2t,令cos α=aa 2+b2,sin α=b a 2+b2,t ′=a 2+b 2 t ,则可得标准式⎩⎪⎨⎪⎧x =x 0+t ′cos αy =y 0+t ′sin α(t ′为参数),其中α为直线的倾斜角,k =tan α=ba 为直线的斜率.1.直线⎩⎪⎨⎪⎧x =1+t cos αy =-2+t sin α,(α为参数,0≤α<π)必过点( )A .(1,-2)B .(-1,2)C .(-2,1)D .(2,-1)解析:选A.由参数方程可知该直线是过定点(1,-2),倾斜角为α的直线.2.已知直线l 1:⎩⎪⎨⎪⎧x =1+3ty =2-4t ,(t 为参数)与直线l 2:2x -4y =5相交于点B ,且点A (1,2),则|AB |=________.解析:将⎩⎪⎨⎪⎧x =1+3t y =2-4t,代入2x -4y =5,得t =12,则B ⎝ ⎛⎭⎪⎫52,0.而A (1,2),得|AB |=52.答案:523.已知曲线C 的极坐标方程为ρ=1,以极点为平面直角坐标系的原点,极轴为x 轴正半轴,建立平面直角坐标系,直线l的参数方程是⎩⎪⎨⎪⎧x =-1+4ty =3t ,(t 为参数),则直线l与曲线C 相交所截得的弦长为________.解析:曲线C的直角坐标方程为x 2+y 2=1,将⎩⎪⎨⎪⎧x =-1+4ty =3t ,代入x 2+y 2=1中得25t 2-8t =0,解得t 1=0,t 2=825.故直线l 与曲线C 相交所截得的弦长l =42+32·|t 2-t 1|=5×825=85.答案:85[A 基础达标]1.直线⎩⎪⎨⎪⎧x =2+3ty =-1+t ,(t 为参数)上对应t =0,t =1两点间的距离是( )A .1B .10C .10D .2 2解析:选B.将t =0,t =1代入参数方程可得两点坐标为(2,-1)和(5,0), 所以d =(2-5)2+(-1-0)2=10.2.若⎩⎪⎨⎪⎧x =x 0-3λ,y =y 0+4λ(λ为参数)与⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数)表示同一条直线,则λ与t 的关系是( )A .λ=5tB .λ=-5tC .t =5λD .t =-5λ解析:选C.由x -x 0,得-3λ=t cos α,由y -y 0,得4λ=t sin α,消去α的三角函数,得25λ2=t 2,得t =±5λ,借助于直线的斜率,可排除t =-5λ,所以t =5λ.3.经过点M (1,5)且倾斜角为π3的直线,以定点M 到动点P 的位移t 为参数的参数方程是( )A.⎩⎪⎨⎪⎧x =1+12t ,y =5-32t(t 为参数)B .⎩⎪⎨⎪⎧x =1-12t ,y =5+32t (t 为参数)C.⎩⎪⎨⎪⎧x =1-12t ,y =5-32t(t 为参数)D .⎩⎪⎨⎪⎧x =1+12t ,y =5+32t(t 为参数)解析:选D.该直线的参数方程为⎩⎪⎨⎪⎧x =1+t cos π3,y =5+t sin π3(t 为参数),即⎩⎪⎨⎪⎧x =1+12t ,y =5+32t(t 为参数),选D.4.若直线⎩⎪⎨⎪⎧x =-2t ,y =-12+at (t 为参数)与直线⎩⎪⎨⎪⎧x =1-s ,y =1+s (s 为参数)互相垂直,那么a 的值等于( )A .1B .-13C .-23D .-2解析:选D.直线⎩⎪⎨⎪⎧x =-2t ,y =-12+at (t 为参数)的斜率为y +12x =-a2,直线⎩⎪⎨⎪⎧x =1-s ,y =1+s (s 为参数)的斜率为y -1x -1=-1,由两直线垂直得-a2×(-1)=-1得a =-2.故选D. 5.对于参数方程⎩⎪⎨⎪⎧x =1-t cos 30°y =2+t sin 30°和⎩⎪⎨⎪⎧x =1+t cos 30°y =2-t sin 30°,下列结论正确的是( )A .是倾斜角为30°的两平行直线B .是倾斜角为150°的两重合直线C .是两条垂直相交于点(1,2)的直线D .是两条不垂直相交于点(1,2)的直线 解析:选B.因为参数方程⎩⎪⎨⎪⎧x =1-t cos 30°,y =2+t sin 30°可化为标准形式⎩⎪⎨⎪⎧x =1+t cos 150°,y =2+t sin 150°,所以其倾斜角为150°.同理,参数方程⎩⎪⎨⎪⎧x =1+t cos 30°,y =2-t sin 30°,可化为标准形式⎩⎪⎨⎪⎧x =1+(-t )cos 150°,y =2+(-t )sin 150°,所以其倾斜角也为150°.又因为两直线都过点(1,2),故两直线重合.6.若直线⎩⎪⎨⎪⎧x =1-2ty =2+3t ,(t 为参数)与直线4x +ky =1垂直,则常数k =________.解析:由直线的参数方程可得直线的斜率为-32,由题意得直线4x +ky =1的斜率为-4k ,故-32×⎝ ⎛⎭⎪⎫-4k =-1,解得k =-6.答案:-67.已知直线l 的斜率k =-1,经过点M 0(2,-1).点M 在直线上,以M 0M →的数量t 为参数,则直线l 的参数方程为____________.解析:因为直线的斜率为-1, 所以直线的倾斜角α=135°. 所以cos α=-22,sin α=22. 所以直线l 的参数方程为⎩⎪⎨⎪⎧x =2-22t y =-1+22t ,(t 为参数).答案:⎩⎪⎨⎪⎧x =2-22t y =-1+22t ,(t 为参数)8.已知直线l 的参数方程为⎩⎪⎨⎪⎧x =-1+t ,y =1+t (t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ2cos 2θ=4⎝ ⎛⎭⎪⎫ρ>0,3π4<θ<5π4,则直线l 与曲线C 的交点的极坐标为________.解析:直线l 的普通方程为y =x +2,曲线C 的直角坐标方程为x 2-y 2=4(x ≤-2),故直线l 与曲线C 的交点为(-2,0),对应极坐标为(2,π).答案:(2,π)9.已知曲线C :ρ=2cos θ,直线l :⎩⎪⎨⎪⎧x =2-t ,y =32+34t ,(t 为参数).(1)写出曲线C 的参数方程,直线l 的普通方程;(2)过曲线C 上任一点P 作与l 夹角为45°的直线,交l 于点A ,求|PA |的最大值与最小值.解:(1)曲线C 的参数方程为⎩⎪⎨⎪⎧x =1+cos α,y =sin α,(α是参数).直线l 的普通方程为3x +4y -12=0.(2)曲线C 上任意一点P (1+cos α,sin α)到l 的距离为d =15|3cos α+4sin α-9|,则|PA |=d sin 45°=2⎪⎪⎪⎪⎪⎪sin(α+φ)-95,且tan φ=34. 当sin(α+φ)=-1时,|PA |取得最大值1425; 当sin(α+φ)=1时,|PA |取得最小值425. 10.(2016·高考全国卷甲)在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25.(1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(2)直线l 的参数方程是⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数),l 与C 交于A ,B 两点,|AB |=10,求l 的斜率.解:(1)由x =ρcos θ,y =ρsin θ可得圆C 的极坐标方程为ρ2+12ρcos θ+11=0.(2)在(1)中建立的极坐标系中,直线l 的极坐标方程为θ=α(ρ∈R).设A ,B 所对应的极径分别为ρ1,ρ2,将l 的极坐标方程代入C 的极坐标方程得ρ2+12ρcos α+11=0.于是ρ1+ρ2=-12cos α,ρ1ρ2=11.|AB |=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2=144cos 2α-44. 由|AB |=10得cos 2α=38,tan α=±153. 所以l 的斜率为153或-153. [B 能力提升]11.在平面直角坐标系xOy 中,若直线l :⎩⎪⎨⎪⎧x =t ,y =t -a (t 为参数)过椭圆C :⎩⎪⎨⎪⎧x =3cos φ,y =2sin φ(φ为参数)的右顶点,则常数a 的值为( )A .1B .2C .3D .4 解析:选C.直线l :⎩⎪⎨⎪⎧x =t ,y =t -a消去参数t 后得y =x -a . 椭圆C :⎩⎪⎨⎪⎧x =3cos φ,y =2sin φ消去参数φ后得x 29+y 24=1. 又椭圆C 的右顶点为(3,0),代入y =x -a 得a =3.12.给出两条直线l 1和l 2,斜率存在且不为0,如果满足斜率互为相反数,且在y 轴上的截距相等,那么直线l 1和l 2叫做“孪生直线”.现在给出4条直线的参数方程如下:l 1:⎩⎪⎨⎪⎧x =2+2t ,y =-4-2t (t 为参数); l 2:⎩⎪⎨⎪⎧x =3-22t ,y =4-22t (t 为参数); l 3:⎩⎪⎨⎪⎧x =1+t ,y =1-t (t 为参数); l 4:⎩⎪⎨⎪⎧x =6+22t ,y =8+22t (t 为参数). 其中能构成“孪生直线”的是________.解析:根据条件,两条直线构成“孪生直线”意味着它们的斜率存在且不为0,且互为相反数,且在y 轴上的截距相等,也就是在y 轴上交于同一点.对于本题,首先可以判断出其斜率分别为-1,1,-1,1,斜率互为相反数条件很明显.再判断在y 轴上的截距,令x =0得出相应的t 值,代入y 可得只有直线l 3和直线l 4在y 轴上的截距相等,而其斜率又恰好互为相反数,可以构成“孪生直线”.答案:直线l 3和直线l 413.在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线C :ρsin 2θ=2a cos θ(a >0),过点P (-2,-4)的直线l 的参数方程为:⎩⎪⎨⎪⎧x =-2+22t y =-4+22t ,(t 为参数),直线l 与曲线C 分别交于M ,N 两点.(1)写出曲线C 的直角坐标方程和直线l 的普通方程;(2)若|PM |,|MN |,|PN |成等比数列,求a 的值.解:(1)曲线的极坐标方程变为ρ2sin 2θ=2aρcos θ,化为直角坐标方程为y 2=2ax ;直线⎩⎪⎨⎪⎧x =-2+22t y =-4+22t ,(t 为参数)化为普通方程为y =x -2. (2)将⎩⎪⎨⎪⎧x =-2+22t y =-4+22t ,代入y 2=2ax 得 t 2-22(4+a )t +8(4+a )=0.则有t 1+t 2=22(4+a ),t 1t 2=8(4+a ),因为|MN |2=|PM |·|PN |,所以(t 1-t 2)2=t 1·t 2,即(t 1+t 2)2-4t 1t 2=t 1t 2,(t 1+t 2)2-5t 1t 2=0,故8(4+a )2-40(4+a )=0,解得a =1或a =-4(舍去).故所求a 的值为1.14.(选做题)以直角坐标系原点O 为极点,x 轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =12+t cos αy =t sin α,(t 为参数,0<α<π),曲线C的极坐标方程ρ=2cos θsin 2θ. (1)求曲线C 的直角坐标方程;(2)设直线l 与曲线C 相交于A ,B 两点,当α变化时,求|AB |的最小值.解:(1)由ρ=2cos θsin 2θ得ρ2sin 2θ=2ρcos θ,所以曲线C 的直角坐标方程为y 2=2x . (2)将直线l 的参数方程代入y 2=2x ,得t 2sin 2α-2t cos α-1=0,设A ,B 两点对应的参数分别为t 1,t 2,则t 1+t 2=2cos αsin 2α,t 1·t 2=-1sin 2α, 所以|AB |=|t 1-t 2| =(t 1+t 2)2-4t 1t 2 =4cos 2αsin 4α+4sin 2α=2sin 2α, 当α=π2时,|AB |取得最小值2.。
直 线的参数方程
直线的参数方程
直线的参数方程:
1、定义:直线的参数方程是一种表示直线的数学表达式,它是由一个普通方程式参数化而来,能够用简单的数学公式描述一条直线。
2、形式:直线的普通方程式为Ax+By+C=0,参数方程式表示为
\begin{cases}x=at+b\\y=ct+d\end{cases},其中a,b,c,d是常数,这条线的开始点和终止点分别是A(b,d),B(a+b,c+d),这条线的斜率为
m=\frac{c}{a}。
3、应用:直线的参数方程式可以用来解决一些数学的实际问题,如确定直线的斜率、表示直线空间平面内的位置关系以及描述两点之间的距离、判断两点间的方位以及计算直线上任意一点到直线两端点的距离等等。
4、解法:可以通过以下方法求解参数方程式:
(1)找出直线上的两点A、B;
(2)计算出直线的斜率m=\frac{y_2-y_1}{x_2-x_1};
(3)把斜率带入参数方程式,求出a和c的值,即:a=m, c=-m;(4)用A点求出b和d的值,即:b= x_1, d= y_1;
(5)完成求解。
直线的参数方程及应用
直线的参数方程及应用直线的参数方程及应用基础知识点击:1、直线参数方程的标准式(1)过点P 0(00,y x ),倾斜角为α的直线l 的参数方程是+=+=ααs i nc o s 00t y y t x x (t 为参数)t 的几何意义:t 表示有向线段P P 0的数量,P(y x ,)P 0P=t ∣P 0P ∣=t 为直线上任意一点. (2)若P 1、P 2是直线上两点,所对应的参数分别为t 1、t 2,则P 1P 2=t 2-t 1 ∣P 1P 2∣=∣t 2-t 1∣(3) 若P 1、P 2、P 3是直线上的点,所对应的参数分别为t 1、t 2、t 3则P 1P 2中点P 3的参数为t 3=221tt +,∣P 0P 3∣=221t t +(4)若P 0为P 1P 2的中点,则t 1+t 2=0,t 1·t 2<0 2、直线参数方程的一般式过点P 0(00,y x ),斜率为abk =的直线的参数方程是+=+=bt y y atx x 00 (t 为参数)点击直线参数方程:一、直线的参数方程问题1:(直线由点和方向确定)求经过点P 0(00,y x ),倾斜角为α的直线l+=+=ααs i n c o s 00t y y t x x是所求的直线l 的参数方程∵P 0P =t ,t 为参数,t 的几何意义是:0y )到点 P(y x ,)的有向线段的数量,且|P 0P |=|t| ① 当t>0时,点P 在点P 0的上方;② 当t =0时,点P 与点P 0重合;③当t<0时,点P 在点P 0的下方;特别地,若直线l 的倾斜角α=0时,直线?+=00y tx x④ 当t>0时,点P 在点P 0的右侧;⑤ 当t =0时,点P 与点P 0重合;⑥ 当t<0时,点P 在点P 0的左侧;问题2:直线l 上的点与对应的参数t 是一一对应关系. 问题3:P 1、P 2为直线l 上两点所对应的参数分别为t 1 则P 1P 2=?,∣P 1P 2∣=?P 1P 2=P 1P 0+P 0P 2=-t 1+t 2=t 2-t 1,∣P 1P 2∣=∣ t 2-t 1∣问题4:一般地,若P 1、P 2、P 3是直线l 上的点,所对应的参数分别为t 1、t 2、t 3, P 3为P 1、P 2的中点则t 3=221t t +基础知识点拨:1、参数方程与普通方程的互化例1:化直线1l 的普通方程13-+y x =0为参数方程,并说明参数的几何意义,说明∣t ∣的几何意义.点拨:求直线的参数方程先确定定点,再求倾斜角,注意参数的几何意义.例2:化直线2l 的参数方程?+=+-= t 313y tx (t 为参数)为普通方程,并求倾斜角,说明∣t ∣的几何意义.点拨:注意在例1、例2中,参数t 的几何意义是不同的,直线1l 的参数方程你会区分直线参数方程的标准形式?例3:已知直线l 过点M 0(1,3),倾斜角为3π,判断方程+=+=t y t x 233211(t为参数)和方程?+=+= t 331y t x (t 为参数)是否为直线l 的参数方程?如果是直线l 的参数方程,指出方程中的参数t 是否具有标准形式中参数t 的几何意义.点拨:直线的参数方程不唯一,对于给定的参数方程能辨别其标准形式,会利用参数t 的几何意义解决有关问题.xy ,)xx问题5:直线的参数方程+=+= t331y tx 能否化为标准形式?是可以的,只需作参数t 的代换.(构造勾股数,实现标准化)2、直线非标准参数方程的标准化一般地,对于倾斜角为α、过点M 0(00,y x )直线l 参数方程的一般式为,.例4:写出经过点M 0(-2,3),倾斜角为43π的直线l 的标准参数方程,并且求出直线l 上与点M 0相距为2的点的坐标.点拨:若使用直线的普通方程利用两点间的距离公式求M 点的坐标较麻烦,而使用直线的参数方程,充分利用参数t 的几何意义求M 点的坐标较容易.例5:直线-=+=20cos 420sin 3t y t x (t 为参数)的倾斜角 .基础知识测试1:1、求过点(6,7),倾斜角的余弦值是23的直线l 的标准参数方程.2、直线l 的方程:?+=-=25cos 225sin 1t y t x (t 为参数),那么直线l 的倾斜角( ) A 65°B 25°C 155°D 115°3、直线+-=-=t y t x 521511(t 为参数)的斜率和倾斜角分别是( )A) -2和arctg(-2) B) -21和arctg(-21)C) -2和π-arctg2 D) -21和π-arctg 214、已知直线?+=+=ααsin cos 00t y y t x x (t 为参数)上的点A 、B 所对应的参数分别为t 1,t 2,点P 分线段BA 所成的比为λ(λ≠-1),则P 所对应的参数是 .5、直线l 的方程: +=+=bty y atx x 00 (t 为参数)A 、B 是直线l 上的两个点,分别对应参数值t 1、t 2,那么|AB|等于( )A ∣t 1-t 2∣B 22b a +∣t 1-t 2∣ C 2221ba t t +- D ∣t 1∣+∣t 2∣6、已知直线l :+-=+= t351y tx (t 为参数)与直线m :032=--y x 交于P 点,求点M(1,-5)到点P 的距离.二、直线参数方程的应用例6:已知直线l 过点P (2,0),斜率为34和抛物线x y 22=相交于A 、B 两点,设线段AB 的中点为M,求:(1)P 、M 两点间的距离|PM|; (2)M 点的坐标; (3)线段AB 的长|AB|点拨:利用直线l 的标准参数方程中参数t l 上两点间的距离、直线l 上某两点的中点以及与此相关的一些问题时,比用直线l 的普通方程来解决显得比较灵活和简捷.x例7:已知直线l 经过点P (1,-33),倾斜角为3π,(1)求直线l 与直线l ':32-=x y 的交点Q 与P 点的距离| PQ |;(2)求直线l 和圆22y x +=16的两个交点A ,B 与P 点的距离之积.点拨:利用直线标准参数方程中的参数t 的几何意义解决距离问题、距离的乘积(或商)的问题,比使用直线的普通方程,与另一曲线方程联立先求得交点坐标再利用两点间的距离公式简便.例8:设抛物线过两点A(-1,6)和B(-1,-2),对称轴与x 轴平行,开口向右,直线y=2x +7被抛物线截得的线段长是410,求抛物线方程.点拨:(1)(对称性)由两点A(-1,6)和B(-1,-2)的对称性及抛物线的对称性质,设出抛物线的方程(含P 一个未知量,由弦长AB 的值求得P ).(2)利用直线标准参数方程解决弦长问题.此题也可以运用直线的普通方程与抛物线方程联立后,求弦长。
高中数学《直线的参数方程》课件
故|PA|+|PB|= 8+ 2=3 2.
三.小结:
(1)直线的参数方程与普通方程的联系; (2)参数t的几何意义; (4)应用:直线的参数方程与圆锥曲线
的综合应用。
3
α= 4 ,l 与抛物线 y x2相交于 A、B 两点.
(1)求直线 l 的参数方程
(2)求点 P 到 A,B 两点的距离的积;
(3)求线段的 AB 长; (4)求 AB 的中点 M 的点的坐标;
【例1】 (2009·广东理)若直线 l1:xy==21+-k2tt,(t 为参数)与直线 l2:
|t1|+|t2|=t1+t2=3 2.
法二 (1)同法一. (2)因为圆 C 的圆心为(0, 5),半径 r= 5,直线 l 的普通方
程为:y=-x+3+ 5.
由x2+(y-
5)2=5, 得
y=-x+3+ 5
x2-3x+2=0.
解得:yx==21+, 5或yx==12+, 5.
不妨设 A(1,2+ 5),B(2,1+ 5),又点 P 的坐标为(3, 5),
x=s, y=1-2s(s
为参数)垂直,则
k=________.
解析 直线l1:kx+2y=k+4,直线l2:2x+y=1, ∵l1与l2垂直,∴2k+2=0,∴k=-1. 答案 -1
点击 2:直线的参数方程与圆锥曲线的综合应用
2.(2010.福建高考)
在直角坐标系
xoy
中,直线
l
的参数方程为
x y
人教A版选修4-4第二讲参数方程
1.直线的参数方程
经过点 M0(x0,y0),倾斜角为 α 的直线 l 的参数方程为
x=x0+tcos α, (t 为参数).
2.3 直线的参数方程
( x x0, y y0 ) t (cos , sin )
所以 x x0 t cos , y y0 t sin
y
M(x,y)
即 x x0 t cos , y y0 t sin
( 300 20 2t )2 ( 20 2t )2 ( 250 10t )2 .
例4 如图,AB, CD是中心为点O的椭圆的两条相 交弦,交点为P,两弦AB, CD与椭圆长轴的夹角分别为 ∠1,∠2,且∠1=∠2,求证:|PA|· |PB|=|PC|· |PD|
x2 y2 证明 : 如图建立平面直角坐标系, 2 2 1(1), a b
探究思考
x x 0 t cos 直线 y y t sin(t为参数)与曲线y=f(x) 0
交于M1, M2两点,对应的参数分别为t1, t2. (1)曲线的弦M1M2的长是多少?
() 1 M 1M 2 t1 t2
(2)线段M1M2的中点M对应的参数t的值是多少?
(3sin 2 1)t 2 4(cos 2sin ) 8 0
x 2 t cos (t为参数), 代入椭圆方程,整理得 y 1 t sin
x2 y2 1 例2、经过点M(2, 1)作直线l,交椭圆 16 4 于
因为点M在椭圆内,这个方程必有两个实根,设A,B 两点对应的参数分别为t1, t2,则 4(cos 2sin ) t1 t2 3sin 2 1 t1 t2 0 即 cos 2sin 0 点M为线段AB的中点,所以 2 1 于是直线l的斜率 k tan 2 1 因此,直线的方程是: y 1 ( x 2) 即 x 2 y 4 0 2
直线的参数方程
3
直线参数方程可以用于解决一些与直线相关的 解析几何问题,如交点、距离等。
在物理中的应用
在力学中,直线参数方程可以用于描述物体的运 动轨迹。
在电磁学中,直线参数方程可以用于描述电流和 电压的关系。
在光学中,直线参数方程可以用于描述光的传播 路径。
在计算机图形学中的应用
在计算机图形学中 ,直线参数方程可 以用于绘制直线和 曲线。
在计算机图形学中,直线的参数方程可以用来描述物体的形状和轮廓。例如,在 绘制一条直线时,可以使用直线的参数方程来表示。这种方程形式可以方便地表 示出直线的方向和位置,并且可以方便地进行绘制和控制。
直线参数方程与三维建模
在三维建模中,直线的参数方程可以用来描述物体的表面和边缘。例如,在创建 一个立方体或球体时,可以使用直线的参数方程来表示。这种方程形式可以方便 地表示出物体的形状和轮廓,并且可以方便地进行修改和控制。
THANK YOU.
用点斜式推导直线参数方程
总结词
利用点斜式的直线方程,推导出直线参数方程的表达式 。
详细描述
已知直线通过点 $P_{1}(x_{1}, y_{1})$ 和斜率为 $k$, 则直线的点斜式方程为 $y - y_{1} = k(x - x_{1})$。为 了将其转化为参数方程形式,引入参数 $t$ 并令 $y y_{1} = t$,则 $x = x_{1} + \frac{t}{k}$
直线参数方程的特殊形式包括
当 θ = π/2 时,直线垂直于 y 轴 ,t 为任意实数;
直线参数方程的性质还包括:通 过改变 t 的值可以得到直线上不 同的点,t 的取值范围为全体实数 。
02
直线参数方程的应用
在解析几何中的应用
直线的参数方程 课件
(2)∵t1t2=-cos2θ+12sin2θ<0,设 A(x1,y1),B(x2,y2),
∴y1=t1sin θ,y2=t2sin θ,S△AOB=12|OF|·(|y1|+|y2|)=12×1·|t1-t2|·sin θ=1+2ssiinn2θθ=
【例题 1】 (1)化直线 l1:x+ 3y-1=0 的方程为标准形式的参数方程(参数为 t),
并说明 t 和t的几何意义;
(2)化直线 l2的参数方程xy==-1+3+3tt, (t 为参数)为普通方程,并说明t的几何意义.
• 思维导引:求直线的参数方程首先确定定点, 再确定倾斜角.化参数方程为普通方程关键 在于消参.
解析:(1)令
y=0,得
x=1,所以直线
l1
过定点(1,0),斜率
k=-
1 =- 3
33,设倾
斜角为 α,tan α=- 33,α=56π,∴cos α=- 23,sin α=12.所以 l1 的参数方程为
x=1- 23t, y=12t
(t 为参数).t 是直线 l1 上定点 M0(1,0)到直线上任意一点 M(x,y)的有
(2)∵P 在 C1 上,将xy==-3+1+tsintcαo.s α, 代入方程 x2+y2-2x-2y=0 得 t2-4(cos α
-sin α)t+6=0, 设点 B,D 对应的参数分别为 t1,t2. 则|PB|=|t1|,|PD|=|t2|,又 t1t2=6,∴|PB|·|PD|=|t1||t2|=|t1t2|=6.
α,
(t 为参数,0≤α≤π),
以坐标原点 O 为极点,x 轴正半轴为极轴建立极坐标系,曲线 C2 的极坐标方程为ρ=
直线的参数方程 课件
参数方程和普通方程可以进行互化.特别是要求直线上某一定点到直线与曲线的
交点的距离和直线与曲线相交的弦长时,通常要使用参数的几何意义,宜用参数方
程形式.
典例提升2
已知直线的参数方程为ቊ
= 1 + 2,
(t为参数),求该直线被圆x2+y2=9截得的弦
5 1 2
64
12 5
+
16
=
.
5
5
2
1
+ 2 + ′ =9,
5
探究三错辨析
易错点:错用参数的几何意义而致误
典例提升3
= 2− 2 ,
2+y2=4交于A,B两点,求
已知过点M(2,-1)的直线l:൞
(t为参数),l与圆x
= −1 + 2
|AB|及|AM|·|BM|.
错解:把直线方程代入圆的方程,化简得t2-6t+2=0.设A,B两点对应的参数分别为
其中t'是点M(2,-1)到直线l上的一点P(x,y)的有向线段的数量,将其代入圆的方程
x2+y2=4,化简得t'2-3 2t'+1=0.因为Δ>0,可设t1',t2'是方程的两个根,由根与系数的
关系,得t1'+t2'=3 2,t1't2'=1.由参数t'的几何意义得|MA|=|t1'|,|MB|=|t2'|,
数).
1
= 3− 2 ,
(2)把൞
代入x-y+1=0,
直线的参数方程
直线参数方程的应用-1.求(线段)弦长,直线与曲线交点的距离-2.线段的中点问题-3.求轨迹问题
作业讲评-课本P39-x=1+-1解:1直线的参数方程为-2-t为参数-y=5+-2将直线的参数方程中的, 代入x-y-2√3=0-得t=-10+6V3.所以,直线和直线x-y-2V3=0-的交点到点M的距离为t= 0+6v3
设MM2它们所对应的参数值分别为t1t2-1MM=t1-t2-2)M是MM2的中点,求M对应的参-t1+t -t=
练习-①直线-x=3+tsin20°-y=tcos20°-t为参数的倾斜角是-B-A.200-B.70°.110°-D.160°-√2-x=1-2」-直线+y-1=0的一个参数方程是
小结:-1.直线参数方程的标准式-X-X0 +tcosa-t是参数-y=yo +tsina-|=|MoM.直线参数方程的一般式-x=xo+at-t为参数-言明的儿依头,9-以网-当a2+b2≠1时,没有明确的几 意义。
例2-经过点M2,1D作直线,交椭圆后+兰-1于A,B两点。如果点M恰好为-线段AB的中点,求直线l的方程 解:设过点M2,1的直线L的参数方程为-x=2十tcos&,-t为参数-y=1十tsin a,-代入椭圆方 ,整理得-3sin2a-+1t2+4cos a+2sin at-8=0.-由t的几何意义知MA=t,MB= .因为点M在椭圆内,这个方程必有-两个实根,所以-白十场=--3sin2a+1-因为点M为线段AB的中点, 以士=0,即osa+2sina=0,-于是直线1的斜率为。=an。=一是-因此,直线1的方程是y-1=一x 2》,-x十2y-4=0.
直线的参数方程 (2)知识讲解
直线的参数方程 编稿:赵雷 审稿:李霞【学习目标】1.能选择适当的参数写出直线的参数方程. 2. 会运用直线的参数方程解决有关问题。
【要点梳理】要点一、直线的参数方程的标准形式 1. 直线参数方程的标准形式:经过定点000(,)M x y ,倾斜角为α的直线l 的参数方程为:00cos sin x x t y y t αα=+⎧⎨=+⎩(t 为参数); 我们把这一形式称为直线参数方程的标准形式。
2. 参数t 的几何意义:参数t 表示直线l 上以定点0M 为起点,任意一点M(x,y)为终点的有向线段的长度再加上表示方向的正负号,也即0||||M M t =,||t 表示直线上任一点M 到定点0M 的距离。
当点M 在0M 上方时,0t >; 当点M 在0M 下方时,0t <; 当点M 与0M 重合时,0t =;要点注释:若直线l 的倾角0α=时,直线l 的参数方程为⎩⎨⎧=+=00y y tx x .要点二、直线的参数方程的一般形式 过定点P 0(x 0,y 0)斜率k=tg α=ab的直线的参数方程是 ⎩⎨⎧+=+=bty y atx x 00(t 为参数) 在一般式中,参数t 不具备标准式中t 的几何意义。
若a 2+b 2=1,则为标准式,此时,|t |表示直线上动点P 到定点P 0的距离;若a 2+b 2≠1,则动点P 到定点P 0的距离是22b a +|t |.要点三、化直线参数方程的一般式为标准式一般地,对于倾斜角为α、过点M 0(00,y x )直线l 参数方程的一般式为,.⎩⎨⎧+=+=bty y atx x 00 (t 为参数), 斜率为a b tg k ==α (1) 当22b a +=1时,则t 的几何意义是有向线段M M 0的数量. (2) 当22b a +≠1时,则t 不具有上述的几何意义.⎩⎨⎧+=+=bt y y at x x 00可化为⎪⎪⎩⎪⎪⎨⎧+++=+++=)()(2222022220t b a b a b y y t b a b a a x x 令t '=t b a 22+ 则可得到标准式⎪⎪⎩⎪⎪⎨⎧'++='++=t b a by y t b a a x x 220220 t '的几何意义是有向线段M M 0的数量. 要点四、直线参数方程的应用1. 直线参数方程中参数的几何意义几种常见用法: 设过点P 0(x 0,y 0),倾斜角为α的直线l 的参数方程是⎩⎨⎧+=+=a t y y at x x sin cos 00 (t 为参数)若P 1、P 2是l 上的两点,它们所对应的参数分别为t 1,t 2,则(1)P 1、P 2两点的坐标分别是:(x 0+t 1cos α,y 0+t 1sin α),(x 0+t 2cos α,y 0+t 2sin α); (2)|P 1P 2|=|t 1-t 2|;(3) 线段P 1P 2的中点P 所对应的参数为t ,则t=221t t + 中点P 到定点P 0的距离|PP 0|=|t |=|221t t +| (4) 若P 0为线段P 1P 2的中点,则t 1+t 2=0.2. 用直线参数方程解直线与圆锥曲线相交的几种题型: (1)有关弦长最值题型过定点的直线标准参数方程,当直线与曲线交于A 、B 两点。
直线的参数方程
直线的参数方程
直线是数学中最著名的几何体,在几何学和数学中,几乎没有比直线更重要的几何体。
直线有着许多有趣的性质,这些性质被称为“参数方程”。
参数方程定义了一条直线的性质,并用来解决复杂的数学问题。
参数方程的定义是:一条直线的参数方程是一个二元一次方程,其形式为:Ax + By + C = 0。
其中A,B和C是常数,x和y 为坐标变量。
参数方程的根据直线的特征而定义的。
例如,如果一条直线的斜率是m,那么它的参数方程为:y-y1= m(x-x1)。
其中m=斜率,x1和y1为直线上的某一点的坐标。
如果一条直线经过坐标原点,其参数方程为:y=mx,其中m为斜率。
如果一条直线的斜率为无穷大,则它的参数方程为:x=c,其中c为直线的一个游离参数。
当一条直线的斜率为零时,它的参数方程为:y=c,其中c为直线的另一个游离参数。
因此,参数方程定义了一条直线在坐标系中的位置,并用它可以描述任何一条直线在数学上的特征。
参数方程在许多方面都很有用,它不仅可以描述直线,而且可以帮助定义和解决复杂的几何问题或数学问题。
参数方程可以帮助研究者求解复杂的几何问题,例如求解两条直线的交点、求解两条
直线的位置关系等。
此外,参数方程还可以帮助解决复杂的数学问题,例如求解一元多次方程、求解曲线积分等。
总而言之,参数方程是一种强大而有效的数学工具,它可以帮助研究者解决各类几何和数学问题。
它可以帮助研究者更有效地描述和研究直线的各种性质和特征。
因此,参数方程在几何学和数学中有着十分重要的地位,是几何学和数学研究的重要工具和理论基础。
直线的参数方程
t t ( t t ) 4t t
' 1 ' 2 ' 1 ' 2 2 ' ' 1 2
4 17
.
练习
2.动点M作匀速直线运动,它在x轴和y轴方向的 分速度分别是3m/s和4m/s,直角坐标系的长 度单位是1cm,点M的起始位置在点M0(2,1)处, 求点M的轨迹的参数方程.
y
B
A M(x,y)
0
(t是参数)
M0(x0,y0)
0
O
x •t表示有向线段M0P的数量。|t|=| M0M|
若M 0为中点, t 0 t1+t 2 0
•t只有在标准式中才有上述几何意义 设A,B为直线上任意两点,它们所对应的参 数值分别为t1,t2. (1)|AB|= t1 t 2
直线的参数方程
直线的参数方程(标准式)
x x 0 t cos 直线的参数方程 ( t为参数) y y 0 t sin
其中(x 0 , y0 )时直线上的定点, 是倾斜角; 其对应的 普通方程为y y0 k ( x x0 )或x x0。 t表示几何意义: M( (x, y )(不同于点M 0)的 0 x0 , y0 )到直线上的点M 有向线段M 0 P的数量.
(2)M是AB的中点,求M对应的参数
t1 t 2 2
1 x 1 t 2 5.一条直线的参数方程是 (t为参数), y 5 3 t 2 另一条直线的方程是x-y-2 3 0, 则两直线的交点 与点(1,-5)间的距离是
4 3
6.动点M作等速直线运动,它在x轴和y轴方向分 速度分别为9,12,运动开始时,点M位于A(1,1), 求点M的轨迹的参数方程. x 1 9t (t为参数) y 1 12t
直线的参数方程
02
通过直线的参数方程,可以方便地表示直线上的点,以及与直线平行的向量。
03
直线的参数方程在极坐标系中也可以表示为`r=r0+λcosθ`或`r=r0+λsinθ`,其中`r0`是原点到直线的距离,λ是直线的长度。
直线参数方程在物理中的应用
在物理学中,直线的参数方程可以用来描述质点的运动轨迹。
对于匀速直线运动,其参数方程可以表示为`x=x0+vt, y=y0+vt`,其中`v`是速度,`t`是时间。
斜截式
对于斜截式直线,参数方程可以表示为 `x = ty + c`, `y = ts + b`,其中t为参数,b和c分别为y轴工程中,直线参数方程被广泛应用于机械设计、土木工程等领域。例如,在机械设计中,直线参数方程可以用来描述物体的运动轨迹。
工程应用
在数学建模中,直线参数方程被用来描述和分析直线的性质和特点。例如,在解析几何中,直线参数方程可以帮助我们更好地理解直线的方向、位置和形状等特性。
直线参数方程在解析几何、物理学、工程学等领域都有广泛的应用。例如,在解析几何中,直线参数方程可以用于求解线段的中点和交点等;在物理学中,直线参数方程可以用于描述粒子的运动轨迹;在工程学中,直线参数方程可以用于绘制复杂的曲线和曲面。
直线参数方程的概念
直线参数方程的优点
直线参数方程的应用
进一步探索直线参数方程的性质
在工程中,直线的参数方程可以用来描述机构的运动轨迹。
直线参数方程的推导
03
03
直线参数方程的意义
直线参数方程将直线的几何形式转化为代数形式,便于对直线进行解析和计算。
使用向量推导直线参数方程
01
向量与参数方程的关系
直线的参数方程
直线的参数方程直线是平面上的一种线形图形,由无数个点组成。
在平面直角坐标系下,直线通常可以用线段的两个端点来确定,或者可以用点斜式和斜截式来表示。
另外,还有一种常见的表示直线的方法是使用参数方程。
参数方程是一种通过引入一个参数作为自变量来表示一个二维曲线的方法。
x=x₀+a·t,y=y₀+b·t,其中(x₀,y₀)是直线上的一个点,t是参数,a和b是与直线的方向相关的参数。
参数方程的优点之一是可以直接通过给定的参数值来求解直线上的任意一点的坐标。
另外,参数方程还可以方便地描述直线的方向和倾斜角度。
下面将分别介绍直线的参数方程以及如何根据已知信息确定参数值的方法。
1.斜率-截距形式的直线方程假设直线方程为y = mx + c,我们可以将x表示为t的函数:x=t,y = mt + c.这样,我们就得到了直线的参数方程。
其中,t是参数,(x,y)是直线上的任意一点。
参数方程的参数a和b分别为1和m。
2.两点间的直线方程首先,我们可以求出直线的方向向量,即从点A到点B的向量。
该向量的分量为:a=x₂-x₁,b=y₂-y₁.然后,我们可以选择一个点作为原点,例如A点,将该点的坐标作为参数方程中的参数值:x₀=x₁,y₀=y₁.最后x=x₀+a·t=x₁+(x₂-x₁)·t,y=y₀+b·t=y₁+(y₂-y₁)·t.3.一般直线方程的参数方程假设直线方程为Ax+By+C=0,我们可以将x表示为t的函数:x=x₀+a·t,y=y₀+b·t.在这种情况下,参数方程的参数a和b可以表示为:a=-B,b=A.其中,(x₀,y₀)是直线上的一个点,t是参数。
总结起来,直线的参数方程可以用以上三种常见形式表示。
在给定直线的已知信息之后,我们可以根据特定的情况选择合适的参数方程形式,并确定参数值。
通过确定参数值,我们可以方便地求解直线上的任意一点的坐标,也可以直观地描述直线的方向和倾斜角度。
直线的参数方程及弦长公式
直线的参数方程及弦长公式一、直线的参数方程:设直线上有两个点A(x1,y1)和B(x2,y2),通过引入一个参数t,可以将直线上的所有点的坐标表示为参数的函数。
直线的参数方程可以表示为:x=x1+(x2-x1)ty=y1+(y2-y1)t其中,参数t可以取任意实数,当t取0时,得到点A的坐标;当t取1时,得到点B的坐标。
二、推导直线的弦长公式:1.弦长的概念:弦是指在圆上连接两个点的线段。
在直线中,我们将两点之间的线段称为弦。
2.求解直线的弦长:设直线上有两个点A(x1,y1)和B(x2,y2),我们需要求解这两点之间的弦长。
首先,我们可以利用两点间的距离公式求解两点间的距离d:d=√((x2-x1)^2+(y2-y1)^2)然后,我们引入参数方程,假设x=x(t)和y=y(t)为直线的参数方程,则有:x(t)=x1+(x2-x1)ty(t)=y1+(y2-y1)t接下来,我们需要通过参数消元来求解参数t与直线上的点(x,y)之间的关系。
由x(t)=x1+(x2-x1)t,可以得到:t=(x-x1)/(x2-x1)由y(t)=y1+(y2-y1)t,可以得到:t=(y-y1)/(y2-y1)将这两个结果相等起来,可以得到:(x-x1)/(x2-x1)=(y-y1)/(y2-y1)进一步化简,可以得到:(x-x1)(y2-y1)-(y-y1)(x2-x1)=0化简后的这个等式实际上是直线的一般方程,即Ax+By+C=0。
其中A=y2-y1,B=x1-x2,C=x2y1-x1y2然后,我们将两点间的距离公式d中的x和y分别代入直线的一般方程Ax+By+C=0中,可以得到:d=√((x2-x1)^2+(y2-y1)^2)=√((x2-x1)^2+(-(A/B)(x2-x1))^2)进一步化简,可以得到:d=√(1+(A/B)^2)*,x2-x1由于A=y2-y1,B=x1-x2,所以A/B=(y2-y1)/(x1-x2)。
直线的参数方程 课件
由 ρ= 2cosθ-π4得 ρ=cos θ+sin θ,
所以 ρ2=ρcos θ+ρsin θ, 得 x2+y2=x+y, 即圆 C 的直角坐标方程为x-122+y-122=12.(5 分)
(2)把yx==112++122t3t,代入x-122+y-122=12, 得 t2+12t-14=0,(7 分) 设 A、B 两点对应的参数分别为 t1,t2,
(1)求直线的普通方程; (2)化参数方程为标准形式.
10-y 解:(1)由 y=10-4t,得 t= 4 ,代入 x=5+3t,
10-y 得 x=5+3× 4 . 化简得普通方程为 4x+3y-50=0. (2)把方程变形为 x=5+3t=5-35×(-5t), y=10+45×(-5t).
令 cos α=-35,sin α=45. u=-5t,则参数方程的标准形式为: x=5-35u, y=10+45u (u 为参数).
(t 为参数)
y=y0+bt
化标准形式的公式,非标准形式中的 a2+b2t 具有标准
x=x0+tcos α,
形式参数方程
(α 为参数)中参数 t 的几何
y=y0+tsin α
意义,故可以直接利用非标准形式的参数方程解题.
解:由题意知 F(1,0),
x=1- 22t,
则直线的参数方程为
(t 为参数),
y=
2 2t
代入抛物线方程得( 22t)2=4(1- 22t), 整理得 t2+4 2t-8=0,由一元二次方程根与系数的 关系可得 t1+t2=-4 2,t1t2=-8,由参数 t 的几何意义 得 |AB|=|t1-t2|= (t1+t2)2-4t1t2= 64=8.
(t 为参数)是非标准形式,参数 t 不具有上
直线的参数方程公式
直线的参数方程公式直线是我们在几何学中经常遇到的一种特殊的几何图形,它具有很多独特的性质和特点。
在平面几何中,直线是由无数个点组成的,它没有宽度和厚度,只有长度。
而直线的参数方程公式则是描述直线上的每一个点与某个参考点之间的关系的一种数学表达式。
直线的参数方程公式可以表示为:x = x0 + aty = y0 + bt其中,x和y分别表示直线上某一点的横坐标和纵坐标,x0和y0分别表示直线上某一参考点的横坐标和纵坐标,a和b分别表示直线在x轴和y轴上的斜率,t表示参数。
通过这个参数方程公式,我们可以通过给定的参考点和斜率来确定直线上的任意一点。
具体来说,当我们给定一个参数t的值时,我们就可以通过代入公式计算出对应的x和y的值,从而确定直线上的一个点。
在直线的参数方程公式中,斜率a和b的值决定了直线的方向和倾斜程度。
当a和b都为0时,直线将变成一个点,即只有参考点本身。
当a为0而b不为0时,直线将与y轴平行,其斜率为无穷大。
当b为0而a不为0时,直线将与x轴平行,其斜率为0。
当a和b都不为0时,直线将具有一定的倾斜程度。
我们还可以通过参数方程公式来求解两条直线的交点。
如果给定两条直线的参数方程公式分别为:x1 = x10 + a1ty1 = y10 + b1tx2 = x20 + a2ty2 = y20 + b2t我们可以通过联立这两个方程组来求解交点的坐标。
具体来说,我们可以将x1和x2相等,y1和y2相等,并解得参数t的值。
然后再将这个参数t代入其中一个方程中,求解出交点的具体坐标。
除了参数方程公式外,直线还可以用一般方程公式或斜截式方程公式来表示。
一般方程公式可以表示为Ax + By + C = 0,其中A、B和C为常数。
斜截式方程公式可以表示为y = kx + b,其中k为斜率,b为截距。
直线的参数方程公式在几何学中有着广泛的应用。
它不仅可以用来描述直线上的每一个点与参考点之间的关系,还可以用来求解两条直线的交点以及计算直线之间的夹角等问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
注意向量工具的使用. 此时,若t>0,则 M0 M 的方向向上; 若t<0,则 M0 M 的点方向向下;
y
A
M(-1,2)
把它代入抛物线y=x2的方程,得
t ቤተ መጻሕፍቲ ባይዱt 2 0
2
O
B
x
t1 t 2 2 , t1t 2 2
由参数t的几何意义得
AB t1 t2 10
MA MB t1 t2 t1t2 2
课堂练习
1 x 1 t 2 1.一条直线的参数方程是 (t为参数), y 5 3 t 2 另一条直线的方程是x-y-2 3 0, 则两直线的交点 与点(1,-5)间的距离是
'2
t t ( t t ) 4t t
' 1 ' 2 ' 1 ' 2 2 ' ' 1 2
4 17
.
例 例 11.已知直线l : x y 1 0与抛物线y x 交于 A,B两点,求线段AB的长度和点M(-1,2)到A,B
2
两点的距离之积。
解:因为把点M的坐标代入 直线方程后,符合直线方程, 所以点M在直线上. A
直线的参数方程
请同学们回忆:
我们学过的直线的普通方程都有哪些?
点斜式: y y0 k ( x x0 )
斜截式: y kx b
y y1 x x1 两点式: y2 y1 x2 x1
截距式: x y 1 一般式: Ax By C 0
a b
问题:已知一条直线过点M 0(x0 ,y0 ),倾斜角,
y
若t=0,则M与点M0重合. 并且,直线参数方程中参数t 的绝对值等于直线上动点M到 定点M0的距离. |t|=|M0M|
M(x,y)
M0(x0,y0)
e
O
x
· x x t cos · · y y t sin ·
y
B A M(x,y)
0
(t是参数)
M0(x0,y0)
2 2
| M1 M 2 | a b | t1 t 2 |
2 2
小结:
1.直线参数方程的标准式
x=x0 t cos (t是参数) |t|=|M0M| y y0 t sin
2.直线参数方程的一般式
当a b 1时,t有明确的几何意义,即 t M 0 M 当a b 1时,t没有明确的几何意义。
分析:此处的t的系数平方和不等于1,且-
3<0因此t不具有参数方程标准式中t的几何意
义。要先化为标准式。
解: x 1 2 ( 13t )
x 1 2 t 2 2 思考.求直线 与圆x y 9所交弦长。 y 2 3t
13 3 y 2 ( 13t ) 13
求这条直线的方程. 解: 在直线上任取一点M(x,y),则 M0M (x, y) ( x0 y0 ) ( x x0 , y y0 ) M(x,y) y 设 e是直线l的单位方向向量,则 e (cos ,sin ) M0(x0,y0) 因为M 0 M // e, 所以存在实数t R, e 使M 0 M te,即 (cos ,sin )
例题选讲
例1.已知直线l : x y 1 0与抛物线y x 交于
2
A,B两点,求线段AB的长度和点M(-1,2)到A,B 两点的距离之积。
分析: 1.用普通方程去解还 是用参数方程去解; 2.分别如何解. 3.点M是否在直线上 A
y
M(-1,2)
O
B
x
2 t x 1 2 即 (t为参数) y 2 2 t 2
14 x 4 at 4.如直线 (t为参数)与曲线x 2 y 2 4 x y bt 2 1 0相切,则这条直线的倾斜角等于 3 或 3
令t =- 13t
'
4 '2 4 ' 9 ' 2 12 ' t +1+ t + t +4-9=0 代入方程得: t - 13 13 13 13
x 1 方程可化为 y 2
2 t' 13 3 t' 13
8 ' 8 '' ' ' t t 4 0; t1 t 2 , t1t 2 4; 13 13
x 3 t sin200 ( 1 ) 直 线 ( t为 参 数 ) 的 倾 斜 角 是 ( B) 0 y t cos 20 A.200 B .700 C .1100 D.1600
2 x 1 t 2 (t为参数) 2 y t (2 )直线 x y 1 0的 一 个 参 数 方 程 是 。 2
2.直 线l过 点P0 ( 4,0), 倾 斜 角 为 = ,l与 圆x 2 y 2 7 6 相交与 A, B两 点. ( 1 ) 求 弦 长| AB |;( 2)求 交 点 A, B的 坐 标 .
思考:
x 1 2t 2 2 求直线 与 圆 x y 9所 交 弦 长 。 y 2 3t
3 x=2+ t x 3t 2 5 ( t 为参数) (t为参数) y 4 t 1 y 1 4 t 5
练习
4。求直线l : 4 x y 4 0与l1:x 2 y 2 0及直线 l2: 4 x 3 y 12 0所得两交点间的距离。 9 17
y
M(-1,2)
O 所以直线的参数方程可以写成 3 x=-1+tcos 4 (t为参数) y 2 t sin 3
B
x
练习
2.动点M作匀速直线运动,它在x轴和y轴方向的 分速度分别是3m/s和4m/s,直角坐标系的长 度单位是1cm,点M的起始位置在点M0(2,1)处, 求点M的轨迹的参数方程.
( x x0 , y y0 ) t (cos ,sin )
x x0 t cos , y y0 t sin 即,x x0 t cos , y y0 t sin
O
x
问题:已知一条直线过点M 0(x0 ,y0 ),倾斜角,
求这条直线的方程.
即,x x0 t cos , y y0 t sin
y
M(x,y)
所以,该直线的参数方程为 x x0 t cos (t为参数) y y0 t sin
e
M0(x0,y0)
O
x
由M 0 M te, 你能得到直线l的参数方程中 参数t的几何意义吗? 解: M M te M 0 M te 0
又 e是单位向量, e 1
M 0M t e t
y M M0
这就是t的几何 所以,直线参数方程中参 意义,要牢记 数t的绝对值等于直线上 动点M到定点M0的距离.
|t|=|M0M|
e
O
x
直线的参数方程(标准式)
x x 0 t cos 直线的参数方程 ( t为参数) y y 0 t sin
0
O
x •t表示有向线段M0P的数量。|t|=| M0M|
若M 0为中点, t 0 t1+t 2 0
•t只有在标准式中才有上述几何意义 设A,B为直线上任意两点,它们所对应的参 数值分别为t1,t2. (1)|AB|= t1 t 2
(2)M是AB的中点,求M对应的参数
t1 t 2 2
4 3
课堂练习
直线的参数方程一般式:
直线的参数方程可以写成这样的形式:
当a b 1时,t有明确的几何意义,即 t M 0 M
2 2
x x0 at (t为参数) y y0 bt
当a 2 b2 1时,t没有明确的几何意义。
| M 0 M | a b | t |
2 2
x x0 at (t为参数) y y bt 0 2 2
2 2
| M M | a b | t |
| M1 M 2 | a b | t1 t 2 |
2 2
直线参数方程的应用
1. 求(线段)弦长 2. 线段的中点问题 3. 求轨迹问题
例题选讲
1.一 直 线 l过 点P0 (3,4), 倾 斜 角 为 = , 求 此 直 线 与 4 3 x 2 y 6的 交 点 与 P0 之 间 的 距 离 .