材料界面结构与特性(叶恒强等著)思维导图

合集下载

《工程材料》材料的结构与性能 ppt课件

《工程材料》材料的结构与性能  ppt课件
原子排列情况相同而在空间位向不同 的晶向组成晶向族。
晶向族用尖括号表示, 即<uvw>。
如: <100> = [100] + [010] + [001]
ppt课件
26
在立方晶系中, 一个晶面指数与一 个晶向指数数值和符号相同时, 则该晶 面与该晶向互相垂直。
如:(111)⊥[111]。
晶面与晶向互相垂直
1. 金属晶体具有确定的熔点 纯金属缓慢加热到一定温度, 固态金属熔化 成为液态金属。熔化过程中温度不变。
熔化温度(T0)称为熔点。
非晶体材料在加 热时, 固态转变为 液态时, 温度变化。
晶体和非晶体的熔化曲线
ppt课件
32
2. 金属晶体具有各向异性
在晶体中, 不同晶面和晶向上原子排列的 方式和密度不同,它们之间的结合力的大小 也不相同,因而金属晶体不同方向上的性能 不同。这种性质叫做晶体的各向异性。
晶胞
老师提示 不同元素组成的金属晶体因晶格形
式及晶格常数的不同,表现出不同的物理、
化学和力学性能。金属的晶体结构可用X射线
结构分析技术进行测定。
ppt课件
5
一、三种常见的金属晶体结构
☆ 老师提示:重点内容
1. 体心立方晶格(胞) ( BCC 晶格)
8个原子处于立方体的角上,1个原子处于立 方体的中心, 角上8个原子与中心原子紧靠。
式中:ρ 为位错密度, 单位为m-2, ΣL 为位错线总长度, 单位为m, V为体积, 单位为m3。
ppt课件
41
位错对性能的影响: ●金属为理想晶体或含极少量位错时, 金属
的屈服强度σs 很高。
●当含有一定量的位错时, 强度降低。 ●退火金属中位错密度为 106~8 cm-2 ,强 度最低。

晶体界面的基础知识

晶体界面的基础知识
16
闪锌矿结构
在晶胞顶角和面心处的原子与体内原子分别属于不同的元素。 许多重要的半导体化合物都是闪锌矿结构。典型晶体:ZnS、 CdS、GaAs、-SiC
17
晶向、晶面
晶体具有方向性,沿晶格的不同方向晶体性质不同。 布拉伐格子的格点可以看成分列在一系列相互平行的直线系 , 这些直线系称为晶列 。
第一章 晶体界面的基础知识
江苏大学 材料科学与工程学院
1
参考教材:
1. 固体材料界面基础,颜莹编著,东北大学出版社,2008年; 2.材料界面结构与特性,叶恒强编著,科学出版社,1999年; 3.材料科学基础,张联盟, 黄学辉, 宁晓岚编,武汉理工大学出
版,2008年; 4.固体物理学,黄昆原著,韩汝琦改编,高等教育出版社,
30
一、重位点阵理论
晶体界面一般定义为,两侧晶体同相,在晶体结构和晶格 常数都相等的两个晶体间产生的界面。选择特殊的方位关系 后,因为其晶格常数相等,它成为按一定原子排列周期性重 复的界面。
作为讲述晶体晶界的形式,提出了理论和模型的人在历史 上数不胜数,但重位点阵理论的构成是高水平的。提倡用假 设两侧晶体晶格延长线上相互重合的排他律为人们提供周期 规律晶界的许多信息,这是我们想让大家体会到的事实。
例如,假设两个晶体有旋转关系,在考虑三元小回转角的 时候,可推断从1L的原点近似的三个独立晶格的矢量容易原封 不动地与2L对应,但旋转角变大时,用该假设计算的 O 点阵变 小,不能反映实际发生的对应关系。
从前面的结论显示可知,必须取1L基本矢量对应于2L矢 量,其变换关系要取最接近的矢量。作为例子讨论[110]旋转轴 的两个体心立方晶格的(110)面上的晶格,计算用二元进行。
排列方式: ABABAB (六方密堆积)

第讲 固液界面结构(共40张PPT)

第讲 固液界面结构(共40张PPT)

对于非密排晶面,
值低,如面心立方的(001)面,

微观光滑界面——小晶面长大——宏观有结晶面特征
增大过冷度,按连续长大(粗糙界面),形 长大机制与晶体形貌的关系?
质疑:界面类型的微观实质?
成粒状或球状
第三十七页,共40页。
37
思考与练习
课本:,,,
第三十八页,共40页。
38
第4课时
练习提示
:几何关系 :根据计算结果讨论 3.8 (光滑界面g=1):对结果分析 :体会晶体形貌的可变性。
第二十五页,共40页。
R
........R. 1Tk Tk 晶体长大时动力学过度冷
Tk 连续生长时晶体生长速度与动力学过冷度的关系
第二十六页,共40页。
2、台阶方式长大(侧面长大)
光滑界面在原子尺度界面是光滑的,单个原子与 晶面的结合较弱,容易脱离。只有依靠在界面上 出现台阶,然后从液相扩散来的原子沉积在台阶 边缘,依靠台阶向侧面长大。故又称“侧面长 大”。
面,在长大速度增大到一定时,却转变为非小晶面。
过冷度对不同物质存在不同的临界值, 越大的物质, 变为粗糙 面的临界过冷度也就越大。 合金的浓度有时也影响固-液界面的性质。
第二十一页,共40页。
第2课时
练习
参照图3-26、3-24,试画出两种界面结 构的原子堆积模型
P106第题:Bi和水凝固时体积膨胀,试 推测它们的固液界面是小晶面还是非小 晶面。
固-液界面的微观结构
粗糙界面:界面固相一侧的点阵位置只有约50%被固相原子所 占据,形成坑坑洼洼、凹凸不平的界面结构。 粗糙界面也称“非小晶面”或“非小平面”。
光滑界面:界面固相一侧的点阵位置几乎全部为固相原子所占满, 只留下少数空位或台阶,从而形成整体上平整光滑的界面结构。

材料表界面第六章

材料表界面第六章

溶解度参数是确定高聚物与溶剂的溶解性和聚合物与聚合 物之间相容性的重要参数。
6.5 表面张力与内聚能密度
●对于小分子,Hildebrand和Scoff 提出了如下的表面张力和
内聚能密度间的关系式:
δ 16.8( / V
2
1/ 3 0.86
)
此式适用于非缔合小分子液体,从内聚能密度计算表面张力
拉开 液 结合
固,液
Wc 2 液
内聚能:表征物质分
●内聚能:表征物质分子间相互作用力强弱的一个物理量; 摩尔内聚能:消除1摩尔物质全部分子间作用力时,其内能的 增加,即 Ecoh为摩尔内聚能,∆H为汽化热(液体)或升华热(固体) 。R为气体常数,T为温度。 ●内聚能密度:单位体积的内聚能,记作(CED),即: ●内聚能密度的平方根称为溶解度参数δ,即:
高聚物的性能与分子量的关系:
X b X b Kb / M n
性能:如玻璃化转变温度、 热容、比热、热膨胀系数、 折射率、拉伸强度等。 Xb:聚合物的某种性能; Xb∞:分子量无穷大时的性能; Kb:常数; Mn:高聚物的数均分子量。 表面张力与分子量?
6.3 表面张力与相对分子质量的关系
以σ-M-2/3或σ1/4对M-1作图,并外推到高分子量区域,即可间接得到 固态高聚物的表面张力。-------- 第二种得到表面张力的方法
6.3 表面张力与相对分子质量的关系
Ke / M
1/ 4
2/ 3 n
1/ 4 正烷烃 Ks / M n
6.3 表面张力与相对分子质量的关系
无规共聚
两种或两种以上的单体毫无规律地共聚形成
共聚物。AbbbaaAAbbabbbAAAA
嵌段共聚

材料晶界与界面ppt课件

材料晶界与界面ppt课件
7
四、晶界及界面对材料各种性能的影响规律 (6学时)
对材料力学性能(强度、塑性、疲劳、断裂及蠕变等) 的影响规律
对材料物理性能(电导率、磁性能及超导性能等)的影 响规律
对材料化学性能(抗腐蚀性)的影响规律
8
五、几种典型材料中的晶界及界面及其与 性能的关系(4学时)
超级钢中超细晶粒及晶界与材料强度的关系
材料晶界及界面
材料系 刘 庆, qing.liu@ 电话:62772852(O), 62773302(H);
1
刘庆 简历
1999年03- 现在,清华大学,材料科学与工程系,教授,博士生导师。 1993年8月- 1999年3月, 丹麦 Ris 国家实验室,材料研究部, 高级研究员。 1991年5月-1993年8月, 博士后,北京科技大学,1992年10 ,副教授。 1987年7月-1991年4月, 助教,讲师, 哈尔滨工业大学。 1984年-1991年,哈尔滨工业大学,金属材料,工学硕士,工学博士。 1984年,重庆大学 冶金及材料工程系,工学学士。
A、塑性变形:位错界面、亚晶界及晶界的形成 B、再结晶形核、长大过程中晶界的作用
43
10%压下量
30%压下量
50%压下量
深冲用IF钢轧制变 形组织的TEM图像
70%压下量
44
RD ND
Copper-I Copper-II
SS-II Brass-I Brass-II Random cube 0-10
高温超导材料中的晶界及相界与材料超导性能的关系
大塑性变形材料中位错界面及其与材料加工硬化性的 关系
新型磁性材料中晶界及相界与材料磁性能的关系
9
课程教材及主要参考书:
1、材料界面结构与特性 叶恒强、朱静等 科学出版社 2、金属的晶界与强度 宋余九编 西安交大出版社 3、 固体材料界面研究的物理基础 闻立时著 科学出版社 4、复合材料基体与界面 赵玉庭等著 华东化工学院出版社 5、材料的表面与界面 李恒德等编 清华大学出版社

材料表界面_第十章ppt课件

材料表界面_第十章ppt课件

整理版课件
30
二、聚合物基复合材料
2. 环氧树脂
常用的脂肪胺固化剂
• H2NCH2CH2NHCH2CH2NH2 二乙烯三胺
• H2NCH2CH2NHCH2CH2NHCH2CH2NH2 三乙烯四胺
• H2NCH2CH2NHCH2CH2NHCH2CH2NHCH2CH2NH2 四乙烯五胺
• H2N(CH2CH2NH)nCH2CH2NH2 多乙烯多胺
界面对复合材料的性能起着至关重要的作用。复合材料的性 能不是组成材料性能的简单加和,而产生了 1+1>2 的作用, 称为协同效应。
断裂能大幅提高的原因?
玻璃纤维的断裂能约为10 J/m2, 聚酯的断裂能约为 100 J/m2, 而复合后的玻璃纤维增强塑料的断裂能达105J/m2
整理版课件
6
一、复合材料概述
整理版课件
8
一、复合材料概述
复合材料的界面:
图10-3复合材料界面模型
1 纤维本体区 2 纤维表面区 3 界面吸附层 4 基体表面区 5 基体本体区
界面相内的化学组分,分子排列,热性
能,力学性能呈现连续的梯度性变化。
界面相很薄,是亚微观的,却有极其复杂的结构。在两相复合过程中,会出现 热应力(导热系数,膨胀系数的不同),界面化学效应(官能团之间的作用或 反应)和界面结晶效应(成核诱发结晶,横晶),这些效应引起的界面微观结 构和性能特征,对复合材料的宏观性能产生直接的影响。
整理版课件
17
二、聚合物基复合材料
聚合物基复合材料的一般特性: ⑥界面结合性差,层间剪切强度低
由于复合材料是由性能遽然不同的两种材料构成,因而界面的相容性和结 合力差,使得复合材料的层间剪切强度、横向强度都不够理想。因此,常常要 对复合材料进行界面改性来提高复合材料的性能。

材料科学基础第一章材料结构的基本知识ppt课件

材料科学基础第一章材料结构的基本知识ppt课件

整理版课件
14
3、金属键 • 通过正离子与自由电子之间相互吸引力使原子结
合的结合键。 • 价电子脱离原子成为“电子气”,正离子整齐地
排列在 “电子气”的海洋中. • 金属具有高的密度,良好的塑性,导电,导热,
固态溶解
整理版课件
15
二、二次键 1、范德瓦耳斯键 • 具有稳定电子结构的原子或分子通过电偶极矩相
Cu : …3p63d104s1
K:…3p64s1
整理版课件
7
5、电负性呈周期性变化:同周期自左至右逐渐增强, 同族自上而下逐渐减弱
整理版课件
8
第二节 原子的结合键
• 一次键 • 二次键 • 混合键 • 结合键的本质及原子间距 • 结合键与性能
整理版课件
9
按结合力强弱分:
• 一次键:通过电子的转移或共享使原子结合的结 合键.包括离子键、共价键、金属键,结合力较 强.
晶体: 有确定熔点 单晶体各向异性 多晶体各向同性
非晶体: 无确定熔点 各向同性
整理版课件
30
二、 原子排列的研究方法
• X射线或电子束 • 衍射原理 布拉格定律:
2dsinn
根据衍射分布图,可 分析晶体中原子排列 的特征(排列方式、 原子面间距等)
整理版课件
31
第四节 晶体材料的组织
1、结晶过程及多晶组织
整理版课件
39
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
整理版课件
20
由表可见,A、B原子间的电负性差越大,所 形成的 AB 化合物中离子键结合的比例越高
整理版课件
21
2、一次键与二次键混合 例如: • 石墨: 片层中为共价键,片层间

5第六章 复合材料的性能及表界面PPT课件

5第六章 复合材料的性能及表界面PPT课件

★ 对于韧性基体材料,最好具有较高的热膨胀系数。 这是因为热膨胀系数较高的相,从较高的加工温度 冷却时将受到张应力;
★ 对于脆性材料的增强相,一般都是抗压强度大于 抗拉强度,处于压缩状态比较有利。
★ 而对于像钛这类高屈服强度的基体,一般却要求 避免高的残余热应力,因此热膨胀系数不应相差 太大。
结构设计则最后确定产品结构的形状和尺寸。
上述三个设计层次互为前提、互相影响、互相依赖。
因此,复合材料及其结构的设计打破了材料研 究和结构研究的传统界限。设计人员必须把材料性 能和结构性能统一考虑,换言之,材料设计和结构 设计必须同时进行,并将它们统一在同一个设计方 案中。
复合材料是由多相材料复合而成,它的共同的 特点主要有三个:
二、复合材料组分的相容性
1、物理相容性: (1)基体应具有足够的韧性和强度,能够将外部载荷
均匀地传递到增强剂上,而不会有明显的不连续 现象。 (2)由于裂纹或位错移动,在基体上产生的局部应力 不应在增强剂上形成高的局部应力。
(3)基体与增强相热膨胀系数的差异对复合材料的界
面结合及各类性能产生重要的影响。
复合材料中界面层的厚度通常在亚微米以下,但 界面层的总面积在复合材料中很大,且复合材料的界 面特征对复合材料的性能、破坏行为及应用效能有很 大影响。
所以,人们以极大的注意力开展对复合材料界面 的研究--------表面和界面工程(surface and interface engineering)。
碳纤维复合材料、有机纤维复合材料具有比玻璃 纤维复合材料更低的密度和更高的强度,因此具有更 高的比强度。
(2)可设计性好
复合材料可以根据不同的用途要求,灵活地进 行产品设计,具有很好的可设计性。
对于结构件来说,可以根据受力情况合理布置 增强材料,达到节约材料、减轻质量的目的。

第1章液体界面 第2章固体界面性质

第1章液体界面 第2章固体界面性质


由于恒温恒压下环境对系统做的可逆非体积功等于系统 的吉布斯函数改变,即 也是恒温恒压下系统增加单位面积时 所增加的吉布斯函数,称为表面吉布斯 自由能,单位为 J m2 。

Wr ' dGT , p dAs
G A s T , p
.热力学公式 多组分多相系统,再将各相界面面积 As 作为变量, 若只考虑一个相界面,并且两相温度、压力相同,相应 的热力学基本公式为
表面张力 就是垂直作用于单位长度的边界上的引起液体表面
1 收缩的力。 N m 单位是
表面张力的方向 是和液面相切,并和两部分的分界线垂直。 如果液面是平面,表面张力就在平面上,见图。 如果液面是曲面,表面张力则在这个曲面的切面上,见图。
表面张力的定量描述实验
2 l 2 l 2 l 2 l 2 l 2 l 2 l 2 l 2 l 2 l 2 l 2 l 2 l 2 l 2 l 2 l

B

B

B

B
G U H A A A A As T ,V ,nB ( ) s T , p ,nB ( ) s S ,V ,nB ( ) s S , p ,nB ( )
4. 表面张力的影响因素 (1)表面张力与物质本性的关系
不同物质分子间作用力不同,对表面分子的影响也不同。 不同液体表面张力的差异主要是不同液体分子间作用力不同。
一般情况下,非极性液体较小,极性液体表面张力较大, 熔融盐和熔融金 属(离子键、金属键)表面张力很高。 20℃ 水 72.75 乙醇 22.3 乙醚 17.0 汞 25℃ 485.48 氯化钠 803℃ 113.8 氧化亚铁 1427℃ 582 氧化铝 2080℃ 700 银 1100℃ 878.5 铜 1084.6℃ 1300 /mN.m-1

材料表界面-第二章

材料表界面-第二章

W
4
r12
(
r1 r2
1)
4.85101 Jm2 4 3.1416 (103 m)2 (105 1)
6.09101 J
2.2 表面张力的热力学定义
• 热力学第一定律告诉我们可逆条件下生 成单位表面时内能的变化:
dU=dQR dWR (2 5)
• 系统功包括膨胀功和表面功:
dWR pdV σdA
P4 r dr 8 r dr 外部压强的两倍,求水珠2 的半径。设大气压
强P0=1.013×105Pa,20℃时水的表面张力系 数α=72.8×10-3N/m
p 2 / r (2-15)
解:水珠内外压强差:
2
P内 P外 2P0 P0 P0 R
指向液体内部,r越小,△P越大;
(2)平液面,r趋向无穷大,△P为零,跨越平液面不存在
压力差; (3)凹液面,r为负,△P为负,附加压力指向空气。
2.3 Laplace方程
2.3.2 任意曲面
如果将该曲面由ABCD向外 推移一个小小的距离dz 成 A’B’C’D’,其面积变化为:
dA (x dx)(y dy) xy xdy ydx
H A
S , P
F A
V
,T
G A
P,T
(2 10)
• 由于经常在恒温、恒压下研究表面性
能,故常用下式表示:
σ=
G A
P,T
(2 11)
• 广义表面自由能的定义:保 持相应的特征变量不变,每 增加单位表面积时,相应热
力学函数的增值。
2.2 表面张力的热力学定义
狭义的表面自由能(surface free energy)定义:
(G / A) p,T ,nB

现代材料分析测试技术材料分析测试技术ppt文档全文预览

现代材料分析测试技术材料分析测试技术ppt文档全文预览

现代材料分析测试技术材料分析测试技术ppt文档全文预览本部分的主要目的:介绍透射电镜分析、扫描电镜分析、表面成分分析及相关技术的基本原理,了解透射电镜样品制备和分析的基本操作和步骤,掌握扫描电镜在材料研究中的应用技术。

在介绍基本原理的基础上,侧重分析技术的应用!讲课18学时,实验:4学时,考试2学时。

主要要求:1)掌握透射电镜分析、扫描电镜分析和表面分析技术及其在材料研究领域的应用;2)了解电子与物质的交互作用以及电磁透镜分辨率的影响因素;3)了解透射电镜的基本结构和原理,掌握电子衍射分析及衍射普标定、薄膜样品的制备及其透射电子显微分析;4)了解扫描电镜的基本结构及其工作原理,掌握原子序数衬度、表面形貌衬度及其在材料领域的应用;了解波谱仪、能谱仪的结构及工作原理,初步掌握电子探针分析技术;5)对表面成分分析技术有初步了解;6)了解电子显微技术的新进展及实验方法的选择;参考书:1)常铁军,祁欣主编。

《材料近代分析测试方法》哈尔滨工业大学出版社;2)周玉,武高辉编著。

《材料分析测试技术——材料某射线与电子显微分析》哈尔滨工业大学出版社。

1998版3)黄孝瑛编著。

《透射电子显微学》上海科学技术出版社。

1987版4)进藤大辅,及川哲夫合著.《材料评价的分析电子显微方法》冶金工业出版社。

2001年版5)叶恒强编著。

《材料界面结构与特性》科学出版社,1999版1.1引言眼睛是人类认识客观世界的第一架“光学仪器”。

但它的能力是有限的,如果两个细小物体间的距离小于0.1mm时,眼睛就无法把它们分开。

光学显微镜的发明为人类认识微观世界提供了重要的工具。

随着科学技术的发展,光学显微镜因其有限的分辨本领而难以满足许多微观分析的需求。

上世纪30年代后,电子显微镜的发明将分辨本领提高到纳米量级,同时也将显微镜的功能由单一的形貌观察扩展到集形貌观察、晶体结构、成分分析等于一体。

人类认识微观世界的能力从此有了长足的发展。

光学显微镜的分辨率由于光波的波动性,使得由透镜各部分折射到像平面上的像点及其周围区域的光波发生相互干涉作用,产生衍射效应。

材料科学基础课件第七章第一节第二节

材料科学基础课件第七章第一节第二节
重合位置密度:界面上重合位置原子所占 的分数(1/7)。
倒易密度:Σ=7。 兰嘎纳森(Ranganathan,S.)对重合位
置理论的发展:三维重合位置点阵。有4 个基本参数,(1)旋转轴[hkl],(2) 旋转角θ,(3)重合位置在(hkl)面上的 坐标,(4)倒易密度Σ。
重合位置点阵模型
Σ要化为最小奇数。
场在表面中断的影响,表面原子的热运动、热 扩散和热缺陷及外界对表面的物理-化学作用 等。 非理想表面: (1)表面结构弛豫。点阵参数略有差异,表面 原子受力不对称引起的。
晶体表面
晶体表面
(2)表面重构。表面结构与体内本质不 同,表面超结构,即两维晶胞的基矢按 整数倍扩大。在硅半导体中经常出现, 可能和半导体的键合方向性特强、要求 四面体的配位有关。金属键不具有明显 方向性,所以表面重构较少见。造成这 种重构的物理根源还不清楚。
材料通常是以多晶状态存在,多晶体中晶粒 间的界面称为晶界。
一、界面的5个自由度 晶界结构很大程度上取决于与其毗邻的两个
晶 粒的粒相的对相位对向取。向旋和转晶轴界相u对两于个其自中由一度个,晶θ, 晶界平面法线方向 两n个自由度。
晶界结构
二、小角度晶界
据相邻晶粒取向差别角度的大小,可将晶 界分为小角度晶界(<10°)和大角度 晶界(>10°)。亚晶界属小角度晶界 ( <2°)。小角度晶界可分为倾转晶 界和扭转晶界,前者由一系列刃型位错 组成,后者由螺型位错组成。
研究表面与界面的内容:热力学、动力学。 工具:表面分析技术(俄歇电子能谱、二
次离子质谱、X射线光电子能谱、广延X
第七章 晶态固体材料中的界面
射线精细结构技术、扫描隧道电子显微镜、 原子力显微镜等,电子计算机分析表面 与界面组成和结构。

材料的内部结构、组织与性能

材料的内部结构、组织与性能
第2章 材料的内部结构、组织 与性能
概述
材料的种类千千万万,性能也各有不同,但影响材料性能的内在因素是:
材料性能与成分和组织的关系就像数学中的复合函数关系:P=f(x,y),其中y=y(n1, n2,n3,…),可见,只要改变或改善任一个因素(自变量),都将引起材料性能的变化。
材料的结构是指组成材料的原子(或离子、分子)的聚集状态,可分为三个层次,如图2.1 所示:一是组成材料的单个原子结构和彼此的结合方式(金属键、离子键、共价键、分子键), 二是原子的空间排列,三是微观与宏观组织。材料的性能除与其组成原子或分子的种类有关外, 主要取决于它们的聚集状态,即材料的组织(结构)。
§2-1 材料的内部结构(简称材料的结构)
金属材料不同层次的结构示意图 (a)原子结构 (b)原子排列 (c)晶粒 (d)合金组织形貌 绝大数工程材料的使用状态为固态,固态材料(物质)的结构即构成材料的原子(或分子)在 三维空间的结合和排列状况。
固态材料(物质)的结构
晶体-原子(或分子)呈周期性规则排列
§2-1 材料的内部结构
实际金属材料的晶体内部原子排列和结合并不象理想晶体那样规则和完整,原因在 于金属材料由冶炼的高温向室温的凝固(晶体形成)冷却过程总是存在着一些现象:结晶 的不完整性→晶体缺陷(点缺陷、线缺陷和面缺陷),收缩性→缩孔、缩松、内应力等, 其他现象如晶粒粗大、杂质、偏析、二次相析出等,这些现象造成了实际晶体及组织的 不完整性,并对金属(和陶瓷)的许多性能产生极其重要的影响。
• 相构成了组织 单相组织,多相组织;相的形态、尺寸、相对数量 和分布的不同,形成了各种各样的组织,组织决定了材料的性能。
• 合金相图是合金成分、温度与合金系所处状态间关系的简明图解; 反映了合金系在给定条件下的相平衡关系,是研究相与组织转变及 其规律的重要工具。合金的元通常是元素如Cu-Ni、Pb-Sn、Al-Si等, 也可是在研究范围内不发生任何反应的化合物如Fe-Fe3C。

华科-工程材料学-思维导图-三.材料的凝固与相图

华科-工程材料学-思维导图-三.材料的凝固与相图

长大
分类
树枝状(非均匀),存在杂质或成分过冷,不均 匀散热
结晶过程
等轴状(对称长大),纯度高,凝固时不断地液 体补充
单位面积晶粒数量,1-8级
晶粒越细,强度越高,塑,韧性越好
晶粒大小
影响因素(形核率,长大速度)
过冷度,越大越细 杂质,细化晶粒 凝固条件(机械振动,超声波振动,细化晶粒)
加变质剂(孕育剂)
三.材料凝固与相图
晶体(有明显的熔点),非晶体
基本概念
影响因素
粘度,越大越难成为晶体 冷却速度,越大越难成为晶体
过冷曲线,t-T
过冷过Biblioteka ,低于理想结晶温度才结晶过冷度
结晶条件
能量条件 结构条件
液体的自由能和固体有交点 过冷度越大,ΔG越大,驱动力越大 结构遗传性 一定条件下(尺寸大于临界尺寸)有晶核
工艺性能
铸造,共晶成分或纯金属(塑性好) 锻造,单相固溶体(晶粒细,塑性好)
合金的形式
相,化学成分和晶体结构均相同的组成成分, 分为固溶体与化合物
组织,微观相貌
合金的结晶 相
固溶体
间隙固溶 置换固溶
正常价化合物
金属间化合物
电子化合物 间隙化合物
性能,高硬,高脆,高熔
相图。成分,(P,T),相之间的关系
二元相图,仅含两个组元的合金体系对应相图
如何建立,热分析法
匀晶相图,合金的二组元在液态和固态均无限 互溶,凝固时发生匀晶反应(液体直接结晶成 固溶体)
杠杆定律
相的成分确定 相的质量之比
液体无限互溶,固体有限互溶
合金相图
二元相图
二元共晶相图
共晶反应,从液体直接析出两种固溶体,形成 交替的片层组织
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档