固体物理习题解答

合集下载

固体物理习题参考答案

固体物理习题参考答案

固体物理第一次习题参考答案1.如果将等体积球分别排成下列结构,设x 表示刚球所占体积与总体积之比,证明结构 x简单立方 0.526x π=≈体心立方 30.688x π=≈ 面心立方 20.746x π=≈ 六角密排 20.746x π=≈ 金刚石 30.3416x π=≈解:设钢球半径为r ,立方晶系晶格常数为a ,六角密排晶格常数为a,c 钢球体积为V 1,总体积为V 2(1)简单立方单胞含一个原子,a r =2 52.06343321≈==ππa r V V(2)体心立方取惯用单胞,含两个原子,r a 43= 68.0833423321≈=⋅=ππar V V (3)面心立方取惯用单胞,含4个原子,r a =2 74.0623443321≈=⋅=ππar V V (4)六角密排与面心立方同为密堆积结构,可预期二者具有相同的空间占有率 取图示单胞,含两个原子,a r =2 单胞高度a c 38=(见第2题) 74.062233422321≈=⋅⋅=ππc a r V V (5)金刚石取惯用单胞,含8个原子,r a 2341= 34.01633483321≈=⋅=ππar V V2.试证六方密排密堆积结构中128() 1.6333c a =≈解: 六角密排,如图示,4个原子构成正四面体222)2332(2a a c =⋅+⎪⎭⎫⎝⎛ ⇒ a c 38=3.证明:体心立方晶格的倒格子是面心立方,面心立方的倒格子是体心立方。

证:体心立方基矢取为⎪⎪⎪⎩⎪⎪⎪⎨⎧+-=++-=-+=)(2)(2)(2321k j i a a k j i a a k j i a a其中a 为晶格常数其倒格子基矢,按定义)(2)(21111114212)(223321j i b j i a kj ia a a a b+=+=--⋅=⨯Ω=πππ)(2)(2132k j b a a b +=⨯Ω=π)(2)(2213k i b a a b +=⨯Ω=π可见,体心立方的倒格子是晶格常数为a b π4=的面心立方。

固体物理课后习题与答案

固体物理课后习题与答案

第一章 金属自由电子气体模型习题及答案1. 你是如何理解绝对零度时和常温下电子的平均动能十分相近这一点的?[解答] 自由电子论只考虑电子的动能。

在绝对零度时,金属中的自由(价)电子,分布在费米能级及其以下的能级上,即分布在一个费米球内。

在常温下,费米球内部离费米面远的状态全被电子占据,这些电子从格波获取的能量不足以使其跃迁到费米面附近或以外的空状态上,能够发生能态跃迁的仅是费米面附近的少数电子,而绝大多数电子的能态不会改变。

也就是说,常温下电子的平均动能与绝对零度时的平均动能十分相近。

2. 晶体膨胀时,费米能级如何变化?[解答] 费米能级3/222)3(2πn mE o F= , 其中n 单位体积内的价电子数目。

晶体膨胀时,体积变大,电子数目不变,n 变小,费密能级降低。

3. 为什么温度升高,费米能反而降低?[解答] 当K T 0≠时,有一半量子态被电子所占据的能级即是费米能级。

除了晶体膨胀引起费米能级降低外,温度升高,费米面附近的电子从格波获取的能量就越大,跃迁到费米面以外的电子就越多,原来有一半量子态被电子所占据的能级上的电子就少于一半,有一半量子态被电子所占据的能级必定降低,也就是说,温度生高,费米能反而降低。

4. 为什么价电子的浓度越大,价电子的平均动能就越大?[解答] 由于绝对零度时和常温下电子的平均动能十分相近,我们讨论绝对零度时电子的平均动能与电子的浓度的关系。

价电子的浓度越大,价电子的平均动能就越大,这是金属中的价电子遵从费米—狄拉克统计分布的必然结果。

在绝对零度时,电子不可能都处于最低能级上,而是在费米球中均匀分布。

由式3/120)3(πn k F =可知,价电子的浓度越大费米球的半径就越大,高能量的电子就越多,价电子的平均动能就越大。

这一点从3/2220)3(2πn m E F=和3/222)3(10353πn mE E oF ==式看得更清楚。

电子的平均动能E 正比于费米能o F E ,而费米能又正比于电子浓度32l n。

固体物理习题解答

固体物理习题解答

,在 时为
.(课本数据有误)
试计算
(1) 费米能和费米温度;
(2) 费米球的半径;
(3) 费米速度;
(4) 费米球的最大横截面积;
(5) 室温下和绝对零度附近电子的平均自由程.
解:电子数密度
.
费米波矢
(1) 费米能
费米温度
(2) 费米球的半径 (3) 费米速度
(4) 费米球的最大横截面
(5) 平均自由时间
证:比热
高温时,
,即
按 Maclaurin 公式展开 取前三项有
,其中
,
.
, 很小,于是
, ,于是
4.(3.12)设某离子晶体中相邻两离子的相互作用势能为
为待定常数,平衡间距 解:平衡时,有
,求线膨胀系数 .
线膨胀系数
,
其中
,
.

10 / 15
1.(4.3)如果已知空位形成能为 是多少?
解:
作业 5
应满足布洛赫定理,若晶格常数为 ,电子的波函数为
(2)
.
(3)
( 是某个确定的函数)
试求电子在这些状态的波矢.
解:一维布洛赫定理为
.
(1)
(2) (3) 2(6.2)设一维电子能带可以写成
其中 为晶格常数,试求 (1) 能带的宽度; (2) 电子的平均速度; (3) 能带底部和顶部的电子有效质量.
解:(1)
马德隆常数
,对于一维晶格,选取一个正离子作为参考离子,在求和中对负离子取正号,
对正离子取负号,参考离子两边的离子是对称分布的,则有
时,由
两边积分,有
取 ,得
故由两种离子组成、间距为 的一维晶格的马德隆常数

固体物理习题答案

固体物理习题答案

第一章晶体的结构习题解答1.以堆积模型计算由同种原子构成的同体积的体心和面心立方晶体中的原子数目之比.[解答]设原子的半径为R,体心立方晶胞的空间对角线为4R,胞的边长为,晶胞的体积为,一个晶胞包含两个原子,一个原子占的体积为,单位体积晶体中的原子数为;面心立方晶胞的边长为 ,晶胞的体积为,一个晶胞包含四个原子,一个原子占的体积为,单位体积晶体中的原子数为 . 因此,同体积的体心和面心立方体晶体中原子数之比为:=0.909。

2.解理面是面指数低的晶面还是面指数高的晶面?为什么?[解答]晶体容易沿解理面劈裂,说名平行于解理面的原子层之间的结合力弱,即平行解理面的原子层的间距大。

因为面间距大的晶体晶面族的指数低,所以解理面是面指数低的晶面。

3.与晶列垂直的倒格面的面指数是什么?[解答]正格子与倒格子互为倒格子。

正格子晶面与倒格式垂直,则倒格晶面与正格矢正交。

即晶列与倒格面垂直。

4.高指数的晶面族与低指数的晶面族相比,对于同级衍射,哪一晶面族衍射光弱?为什么?[解答]对于同级衍射,高指数的晶面族衍射光弱,低指数的晶面族衍射光强。

低指数的晶面族间距大,晶面上的原子密度大,这样的晶面对射线的反射(衍射)作用强。

相反,高指数的晶面族面间距小,晶面上的原子密度小。

另外,由布拉格反射公式2dh k ls inθ=nλ可知,面间距dh k l 大的晶面,对应一个小的光的掠射角θ面间距dh k l小的晶面,对应一个大的光的掠射角θ。

θ越大,光的透射能力就越强,反射能力就越弱。

5.以刚性原子球堆积模型,计算以下各结构的致密度分别为:(1)简立方,π /6;(2)体心立方,;(3)面心立方,;(4)六角密积,;(5)金刚石结构,。

[解答]设想晶体是由刚性原子球堆积而成。

一个晶胞中刚性原子球占据的体积与晶胞体积的比值称为结构的致密度。

设n为一个晶胞中刚性原子球数,r表示刚性原子球半径,表示晶胞体积,则致密度(1)对简立方晶体,任一个原子有6个最近邻,若原子以刚球堆积,如图1·2所示,中心在1,2,3,4处的原子球将依次相切。

固体物理课后习题答案

固体物理课后习题答案

(
)
⎞ 2π k⎟= −i + j + k 同理 ⎠ a
(
)
(
)
(
)
2π ⎧ ⎪b1 = a −i + j + k ⎪ 2π ⎪ i− j+k ⎨b 2 = a ⎪ 2π ⎪ ⎪b3 = a i + j − k ⎩
(
)
(
)
(
)
由此可得出面心立方格子的倒格子为一体心立方格子; 所以体心立方格子和面心立方格子互为正倒格子。 2.2 在六角晶系中,晶面常用四个指数(hkil)来表示,如图 所示,前三个指数表示晶面族中最靠近原点的晶面在互成 1200的 共面轴 a1 , a2 , a3 上的截距为
设两法线之间的夹角满足
K 1 i K 2 = K1 i K 2 cos γ
K 1iK 2 cos γ = = K1 i K 2 2π 2π (h1 i + k1 j + l1 k )i (h2 i + k2 j + l2 k ) a a 2π 2π 2π 2π (h1 i + k1 j + l1 k )i (h1 i + k1 j + l1 k ) i (h2 i + k2 j + l2 k )i (h2 i + k2 j + l2 k ) a a a a
a1 a2 a3 , , ,第四个指数表示该晶面 h k i
在六重轴c上的截距为
c 。证明: l
i = −(h + k )
并将下列用(hkl)表示的晶面改用(hkil)表示:
2
第一章 晶体的结构
( 001) , (133) , (110 ) , ( 323) , (100 ) , ( 010 ) , ( 213) .

固体物理习题带答案

固体物理习题带答案

第二章:原子的结合
1. 设原子间的互作用能表示为 u (r ) 态,则 n>m. 解:原子间的相互作用能为: u (r )
作用能处于极小值: 这时有

r
m


rn
。证明:要使两原子处于平衡状

r
m


rn
。若两原子处于平衡状态时,则其相互
du (r ) (m) m 1 (n) n 1 dr r r
子晶格的情形比较, 与 q 之间存在着两种不同的色散关系。一维复式晶体中可以存在两 种独立的格波。两种不同的格波的色散关系:
2 2
(m M ) 4mM {1 [1 sin 2 aq]1 / 2 } 2 mM (m M ) (m M ) 4mM {1 [1 sin 2 aq]1 / 2 } 2 mM (m M )
xn (t ) A cos(t 2 naq) 。试求格波的色散关系。
解:一维单原子链中,牛顿方程为:
n ( x n 1 xn 1 2 xn ) m x
若将其振动位移写成 xn (t )
A cos(t 2 naq) 代入牛顿方程,则有
2

2 [1 cos(2aq)] 因此其色散关系为 m
0 。 所 以 有
r0
m

r0
m 1
n

r0
n 1
。所以
m nm r0 。 n
0
r0



d 2u ( r ) (m)( m 1) m 2 (n)( n 1) n 2 2 dr r r


固体物理学习题解答

固体物理学习题解答

《固体物理学》习题解答第一章 晶体结构1. 氯化钠与金刚石型结构是复式格子还是布拉维格子,各自的基元为何?写出这两种结构的原胞与晶胞基矢,设晶格常数为a 。

解:氯化钠与金刚石型结构都是复式格子。

氯化钠的基元为一个Na +和一个Cl -组成的正负离子对。

金刚石的基元是一个面心立方上的C原子和一个体对角线上的C原子组成的C原子对。

由于NaCl 和金刚石都由面心立方结构套构而成,所以,其元胞基矢都为:123()2()2()2a a a ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩a j k a k i a i j相应的晶胞基矢都为:,,.a a a =⎧⎪=⎨⎪=⎩a ib jc k2. 六角密集结构可取四个原胞基矢123,,a a a 与4a ,如图所示。

试写出13O A A '、1331A A B B 、2255A B B A 、123456A A A A A A 这四个晶面所属晶面族的晶面指数()h k l m 。

解:(1).对于13O A A '面,其在四个原胞基矢上的截矩分别为:1,1,12-,1。

所以,其晶面指数为()1121。

(2).对于1331A A B B 面,其在四个原胞基矢上的截矩分别为:1,1,12-,∞。

所以,其晶面指数为()1120。

(3).对于2255A B B A 面,其在四个原胞基矢上的截矩分别为:1,1-,∞,∞。

所以,其晶面指数为()1100。

(4).对于123456A A A A A A 面,其在四个原胞基矢上的截矩分别为:∞,∞,∞,1。

所以,其晶面指数为()0001。

3. 如将等体积的硬球堆成下列结构,求证球体可能占据的最大体积与总体积的比为:简立方:6π;。

证明:由于晶格常数为a ,所以:(1).构成简立方时,最大球半径为2m aR =,每个原胞中占有一个原子,334326m a V a ππ⎛⎫∴== ⎪⎝⎭36m V a π∴= (2).构成体心立方时,体对角线等于4倍的最大球半径,即:4m R =,每个晶胞中占有两个原子,334322348m V a a π⎛⎫∴=⨯= ⎪ ⎪⎝⎭328m V a ∴=(3).构成面心立方时,面对角线等于4倍的最大球半径,即:4m R =,每个晶胞占有4个原子,334244346m V a a π⎛⎫∴=⨯= ⎪ ⎪⎝⎭346m V a ∴=(4).构成六角密集结构时,中间层的三个原子与底面中心的那个原子恰构成一个正四面体,其高则正好是其原胞基矢c 的长度的一半,由几何知识易知3m R =c 。

固体物理习题解答

固体物理习题解答

1231.布喇菲格子:晶体由完全相同的原子组成,原子与晶格的格点相重合,而且每个格点周围的情况都一样。

(Bravais 格子)氯化钠结构:面心立方Na +布氏格子和面心立方Cl -的布氏格子套构而成的复式格子。

金刚石晶胞中由于位于四面体中心的原子和顶角原子价键的取向各不相同(即中心原子和顶角原子周围的情况不同),所以是复式格子,这种复式格子是两个面心立方格子套构而成的。

2.倒格子:设一晶格的基矢为→1a ,→2a ,→3a ,若另一格子的基矢为→1b ,→2b ,→3b ,与→1a ,→2a ,→3a 存在关系:⎩⎨⎧≠===•ji j i a b ij j i 022ππδ (i,j=1,2,3)则称以→1b ,→2b ,→3b 为基矢的格子是以→1a ,→2a ,→3a 为基矢的格子的倒格子。

自原点O 引晶面族ABC 的法线ON ,在法线上截取一段OP=ρ,使ρd=2π,d 是晶面族ABC 的面间距,对于每一族晶面都有一点P ,使得OP 成为该方向的周期,把P 平移可以得出一个新的点阵,这个新格子称为原来晶格的倒格子。

设正格子基矢为→1a ,→2a ,→3a ,则→1a →2a ,→2a →3a ,→3a →1a 晶面族 的面间距分别为d 3,d 1,d 2。

分别作OP 垂直于三个晶面族,在三个垂线上截取33/2d b π=,11/2d b π=,22/2d b π=,这样得出的三个矢量→1b ,→2b ,→3b 就取为倒格子的基矢。

又因为正格子元胞的体积为:)()()(213132321→→→→→→⨯=⨯=⨯=Ωa a d a a d a a d ,即:Ω⎪⎭⎫ ⎝⎛⨯•==→→→323122a a d b ππ,Ω⎪⎭⎫ ⎝⎛⨯•==→→→132222a a d b ππ,Ω⎪⎭⎫⎝⎛⨯•==→→→211322a a d b ππ3.证明体心立方格子和面心立方格子互为正倒格子。

面心立方格子基矢: )(2)(2)(2321→→→→→→→→→+=+=+=j i a a i k a a k j a aB 0 →1a→3a→2aAC NP利用公式:Ω⎪⎭⎫ ⎝⎛⨯•=→→→3212a a b π,Ω⎪⎭⎫ ⎝⎛⨯•=→→→1322a a b π,Ω⎪⎭⎫ ⎝⎛⨯•=→→→2132a a b π可求出其倒格子基矢为: )(2)(2)(2321→→→→→→→→→→→→-+=+-=++-=k j i ab k j i a b k j i a b πππ体心立方格子基矢: )(2)(2)(2'3'2'1→→→→→→→→→→→→-+=+-=++-=k j i a a k j i a a k j i a a 利用公式可求出其倒格子基矢为: )(2)(2)(2'3'2'1→→→→→→→→→+=+=+=j i a a i k a a k j a a πππ,所以体心立方格子与面心立方格子互为正倒格子。

固体物理习题解答

固体物理习题解答

.
(2)吸引能: 吸引
;吸引能: 排斥
.
平衡状态下, 吸引
.
排斥
(3)原子间的相互作用力
7 / 15

,则 极小值
故如果两个原子被拉开,当
时他们将分离.
7.证明一维单式格子的色散关系.
证:一维单式格子中第 个原子的运动方程可写为
(1)
对于上述方程有下列形式的解
(2) 这是一振幅为 ,角频率为 的简谐振动,式中 是第 个原子振动的相位因子.当第 和第 个原子的相
2.为什么晶体没有 5 次对称轴,而准晶体有 5 次对 称轴?
答:设在图 1 中,是晶体中某一晶面(纸面)上的一个
晶列,AB 是这晶列上相邻两个格点的距离.
(1)旋转角
.通过 A 处的 轴顺时针方向
转过 后,使 点转到 ,若通过 处 轴逆时针方向转
过 角后, 点转到 .经过转动后,要使晶格能自身重合,则 、 点必须是格点.由于
是产生一对缺陷所需要能量, 是原有的正、负离子对的数目.
(1)试证明:

(2)试求有肖特基缺陷后体积的变化 ,其中为 原有的体积.
证:(1)在晶体中形成 n 对正、负离子空位的可能情况为
与无空位相比,,晶体熵的增量为
晶体自由能
利用平衡条件(
)
(2)

4.(4.6)已知扩散系数与温度之间的关系为:
下列数据时锌在铜晶体中扩散的实验结果:
解:由 个原子组成的晶体总的结合能函数为
(1)
由于表面层原子的数目比晶体内部的原子数目少很多,所以可以认为所有的原子都是相同的,式(1)可以进 一步简化为

(2)
设最近邻原子间的距离为 ,则有

固体物理习题参考解答缺陷

固体物理习题参考解答缺陷

固体物理习题参考解答 缺陷1. 设U f 为费仑克尔缺陷形成能证明在温度T 时,达到热平衡的晶体中费仑克尔缺陷的数目为:n f =NN 1e u f k b t -2 式中N 和N ‘分别为晶体的原子格点总数和间隙位置数,解: 已知 N :晶体的原子格点数, N ‘:间隙位置数U f =U 1+U ’其中U 1:空位形成能 U ‘:填隙缺陷形成能可知,温度为T 时,某一格点上形成空位的几率为 n Ne U K b T 11=- (1) 某一间隙位置上形成填隙原子的几率为n N e U K b T ''1=- (2) 费仑克尔缺陷是形成填隙原子一空位对,即n 1=n ’=U f其几率为(1)×(2): T b K e NN n n )'U 1U (111+-=⋅⋅ 又∵U 1+U 1=U f ∴ n f =NN 1e U f K b T -22. 已知某晶体肖特基缺陷的形成能是1ev ,问温度从T =290K 到T =1000K 时,肖特基缺陷增大多少倍?解:由式 n 1=N eU K b T -11 n 2=N e U K b T -12α=n n 21=e U K b T T --12111()=)11(121T T b K U e - 代入数据:U 1=1ev ≈1.60×10-19(J) T 1=290K K B =1.38×10-23(J/K) T 2=1000Kα=exp 16010138101290110001923..⨯⨯-⎛⎝ ⎫⎭⎪⎡⎣⎢⎤⎦⎥--≈exp(28.4)= 2.1×1012(倍) the end 3. 已知铜金属的密度为8.93g/cm 3,原子量为63.54,它在1000K 及700K 时自扩散系数分别为1.65×10-11及3.43×10-15 cm 2/s ,又知空位邻近的原子跳入空位必须克服的势垒高度为0.8ev 。

固体物理习题及解答

固体物理习题及解答

固体物理习题及解答⼀、填空题1. 晶格常数为a 的⽴⽅晶系 (hkl)晶⾯族的晶⾯间距为a该(hkl)晶⾯族的倒格⼦⽮量hkl G 为 k al j a k i a h πππ222++ 。

2. 晶体结构可看成是将基元按相同的⽅式放置在具有三维平移周期性的晶格的每个格点构成。

3. 晶体结构按晶胞形状对称性可划分为 7 ⼤晶系,考虑平移对称性晶体结构可划分为 14 种布拉维晶格。

4. 体⼼⽴⽅(bcc )晶格的结构因⼦为 []{})(ex p 1l k h i f S hkl ++-+=π,其衍射消光条件是奇数=++l k h 。

5. 与正格⼦晶列[hkl]垂直的倒格⼦晶⾯的晶⾯指数为 (hkl) ,与正格⼦晶⾯(hkl )垂直的倒格⼦晶列的晶列指数为 [hkl] 。

6. 由N 个晶胞常数为a 的晶胞所构成的⼀维晶格,其第⼀布⾥渊区边界宽度为a /2π,电⼦波⽮的允许值为 Na /2π的整数倍。

7. 对于体积为V,并具有N 个电⼦的⾦属, 其波⽮空间中每⼀个波⽮所占的体积为 ()V /23π,费⽶波⽮为 3/123?=V N k F π。

8. 按经典统计理论,N 个⾃由电⼦系统的⽐热应为 B Nk 23,⽽根据量⼦统计得到的⾦属三维电⼦⽓的⽐热为 F B T T Nk /22,⽐经典值⼩了约两个数量级。

9.在晶体的周期性势场中,电⼦能带在布⾥渊区边界将出现带隙,这是因为电⼦⾏波在该处受到布拉格反射变成驻波⽽导致的结果。

10. 对晶格常数为a 的简单⽴⽅晶体,与正格⽮R =a i +2a j +2a k 正交的倒格⼦晶⾯族的⾯指数为 (122) , 其⾯间距为 .11. 铁磁相变属于典型的⼆级相变,在居⾥温度附近,⾃由能连续变化,但其⼀阶导数(⽐热)不连续。

13.等径圆球的最密堆积⽅式有六⽅密堆(hcp )和⾯⼼⽴⽅密堆(fcc )两种⽅式,两者的空间占据率皆为74%。

14. ⾯⼼⽴⽅(fcc )晶格的倒格⼦为体⼼⽴⽅(bcc )晶格;⾯⼼⽴⽅(fcc )晶格的第⼀布⾥渊区为截⾓⼋⾯体。

固体物理习题解答-完整版

固体物理习题解答-完整版
r a/2 a/2 n 1 1 2 4 2 V a3 a3 a3 a3
ρ
π / 6 ≈ 0.52
3π / 8 ≈ 0.68 2π / 6 ≈ 0.74 2π / 6 ≈ 0.74 3π /16 ≈ 0.34
1/ 2
3a / 4
2a / 4
a/2
2a 3
c ⎛3⎞ 1.2 证明理想的六角密堆积结构(hcp)的轴比 = ⎜ ⎟ 2 ⎝8⎠
ε A ,对六角晶系,绕 x 轴
(即 a 轴)旋转 180 度和绕 z 轴(即 c 轴)旋转 120 度都是对称操作,坐标变换矩阵分别为
⎛1 0 0⎞ ⎜ ⎟ Ax = ⎜ 0 − 1 0 ⎟ ⎜0 0 1⎟ ⎝ ⎠
⎛ −1/ 2 ⎜ Az = ⎜ − 3 / 2 ⎜ ⎜ 0 ⎝
3 / 2 0⎞ ⎟ −1/ 2 0⎟ ⎟ 0 1⎟ ⎠
6 a
3a / 2
6 a
2a
1.7
画体心立方和面心立方晶格结构的金属在 (100) , (110) , (111) 面上 解:
原子排列.
感谢大家对木虫和物理版的支持!
3
《固体物理》习题解答
体心立方
面心立方
1.9 指出立方晶格(111)面与(100)面,(111)面与(110)面的交线的晶向 解 (111)面与(100)面的交线的 AB-AB 平移, A 与 O 重合。B 点位矢 RB = −aj + ak (111) 与 (100) 面的交线的晶向 AB = − aj + ak —— 晶 向指数 ⎡011⎤
面指数越简单的晶面,其晶面的间距越大 晶面上格点的密度越大,这样的晶面越容易解理 1.7 写出体心立方和面心立方晶格结构中,最近邻和次近邻的原子数,若立方边长为a,写 出最近邻和次近邻原子间距 解 简立方 最近邻数 最近邻间距 次近邻数 次近邻间距 6 a 12 面心立方 12 体心立方 8

固体物理习题及解答

固体物理习题及解答

一、填空题1. 晶格常数为a 的立方晶系 (hkl>晶面族的晶面间距为;222/l k h a ++该(hkl>晶面族的倒格子矢量为 。

hkl G k al j a k i a hπππ222++2. 晶体结构可看成是将 基元 按相同的方式放置在具有三维平移周期性的 晶格 的每个格点构成。

3. 晶体结构按晶胞形状对称性可划分为 7 大晶系,考虑平移对称性晶体结构可划分为 14 种布拉维晶格。

4. 体心立方<bcc )晶格的结构因子为,[]{})(exp 1l k h i f S hkl ++-+=π 其衍射消光条件是。

奇数=++l k h 5. 与正格子晶列[hkl]垂直的倒格子晶面的晶面指数为 (hkl> , 与正格子晶面<hkl )垂直的倒格子晶列的晶列指数为 [hkl] 。

6. 由N 个晶胞常数为a 的晶胞所构成的一维晶格,其第一布里渊区边界宽度为,电子波矢的允许值为 的整数倍。

a /2πNa /2π7. 对于体积为V,并具有N 个电子的金属, 其波矢空间中每一个波矢所占的体积为,费M 波矢为()V/23π 。

3/123⎪⎪⎭⎫⎝⎛=V N k F π8. 按经典统计理论,N 个自由电子系统的比热应为,而根据量子统计得到的金属三维电子气的比热为 B Nk 23,比经典值小了约两个数量级。

F B T T Nk /22π9.在晶体的周期性势场中,电子能带在 布里渊区边界 将出现带隙,这是因为电子行波在该处受到 布拉格反射 变成驻波而导致的结果。

10. 对晶格常数为a 的简单立方晶体,与正格矢R =a i +2a j +2a k 正交的倒格子晶面族的面指数为 (122> , 其面间距为.11. 铁磁相变属于典型的 二级 相变,在居里温度附近,自由能连续变化,但其 一阶导数<比热) 不连续。

12. 晶体结构按点对称操作可划分为 32 个点群,结合平移对称操作可进一步划分为 230 个空间群。

固体物理习题解答

固体物理习题解答

《固体物理学》部分习题解答1.3 证明:体心立方晶格的倒格子是面心立方;面心立方晶格的倒格子是体心立方 。

解 由倒格子定义2311232a a b a a a π⨯=⋅⨯ 3121232a a b a a a π⨯=⋅⨯ 1231232a a b a a a π⨯=⋅⨯体心立方格子原胞基矢123(),(),()222a a a a i j k a i j k a i j k =-++=-+=-+倒格子基矢231123022()()22a a a ab i j k i j k a a a v ππ⨯==⋅-+⨯+-⋅⨯202()()4a i j k i j k v π=⋅-+⨯+-2()j k a π=+ 同理31212322()a a b i k a a a aππ⨯==+⋅⨯32()b i j a π=+ 可见由123,,b b b为基矢构成的格子为面心立方格子 面心立方格子原胞基矢123()/2()/2()/2a a j k a a k i a a i j =+=+=+倒格子基矢2311232a a b a a a π⨯=⋅⨯ 12()b i j k a π=-++ 同理22()b i j k a π=-+ 32()b i j k a π=-+可见由123,,b b b为基矢构成的格子为体心立方格子1.4 证明倒格子原胞的体积为03(2)v π,其中0v 为正格子原胞体积证 倒格子基矢2311232a a b a a a π⨯=⋅⨯3121232a a b a a a π⨯=⋅⨯1231232a a b a a a π⨯=⋅⨯倒格子体积*0123()v b b b =⋅⨯3*23311230(2)()()()v a a a a a a v π=⨯⋅⨯⨯⨯ 3*00(2)v v π=1.5 证明:倒格子矢量112233G hb h b h b =++垂直于密勒指数为123()h h h 的晶面系。

固体物理习题及答案

固体物理习题及答案

固体物理第一章习题及参考答案1.题图1-1表示了一个由两种元素原子构成的二维晶体,请分析并找出其基元,画出其布喇菲格子,初基元胞和W -S 元胞,写出元胞基矢表达式。

解:基元为晶体中最小重复单元,其图形具有一定任意性(不唯一)其中一个选择为该图的正六边形。

把一个基元用一个几何点代表,例如用B 种原子处的几何点代表(格点)所形成的格子 即为布拉菲格子。

初基元胞为一个晶体及其空间点阵中最小周期性重复单元,其图形选择也不唯一。

其中一种选法如图所示。

W -S 也如图所示。

左图中的正六边形为惯用元胞。

2.画出下列晶体的惯用元胞和布拉菲格子,写出它们的初基元胞基矢表达式,指明各晶体的结构及两种元胞中的原子个数和配位数。

(1) 氯化钾 (2)氯化钛 (3)硅 (4)砷化镓 (5)碳化硅 (6)钽酸锂 (7)铍 (8)钼 (9)铂 解:基矢表示式参见教材(1-5)、(1-6)、(1-7)式。

11.对于六角密积结构,初基元胞基矢为→1a =→→+j i a 3(2 →→→+-=j i a a 3(22求其倒格子基矢,并判断倒格子也是六角的。

倒空间 ↑→ji i (B)由倒格基失的定义,可计算得Ω⨯=→→→3212a a b π=a π2)31(→→+j i →→→→→+-=Ω⨯=j i a a a b 31(22132ππ→→→→=Ω⨯=k ca ab ππ22213正空间二维元胞(初基)如图(A )所示,倒空间初基元胞如图(B )所示(1)由→→21b b 、组成的倒初基元胞构成倒空间点阵,具有C 6操作对称性,而C 6对称性是六角晶系的特征。

(2)由→→21a a 、构成的二维正初基元胞,与由→→21b b 、构成的倒初基元胞为相似平行四边形,故正空间为六角结构,倒空间也必为六角结构。

12.用倒格矢的性质证明,立方晶格的(hcl )晶向与晶面垂直。

证:由倒格矢的性质,倒格矢→→→→++=321b l b k b h G hkl 垂直于晶面(h 、k 、l )。

固体物理学习题解答(完整版)

固体物理学习题解答(完整版)

《固体物理学》部分习题参考解答第一章1.1 有许多金属即可形成体心立方结构,也可以形成面心立方结构。

从一种结构转变为另一种结构时体积变化很小.设体积的变化可以忽略,并以R f 和R b 代表面心立方和体心立方结构中最近邻原子间的距离,试问R f /R b 等于多少?答:由题意已知,面心、体心立方结构同一棱边相邻原子的距离相等,都设为a :对于面心立方,处于面心的原子与顶角原子的距离为:R f=2 a 对于体心立方,处于体心的原子与顶角原子的距离为:R b=2a 那么,Rf Rb31.2 晶面指数为(123)的晶面ABC 是离原点O 最近的晶面,OA 、OB 和OC 分别与基失a 1,a 2和a 3重合,除O 点外,OA ,OB 和OC 上是否有格点?若ABC 面的指数为(234),情况又如何?答:根据题意,由于OA 、OB 和OC 分别与基失a 1,a 2和a 3重合,那么 1.3 二维布拉维点阵只有5种,试列举并画图表示之。

答:二维布拉维点阵只有五种类型:正方、矩形、六角、有心矩形和斜方。

分别如图所示:1.4 在六方晶系中,晶面常用4个指数(hkil )来表示,如图所示,前3个指数表示晶面族中最靠近原点的晶面在互成120°的共平面轴a 1,a 2,a 3上的截距a 1/h ,a 2/k ,a 3/i ,第四个指数表示该晶面的六重轴c 上的截距c/l.证明:i=-(h+k ) 并将下列用(hkl )表示的晶面改用(hkil )表示:(001)(133)(110)(323)(100)(010)(213)答:证明设晶面族(hkil )的晶面间距为d ,晶面法线方向的单位矢量为n °。

因为晶面族(hkil )中最靠近原点的晶面ABC 在a 1、a 2、a 3轴上的截距分别为a 1/h ,a 2/k ,a 3/i ,因此123o o o a n hda n kd a n id=== ……… (1) 正方 a=b a ^b=90° 六方 a=b a ^b=120° 矩形 a ≠b a ^b=90° 带心矩形 a=b a ^b=90° 平行四边形 a ≠b a ^b ≠90°由于a 3=–(a 1+ a 2)313()o o a n a a n =-+把(1)式的关系代入,即得()id hd kd =-+ ()i h k =-+根据上面的证明,可以转换晶面族为(001)→(0001),(133)→(1323),(110)→(1100),(323)→(3213),(100)→(1010),(010)→(0110),(213)→(2133)1.5 如将等体积的硬球堆成下列结构,求证球可能占据的最大面积与总体积之比为(1)简立方:6π(2(3)面心立方:6(4)六方密堆积:6(5)金刚石:。

固体物理习题解答

固体物理习题解答
函数,能量本征值和本征函数在 k 空间具有倒格矢反演和 周期性,电子波矢 k 是与平移对称性相联系的量子数 。 非晶态也具有相似的基本能带结构,即:导带、价带和禁带。 但非晶态的电子态与晶态比较有本质区别。非晶态不存在 周期性,因此 k 不再是具有类似特征的量子数。 非晶态能带中电子态分扩展态和局域态二类。扩展态的电子为 整个固体共有,可在整个固体内找到,在外场中运动类似 晶体中电子;局域态的电子基本局限在某一区域,状态波 函数只能在围绕某一不大的尺度内显著不为零,它们依靠 声子协助,进行跳跃式导电。
方 (110)晶面的格点面密度最大。根据
dhkl
h2
a k2
l2
,有面心立方
d111
a ,体心立方 3
d110
a 2
因此,最大格点面密度表达式,
dh1h2h3 2 / Gh1h2h3
面心立方111
4 a3
a 3
43 3a2

体心立方110
2 a3
a 2
2 a2
第一章 习题
1.7 证明体心立方格子和面心立方格子互为倒格子。
k * N
由于晶体原胞数 N 很大,倒格子原胞体积 很小, k 在波矢空间准连续取值,因 此,同一能带中相邻 k 值的能量差别 很小, 所以 En(k) 可近似看成是 k 的 准连续函数。
第四章 思考题
5、近自由电子模型和紧束缚模型有何特点?它们有共同之处吗? 答: 近自由电子近似模型是当晶格周期势场起伏很小,电子的行为
第一章 思考题
2、晶体结构可分成布拉菲格子和复式格子吗?
答: 可以。 以原子为结构参考点,可以把晶体分成布拉菲格子和复式格
子。 任何晶体,以基元为结构参考点,都是布拉菲格子描述。 任何化合物晶体,都可以复式格子描述? 不是所有的单质晶体,都是布拉菲格子描述? 单质晶体,以原子为结构参考点,也可以分成布拉菲格子和
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《固体物理学》部分习题解答补充:证明“晶体的对称性定律”。

证明:晶体中对称轴的轴次n并不是任意的,而是仅限于 n=1,2,3,4,6这一原理称为“晶体的对称性定律”。

现证明如下:设晶体中有一旋转轴n 通过某点O,根据前一条原理必有一平面点阵与你n 垂直,而在其中必可找出与 n垂直的属于平移群的素向量a,将a作用于O得到A 点将-a作用于O点得到A’点:若a= ,则L( )及L(- )必能使点阵复原,这样就可得点阵点B,B’,可得向量BB’,显然BB与a平行,因为空间点阵中任意互相平行的两个直线点阵的素向量一定相等,因而向量BB’的长度必为素向量a的整数倍即:BB’= ma由图形关系可得:=即m=0,±1,±2m n-2 -1 p 2-1 - 30 0 41 62 1 2p 1所以 n=1,2,3,4,6综上所述可得结论:在晶体结构中,任何对称轴或轴性对称元素的轴次只有一重,二种,三重,四重或六重等五种,而不可能存在五重和七重及更高的其它轴次,这就是晶体对称性定律。

晶体的对称性定律证明:1.3 证明:体心立方晶格的倒格子是面心立方;面心立方晶格的倒格子是体心立方 。

解 由倒格子定义2311232a a b a a a π⨯=⋅⨯ 3121232a a b a a a π⨯=⋅⨯ 1231232a a b a a a π⨯=⋅⨯体心立方格子原胞基矢123(),(),()222a a a a i j k a i j k a i j k =-++=-+=-+倒格子基矢231123022()()22a a a ab i j k i j k a a a v ππ⨯==⋅-+⨯+-⋅⨯202()()4ai j k i j k v π=⋅-+⨯+- 2()j k a π=+同理31212322()a a b i k a a a a ππ⨯==+⋅⨯ 32()b i j aπ=+可见由123,,b b b为基矢构成的格子为面心立方格子 面心立方格子原胞基矢123()/2()/2()/2a a j k a a k i a a i j =+=+=+倒格子基矢2311232a a b a a a π⨯=⋅⨯ 12()b i j k aπ=-++同理22()b i j k a π=-+ 32()b i j k a π=-+可见由123,,b b b为基矢构成的格子为体心立方格子1.4 证明倒格子原胞的体积为3(2)v π,其中0v 为正格子原胞体积证 倒格子基矢2311232a a b a a a π⨯=⋅⨯3121232a a b a a a π⨯=⋅⨯1231232a a b a a a π⨯=⋅⨯倒格子体积*0123()v b b b =⋅⨯3*02331123(2)()()()v a a a a a a v π=⨯⋅⨯⨯⨯ 3*00(2)v v π=1.5 证明:倒格子矢量112233G h b h b h b =++垂直于密勒指数为123()h h h 的晶面系。

证:33121323,a aa a C A C B h h h h =-=-容易证明123123h h h h h h G C A G C B ⋅=⋅=112233G h b h b h b =++与晶面系123()h h h 正交。

1.6 如果基矢,,a b c构成简单正交系证明晶面族()hkl 的面间距为22()()k l d b c=+ 说明面指数简单的晶面,其面密度较大,容易解理证 简单正交系a b c ⊥⊥123,,a ai a bj a ck ===倒格子基矢2311232a a b a a a π⨯=⋅⨯ 3121232a a b a a a π⨯=⋅⨯ 1231232a a b a a a π⨯=⋅⨯123222,,b i b j b k a b c πππ===倒格子矢量123G hb kb lb =++ 222h i k j l k a b cπππ=++晶面族()hkl 的面间距2d Gπ== 面指数越简单的晶面,其晶面的间距越大晶面上格点的密度越大,这样的晶面越容易解理3.2 讨论N 个原胞的一维双原子链(相邻原子间距为a),其2N 个格波解,当M=m 时与一维单原子链结果一一对应解 质量为M 的原子位于 2n-1, 2n+1, 2n+3 ……。

质量为m 的原子位于 2n , 2n+2, 2n+4 ……。

牛顿运动方程2221212121222(2)(2)n n n n n n n n m M μβμμμμβμμμ+-+++=---=---—— 体系有N 个原胞,有2N 个独立的方程 方程2221212121222(2)(2)n n n n n n n n m M μβμμμμβμμμ+-+++=---=--- 的解[(2)]2[(21)]21i t na q n i t n aq n AeBeωωμμ--++==A ,B 有 非零解2222cos 02cos 2m aq aqM βωβββω--=--12222()4{1[1sin ]}()m M m M aq m Mm M ωβ+=±-+—— 两种不同的格波的色散关系 12222()4{1[1sin ]}()m M m M aq m Mm M ωβ++=+-+22(2)(2cos )0(2cos )(2)0m A aq B aq A M B βωβββω⎧--=⎪⎨-+-=⎪⎩12222()4{1[1sin ]}()m M m M aq m Mm M ωβ-+=--+对应一个q 有两支格波:一支声学波和一支光学波 —— 总的格波数目为2NM=m 2aq ω+=2aq ω-=长波极限情况下0q → sin()22qa qa ≈q ω-=与一维单原子晶格格波的色散关系一致3.3.考虑一双原子链的晶格振动,链上最近邻原子间力常数交错的等于c 和10 c .令两种原子质量相同,且最近邻间距为2a .求在0k =和k a π=处的()k ω.大略地画出色散关系.本题模拟双原子分子晶体,如2H 。

∙ ∙1s u - 1s v - s u s v 1s u + 1s v + ()()21210s s s s s d u MC V u C V u dt-=-+-,()()21210,s s s s s d V MC u V C u V dt+=-+-将,.isK ai tisK ai ts s u ueeV Veeωω--=⋅=⋅代入上式有()()221011,1011,ikaika M u C e V C u M V C eu C V ωω--=+--=+-是U ,v 的线性齐次方程组,存在非零解的条件为2211,(10)(10),11iK aiK aM C C e C eM Cωω--++- =0,解出242222220(1)011.M M C C conK a C Mωωω±-+-=⎡∴=±⎣当K=0时, 当K=/a π时2222/,0,C M ωω+-==2220/,2/,C M C M ωω+-==2ω与K 的关系如下图所示.这是一个双原子(例如2H )晶体3.6 计算一维单原子链的频率分布函数()ρω 解 设单原子链长度L Na = 波矢取值2q hN a π=⨯ 每个波矢的宽度2N aπ状态密度2N a π dq 间隔内的状态数2N a dq π—— 对应,q ω±取值相同,d ω间隔内的状态数目 ()22N a d dq ρωωπ=⨯一维单原子链色散关系 224sin ()2aq m βω=令0ω=0sin()2aq ωω=两边微分得到 0cos()22a aq d dqωω= cos()2aq =d ω=d ω=2d dq =代入()22N a d dq ρωωπ=⨯2ω=⨯一维单原子链的频率分布函数()ρω=3.7.设三维晶格的光学振动在q=0附近的长波极限有20()q Aq ωω=-求证:频率分布函数为()1/20023/21(),4V f Aωωωωωπ=-<;()0f ω=. 0,ωω>解 ()11222200000()0,0Aq f Aq q A ωωωωωωωωωω>-=>=<⇒-=⇒=-时,依据()3()2,()()2q q Vds q Aq f q ωωωπ∇=-=∇⎰,并带入上边结果有()()()()()()()1/21/200331/2223/201142()222q Vds VAVf AAq ωπωωωωωππωωπ=⋅=⋅-=⋅-∇-()222222222,222B xyK Kmm a a ma πππε⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫=+=+=⎢⎥⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦B 点能量所以/2B A εε=4.2.写出一维近自由电子近似,第n 个能带(n=1,2,3)中,简约波数2k aπ=的0级波函数。

解:2221()*24()im xixim xim xikxikxaaaakx eeππππψ+===⋅=第一能带:*210,0,()2ixakm m x aππψ⋅===第二能带:23*222,,1,()xixaakb b b b m m x aaπππππψ''=→⋅=-=-∴=i i2a则即(e=e)第三能带:25*2222,,1,()ixixixaaakc c m m x eaaπππππψ'→⋅===⋅=即(2) 用近自由电子近似模型求出晶体的第一个及第二个带隙宽度. 解:(I)题设势能曲线如下图所示.(2)势能的平均值:由图可见,()V x 是个以a 为周期的周期函数,所以111()()()()a a b LbbV x V x V x dx V x dx Laa--===⎰⎰⎰题设4a b =,故积分上限应为3a b b -=,但由于在[],3b b 区间内()0V x =,故只需在[],b b -区间内积分.这时,0n =,于是 2222232111()()2236bbbb bbb b m m V V x dx b x dx b x xm b a a a ωωω----⎡⎤==-=-=⎢⎥⎣⎦⎰⎰。

(3),势能在[-2b,2b]区间是个偶函数,可以展开成傅立叶级数20021()cos ,()cos()cos2222b b m m m m m m V x V V x V V x xdx V x xdxb bbbbπππ∞=-∞'=+==∑⎰⎰11222102,1()cos2b g g m x E V m E b x dx bbωπ===-⎰第一个禁带宽度以代入上式,利用积分公式()2232cos sin 2cos sin u u mudu mu mu mu mu mm=+-⎡⎤⎣⎦⎰得22316m b ωπ=1g E 第二个禁带宽度222,2g E V m ==以代入上式,代入上式2222()cosb g m x E b x dx bbωπ=-⎰再次利用积分公式有2222m b ωπ=2g E4.4用紧束缚近似求出面心立方晶格和体心立方晶格s 态原子能级相对应的能带()sE k 函数解 面心立方晶格—— s 态原子能级相对应的能带函数0()()ss ik R ss s R N earestE k J J R e ε-⋅==--∑s 原子态波函数具有球对称性0*1()()[()()]()}0s i s i J J R R U V d ϕξξξϕξξ==--->⎰01()ss ik R ss R N earestE k J J eε-⋅==--∑—— 任选取一个格点为原点 —— 最近邻格点有12个12个最邻近格点的位置 ,,022,,022,,022,,022a a a a a a a a ⎧⎪⎪⎪-⎪⎨⎪-⎪⎪⎪--⎩0,,220,,220,,220,,22aa a a a a a a ⎧⎪⎪⎪-⎪⎨⎪-⎪⎪⎪--⎩,0,22,0,22,0,22,0,22aa a a a a aa ⎧⎪⎪⎪-⎪⎨⎪-⎪⎪⎪--⎩022s a a R i j k =++ 01()s s ik R ss R N earestE k J J eε-⋅==--∑ ()(0)22()2(cossin)(cossin)2222x y z sx y a a i k i k j k k i j k ik R a ik k y y x x e ek a k a k a k a ei i -++⋅++-⋅-+==--—— 类似的表示共有12项—— 归并化简后得到面心立方s 态原子能级相对应的能带1()4(cos cos cos cos cos cos )222222ss y y x x z z E k J k ak ak ak a k ak a J ε=--++对于体心立方格子――任选取一个格点为原点 —— 有8个最邻近格点 —— 最近邻格点的位置 ,,222,,222,,222,,222a a a a a a a a a a a a ⎧⎪⎪⎪---⎪⎨⎪-⎪⎪⎪--⎩ ,,222,,222,,222,,222a a a a a a a a a a a a ⎧-⎪⎪⎪--⎪⎨⎪-⎪⎪⎪--⎩222s a a a R i j k=++01()ss ik R ss R N earestE k J J eε-⋅==--∑()()()2222(cossin)(cossin)(cossin)222222x y z x y z sa a a a i k i k j k k i j k i k k k ik R y y x x z z eeek a k a k a k a k a k a i i i -++⋅++-++-⋅===---—— 类似的表示共有8项归并化简后得到体心立方s 态原子能级相对应的能带01()8cos(/2)cos(/2)cos(/2)ss x y z E k J J k a k a k a ε=-- 4.7.有一一维单原子链,间距为a ,总长度为Na 。

相关文档
最新文档