表达式求值演示1
表达式求值
![表达式求值](https://img.taocdn.com/s3/m/06b4c105a6c30c2259019ea8.png)
(1)6 7 5 – 8 3 / * + (2)25 x + a a b + * b + *
问题2 问题2:如何对一个后缀表达式求值?
步骤: 1、读入表达式一个字符 2、若是操作数,压入栈,转4 3、若是运算符,从栈中弹出2个数,将运算结果再压入栈 4、若表达式输入完毕,栈顶即表达式值; 若表达式未输入完,转1 例 计算 4+3*5 后缀表达式:435*+
3 1 4 2 优先级,有时还要处理括号。
运算符的优先关系表
+ - × / ( ) + > > > > < > - > > > > < > × < < > > < > / < < > > < > ( < < < < < ) > > > > = >
后缀表达式:不包含括号,运算符放在两个运算
对象的后面,所有的计算按运算符出现的顺序,严 格从左向右进行。 如:2 1 + 3 *,对于的中缀表达式为(2 + 1) * 3
中缀表达式:在程序语Байду номын сангаас中,运算符位于两个操
作数中间的表达式称为是中缀表达式。P66 例子: 要对以下中缀表达式求值: 4+2×3 - 10/5 1 中缀表达式运算的规则: =4+6-10/5 (1)先乘除,后加减; 2 =4+6-2 (2)从左算到右; 3 =10-2 (3)先括号内,后括号外。 。 4 =8 + × - / 中缀表达式不仅要依赖运算符
数学表达式求值
![数学表达式求值](https://img.taocdn.com/s3/m/47468b96e43a580216fc700abb68a98271feac22.png)
一、设计思想算数四则运算的规则为:①对带括号的操作执行顺序为,先括号里面的,后括号外面的。
如遇多层括号,则按从最内层依序至外的操作运算。
②先乘除后加减③优先级相同的操作符按操作符先后顺序从左到右依次计算。
算数表达式由数值和操作符(+、-、*、/、%、(、))构成,然而开始输入表达式全是字符构成,因此出现一个问题,将算数字符表达式中的数字字符转化为浮点型数值再进行运算。
中缀表达式求值算法基本思路:1.建立两个栈,一个用来存数字,一个用来存操作符。
2.依次扫描表达式字符,如果是数字字符,将其转化为浮点数,直接存入数值栈。
3.如果是操作符,观察操作符,判断其与符号栈栈顶操作符的优先级,如果栈顶元素优先级低于观察字符,就入栈。
4.如果栈顶元素的优先级高于观察字符,就从数值栈中取出两个操作数,从符号栈中取出栈顶操作符,进行运算,将运算结果存入数值栈。
5.重复操作,直到操作符栈顶元素优先级低于观察字符,此时操作符入栈。
6.然后对下一个字符进行扫描,如果是‘(’,直接入栈,如果是‘)’,则从数值栈中取两个操作数,符号栈中取出一个操作符,然后进行计算后得数放入数值栈中。
7.不断进行此类操作,直到从栈中取出的是左括号为止,左括号去掉,扫描下一个。
扫描结束后,计算也结束了,计算的结果就存放在数值栈中。
8.最后把数值栈中的数取出,就是所得的计算结果。
中缀表达式转化为后缀表达式求值基本思路:中缀式转化为后缀式:1.创建一个操作符栈和一个字符串数组,数组用来存放转化的后缀表达式。
2.对输入的表达式字符串进行逐个扫描,如果是数字或者小数点,就直接存放在数组中,如果扫描过程中遇到不为数字或小数点字符就在后面加上一个空格作为分隔标志。
3.如果是操作符就和符号栈中已有的操作符比较,如果比栈中的操作符优先级高,则直接入栈。
4.否则符号栈中元素出栈,存到字符串数组中,然后再次观察栈顶,直到栈中元素优先级低于扫描的操作符,则此被扫描操作符入栈。
数据结构-算术表达式求值(含需求分析和源代码)
![数据结构-算术表达式求值(含需求分析和源代码)](https://img.taocdn.com/s3/m/973d2dc702d276a200292e51.png)
需求分析(附代码)一、需求分析(1)首先定义两个栈OPTR、OPND,栈OPTR用于存放运算符,栈OPND 用于存放操作数;定义一个一维数组expr【】存放表达式串。
(2)主函数主要包括两部分:(1)判断运算符优先权,返回优先权高的;(2)操作函数。
(3)开始将‘#’入操作符栈,通过一个函数来判别算术运算符的优先级。
且规定‘#’的优先级最低。
在输入表达式的最后输入‘#’,代表表达式输入结束。
在表达式输入过程中,遇操作数则直接入栈。
遇到运算符则与栈顶运算符比较优先级,当前运算符优先级高(前面的运算还不应执行)则当前运算符入栈,扫描下一符号;否则栈顶运算符出栈,两操作数出栈,进行运算,所得结果入数栈,重新比较当前运算符(注意当前运算符未变)与新栈顶运算符。
如此重复直到栈顶运算符与当前符号均为‘#’,运算结束。
(4)最初实现的加、减、乘、除及带小括号的基本运算,但考虑到实用性,后来的设计中有加上了乘方运算。
在乘方运算中借用了C库中自带的乘方函数pow。
二、概要设计1、设定栈的抽象数据类型定义:ADT Stack {数据对象:D={ ai | ai∈ElemSet, i=1,2,...,n,n≥0 }数据关系:R1={ <ai-1, ai >| ai-1, ai∈D, i=2,...,n }约定an端为栈顶,a1端为栈底。
基本操作:InitStack(&S)操作结果:构造一个空栈S。
DestroyStack(&S)初始条件:栈S已存在。
操作结果:栈S被销毁。
StackEmpty(S)初始条件:栈S已存在。
操作结果:若栈S为空栈,则返回TRUE,否则FALE。
StackLength(S)初始条件:栈S已存在。
操作结果:返回S的元素个数,即栈的长度。
GetTop(S, &e)初始条件:栈S已存在且非空。
操作结果:用e返回S的栈顶元素。
ClearStack(&S)初始条件:栈S已存在。
3.3-1 表达式及后缀表达式求值
![3.3-1 表达式及后缀表达式求值](https://img.taocdn.com/s3/m/07d8e5c1a8956bec0975e3a0.png)
堆栈和队列Content堆栈1队列2表达式计算3递归4PART THREE表达式计算•表达式的概念•后缀表达式求值•中缀表达式到后缀表达式的转换•中缀表达式:操作符在两个操作数之间的表达式•前缀表达式:操作符在两个操作数之前的表达式•后缀表达式:操作符在两个操作数之后的表达式逆波兰表达式(Reverse Polish notation ,RPN ),J. Lukasiewicz 1929示例:a + b 示例:+ a b 示例:a b +表达式:由操作数、操作符(+、-、*、\等)和界限符(括号等)组成•中缀表达式a + ( b –c )a + ba b +a b c -+计算的顺序由界符、操作符优先级决定计算的顺序只取决于操作符的扫描顺序•后缀表达式VS.对比:•操作数的顺序相同,而操作符的顺序不同;•前者的不同操作符的运算优先级存在差异,后者的所有操作符的运算优先级相同;•前者可以有界限符,后者没有界限符;后缀表达式求值算法(利用堆栈实现):1.从左往右顺序依次扫描后缀表达式中的元素:•若当前扫描元素是操作数,则将操作数进栈;•若当前扫描元素是操作符,则从栈中弹出两个操作数,并执行该操作符指定的运算,然后将计算结果进栈;2.当表达式扫描结束,弹出栈顶数据,该数据即为计算结果。
6 4 2 -/ 3 2 * + 6-24/32*+6/(4-2)+3*2= 9算法(利用堆栈实现):1.从左往右顺序依次扫描后缀表达式中的元素:•若当前扫描元素是操作数,则将操作数进栈;•若当前扫描元素是操作符,则从栈中弹出两个操作数,并执行该操作符指定的运算,然后将计算结果进栈;2.当表达式扫描结束,弹出栈顶数据,该数据即为计算结果。
6 4 2 -/ 3 2 * +6-24/32*+42=2算法(利用堆栈实现):1.从左往右顺序依次扫描后缀表达式中的元素:•若当前扫描元素是操作数,则将操作数进栈;•若当前扫描元素是操作符,则从栈中弹出两个操作数,并执行该操作符指定的运算,然后将计算结果进栈;2.当表达式扫描结束,弹出栈顶数据,该数据即为计算结果。
表达式求值的经典算法
![表达式求值的经典算法](https://img.taocdn.com/s3/m/6cc2374524c52cc58bd63186bceb19e8b8f6ecbd.png)
表达式求值的经典算法达式求值的经典方法由 Donald Knuth 描述于 1962 年(请参阅参考资料)。
Knuth 将此概括为三个步骤:对中缀表达式进行语法分析中缀表达式到后缀表达式的转换对后缀表达式求值注意到我们谈到的这个经典算法有些简化:算术表达式只包含操作数、二元操作符和一种括号。
此外,对于每个操作数和操作符,只用单个字符表示,使语法分析直观。
表达式表示法算术表达式中最常见的表示法形式有中缀、前缀和后缀表示法。
中缀表示法是书写表达式的常见方式,而前缀和后缀表示法主要用于计算机科学领域。
中缀表示法中缀表示法是算术表达式的常规表示法。
称它为中缀表示法是因为每个操作符都位于其操作数的中间,这种表示法只适用于操作符恰好对应两个操作数的时候(在操作符是二元操作符如加、减、乘、除以及取模的情况下)。
对以中缀表示法书写的表达式进行语法分析时,需要用括号和优先规则排除多义性。
Syntax: operand1 operator operand2Example: (A+B)*C-D/(E+F)前缀表示法前缀表示法中,操作符写在操作数的前面。
这种表示法经常用于计算机科学,特别是编译器设计方面。
为纪念其发明家― Jan Lukasiewicz(请参阅参考资料),这种表示法也称波兰表示法。
Syntax : operator operand1 operand2Example : -*+ABC/D+EF后缀表示法在后缀表示法中,操作符位于操作数后面。
后缀表示法也称逆波兰表示法(reverse Polish notation,RPN),因其使表达式求值变得轻松,所以被普遍使用。
Syntax : operand1 operand2 operatorExample : AB+C*DEF+/-前缀和后缀表示法有三项公共特征:操作数的顺序与等价的中缀表达式中操作数的顺序一致不需要括号操作符的优先级不相关中缀表达式到后缀表达式的转换要把表达式从中缀表达式的形式转换成用后缀表示法表示的等价表达式,必须了解操作符的优先级和结合性。
c语言算术表达式求值
![c语言算术表达式求值](https://img.taocdn.com/s3/m/6e112f3c0640be1e650e52ea551810a6f524c81f.png)
c语言算术表达式求值C语言是一种广泛应用的编程语言,其强大的算术表达式求值功能使其在科学计算、数据处理、游戏开发等领域有着重要的应用。
本文将介绍C语言中算术表达式求值的相关知识,包括运算符、运算符优先级、表达式求值的顺序等内容。
我们需要了解C语言中常用的算术运算符。
C语言支持的算术运算符包括加法(+)、减法(-)、乘法(*)、除法(/)和求余(%)等。
这些运算符用于对数值进行基本的加减乘除运算。
在C语言中,运算符的优先级决定了表达式求值的顺序。
常见的运算符优先级从高到低依次为:1. 括号(()):括号中的表达式具有最高的优先级,可以改变默认的运算次序。
2. 一元运算符:包括正号(+)和负号(-),用于表示正负数。
3. 乘法、除法和求余:乘法(*)、除法(/)和求余(%)的优先级相同,从左到右依次计算。
4. 加法和减法:加法(+)和减法(-)的优先级相同,从左到右依次计算。
在使用C语言进行算术表达式求值时,我们需要遵循这些运算符的优先级规则,以保证表达式的正确求值。
如果表达式中包含多个运算符,我们需要根据优先级确定运算的顺序,可以使用括号来改变默认的运算次序。
下面我们将通过几个例子来说明C语言中算术表达式求值的过程。
例1:求解一个简单的算术表达式假设我们需要计算表达式 3 + 4 * 2,根据运算符优先级规则,先计算乘法,再计算加法。
具体的求解过程如下:1. 计算4 * 2,得到8。
2. 计算3 + 8,得到11。
所以,表达式3 + 4 * 2的值为11。
例2:使用括号改变运算次序假设我们需要计算表达式(3 + 4) * 2,根据运算符优先级规则,先计算括号内的加法,再计算乘法。
具体的求解过程如下:1. 计算3 + 4,得到7。
2. 计算7 * 2,得到14。
所以,表达式(3 + 4) * 2的值为14。
通过以上两个例子,我们可以看到,C语言中的算术表达式求值是按照运算符优先级和运算次序进行的,遵循从左到右的计算规则。
c语言算术表达式求值
![c语言算术表达式求值](https://img.taocdn.com/s3/m/ff921b6e443610661ed9ad51f01dc281e53a56a1.png)
c语言算术表达式求值【实用版】目录1.引言2.C 语言算术表达式的基本概念3.C 语言算术表达式的求值方法4.实际应用示例5.总结正文【引言】在 C 语言编程中,算术表达式是用来进行数值计算的重要工具。
本篇文章将为大家介绍 C 语言算术表达式的求值方法。
【C 语言算术表达式的基本概念】C 语言中的算术表达式主要包括以下几种:1.一元运算符:例如+、-、*、/等,用于对一个数值进行操作。
2.二元运算符:例如+、-、*、/等,用于对两个数值进行操作。
3.关系运算符:例如<、>、<=、>=、==、!=等,用于比较两个数值的大小或相等性。
4.逻辑运算符:例如&&、||、! 等,用于进行逻辑判断。
【C 语言算术表达式的求值方法】C 语言中,算术表达式的求值主要遵循以下规则:1.先进行括号内的运算,再进行括号外的运算。
2.先进行乘除法运算,再进行加减法运算。
3.关系运算符和逻辑运算符的优先级较低,从左到右依次进行运算。
【实际应用示例】下面我们通过一个实际的 C 语言程序,来演示算术表达式的求值过程。
```c#include <stdio.h>int main() {int a = 10, b = 5;int result;result = a + b * (a - b) / (a * b);printf("The result is: %d", result);return 0;}```在这个程序中,我们定义了两个整数变量 a 和 b,并通过算术表达式计算 result 的值。
根据我们之前提到的算术表达式求值规则,我们可以将这个表达式分解为以下几个步骤:1.计算括号内的值:a - b = 10 - 5 = 52.计算乘法运算:b * (a - b) = 5 * 5 = 253.计算除法运算:(a * b) / (a * b) = 14.计算加法运算:a + 25 = 10 + 25 = 355.输出结果:printf("The result is: %d", result); 输出 35【总结】通过本篇文章的介绍,相信大家已经对 C 语言算术表达式的求值方法有了更加深入的了解。
表达式求值算法总结(C++)
![表达式求值算法总结(C++)](https://img.taocdn.com/s3/m/2bb53a04777f5acfa1c7aa00b52acfc789eb9fbc.png)
表达式求值算法总结(C++)表达式求值,一般采用栈和队列的方式来求值,下面介绍表达式求值的两种算法。
方法一、使用两个栈,一个为操作符栈OPTR(operator),一个是操作数栈OPND(operand)算法过程:当输入3 * ( 4 - 1 * 2 ) + 6 / ( 1 + 1 )时,为简单方便,我们输入时,按照字符的顺序一个一个的处理,比如ch = getchar()。
然后根据ch 的值判断:若ch 是数字,直接压入操作数栈OPND;若ch 是'(',直接入栈OPTR;若ch 是')',若OPTR 和OPND 非空,弹出OPTR的栈顶操作符,弹出OPND栈顶的两个操作数,做运算,然后见个结果压入栈OPND,直到弹出的OPTR栈顶元素时')';若ch 是操作符(比如+, -, *, /),如果OPTR栈顶元素是(,直接入栈OPTR,如果不是'('且OPTR栈非空且栈顶元素操作符的优先级大于ch,那么弹出OPTR的栈顶操作符,并弹出OPND中栈顶的两个元素,做运算,将运算结果入栈OPND,此时,重复这一步操作;否则将ch入栈OPTR;若ch为EOF,说明表达式已经输入完成,判断OPTR是否为空,若非空,一次弹出OPTR 栈顶操作符,并与OPND栈顶两个元素做运算,将运算结果入栈OPND,最后表达式的结果即OPND的栈底元素。
以表达式3 * ( 4 - 1 * 2 ) + 6 / ( 1 + 1 )为例,计算过程如下所示:通过上述的计算过程,写出伪代码如下所示:void GetExpress(Stack * OPTR, Stack * OPND){char ch;while ((ch = getchar ()) != EOF) {if (IsDigit (ch)) {PushStack (OPND, ch);}else if (ch == '(')PushStack (OPTR, ch);else if (ch == ')') {while (!IsStackEmpty(OPTR)) {PopStack (OPTR, op);if (op == ')')break;PopStack (OPND, num2);PopStack (OPND, num1);res = Calc (num1, num2, op);PushStack (OPND, res);}}else if (ch == '+' || ch == '-'|| ch == '*' || ch == '/') {while (!IsStackEmpty (OPTR) && GetTop (OPTR)!='(' && GetTop (OPTR)>ch) { PopStack (OPTR, op);PopStack (OPND, num2);PopStack (OPND, num1);res = Calc (num1, num2, op);PushStack (OPND, res);}if (IsStackEmpty (OPTR) || GetTop(OPTR)=='(')PushStack (OPTR, ch);}}}// 当表达式输入完成后,需要对OPTR栈和OPND中的元素进行运算int GetValue(Stack * OPTR, Stack * OPND){while (!IsStackEmpty (OPTR)) {PopStack (OPTR, op);PopStack (OPND, num2);PopStack (OPND, num1);res = Calc (num1, num2, op);PushStack (OPND, res);}// 最后的操作数栈OPND栈顶元素即是表达式的值return GetTop(OPND);}PS: 上面没有指出表达式非法的情况方法二:采用中缀表达式的方法,求取表达式的中缀表达式,借用一个操作符栈OPTR和中缀表达式队列Queue,求取中缀表达式,然后对中缀表达式求值。
C#算术表达式求值(后缀法),看这一篇就够了
![C#算术表达式求值(后缀法),看这一篇就够了](https://img.taocdn.com/s3/m/acbfcd280622192e453610661ed9ad51f01d54e6.png)
C#算术表达式求值(后缀法),看这⼀篇就够了⼀、种类介绍算术表达式有三种:前缀表达式、中缀表达式和后缀表达式。
⼀般⽤的是中缀,⽐如1+1,前后缀就是把操作符移到前⾯和后⾯,下⾯简单介绍⼀下这三种表达式。
1、前缀表⽰法前缀表⽰法⼜叫波兰表⽰法,他的操作符置于操作数的前⾯(例:+ 1 2),是波兰数学家扬·武卡谢维奇1920年代引⼊的,⽤于简化命题逻辑。
因为我们⼀般认为操作符是在操作数中间的,所以在⽇常⽣活中⽤的不多,但在计算机科学领域占有⼀席之地。
⼀般的表⽰法对计算机来说处理很⿇烦,每个符号都要考虑优先级,还有括号这种会打乱优先级的存在,将使计算机花费⼤量的资源进⾏解析。
⽽前缀表⽰法没有优先级的概念,他是按顺序处理的。
举个例⼦:9-2*3这个式⼦,计算机需要先分析优先级,先乘后减,找到2*3,再进⾏减操作;化成前缀表⽰法就是:- 9 * 2 3,计算机可以依次读取,操作符作⽤于后⼀个操作数,遇到减就是让9减去后⾯的数,⽽跟着9的是乘,也就是说让9减去乘的结果,这对计算机来说很简单,按顺序来就⾏了。
2、中缀表⽰法这也就是我们⼀般的表⽰法,他的操作符置于操作数的中间(例:1 + 2),前⾯也说过这种⽅法不容易被计算机解析,但他符合⼈们的普遍⽤法,许多编程语⾔也就⽤这种⽅法了。
在中缀表⽰法中括号是必须有的,要不然运算顺序会乱掉。
3、后缀表⽰法后缀表⽰法⼜叫逆波兰表⽰法,他的操作符置于操作数的后⾯(例:1 2 +),他和前缀表⽰法都对计算机⽐较友好,但他很容易⽤堆栈解析,所以在计算机中⽤的很多。
他的解释过程⼀般是:操作数⼊栈;遇到操作符时,操作数出栈,求值,将结果⼊栈;当⼀遍后,栈顶就是表达式的值。
因此逆波兰表达式的求值使⽤堆栈结构很容易实现,且能很快求值。
注意:逆波兰记法并不是简单的波兰表达式的反转。
因为对于不满⾜交换律的操作符,它的操作数写法仍然是常规顺序,如,波兰记法/ 6 3的逆波兰记法是6 3 /⽽不是3 6 /;数字的数位写法也是常规顺序。
算术表达式求值演示
![算术表达式求值演示](https://img.taocdn.com/s3/m/304ea217cd7931b765ce0508763231126edb776c.png)
实习报告题目:算术表达式求值演示。
一、需求剖析1.以字符序列的形式从终端输入语法正确的、不含变量的整数表达式。
2.利用教科书表给出的算符优先关系,实现对算数四则混淆运算表达式的求值。
3.模仿教科书的例子在求值中运用符栈、运算数栈、输入字符和主要操作的变化过程。
4.程序履行的命令包含:(1)结构空栈;(2)判断符号优先级 ;(3)判断能否为七种运算符之一 ;(4)运算求解算术表达式。
5.测试数据(1)3*(7-2);(2)8;(3)1+2+3+4;(4)88-1*5;(5)1024*4/8;(6)(20+2)*(6/2);(7)3-3-3;(8)8/(9-9);(9)2*(6+2*(3+6*(6+6)));(10)(((6+6)*6+3)*2+6)*2;二、纲要设计1.定的抽象数据型定:ADT Stack{数据象: D={a i |a i∈CharSet,i=1,2,⋯,n,n≥0}数据关系: R1={< a i -1 ,a i >| a i -1, a i∈D,i=2, ⋯, n}基本操作:InitStack (&S)操作果:结构一个空S。
GetTop (S ,&e)初始条件: S 已存在。
操作果:若S 不空,以 e 返回元素。
Push(&S, e)初始条件: S 已存在。
操作果:在S 的插入新的元素e。
Pop(&S, &e)初始条件: S 已存在。
操作果:除S 的元素,用 e 返回其。
} ADT Stack2.定运算表达式的抽象数据型:ADT EvaluateExpression{数据象: D={a i | a i数字及运算符, i=1,2, ⋯, n,n ≥0}数据关系: R1={ }基本操作:Precede(a1 , a2)初始条件:字符a1,a2 存在。
操作果:判断运算符的先In( d )初始条件:字符 d 存在。
操作果:判断 c 能否七种运算符之一Operate(a, theta, b )初始条件:字符a, theta, b存在。
数据结构课程设计四则运算表达式求值(C语言版)
![数据结构课程设计四则运算表达式求值(C语言版)](https://img.taocdn.com/s3/m/6686c82466ec102de2bd960590c69ec3d5bbdbbd.png)
数据结构课程设计四则运算表达式求值(C语⾔版) 明⼈不说暗话,直接上,输⼊提取码z3fy即可下载。
⽂件中包含程序,程序运⾏⽂件,设计报告和测试样例,应有尽有,欢迎⼩伙伴们在中下载使⽤。
本课程设计为四则运算表达式求值,⽤于带⼩括号的⼀定范围内正负数的四则运算标准(中缀)表达式的求值。
注意事项:1、请保证输⼊的四则表达式的合法性。
输⼊的中缀表达式中只能含有英⽂符号“+”、“-”、“*”、“/”、“(”、“)”、“=”、数字“0”到“9”以及⼩数点“.”,输⼊“=”表⽰输⼊结束。
例如9+(3-1)*3.567+10/2=,特别是请勿输⼊多余空格和中⽂左右括号。
2、输⼊的中缀表达式默认限定长度是1001,可根据具体情况调整字符串数组的长度。
3、请保证输⼊的操作数在double数据类型范围内,单个数字有效数字长度不可超过15位。
本课程设计中操作数是C语⾔中的双精度浮点数类型。
4、本课程设计中的运算数可以是负数,另外如果是正数可直接省略“+”号(也可带“+”号)。
下⾯的程序正常运⾏需要在上⾯的百度⽹盘中下载相应⽂件,否则⽆法正常使⽤哦。
1/*本程序为四则运算表达式求值系统,⽤于计算带⼩括号的四则运算表达式求值。
2具体算法:3先将字符串处理成操作单元(操作数或操作符),再利⽤栈根据四则运算4的运算法则进⾏计算,最后得出结果。
*/56 #include<stdio.h>7 #include<ctype.h>8 #include<stdlib.h>9 #include<string.h>10 #include<stdlib.h>11 #include<ctype.h>1213const int Expmax_length = 1001;//表达式最⼤长度,可根据适当情况调整14struct Ope_unit15 {//定义操作单元16int flag;//=1表⽰是操作数 =0表⽰是操作符 -1表⽰符号单元17char oper;//操作符18double real;//操作数,为双精度浮点数19 };2021void Display();//菜单22void Instru(); //使⽤说明23int Check(char Exp_arry[]);24void Evalua(); //先调⽤Conver操作单元化,再调⽤Calculate函数计算结果并输出25int Conver(struct Ope_unit Opeunit_arry[],char Exp_arry[]);//将字符串处理成操作单元26int Isoper(char ch);//判断合法字符(+ - * / ( ) =)27int Ope_Compar(char ope1,char ope2);//操作符运算优先级⽐较28double Calculate(struct Ope_unit Opeunit_arry[],int Opeunit_count,int &flag);//⽤栈计算表达式结果29double Four_arithm(double x,double y,char oper);//四则运算3031int main()32 {33int select;34while(1)35 {36 Display();37 printf("请输⼊欲执⾏功能对应的数字:");38 scanf("%d",&select);39 printf("\n");40switch(select)41 {42case1: Evalua(); break;43case2: Instru(); break;44case0: return0;45default : printf("⽆该数字对应的功能,请重新输⼊\n");46 system("pause");47 }48 }49return0;50 }5152int Check(char Exp_arry[])53 {//检查是否有⾮法字符,返回1表⽰不合法,0表⽰合法54int Explength=strlen(Exp_arry),i;55for(i=0;i<Explength;i++)56 {57if(!Isoper(Exp_arry[i]) && Exp_arry[i] != '.' && !isdigit(Exp_arry[i]))58return1;59if(isdigit(Exp_arry[i]))60 {61int Dig_number=0,Cur_positoin=i+1;62while(isdigit(Exp_arry[Cur_positoin]) || Exp_arry[Cur_positoin]=='.')63 {64 Dig_number++;65 Cur_positoin++;66 }67if(Dig_number >= 16)//最多能够计算15位有效数字68return1;69 }70 }71return0;72 }7374void Evalua()75 {//先调⽤Conver函数将字符串操作单元化,再调⽤Calculate函数计算结果并输出76char Exp_arry[Expmax_length];77int flag=0;//假设刚开始不合法,1表达式合法,0不合法78struct Ope_unit Opeunit_arry[Expmax_length];7980 getchar();//吃掉⼀个换⾏符81 printf("请输⼊四则运算表达式,以=结尾:\n");82 gets(Exp_arry);83 flag=Check(Exp_arry);84if(flag)85 printf("该表达式不合法!\n");86else87 {88int Opeunit_count = Conver(Opeunit_arry,Exp_arry);89double ans = Calculate(Opeunit_arry,Opeunit_count,flag);90if(flag)91 {92 printf("计算结果为:\n");93 printf("%s%lf\n",Exp_arry,ans);94 }95else96 printf("该表达式不合法!\n");97 }98 system("pause");99 }100101int Conver(struct Ope_unit Opeunit_arry[],char Exp_arry[])102 {//将字符串操作单元化103int Explength=strlen(Exp_arry);104int i,Opeunit_count=0;105for(i=0;i<Explength;i++)106 {107if(Isoper(Exp_arry[i]))//是操作符108 {109 Opeunit_arry[Opeunit_count].flag=0;110 Opeunit_arry[Opeunit_count++].oper=Exp_arry[i];111 }112else//是操作数113 {114 Opeunit_arry[Opeunit_count].flag=1;115char temp[Expmax_length];116int k=0;117for(; isdigit(Exp_arry[i]) || Exp_arry[i]=='.' ;i++)118 {119 temp[k++]=Exp_arry[i];120 }121 i--;122 temp[k]='\0';123 Opeunit_arry[Opeunit_count].real=atof(temp);//将字符转化为浮点数124125//负数126if(Opeunit_count == 1 && Opeunit_arry[Opeunit_count-1].flag==0127 && Opeunit_arry[Opeunit_count-1].oper=='-')128 {129 Opeunit_arry[Opeunit_count-1].flag = -1;130 Opeunit_arry[Opeunit_count].real *= -1;131 }// -9132if(Opeunit_count >= 2 && Opeunit_arry[Opeunit_count-1].flag==0133 && Opeunit_arry[Opeunit_count-1].oper=='-' && Opeunit_arry[Opeunit_count-2].flag==0 134 && Opeunit_arry[Opeunit_count-2].oper !=')')135 {136 Opeunit_arry[Opeunit_count-1].flag = -1;137 Opeunit_arry[Opeunit_count].real *= -1;138 }// )-9139140//正数141if(Opeunit_count == 1 && Opeunit_arry[Opeunit_count-1].flag==0142 && Opeunit_arry[Opeunit_count-1].oper=='+')143 {144 Opeunit_arry[Opeunit_count-1].flag = -1;145 }// +9146if(Opeunit_count >= 2 && Opeunit_arry[Opeunit_count-1].flag==0147 && Opeunit_arry[Opeunit_count-1].oper=='+' && Opeunit_arry[Opeunit_count-2].flag==0148 && Opeunit_arry[Opeunit_count-2].oper !=')')149 {150 Opeunit_arry[Opeunit_count-1].flag = -1;151 }// )+9152 Opeunit_count++;153 }154 }155/*for(i=0;i<Opeunit_count;i++)156 {//查看各操作单元是否正确,1是操作数,0是操作符157 if(Opeunit_arry[i].flag == 1)158 printf("该单元是操作数为:%lf\n",Opeunit_arry[i].real);159 else if(Opeunit_arry[i].flag == 0)160 printf("该单元是操作符为:%c\n",Opeunit_arry[i].oper);161 else162 printf("该单元是负号符为:%c\n",Opeunit_arry[i].oper);163 }*/164return Opeunit_count;165 }166167double Calculate(struct Ope_unit Opeunit_arry[],int Opeunit_count,int &flag)168 {//根据运算规则,利⽤栈进⾏计算169int i,dS_pointer=0,oS_pointer=0;//dS_pointer为操作数栈顶指⽰器,oS_pointer为操作符栈顶指⽰器170double Dig_stack[Expmax_length];//操作数栈(顺序存储结构)171char Ope_stack[Expmax_length];//操作符栈172173for(i=0;i<Opeunit_count-1;i++)174 {175if( Opeunit_arry[i].flag != -1 )176 {177if(Opeunit_arry[i].flag)//是操作数178 {179 Dig_stack[dS_pointer++]=Opeunit_arry[i].real;//⼊操作数栈180//printf("%lf\n",Digit[dS_pointer-1]);181 }182else//是操作符 + - * / ( )183 {184//操作符栈为空或者左括号⼊栈185if(oS_pointer==0 || Opeunit_arry[i].oper=='(')186 {187 Ope_stack[oS_pointer++]=Opeunit_arry[i].oper;188//printf("%oS_pointer\Ope_u_count",Operator[oS_pointer-1]);189 }190else191 {192if(Opeunit_arry[i].oper==')')//是右括号将运算符⼀直出栈,直到遇见左括号193 {194 oS_pointer--;//指向栈顶195 dS_pointer--;//指向栈顶196while(Ope_stack[oS_pointer] != '(' && oS_pointer != 0)197 {198 Dig_stack[dS_pointer-1] = Four_arithm(Dig_stack[dS_pointer-1],Dig_stack[dS_pointer], 199 Ope_stack[oS_pointer--]);//oS_pointer--为操作符出栈200201 dS_pointer--;//前⼀个操作数出栈202//printf("操作数栈顶元素等于%lf\n",Digit[dS_pointer]);203 }204 oS_pointer--;//左括号出栈205206 oS_pointer++;//恢复指向栈顶之上207 dS_pointer++;208 }209else if(Ope_Compar(Opeunit_arry[i].oper,Ope_stack[oS_pointer-1]))//和栈顶元素⽐较210 {211 Ope_stack[oS_pointer++]=Opeunit_arry[i].oper;212//printf("%oS_pointer\Ope_u_count",Operator[oS_pointer-1]);213 }214else//运算符出栈,再将该操作符⼊栈215 {216 oS_pointer--;//指向栈顶217 dS_pointer--;//指向栈顶218while(Ope_Compar(Opeunit_arry[i].oper,Ope_stack[oS_pointer])==0 && oS_pointer != -1) 219 {//当前操作符⽐栈顶操作符优先级⾼220 Dig_stack[dS_pointer-1]=Four_arithm(Dig_stack[dS_pointer-1],Dig_stack[dS_pointer], 221 Ope_stack[oS_pointer--]);222 dS_pointer--;223//printf("操作数栈顶元素等于%lf\n",Digit[dS_pointer]);224 }225 oS_pointer++;//恢复指向栈顶之上226 dS_pointer++;227 Ope_stack[oS_pointer++]=Opeunit_arry[i].oper;228 }229 }230 }231 }232 }233/*for(i=0;i<oS_pointer;i++)234 printf("操作符栈%oS_pointer\Ope_u_count",Operator[i]);235 for(i=0;i<dS_pointer;i++)236 printf("操作数栈%lf\n",Digit[i]);*/237 oS_pointer--;//指向栈顶元素238 dS_pointer--;//指向栈顶元素239while(oS_pointer != -1)240 {241 Dig_stack[dS_pointer-1]=Four_arithm(Dig_stack[dS_pointer-1],Dig_stack[dS_pointer], 242 Ope_stack[oS_pointer--]);//oS_pointer--为操作符出栈243 dS_pointer--;//前⼀个操作数出栈244//printf("操作数栈顶元素为%lf\Ope_u_count",Digit[dS_pointer]);245 }246//printf("%dS_pointer,%dS_pointer\n",oS_pointer,dS_pointer);247if(oS_pointer==-1 && dS_pointer==0)248 flag=1;//为1表⽰表达式合法249return Dig_stack[0];250 }251252int Ope_Compar(char ope1,char ope2)253 {//操作符运算优先级⽐较254char list[]={"(+-*/"};255int map[5][5]={//先⾏后列,⾏⽐列的运算级优先级低为0,⾼为1256// ( + - * /257/* ( */1,0,0,0,0,258/* + */1,0,0,0,0,259/* - */1,0,0,0,0,260/* * */1,1,1,0,0,261/* / */1,1,1,0,0 };262int i,j;263for(i=0;i<5;i++)264if(ope1==list[i]) break;265for(j=0;j<5;j++)266if(ope2==list[j]) break;267return map[i][j];268 }269270double Four_arithm(double x,double y,char oper)271 {//四则运算272switch(oper)//保证不含其它运算符273 {274case'+': return x+y;275case'-': return x-y;276case'*': return x*y;277case'/': return x/y;//y不能为0278default : return0;279 }280 }281282int Isoper(char ch)283 {//判断合法字符 + - * / ( ) =284if(ch=='+' || ch=='-' || ch=='*' || ch=='/' || ch=='(' || ch==')' || ch=='=')285return1;286return0;287 }288289void Display()290 {//打印菜单291 system("cls");292 printf("/******************************************************************************/\n");293 printf("\t\t 欢迎使⽤本四则运算表达式求值系统\n");294 printf("\n\t说明:建议请您先阅读使⽤说明,再输⼊相应的数字进⾏操作,谢谢配合!\n"); 295 printf("\n\t\t1 四则运算表达式求值\n");296 printf("\n\t\t2 使⽤说明\n");297 printf("\n\t\t0 退出\n");298 printf("/******************************************************************************/\n");299 }300301void Instru()302 {//打印使⽤说明303 FILE *fp;304char ch;305if( ( fp=fopen("使⽤说明.txt","r") ) == NULL)306 {307 printf("⽂件打开失败!\n");308 exit(0);309 }310for(; (ch = fgetc(fp)) != EOF; )311 putchar(ch);312 fclose(fp);313 printf("\n");314 system("pause");315 }。
表达式求值
![表达式求值](https://img.taocdn.com/s3/m/e382866ff46527d3240ce08c.png)
问:为什么要设计队列?它有什么独特用途?
答: 1. 离散事件的模拟(模拟事件发生的先后顺序,例如
CPU芯片中的指令译码队列); 2. 操作系统中的作业调度(一个CPU执行多个作业); 3. 简化程序设计。
11
队的实现方式是本节重点,关键是掌握入队和出队操作。 具体实现依存储结构(链队或顺序队)的不同而不同。 重点是循环 顺序队
链队中任一 结点的结构
结点类型定义: typedef Struct QNode{ QElemType data; //元素 Struct QNode *next; //指向下一结点的指针 }Qnode , * QueuePtr ;
13
链队示意图:
rear Q front p
a1 (队首) 讨论: ① 空链队的特征? front=rear
front
a2
a3 ^
(队尾)
rear
S
D
^
② 链队会满吗?一般不会,因为删除时有free动作。除非内存不足!
^
③ 怎样实现链队的入队和出队操作?
入队(尾部插入):rear->next=S; rear=S; 出队(头部删除):front->next=p->next;
完整操作函数 见教材P62下
14
2.顺序队
3
问:教材P53表3.1中,1和2哪个对应栈顶元素, 哪个对应键盘输入值? 答:根据P53Precede()函数可知, 1对应栈顶元素
附:
由表3.1可看出,右括号 ) 和井号 # 作为2时级别最低;
由c 规则得出: * ,/, + ,-为1时的优先权低于 ‘(’,高于‘)’
由a规则得出:‘(’=‗)’ 表明括号内的运算已完成; ‘ # ‘=‗ # ‘ 表明表达式求值完毕。
C语言表达式求值
![C语言表达式求值](https://img.taocdn.com/s3/m/27113e9285254b35eefdc8d376eeaeaad1f31633.png)
C语言表达式求值
c语言有丰富的表达式,这是它的特点之一,表达式主要有4类,算术表达式,赋值表达式,逗号表达式,关系表达式1.算术表达式就是包含算术运算符(如+-/*%等)的表达式(不是语句,后面没有分号),如:a+b,a%b,a+b-c*d,3+5等,算术表达式的值就是最后算出的结果,如3+5这个表达式的值就是82.赋值表达式,就是含有赋值运算符=的表达式,如a=5,b=3,c='A'等,=左边的a,b,c称为左值,必须为变量,=右边的5,3,'A'称为右值,必须为常量,赋值表达式的值为右值,如a=3的值为3,c='A'的值为字母A的ascii码65(当然也可以认为它的值就是字母A)3.逗号表达式就是含有逗号的表达式,形式:表达式1,表达式2,表达式3.......如a,b,c3,5,7a=3,b=4,c=63,a=5,b=6等逗号表达式的值为,最右边的表达式的值,如3,4,5的值就是5,表达式
a=3,b=4,c=6的值就是表达式b=6的值,
由上述分析知,表达式b=6的值就是6,所以表达式
a=3,b=4,c=6的值就是64.关系表达式,指含有关系运算符
(如><>====<等)的表达式(其实也是算术表达式的一种)如
a>b,a>6,6>5,3<2,4==6等,如果表达式的关系是正确的,那么表达式的值为1,否则为0如6>5正确,表达式的值为1,3<2,和4==6错误,表达式的值为0当然可以细分为很多种表达式,不过主要也就是这几种的变型。
算术表达式求值演示-课程设计报告
![算术表达式求值演示-课程设计报告](https://img.taocdn.com/s3/m/5606939155270722192ef78f.png)
算术表达式求值演示目录第一章概述 (1)第二章系统分析 (1)第三章概要设计 (2)第四章详细设计 (5)第五章运行与测试 (13)第六章总结与心得 (16)参考文献 (16)第一章概述课程设计是实践性教学中的一个重要环节,它以某一课程为基础,可以涉及和课程相关的各个方面,是一门独立于课程之外的特殊课程。
课程设计是让同学们对所学的课程更全面的学习和应用,理解和掌握课程的相关知识。
《数据结构》是一门重要的专业基础课,是计算机理论和应用的核心基础课程。
数据结构课程设计,要求学生在数据结构的逻辑特性和物理表示、数据结构的选择和应用、算法的设计及其实现等方面,加深对课程基本内容的理解。
同时,在程序设计方法以及上机操作等基本技能和科学作风方面受到比较系统和严格的训练。
在这次的课程设计中我选择的题目是算术表达式求值演示。
表达式计算是实现程序设计语言的基本问题之一,也是栈的应用的一个典型例子。
设计一个程序,演示用算符优先法对算术表达式求值的过程。
深入了解栈和队列的特性,以便在解决实际问题中灵活运用它们,同时加深对这种结构的理解和认识。
第二章系统分析1.以字符列的形式从终端输入语法正确的、不含变量的整数表达式。
利用已知的算符优先关系,实现对算术四则混合运算表达式的求值,并仿照教科书的例子在求值中运算符栈、运算数栈、输入字符和主要操作的变化过程。
2.一般来说,计算机解决一个具体问题时,需要经过几个步骤:首先要从具体问题抽象出一个适当的数学模型,然后设计一个解决此数学模型的算法,最后编出程序,进行测试,调试直至得到想要的答案。
对于算术表达式这个程序,主要利用栈,把运算的先后步骤进行分析并实现简单的运算!为实现算符优先算法,可以使用两个栈,一个用以寄存运算符,另一个用以寄存操作数和运算结果。
3.演示程序是以用户于计算机的对话方式执行,这需要一个模块来完成使用者与计算机语言的转化。
4.程序执行时的命令:本程序为了使用具体,采用菜单式的方式来完成程序的演示,几乎不用输入什么特殊的命令,只需按提示输入表达式即可。
表达式求值(数据结构)
![表达式求值(数据结构)](https://img.taocdn.com/s3/m/7ed55a6d76232f60ddccda38376baf1ffc4fe3a8.png)
表达式求值(数据结构)表达式求值(数据结构)一、引言表达式求值是计算机科学中一个重要的概念,它是计算机程序中常见的操作之一。
通过对表达式中的运算符和操作数进行计算,可以得到表达式的结果。
本文将介绍表达式求值的相关知识和算法,并提供一个基于数据结构的表达式求值的范本。
二、基本概念1.表达式:由操作数、运算符和括号组成的符号串,用于表示一个计算过程。
2.操作数:表达式中用于参与计算的数值或变量。
3.运算符:表达式中用于进行运算的符号,如加减乘除等。
4.括号:用于控制运算优先级和改变运算次序的符号。
三、表达式求值的算法表达式求值的基本思路是通过遍历表达式字符串并利用栈来进行计算。
1.建立一个操作数栈和一个运算符栈。
2.从左到右遍历表达式字符串,依次处理每个字符。
3.如果当前字符是操作数,则直接入操作数栈。
4.如果当前字符是运算符,则进行如下处理:●如果运算符栈为空或栈顶运算符是左括号,则将当前运算符入运算符栈。
●如果当前运算符的优先级高于栈顶运算符的优先级,则将当前运算符入运算符栈。
●如果当前运算符的优先级低于或等于栈顶运算符的优先级,则从运算符栈顶取出一个运算符进行计算,并将结果入操作数栈,直到栈顶运算符的优先级低于当前运算符,然后将当前运算符入运算符栈。
5.如果当前字符是左括号,则将其入运算符栈。
6.如果当前字符是右括号,则从运算符栈顶取出一个运算符进行计算,并将结果入操作数栈,直到取出的运算符是左括号。
7.遍历完表达式字符串后,将运算符栈中剩余的运算符依次取出进行计算,并将结果入操作数栈。
8.操作数栈中最后剩下的元素即为表达式的求值结果。
四、示例代码```pythonclass ExpressionEvaluation:def __init__(self, expression):self.expression = expressionself.operators = []self.operands = []self.precedence = {'+': 1, '.': 1, '': 2, '/': 2}def evaluate(self):for char in self.expression:if char.isdigit():self.operands.append(int(char))elif char in self.precedence:while self.operators andself.operators[.1] != '(' and self.precedence[char] <= self.precedence[self.operators[.1]]:lculate()self.operators.append(char)elif char == '(':self.operators.append(char)elif char == ')':while self.operators[.1] != '(':lculate()self.operators.pop()while self.operators:lculate()return self.operands[.1]def calculate(self):operator = self.operators.pop()operand2 = self.operands.pop()operand1 = self.operands.pop()if operator == '+':self.operands.append(operand1 + operand2)elif operator == '.':self.operands.append(operand1 ●operand2) elif operator == '':self.operands.append(operand1 operand2) elif operator == '/':self.operands.append(operand1 / operand2) expression = \。
编程中表达式的求值规则与示例
![编程中表达式的求值规则与示例](https://img.taocdn.com/s3/m/74a2a213b5daa58da0116c175f0e7cd1842518ef.png)
编程中表达式的求值规则与示例在计算机编程中,表达式是由操作数和操作符组成的数学或逻辑式子,用于执行各种计算和操作。
表达式的求值是指根据特定的规则和优先级计算表达式的结果。
本文将介绍一些常见的表达式求值规则,并提供一些示例来帮助读者更好地理解这些概念。
1. 算术表达式的求值规则算术表达式是最常见的表达式类型之一,用于执行数学运算。
在算术表达式中,我们通常使用加法、减法、乘法和除法等基本算术运算符。
求值规则:- 先计算括号内的表达式。
- 乘法和除法的优先级高于加法和减法。
按照从左到右的顺序计算乘法和除法。
- 加法和减法的优先级相同,按照从左到右的顺序计算。
示例:1. 2 + 3 * 4 - 1首先计算乘法:3 * 4 = 12然后计算加法和减法:2 + 12 - 1 = 132. (2 + 3) * 4 / 2首先计算括号内的表达式:2 + 3 = 5然后计算乘法和除法:5 * 4 / 2 = 102. 逻辑表达式的求值规则逻辑表达式用于执行逻辑运算,例如判断条件是否为真或假。
在逻辑表达式中,我们通常使用与、或和非等逻辑运算符。
求值规则:- 先计算括号内的表达式。
- 非运算符的优先级最高,其次是与运算符,最后是或运算符。
- 与运算符在计算时,只有当两个操作数都为真时,结果才为真。
- 或运算符在计算时,只有当两个操作数都为假时,结果才为假。
示例:1. (2 > 1) && (3 < 5)首先计算括号内的表达式:2 > 1 和 3 < 5 都为真然后计算与运算符:真 && 真 = 真2. (2 > 1) || (3 > 5)首先计算括号内的表达式:2 > 1 为真,但 3 > 5 为假然后计算或运算符:真 || 假 = 真3. 字符串连接表达式的求值规则字符串连接表达式用于将多个字符串拼接在一起。
在字符串连接表达式中,我们使用加号 (+) 运算符来实现字符串的连接。
算术表达式求值PPT教学课件
![算术表达式求值PPT教学课件](https://img.taocdn.com/s3/m/2b255ad45f0e7cd1842536f2.png)
<
<
>
>
->
>
<
<
<
>
>
*>
>
>
>
<
>
>
/>
>
>
>
<
>
>
(<
<
<
<
<
=
)>
>
>
>
>
>
#<
<
<
<
<
=
2020/12/10
5
例3-1
步骤 1 2 3 4 5 6 7 8 9 10
OPTR栈 # # #* #*( #*( #*(#*(#*( #* #
OPND栈
3 3 3 37 37 372 35 35 15
if(e!='+'&&e!='-'&&e!='*'&&e!='/'&&e!='^'&&e!='('&&e!=')'&&e!='#') return 1;
else return 0;
} void torf(char e) //判断e是否为合法的运算符或运算数 {
if(e>47&&e<58/*e==48||e==49||e==50||e==51||e==52||e==53||e==54||e==55|| e==56||e==57*/)
算术表达式求值算法解析
![算术表达式求值算法解析](https://img.taocdn.com/s3/m/9e44e83403768e9951e79b89680203d8ce2f6ac1.png)
迭代算法在处理复杂表达式时效率较高,因为避免了重复计算,但在处理简单表达式时,由于需要遍历整个表达 式,效率较低。
算法适用范围比较
递归算法
递归算法适用于处理简单的算术表达式 ,如加减乘除等。
VS
迭代算法
迭代算法适用于处理复杂的算术表达式, 如包含括号、指数、对数等运算的表达式 。
算法优缺点比较
预测分析法的优点是处理效率较高,适用于大规模的算术 表达式处理,但缺点是需要使用大量的栈空间,且对于复 杂的算术表达式处理能力有限。
逆波兰表示法
逆波兰表示法是一种不需要括号来表示运算符优先级的方法,通 过将操作数放在前面,运算符放在后面来表示算术表达式。
逆波兰表示法将算术表达式转换为逆波兰表示形式后,可以直接 从左到右依次读取并计算表达式的值。
高程序的执行效率。例如,通过消除冗余计算、简化表达式等手段来优
化代码。
在数学计算器中的应用
表达式求值
数学计算器需要能够对用户输入的算术表达式进行求值,以便得到计算结果。算术表达式求值算法可以用于实现这一 功能,快速准确地计算表达式的值。
符号计算
数学计算器可能需要支持符号计算,即对包含未知数的算术表达式进行求解。算术表达式求值算法可以用于实现符号 计算,通过迭代和近似方法求解表达式的根或极值等。
多精度计算
在一些情况下,数学计算器需要支持多精度计算,以避免浮点数精度问题。算术表达式求值算法可以用 于实现多精度计算,提供更高的计算精度和可靠性。
在人工智能领域的应用
机器学习
数据推理
在机器学习领域,算术表达式求值算 法可以用于实现特征工程和模型训练 过程中的数值计算。例如,在神经网 络训练中,需要对权重、偏差等参数 进行迭代更新,算术表达式求值算法 可以高效地完成这些计算任务。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二. 概要设计
堆栈的抽象数据类型定义为:
ADT Stacklist{
数据对象:D={ai | ai∈Int,i=1,2,…,n,n≥0}
数据关系:R1={<ai-1,ai>|ai-1,ai∈D,ai-1<ai,i=2,…,n}
3、若上述处理过程中没有发现错误,则认为该表达式合法,并打印处理结果。
程序中应主要包含下面几个功能函数:
void initstack():初始化堆栈
int Make_str():语法检查并计算
int push_operate(int operate):将操作码压入堆栈
int push_num(double num):将操作数压入堆栈
1.进行栈的基本操作时要注意栈“后进先出”的特性。
2.编写完整程序完成下面的实验内容并上机运行。
3.整理并上交实验报告。
三、实验内容
1.编写程序任意输入栈长度和栈中的元素值,构造一个顺序栈,对其进行清空、销毁、入栈、出栈以及取栈顶元素操作。
2.编写程序实现表达式求值,即验证某算术表达式的正确性,若正确,则计算该算术表达式的值。
基本操作:
InitStack(&S)
操作结果:构造一个堆栈。
Push(&S,e)
初始条件:堆栈S已存在。
操作结果:将数据e压到堆栈S中。
Pop(&S,&e)
初始条件:堆栈S已存在。
操作结果:将堆栈S中顶元素弹出,并用e带回。
StackLength(S)
初始条件:堆栈S已存在。
[目录]
1.需求分析
2.概要设计
3.详细设计
4.调试分析
5.用户手册
[原文]
一. 需求分析
1. 本次实验对堆栈进行一些实用化操作。运用所学的知识进行一些综合项目的实验。
2. 实验以用户和计算机的对话方式进行,即在计算机终端上显示“提示信息”,然后用户在键盘上输入程序规定的命令、相应的数据,然后显示运算结果。
主要功能描述如下:
1、从键盘上输入表达式。
2、分析该表达式是否合法:
(1)是数字,则判断该数字的合法性。若合法,则压入数据到堆栈中。
(2)是规定的运算符,则根据规则进行处理。在处理过程中,将计算该表达式的值。
(3)若是其它字符,则返回错误信息。
int procede(int operate):处理操作码
int change_opnd(int operate):将字符型操作码转换成优先级
int push_opnd(int operate):将操作码压入堆栈
int pop_opnd():将操作码弹出堆栈
int caculate(int cur_opnd):简单计算+,-,*,/
double pop_num():弹出操作数
3.已知函数t(n)=2*t(n/2)+n 其中t(0)=0,n为整数。编写程序实现:
(1)计算t(n)的递归算法。
(2)用链式栈实现计算t(n)的非递归算法。
四、思考与提高
1.如果一个程序中要用到两个栈,为了不发生上溢错误,就必须给每个栈预先分配一个足够大的存储空间。若每个栈都预分配过大的存储空间,势必会造成系统空间紧张。如何解决这个问题?
操作结果:返回S中的元素个条件:堆栈S已存在。
操作结果:用e返回S的栈顶元素。
......
实验3:顺序栈基本操作
一 、实验目的
1.熟悉并能实现栈的定义和基本操作。
2.了解和掌握栈在递归和非递归算法的应用。
二 、实验要求
2.栈的两种存储结构在判别栈空与栈满时,所依据的条件有何不同?
3. 在程序中同时使用两个以上的栈时,使用顺序栈共享邻接空间则很难实现,能否通过链栈来方便地实现?如何实现?