人教版八年级数学整式的乘法习题

合集下载

人教版八年级上册数学第14章第1节整式的乘法习题(2)

人教版八年级上册数学第14章第1节整式的乘法习题(2)

人教版八年级上册数学第14章第1节整式的乘法习题1.1. 同底数幂的乘法1、计算:(1)x10· x=(2)10×102×104 =(3)x5·x ·x3=(4)y4·y3·y2·y =2、下面的计算对不对?如果不对,怎样改正?(1)b5· b5= 2b5()(2)b5 + b5 = b10()(3)x5·x5 = x25()(4)y5· y5 = 2y10()(5)c · c3 = c3()(6)m + m3 = m4()3、填空:(1)x5·()= x8(2)a ·()= a6(3)x · x3()= x7(4)x m·()=x3m4、计算:(1) x n · x n+1 (2) (x+y)3· (x+y)45、填空:(1) 8 = 2x,则 x = ;(2)8 × 4 = 2x,则 x = ;(3)3×27×9 = 3x,则 x = 。

6、计算(1)35(—3)3(—3)2 ( 2)—a(—a)4(—a)3(3 ) x p (—x)2p (—x)2p+1 (p 为正整数) (4)32×(—2)(n 为正整数)7、计算 (1)(2)(x —y)2(y —x)58、填空(1)3n+1=81若a =________(2)=________ (3)若,则n=_____(4)3100. (-3)101 =_________ 9.计算:(1)(2)(3)(4)2(2)n -3421(2)(2)(2)m n a b a b a b -++++)(11a a n n ----•28233n =•a a a a x x 4213--+•)(341x x x n n -••+-)()()(432m n m n n m ---•)(344y y y n n -••+-1.2. 幂的乘方一、选择题1.计算(x 3)2的结果是( )A.x 5B.x 6C.x 8D.x 92.计算(-3a 2)2的结果是( )A.3a 4B.-3a 4C.9a 4D.-9a 43.122)(--n x 等于( )A.14-n xB.14--n xC.24-n xD.24--n x 4.21)(--n a 等于( )A.22-n aB.22--n aC.12-n aD.22--n a5.13+n y 可写成( )A.13)(+n yB.13)(+n yC.n y y 3⋅D.1)(+n n y6.2)()(m m m a a ⋅不等于( )A.m m a )(2+B.m m a a )(2⋅C.22m m a+ D.m m m a a )()(13-⋅ 7.计算13(2014)n +等于( ) A.32014n + B.312014n + C.42014n + D.332014n + 8.若2139273m m ⨯⨯=,则m 的值为( )A.3B.4C.5D.6二、填空题1.-(a 3)4=_____.2.若x 3m =2,则x 9m =_____.3. n ·=______.4.,__________])2[(32=-___________)2(32=-;5.______________)()(3224=-⋅a a ,____________)()(323=-⋅-a a ;6.___________)()(4554=-+-x x ,_______________)()(1231=⋅-++m m a a ;7.___________________)()()()(322254222x x x x ⋅-⋅;8.若 3=n x , 则=n x 3________;9.若2,7x y a a ==,则2x y a +=________;10.如果23n x =,则34()n x =________.三、解答题1.计算:(-2x 2y 3)+8(x 2)2·(-x )2·(-y )32.已知273×94=3x ,求x 的值.3.已知a m =5,a n =3,求a 2m+3n 的值.4.若2x+5y-3=0,求432x y 的值5.试比较35555,44444,53333三个数的大小.14.1.2幂的乘方答案一、选择题:BC DA CCDB二、填空题:1、12a -;2、8;3、5n x -;4、64,-64;5、149,a a --6、0,55m a +-;7、12143x x -;8、9;9、28;10、729三、解答题1、解法一: 2= 2=(-x 9y 6n )2=(-x 9)2·(y 6n )2=x 18y 12n .解法二: 2=(-1)2·(x 3y 2n )6=(x 3)6·(y 2n )6=x 18y 12n .2、解:因为273×94=(33)3×(32)4=39×38=39+8=317,即3x =317,所以x=17.3、解:因为a m =5,a n =3,所以a 2m+3n =a 2m ·a 3n =(a m )2·(a n )3=52×33=25×27=675.4、解:253x y +=2525343222228x y x y x y +∴====5、解:因为35555=35×1111=(35)1111=2431111.44444=44×1111=(44)1111=2561111.53333=53×1111=(53)1111=1251111,又因为125<243<256,所以1251111<2431111<2561111,即53333<35555<44444.1.3. 积的乘方一、选择题1.下列计算错误的是( )A .a 2·a=a 3B .(ab )2=a 2b 2C .(a 2)3=a 5D .-a+2a=a2.计算(x 2y )3的结果是( )A .x 5yB .x 6yC .x 2y 3D .x 6y 33.计算(-3a 2)2的结果是( )A .3a 4B .-3a 4C .9a 4D .-9a 44.计算(-0.25)2010×42010的结果是( )A .-1B .1C .0.25D .440205.计算()2323xy y x -⋅⋅的结果是( )A .y x 105⋅B .y x 85⋅C .y x 85⋅-D .y x 126⋅6.若3915(2)8m m n a b a b +=成立,则( ) A .m=3,n=2 B .m=n=3 C .m=6,n=2 D .m=3,n=57.32220142323(2)(1)()2x y x y ----的结果等于( ) A .y x 10103 B .y x 10103- C .y x 10109 D .y x 10109-8.12[(1)]n n p +-等于( ) A .2n p B .2n p - C .2n p +- D .无法确定二、填空题1.计算:(2a )3=______.2.若a 2n =3,则(2a 3n )2=__ __.3.6927a b -=( )3.4.20132013(0.125)(8)-=_______.5.已知351515()x a b =-,则x=_______.6.(-0.125)2=_________.7.若232,3n n x y ==,则6()n xy =_______. 8.2013201220142() 1.5(1)3⨯⨯-=_______. 9.化简21223()(2)m n aa a +-所得的结果为_______. 10.若53,45n n ==,则20n 的值是_______.三、解答题1.计算:x 2·x 3+(x 3)22.计算:()100×(1)100×()2013×420143.已知x+3322336x x +-=,求x 的值.2312144.若877,8ab ==,用含,a b 的式子表示5656.5.已知n 是正整数,且32n x=,求3223(3)(2)n n x x +-的值.14.1.3积的乘方一、选择题:CDCB BACA二、填空题:1、38a;2、108;3、233a b-;4、-1;5、-ab;6、164;7、72;8、23;9、4288m na++-;10、15.三、解答题1、解:x2·x3+(x3)2=x2+3+x3×2=x5+x6.2、解:()100×(1)100×()2009×42010=××4=(×)100×(×4)2009×4=1×1×4=4.3、解:332 2336x x x++-=32232(2) (23)(6) 6632(2)7x xx xx xx+-+-∴⨯=∴=∴+=-∴=4、解:5656 56(78)=⨯565687787878(7)(8)a b=⨯=⨯=5、解:3223(3)(2)n nx x+-3232 9(3)(8)() 94844n nx x=⨯+-⨯=⨯-⨯=2312142332141.4. 整式的乘法1.4.1. 单项式与单项式、多项式相乘1、填空:(每小题7分,共28分)(1) (2一3+1)=_________; (2)3b(2b -b+1) =_____________;(3)(b +3b 一)(b)=_______;(4)(一2)(-x 一1) =_____. 2.选择题:(每小题6分,共18分)(1)下列各式中,计算正确的是 ( )A .(-3b+1)(一6)= -6+18b+6B .C .6mn(2m+3n -1) =12m 2n+18mn 2-6mnD .-b(一-b) =-b-b-b(2)计算(+1) -(-2-1)的结果为 ( )A .一一B .2++1C .3+D .3- (3)一个长方体的长、宽、高分别是2x 一3、3x 和x ,则它的体积等于 ( )A .2—3B .6x -3C .6-9xD .6x 3-93.计算(每小题6分,共30分)(1); (2);(3) (4)(2x 一3+4x -1)(一3x);(5). a a 2a a a 2a 34a 2a 23b 12a 2x 2x 12a a a 2a a ()232191313x y xy x y ⎛⎫--+=+ ⎪⎝⎭a a 2a a 3a 2a 2a 2a a a 2a a 2a a 2a a 2a a 2a 2x 2x 2x 2x 323(23)x y xy xy ⋅-222(3)x x xy y ⋅-+222(1)(4)4a b ab a b --+⋅-32x ()22213632xy y x xy ⎛⎫-+-- ⎪⎝⎭4.先化简,再求值.(每小题8分,共24分)(1) ;其中(2)m (m+3)+2m(m —3)一3m(m +m -1),其中m ;⑶4b(b -b +b)一2b (2—3b+2),其中=3,b=2. 22(1)2(1)3(25)x x x x x x -++--12x =-22252=a a 2a 2a a 2a 2a a a1.4.2.多项式与多项式相乘一、填空题(每小题3分,共24分)1.若=,则=______________.2.=__________,=__________.3.如果,则.4.计算: .5.有一个长mm ,宽mm ,高mm 的长方体水箱,这个水箱的容积是______________.6.通过计算几何图形的面积可表示一些代数恒等式(一定成立的等式),请根据右图写出一个代数恒等式是:________________.7.若,则的值为 .8.已知:A =-2ab ,B =3ab (a +2b ),C =2a 2b -2ab 2,3AB-=__________. 二、选择题(每小题3分,共24分) 9.下列运算正确的是( ).A .B .C .D .10.如果一个单项式与的积为,则这个单项式为( ). A . B . C . D . 11.计算的正确结果是( ).a b c x x x x 2008x c b a ++(2)(2)a b ab --2332()()a a --2423)(a a a x =⋅______=x (12)(21)a a ---=9104⨯3105.2⨯3610⨯2mm 3230123)x a a x a x a x =+++220213()()a a a a +-+AC 21236x x x =2242x x x +=22(2)4x x -=-358(3)(5)15a a a --=3ab -234a bc -14ac 214a c 294a c 94ac 233[()]()a b a b ++A .B .C .D .12.长方形的长为(a -2),宽为(3a +1) ,那么它的面积是多少?( ).A .B .C .D .13.下列关于的计算结果正确的是( ).A .B .C .D .14.下列各式中,计算结果是的是( ).A .B .C .D .15.下列各式,能够表示图中阴影部分的面积的是( ).① ② ③ ④A .只有①B .①和②C .①、②和③D .①、②、③、④16.已知:有理数满足,则的值为( ). A.1 B.-1 C. ±1 D. ±2三、解答题(共52分)17.计算:8()a b +9()a b +10()a b +11()a b +cm cm 2(352)a a cm --2(352)a a cm -+2(352)a a cm +-2(32)a a cm +-301300)2(2-+3003013003016012(2)(2)(2)(2)+-=-+-=-1301300301300222)2(2-=-=-+300300300301300301300222222)2(2-=⨯-=-=-+601301300301300222)2(2=+=-+2718x x +-(1)(18)x x -+(2)(9)x x -+(3)(6)x x -+(2)(9)x x ++()at b t t +-2at bt t +-()()ab a t b t ---2()()a t t b t t t -+-+0|4|)4(22=-++n n m 33m n(1) (2)18.解方程:19.先化简,再求值:(1),其中=-2.(2),其中=-3.20.一个长方形的长为2xcm ,宽比长少4cm ,若将长方形的长和宽都扩大3cm ,长方形比原来增大的面积是多少?拓广探索21.在计算时我们如果能总结规律,并加以归纳,得出数学公式, 一定会提高解题的速度,在解答下面问题中请留意其中的规律.(1)计算后填空: ; ;3243-ab c 2⎛⎫ ⎪⎝⎭()2232315x y-xy -y -4xy 426⎛⎫ ⎪⎝⎭2(10)(8)100x x x +-=-()()()2221414122x x x x x x ----+-x ()()()()5.0232143++--+a a a a a ()()=++21x x ()()=-+13x x(2)归纳、猜想后填空:(3)运用(2)猜想的结论,直接写出计算结果: .22.有些大数值问题可以通过用字母代替数转化成整式问题来解决,请先阅读下面的解题过程,再解答下面的问题. 例 若=123456789×123456786, =123456788×123456787,试比较、的大小.解:设123456788=a ,那么,,∵=-2,∴x <y看完后,你学到了这种方法吗?再亲自试一试吧,你准行!问题:若=,=,试比较、的大小.()()()()++=++x x b x a x 2()()=++m x x 2x y x y ()()2122x a a a a =+=---()21y a a a a ==--()()222x y a a a a =-----x 20072007200720112007200820072010⨯-⨯y 20072008200720122007200920072011⨯-⨯x y 用这种方法不仅可比大小,也能解计算题哟!参考答案一、填空题1.2007 2.、 3.18 4.5. 6. 7.1 8.二、选择题9.D 10.A 11.B 12.A 13.C 14.B 15.D 16.B三、解答题(共56分)17.(1) (2) 18.,,∴.19.(1),8 (2),020.-=-==答:增大的面积是.21.(1)、 (2)、 (3) 拓广探索22.设20072007=,===-3, ===-3,∴=.2242a b ab -+12a -214a -16610⨯()ab a b a a 2222+=+32231638a b a b --3612278a b c -3324510323x y x y xy -++2281080100x x x x -+-=-220x =-10x =-324864x x x +--26a --(23)(21)x x +-2(24)x x -2(4623)x x x +--2(48)x x -2244348x x x x +--+123x -(123)x cm -232x x ++223x x +-a b +ab 2(2)2x m x m +++a x (4)(1)(3)a a a a +-++224(43)a a a a +-++y (1)(5)(2)(4)a a a a ++-++2265(68)a a a a ++-++x y。

人教版 八年级数学上册 14.1--14.3练习题含答案

人教版 八年级数学上册 14.1--14.3练习题含答案

人教版 八年级数学上册 14.1--14.3练习题14.1 整式的乘法一、选择题(本大题共10道小题) 1. 计算a 3·a 2正确的是( )A. ɑB. ɑ5C. ɑ6D. ɑ9 2. 单项式乘多项式运算法则的依据是( ) A .乘法交换律 B .加法结合律 C .分配律D .加法交换律3. 今天数学课上,老师讲了单项式乘多项式,放学回到家,小明拿出课堂笔记复习,发现一道题:-3xy (4y -2x -1)=-12xy 2+6x 2y +□,□的地方被弄污了,你认为□内应填写( ) A .3xyB .-3xyC .-1D .14. 若a 3=b ,b 4=m ,则m 为( ) A .a 7B .a 12C .a 81D .a 645. 一个长方形的周长为4a +4b ,若它的一边长为b ,则此长方形的面积为( ) A .b 2+2ab B .4b 2+4ab C .3b 2+4abD .a 2+2ab6. 若(x +1)(2x 2-ax +1)的运算结果中,x 2的系数为-6,则a 的值是( ) A .4B .-4C .8D .-87. 下列计算错误的是( ) A .()333327ab a b -=- B .2326411416a b a b ⎛⎫-= ⎪⎝⎭C .()326xy xy -=- D .()24386a b a b -=8. 已知x a =2,x b =3,则x 3a +2b 的值( ) A .48B .54C .72D .179. 通过计算,比较图①、图②中阴影部分的面积,可以验证的算式是( )A .a (b -x )=ab -axB .(a -x )(b -x )=ab -ax -bx +x 2C .(a -x )(b -x )=ab -ax -bxD .b (a -x )=ab -bx10. 若n 是自然数,并且有理数,a b 满足10a b+=,则必有( )A .21()0n n a b +=B .2211()0n n a b++=C .221()0n n a b+=D .21211()0n n a b+++=二、填空题(本大题共6道小题)11. 填空:()()()324a a a -⋅-⋅-= ; 12. 填空:()()2322a b b ⋅-= ;13. 计算:(2x +1)·(-6x)=____________.14. 填空:()4mmx x ÷=;()224m a a+⋅=;()234nnn na b =;()()()284n a aa ⎡⎤==⎣⎦15. 若a 2b =2,则式子2ab (a -2)+4ab =________.16. 如图①,有多个长方形和正方形的卡片,图②是选取了2块不同的卡片拼成的一个图形,借助图中阴影部分面积的不同表示方法可以验证等式a (a +b )=a 2+ab 成立,根据图③,利用面积的不同表示方法,仿照上面的式子写出一个等式:____________________.三、解答题(本大题共4道小题)17. 计算:()()32315322154⎛⎫⎛⎫-⨯--÷-⨯- ⎪ ⎪⎝⎭⎝⎭18. 计算:53(3)(3)a b b a --19. 数形结合长方形的长为a 厘米,宽为b 厘米(a >b >8),如果将原长方形的长和宽各增加2厘米,得到的新长方形的面积记为S 1平方厘米;如果将原长方形的长和宽分别减少3厘米,得到的新长方形的面积记为S 2平方厘米. (1)如果S 1比S 2大100,求原长方形的周长;(2)如果S 1=2S 2,求将原长方形的长和宽分别减少8厘米后得到的新长方形的面积;(3)如果用一个面积为S 1的长方形和两个面积为S 2的长方形恰好能没有缝隙、没有重叠地拼成一个正方形,求a ,b 的值.20. 已知有理数x ,y ,z 满足2|2|(367)|334|0x z x y y z --+--++-=,求3314n n n x y z x --的值.14.2《乘法公式》一.选择题1.计算(a +2b )2的结果是( ) A .a 2+4b 2B .a 2+2ab +2b 2C .a 2+4ab +2b 2D .a 2+4ab +4b 22.下列从左到右的变形,错误的是( ) A .(y ﹣x )2=(x ﹣y )2 B .﹣a ﹣b =﹣(a +b ) C .(m ﹣n )3=﹣(n ﹣m )3D .﹣m +n =﹣(m +n )3.下列算式能用平方差公式计算的是( ) A .(3a +b )(3b ﹣a ) B .(﹣1)(﹣﹣1) C .(x ﹣y )(﹣x +y )D .(﹣a ﹣b )(a +b ) 4.若x 2﹣kx +81是完全平方式,则k 的值应是( ) A .16B .9或﹣9C .﹣18D .18或﹣185.已知x +y =5,xy =6,则x 2+y 2的值是( ) A .1B .13C .17D .256.代数式(m ﹣2)(m +2)(m 2+4)﹣(m 4﹣16)的结果为( ) A .0B .4mC .﹣4mD .2m 47.如图是用四个相同的矩形和一个正方形拼成的图案,已知此图案的总面积是49,小正方形的面积是4,x ,y 分别表示矩形的长和宽,那么下面式子中不正确的是( )A.x+y=7B.x﹣y=2C.4xy+4=49D.x2+y2=258.如图,将一张正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,另一边为2m+3,则原正方形边长是()A.m+6B.m+3C.2m+3D.2m+6二.填空题9.计算:(m﹣2n)2=.10.计算:x(x+2)﹣(x+1)(x﹣1)=.11.若x2﹣6x+k是x的完全平方式,则k=.12.9992﹣998×1002=.13.(a+b)(a﹣b)(a2+b2)(a4+b4)=.14.如果(a+b﹣2)(a+b+2)=77,那么a+b=.15.已知a,b满足a﹣b=1,ab=2,则a+b=.16.如图1,将边长为a的大正方形剪去一个边长为b的小正方形,再沿图中的虚线剪开,然后按图2所示进行拼接,请根据图形的面积写出一个含字母a,b的等式.三.解答题17.(a+1)(a2﹣1)(a﹣1).18.利用乘法公式计算:982.19.已知a﹣b=4,ab=3(1)求(a+b)2(2)a2﹣6ab+b2的值.20.数学课上老师出了一道题:计算2962的值,喜欢数学的小亮举手做出这道题,他的解题过程如下:2962=(300﹣4)2 第一步=3002﹣2×300×(﹣4)+42 第二步=90000+2400+16 第三步=92416.第四步老师表扬小亮积极发言的同时,也指出了解题中的错误.(1)你认为小亮的解题过程中,从第几步开始出错;(2)请你写出正确的解题过程.21.图1,是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)图2中的阴影部分的面积为;(2)观察图2,三个代数式(m+n)2,(m﹣n)2,mn之间的等量关系是;(3)若x+y=﹣6,xy=2.75,求x﹣y;(4)观察图3,你能得到怎样的代数恒等式呢?参考答案一.选择题1.解:(a+2b)2=a2+4ab+4b2.故选:D.2.解:A、(y﹣x)2=y2﹣2xy+x2=(x﹣y)2,故本选项不合题意;B、﹣a﹣b=﹣(a+b),故本选项不合题意;C、(m﹣n)3=(m﹣n)(n﹣m)2=﹣(n﹣m)(n﹣m)2=﹣(n﹣m)3,故本选项不合题意;D、﹣m+n=﹣(m﹣n),故本选项符合题意.故选:D.3.解:选项A:没有两项完全相同,也没有两项属于相反数,故不能用平方差公式计算;选项B:和﹣是相反数,﹣1和﹣1是相同项,故可以用平方差公式计算;选项C:x与﹣x是相反数,﹣y与y也是相反数,故不能用平方差公式计算;选项D:﹣a和a是相反数,﹣b和b也是相反数,故不能用平方差公式计算;综上,只有选项B符合题意.故选:B.4.解:∵x2﹣kx+81是完全平方式,81=92,∴k=±2×1×9=±18.故选:D.5.解:将x+y=5两边平方得:(x+y)2=x2+2xy+y2=25,将xy=6代入得:x2+12+y2=25,则x2+y2=13.故选:B.6.解:(m﹣2)(m+2)(m2+4)﹣(m4﹣16)=(m2﹣4)(m2+4)﹣(m4﹣16)=(m4﹣16)﹣(m4﹣16)=0.故选:A.7.解:A、∵此图案的总面积是49,∴(x+y)2=49,∴x+y=7,故本选项正确,不符合题意;B、∵小正方形的面积是4,∴(x﹣y)2=4,∴x﹣y=2,故本选项正确,不符合题意;C、根据题得,四个矩形的面积=4xy,四个矩形的面积=(x+y)2﹣(x﹣y)2=49﹣4,∴4xy=49﹣4,即4xy+4=49,故本选项正确,不符合题意;D、∵(x+y)2+(x﹣y)2=49+4,∴2(x2+y2)=53,解得x2+y2=26.5,故本选项错误,符合题意.故选:D.8.解:设原正方形的边长为x,则x﹣m=3,解得,x=m+3,故选:B.二.填空题9.解:原式=m2﹣4mn+4n2.10.解:原式=x2+2x﹣x2+1=2x+1.故答案为:2x+111.解:∵关于x的多项式x2﹣6x+k是完全平方式,∴x2﹣6x+k=x2﹣2•x•3+32,∴k=32=9,故答案为:9.12.解:原式=(1000﹣1)2﹣(1000﹣2)×(1000+2)=10002﹣2×1000×1+12﹣10002+22=﹣2000+1+4=﹣1995,故答案为:﹣1995.13.解:原式=(a2﹣b2)(a2+b2)(a4+b4)=(a4﹣b4)(a4+b4)=a8﹣b8,故答案为:a8﹣b814.解:(a+b﹣2)(a+b+2)=77,即(a+b)2﹣22=77,(a+b)2=81,a+b=,a+b=±9.故答案为:±9.15.解:因为a﹣b=1,ab=2,所以a2+b2=(a﹣b)2+2ab=12+2×2=1+4=5,所以(a+b)2=a2+b2+2ab=5+2×2=9,所以a+b=±3.故答案为:±3.16.解:图1面积为a2﹣b2,图2的面积为(a+b)(a﹣b),因此有:a2﹣b2=(a+b)(a﹣b),故答案为:a2﹣b2=(a+b)(a﹣b).三.解答题17.解:(a+1)(a2﹣1)(a﹣1)=[(a+1)(a﹣1)](a2﹣1)=(a2﹣1)(a2﹣1)=a4﹣2a2+1.18.解:原式=(100﹣2)2=1002﹣2×100×2+4=10000﹣400+4=9604.19.解:(1)∵a﹣b=4,ab=3,∴(a+b)2=(a﹣b)2+4ab=16+3×4=28;(2)∵a﹣b=4,ab=3,∴a2﹣6ab+b2=(a﹣b)2﹣4ab=16﹣12=4.20.解:(1)从第二步开始出错;(2)正确的解题过程是:2962=(300﹣4)2=3002﹣2×300×4+42=90000﹣2400+16=87616.21.解:(1)图②中的阴影部分的面积为(m﹣n)2,故答案为:(m﹣n)2;(2)(m+n)2﹣4mn=(m﹣n)2,故答案为:(m+n)2﹣4mn=(m﹣n)2;(3)(x﹣y)2=(x+y)2﹣4xy=25,则x﹣y=±5;(4)(2m+n)(m+n)=2m(m+n)+n(m+n)=2m2+3mn+n2.14.3 因式分解一、选择题1. 下列多项式中,能用公式法分解因式的是()A. x2-xyB. x2+xyC. x2-y2D. x2+y32. 2019·晋州期末把下列各式分解因式,结果为(x-2y)(x+2y)的多项式是()A.x2-4y2B.x2+4y2C.-x2+4y2D.-x2-4y23. 计算552-152的结果是()A.40 B.1600 C.2400 D.28004. 计算(a-1)2-(a+1)2的结果是()A.-2 B.-4 C.-4a D.2a2+25. 如图,长、宽分别为a,b的长方形的周长为10,面积为6,则a2b+ab2的值为() A.15 B.30 C.60 D.786. 将a3b-ab分解因式,正确的结果是()A.a(a2b-b) B.ab(a-1)2C .ab (a +1)(a -1)D .ab (a 2-1)7. 2019·毕节 织金期末某同学粗心大意,分解因式时,把等式x 4-■=(x 2+4)(x +2)(x -▲)中的两个数字弄污了,则式子中的■,▲对应的一组数字是( ) A .8,1 B .16,2 C .24,3 D .64,88. 如图,阴影部分是边长为a 的大正方形中剪去一个边长为b 的小正方形后所得到的图形,将阴影部分通过割、拼,形成新的图形,嘉嘉(图①)和琪琪(图②)分别给出了各自的割拼方法,其中能够验证平方差公式的是( )A .嘉嘉B .琪琪C .都能D .都不能9. 2019·扬州邗江区月考 若2m +n =25,m -2n =2,则(m +3n )2-(3m -n )2的值为( )A .200B .-200C .100D .-10010. 若a ,b ,c 是三角形三边的长,则代数式2222a b c ab +--的值().A.大于零B.小于零 C 大于或等于零 D .小于或等于零二、填空题11. 2019·张家港期末 已知x ,y 满足⎩⎪⎨⎪⎧2x +y =9,x +2y =6,则x 2-y 2=________.12. 若2a =3b -1则4a 2-12ab +9b 2-1的值为________.13. 分解因式:441x +=__________.14. 已知n 是正整数,且4216100n n -+是质数,那么n =_______.15. 分解因式:432234232a a b a b ab b ++++=_______.三、解答题16. 分解因式()()()3232332125x y x y x y -+---17. 分解因式: 4414x y +18. 分解因式:()()()222241211y x y x y +-++-19. 分解因式:2222()()()()a b a c c d b d +++-+-+20. 分解因式:54321x x x x x +++++人教版 八年级数学 14.3 因式分解 针对训练 -答案一、选择题1. 【答案】C 【解析】观察选项A ,B 都是利用提取公因式法进行因式分解的,选项D 不能进行因式分解,选项C 正好可以利用平方差公式,故正确答案是C.2. 【答案】A3. 【答案】D [解析] 552-152=(55+15)×(55-15)=70×40=2800.4. 【答案】C [解析] (a -1)2-(a +1)2=(a -1+a +1)(a -1-a -1)=2a·(-2)=-4a.5. 【答案】B [解析] 根据题意,得a +b =5,ab =6,则a 2b +ab 2=ab(a +b)=30.6. 【答案】C [解析] a 3b -ab =ab(a 2-1)=ab(a +1)(a -1).7. 【答案】B [解析] 由(x 2+4)(x +2)(x -▲)得出▲=2,则(x 2+4)(x +2)(x -2)=(x 2+4)(x 2-4)=x 4-16,则■=16.8. 【答案】C [解析] 在图①中,阴影部分的面积相等,左边的图形阴影部分的面积=a 2-b 2,右边的图形阴影部分的面积=(a +b)(a -b),故可得a 2-b 2=(a +b)(a -b),可以验证平方差公式;在图②中,阴影部分的面积相等,左边的图形阴影部分的面积=a 2-b 2,右边的图形阴影部分的面积=12(2b +2a)·(a -b)=(a +b)(a -b),故可得a 2-b 2=(a +b)(a -b),可以验证平方差公式.9. 【答案】B [解析] 因为2m +n =25,m -2n =2,所以(m +3n)2-(3m -n)2=[(m +3n)+(3m -n)][(m +3n)-(3m -n)]=(4m +2n)(-2m +4n)=-4(2m +n)(m -2n)=-4×25×2=-200.10. 【答案】B【解析】222222222(2)()()()a b c ab a ab b c a b c a b c a b c +--=-+-=--=-+--又因为a ,b ,c 是三角形三边的长,所以a c b +>,a b c <+即0a b c -+>,0a b c --<,()()0a b c a b c -+--<,22220a b c ab +--<二、填空题11. 【答案】15 [解析] 由已知可得3x +3y =15,则x +y =5,x -y =3,故x 2-y 2=(x +y)(x -y)=15.12. 【答案】0 [解析] 因为2a =3b -1所以2a -3b =-1.所以4a 2-12ab +9b 2-1=(2a -3b)2-1=(-1)2-1=0.13. 【答案】22(221)(221)x x x x ++-+【解析】442222222414414(21)(2)(221)(221)x x x x x x x x x x +=++-=+-=++-+14. 【答案】3n =【解析】原式422222222010036(10)(6)(610)(610)n n n n n n n n n =++-=+-=-+++. 又因为4216100n n -+是质数,且n 是正整数,且26101n n ++≠,故26101n n -+=,3n =.15. 【答案】222()a b ab ++【解析】4322342222222222232()2()()a a b a b ab b a b ab a b a b a b ab ++++=++++=++三、解答题16. 【答案】()()()152332x y x y x y ----【解析】原式()()()()()()()33323322332152332x y x y x y x y x y x y x y =-+---+-=----⎡⎤⎣⎦17. 【答案】22221(22)(22)4x xy y x xy y ++-+ 【解析】4414x y +442222222211()()42x y x y x y x y xy =++-=+-22221(22)(22)4x xy y x xy y =++-+ 18. 【答案】(1)(1)(1)(1)x x x xy y x xy y +-------【解析】()()()222241211y x y x y +-++-()()()222242212114y x y x y x y =+--+-- ()()22211(2)(1)(1)(1)(1)y x y xy x x x xy y x xy y ⎡⎤=+---=+-------⎣⎦19. 【答案】2()()a d a b c d -+++【解析】2222()()()()()(2)()(2)2()()a b a c c d b d a d a b d a d a c d a d a b c d +++-+-+=-+++-++=-+++20. 【答案】22(1)(1)(1)x x x x x +-+++【解析】原式3223222(1)(1)(1)(1)(1)(1)(1)x x x x x x x x x x x x x =+++++=+++=+-+++。

人教版八年级数学上《整式的乘法》基础练习

人教版八年级数学上《整式的乘法》基础练习

《整式的乘法》基础练习一、选择题(本大题共5小题,共25.0分)1.(5分)下列计算正确的是()A.a+a=a2B.(2a)3=6a3C.a3×a3=2a3D.a3÷a=a2 2.(5分)8x6÷x2的结果是()A.8x3B.x3C.x3D.8x43.(5分)若(x+4)(x﹣2)=x2+mx+n,则m、n的值分别是()A.2,8B.﹣2,﹣8C.2,﹣8D.﹣2,84.(5分)在下列计算中,正确的是()A.b3•b3=b6B.x4•x4=x16C.(﹣2x2)2=﹣4x4D.3x2•4x2=12x25.(5分)下列运算正确的是()A.a8÷a4=a2B.(a2)3=a6C.a2•a3=a6D.(ab2)3=ab6二、填空题(本大题共5小题,共25.0分)6.(5分)计算:(4a3﹣a3)•a2=.7.(5分)计算:(2x﹣4)(2x+1)=.8.(5分)计算(x﹣1)(2x+3)的结果是.9.(5分)(2x2﹣3x﹣1)(x+b)的计算结果不含x2项,则b的值为.10.(5分)计算:(3m﹣1)(2m﹣1)=.三、解答题(本大题共5小题,共50.0分)11.(10分)已知a+b=4,ab=3,求代数式(a+2)(b+2)的值.12.(10分)计算:x2(x﹣1)﹣x(x2+x﹣1)13.(10分)已知k≠0,将关于x的方程kx+b=0记作方程◇.(1)当k=2,b=﹣4时,方程◇的解为;(2)若方程◇的解为x=﹣3,写出一组满足条件的k,b值:k=,b=;(3)若方程◇的解为x=4,求关于y的方程k(3y+2)﹣b=0的解.14.(10分)某市有一块长为3a+b米,宽为2a+b米的长方形地块,规划部门计划将阴影部分进行绿化中间修建一座边长是(a﹣b)的正方形雕像.(1)请用含a,b的代数式表示绿化面积s;(2)当a=3,b=2时,求绿化面积.15.(10分)定义:一个多项式A乘以另一个多项式B化简得到新的多项式C,若C的项数比A的项数多不超过1项,则称B是A的“友好多项式”.特别地,当C的项数和A 相同时,则称B是A的“特别友好多项式”.(1)若A=x﹣2,B=x+3,那么B是否是A的“友好多项式”?请说明理由;(2)若A=x﹣2,B是A的“特别友好多项式”,①请举出一个符合条件的二项式B=.②若B是三项式,请举出一个符合条件的B,并说明理由;(3)若A是三项式,是否存在同样是三项式的B,使得B是A的“友好多项式”?若存在,请举例说明,若不存在,请说明理由.《整式的乘法》基础练习参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)下列计算正确的是()A.a+a=a2B.(2a)3=6a3C.a3×a3=2a3D.a3÷a=a2【分析】根据整式的运算法则即可求出答案.【解答】解:(A)原式=2a,故A错误;(B)原式=8a3,故B错误;(C)原式=a6,故C错误;故选:D.【点评】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.2.(5分)8x6÷x2的结果是()A.8x3B.x3C.x3D.8x4【分析】根据同底数幂的除法法则计算.【解答】解:8x6÷x2=8x4,故选:D.【点评】本题考查的是同底数幂的除法,同底数幂的除法法则:底数不变,指数相减.3.(5分)若(x+4)(x﹣2)=x2+mx+n,则m、n的值分别是()A.2,8B.﹣2,﹣8C.2,﹣8D.﹣2,8【分析】先根据多项式乘以多项式的法则展开,再合并,然后根据等于号两边对应项相等,可求m、n的值.【解答】解:∵(x+4)(x﹣2)=x2+2x﹣8,∴x2+2x﹣8=x2+mx+n,∴m=2,n=﹣8.故选:C.【点评】本题考查了多项式乘以多项式,解题的关键是找准对应项.4.(5分)在下列计算中,正确的是()A.b3•b3=b6B.x4•x4=x16C.(﹣2x2)2=﹣4x4D.3x2•4x2=12x2【分析】根据单项式乘单项式、同底数幂的乘法和积的乘方进行解答.【解答】解:A、b3•b3=b6,正确;B、x4•x4=x8,错误;C、(﹣2x2)2=4x4,错误;D、3x2•4x2=12x4,错误;故选:A.【点评】此题考查单项式乘单项式、同底数幂的乘法和积的乘方,关键是根据单项式乘单项式、同底数幂的乘法和积的乘方法则解答.5.(5分)下列运算正确的是()A.a8÷a4=a2B.(a2)3=a6C.a2•a3=a6D.(ab2)3=ab6【分析】根据同底数幂的除法的法则,同底数幂的乘法的法则,幂的乘方与积的乘方的性质解答即可.【解答】解:A、a8÷a4=a4,故选项A错误;B、(a2)3=a6,故B选项正确;C、a2•a3=a5,故选项C错误;D、(ab2)3=a3b6,故选项D错误;故选:B.【点评】本题考查了同底数幂的除法,同底数幂的乘法,幂的乘方与积的乘方,熟记法则是解题的关键.二、填空题(本大题共5小题,共25.0分)6.(5分)计算:(4a3﹣a3)•a2=3a5.【分析】根据整式的运算法则即可求出答案.【解答】解:原式=4a5﹣a5,=3a5,故答案为:3a5【点评】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.7.(5分)计算:(2x﹣4)(2x+1)=4x2﹣6x﹣4.【分析】直接利用多项式乘以多项式运算法则化简进而得出答案.【解答】解:(2x﹣4)(2x+1)=4x2﹣6x﹣4,故答案为:4x2﹣6x﹣4.【点评】此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键.8.(5分)计算(x﹣1)(2x+3)的结果是2x2+x﹣3.【分析】根据多项式乘多项式的法则计算即可.法则可表示为(a+b)(m+n)=am+an+bm+bn.【解答】解:(x﹣1)(2x+3)=2x2+x﹣3.故答案为:2x2+x﹣3.【点评】本题主要考查多项式乘多项式的法则,熟练掌握运算法则是解题的关键.9.(5分)(2x2﹣3x﹣1)(x+b)的计算结果不含x2项,则b的值为.【分析】根据整式的运算法则即可求出答案.【解答】解:原式=2x3+2bx2﹣3x2﹣3bx﹣x﹣b由于不含x2项,∴2b﹣3=0,∴b=,故答案为:.【点评】本题考查整式的运算,解的关键是熟练运用整式的运算法则,本题属于基础题型.10.(5分)计算:(3m﹣1)(2m﹣1)=6m2﹣5m+1.【分析】根据多项式与多项式相乘的法则计算.【解答】解:(3m﹣1)(2m﹣1)=6m2﹣2m﹣3m+1=6m2﹣5m+1,故答案为:6m2﹣5m+1.【点评】本题考查的是多项式乘多项式,掌握多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加是解题的关键.三、解答题(本大题共5小题,共50.0分)11.(10分)已知a+b=4,ab=3,求代数式(a+2)(b+2)的值.【分析】根据整式的运算法则即可求出答案.【解答】解:原式=ab+2a+2b+4,当a+b=4,ab=3时,∴原式=3+8+4=15.【点评】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.12.(10分)计算:x2(x﹣1)﹣x(x2+x﹣1)【分析】去括号合并即可得到结果.【解答】解:原式=x3﹣x2﹣x3﹣x2+x=﹣2x2+x.【点评】考查了单项式乘多项式,单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.13.(10分)已知k≠0,将关于x的方程kx+b=0记作方程◇.(1)当k=2,b=﹣4时,方程◇的解为x=2;(2)若方程◇的解为x=﹣3,写出一组满足条件的k,b值:k=1,b=3;(3)若方程◇的解为x=4,求关于y的方程k(3y+2)﹣b=0的解.【分析】(1)代入后解方程即可;(2)只需满足b=3k即可;(3)介绍两种解法:方法一:将x=4代入方程◇:得,整体代入即可;方法二:将将x=4代入方程◇:得b=﹣4k,整体代入即可;【解答】解:(1)当k=2,b=﹣4时,方程◇为:2x﹣4=0,x=2.故答案为:x=2;(2)答案不唯一,如:k=1,b=3.(只需满足b=3k即可)故答案为:1,3;(3)方法一:依题意:4k+b=0,∵k≠0,∴.解关于y的方程:,∴3y+2=﹣4.解得:y=﹣2.方法二:依题意:4k+b=0,∴b=﹣4k.解关于y的方程:k(3y+2)﹣(﹣4k)=0,3ky+6k=0,∵k≠0,∴3y+6=0.解得:y=﹣2.【点评】本题考查了一元一次方程的解,熟练掌握解一元一次方程是关键.14.(10分)某市有一块长为3a+b米,宽为2a+b米的长方形地块,规划部门计划将阴影部分进行绿化中间修建一座边长是(a﹣b)的正方形雕像.(1)请用含a,b的代数式表示绿化面积s;(2)当a=3,b=2时,求绿化面积.【分析】(1)根据绿化面积=长方形地块的面积﹣正方形雕像的面积,列式计算即可,(2)把a=3,b=2带入(1)所求结果,计算后可得到答案.【解答】解:(1)根据题意得:长方形地块的面积=(3a+b)(2a+b)=6a2+5ab+b2,正方形雕像的面积为:(a﹣b)2=a2﹣2ab+b2,则绿化面积s=(6a2+5ab+b2)﹣(a2﹣2ab+b2)=5a2+7ab,即用含a,b的代数式表示绿化面积s=5a2+7ab,(2)把a=3,b=2代入s=5a2+7ab,s=5×32+7×3×2=87,即绿化面积为87平方米.【点评】本题考查多项式乘多项式,正确掌握整式乘法法则是解题的关键.15.(10分)定义:一个多项式A乘以另一个多项式B化简得到新的多项式C,若C的项数比A的项数多不超过1项,则称B是A的“友好多项式”.特别地,当C的项数和A 相同时,则称B是A的“特别友好多项式”.(1)若A=x﹣2,B=x+3,那么B是否是A的“友好多项式”?请说明理由;(2)若A=x﹣2,B是A的“特别友好多项式”,①请举出一个符合条件的二项式B=x+2.②若B是三项式,请举出一个符合条件的B,并说明理由;(3)若A是三项式,是否存在同样是三项式的B,使得B是A的“友好多项式”?若存在,请举例说明,若不存在,请说明理由.【分析】(1)根据多项式乘多项式的法则计算,根据“友好多项式”的定义判断;(2)①根据“特别友好多项式”的定义解答;②根据“特别友好多项式”的定义写出多项式,根据多项式乘多项式的法则证明;(3)根据“友好多项式”的定义写出多项式,根据多项式乘多项式的法则证明.【解答】解:(1)B是A的“友好多项式”,理由如下:(x﹣2)(x+3)=x2﹣2x+3x﹣6=x2+x﹣6,x2+x﹣6的项数比A的项数多不超过1项,则B是A的“友好多项式”;(2)①(x﹣2)(x+2)=x2﹣4,∴x+2是A的“特别友好多项式”;②(x﹣2)(x2+2x+4)=x3﹣2x2+2x2﹣4x+4x﹣8=x3﹣8,∴x2+2x+4是A的“特别友好多项式”;(3)存在,例如,a+b+c与a+b﹣c是“友好多项式”,理由如下:(a+b+c)(a+b﹣c)=(a+b)2﹣c2=a2+2ab+b2﹣c2,∴a+b+c与a+b﹣c是“友好多项式”.【点评】本题考查的是多项式乘多项式,掌握“友好多项式”的定义,多项式乘多项式的运算法则是解题的关键.。

人教版数学八年级上册:14.1--14.3练习题含答案)

人教版数学八年级上册:14.1--14.3练习题含答案)

人教版数学八年级上册:14.1--14.3练习题含答案)14.1整式的乘法14.1.1同底数幂的乘法1.下列各项中,两个幂是同底数幂的是( )A.x2与a2B.(-a)5与a3C.(x-y)2与(y-x)3 D.-x2与x2.计算x2·x3的结果是( )A.2x5B.x5C.x6D.x8 3.计算:103×104×10=.4.计算:(1)a·a9;(2)(-12)2×(-12)3;(3)(-a)·(-a)3(4)x3n·x2n-2;5.若27=24·2x,则x=.6.已知a m=2,a n=5,求a m+n的值.7.请分析以下解答是否正确,若不正确,请写出正确的解答.(1)计算:x5·x2=x5×2=x10;(2)若a m=3,a n=5,则a m+n=a m+a n=3+5=8.8.式子a2m+3不能写成( )A.a2m·a3B.a m·a m+3C.a2m+3D.a m+1·a m+29.若a+b-2=0,则3a·3b=.10.若8×23×32×(-2)8=2x,则x=.11.计算:(1)-x2·(-x)4·(-x)3;(2)(m-n)·(n-m)3·(n-m)4;12.已知4x=8,4y=32,求x+y的值.14.1.2幂的乘方1.计算(a4)2的结果是( )A.a6B.a8C.a16D.2a4 2.计算(-b2)3的结果正确的是( )A.-b6B.b6C.b5D.-b53.计算a3·(a3)2的结果是( )A.a8B.a9C.a11D.a184.下列运算正确的是( )A.3x+2y=5(x+y) B.x+x3=x4 C.x2·x3=x6D.(x2)3=x65.在下列各式的括号内,应填入b4的是( )A.b12=()8B.b12=()6 C.b12=()3 D.b12=()26.已知:10m=3,10n=2,求(1)103m;(2)102n;(3)103m+2n的值.7.下列四个算式中正确的有( )①(a4)4=a4+4=a8;②[(b2)2]2=b2×2×2=b8;③[(-x)3]2=(-x)6=x6;④(-y2)3=y6.A.0个B.1个C.2个D.3个8.计算(a2)3-5a3·a3的结果是( )A.a5-5a6B.a6-5a9C.-4a6D.4a69.如果(9n)2=312,那么n的值是( )A.4 B.3 C.2 D.1 10.若(a3)2·a x=a24,则x=.11.计算:(1)5(a3)4-13(a6)2;(2)x4·x5·(-x)7+5(x4)4-(x8)2;(3)[(x +y)3]6+[(x+y)9]2.12.在比较216和312的大小时,我们可以这样来处理:∵216=(24)4=164,312=(33)4=274,又∵16<27,∴164<274,即216<312.你能类似地比较下列各组数的大小吗?(1)2100与375;(2)3555,4444与5333.14.1.3 积的乘方1.计算(ab 2)3的结果是( )A .3ab 2B .ab 6C .a 3b 5D .a 3b 6 2.计算(-2a 3)2的结果是( )A .-4a 5B .4a 5C .-4a 6D .4a 6 3.下列运算正确的是( )A .(-a 2)3=-a 5B .a 3·a 5=a 15C .(-a 2b 3)2=a 4b 6D .3a 2-2a 2=14.计算:(1)(3x)4; (2)-(12a 2b)3; (3)(x m y n )2; (4)(-3×102)4.5.已知|a -2|+(b +12)2=0,则a 2 018b 2 018的值为 .6.如果5n =a ,4n =b ,那么20n = .7.指出下列的计算哪些是对的,哪些是错的,并将错误的改正.(1)(ab 2)2=ab 4;(2)(3cd)3=9c 3d 3;(3)(-3a 3)2=-9a 6;(4)(-x 3y)3=-x 6y 3.8.如果(a m b n )3=a 9b 12,那么m ,n 的值分别为( )A .9,4B .3,4C .4,3D .9,69.若2x +1·3x +1=62x -1,则x 的值为 .10.计算:(1)(-32ab 2c 4)3; (2)(-2xy 2)6+(-3x 2y 4)3; (3)(-14)2 018×161 009.11.已知n 是正整数,且x 3n =2,求(3x 3n )3+(-2x 2n )3的值.参考答案:14.1 整式的乘法14.1.1 同底数幂的乘法1.D2.B3.108.4.(1)解:原式=a 1+9=a 10.(2)解:原式=(-12)2+3=(-12)5=-125.(3)解:原式=a 4.(4)解:原式=x 3n +2n -2=x 5n -2.5.3.6.解:a m +n =a m ·a n =2×5=10.7.解:(1)(2)解答均不正确,正确的解答如下:(1)x 5·x 2=x 5+2=x 7.(2)a m +n =a m ·a n =3×5=15.8.C9.9.10.19.11.(1)解:原式=-x2·x4·(-x3)=x2·x4·x3=x9.(2)解:原式=-(n-m)·(n-m)3·(n-m)4=-(n-m)1+3+4=-(n-m)8.12.解:4x·4y=8×32=256=44,而4x·4y=4x+y,∴x+y=4.14.1.2幂的乘方1.B2.A3.B4.D5.C6.已知:10m=3,10n=2,求(1)103m;(2)102n;(3)103m+2n的值.解:(1)103m=(10m)3=33=27.(2)102n=(10n)2=22=4.(3)103m+2n=103m×102n=27×4=108.7.C8.C9.B10.18.11.(1)解:原式=5a12-13a12=-8a12.(2)解:原式=-x16+5x16-x16=3x16.(3)解:原式=(x+y)18+(x+y)18=2(x+y)18. 12.解:(1)∵2100=(24)25=1625,375=(33)25=2725,又∵16<27,∴1625<2725,即2100<375.(2)∵3555=(35)111=243111,4444=(44)111=256111,5333=(53)111=125111,又∵125<243<256,∴125111<243111<256111.即5333<3555<4444.14.1.3 积的乘方1.D2.D3.C4.(1)解:原式=34·x 4=81x 4.(2)解:原式=-18a 6b 3.(3)解:原式=(x m )2·(y n )2 =x 2m y 2n .(4)解:原式=(-3)4×(102)4 =81×108=8.1×109.5.1.6.ab .7.解:(1)(2)(3)(4)都是错的.改正如下:(1)(ab 2)2=a 2b 4;(2)(3cd)3=27c 3d 3;(3)(-3a 3)2=9a 6;(4)(-x 3y)3=-x 9y 3.8.B9.2.10.(1)解:原式=-278a 3b 6c 12.(2)解:原式=64x 6y 12-27x 6y 12=37x 6y 12.(3)解:原式=(-14)2 018×42 018=(-14×4)2 018=1.11.解:(3x 3n )3+(-2x 2n )3=33×(x 3n )3+(-2)3×(x 3n )2=27×8+(-8)×4=184.14.2 乘法公式一.选择题1.如果x2+(m﹣1)x+9是一个完全平方式,那么m的值是()A.7B.﹣7C.﹣5或7D.﹣5或5 2.如果x2﹣(m+1)x+1是完全平方式,则m的值为()A.﹣1B.1C.1或﹣1D.1或﹣3 3.不论x、y为什么实数,代数式x2+y2+2x﹣4y+7的值()A.总不小于2B.总不小于7C.可为任何实数D.可能为负数4.已知a=2005x+2004,b=2005x+2005,c=2005x+2006,则多项式a2+b2+c2﹣ab﹣bc﹣ac的值为()A.0B.1C.2D.35.已知a+b=3,ab=2,则a2+b2的值为()A.3B.4C.5D.66.如果x2+2mx+9是一个完全平方式,则m的值是()A.3B.±3C.6D.±67.已知x2+mx+25是完全平方式,则m的值为()A.10B.±10C.20D.±208.已知x+y=﹣5,xy=3,则x2+y2=()A.25B.﹣25C.19D.﹣199.若a+b=1,则a2﹣b2+2b的值为()A.4B.3C.1D.010.已知(x﹣2015)2+(x﹣2017)2=34,则(x﹣2016)2的值是()A.4B.8C.12D.1611.如图的图形面积由以下哪个公式表示()A.a2﹣b2=a(a﹣b)+b(a﹣b)B.(a﹣b)2=a2﹣2ab+b2C.(a+b)2=a2+2ab+b2D.a2﹣b2=(a+b)(a﹣b)二.填空题12.已知a﹣b=b﹣c=,a2+b2+c2=1,则ab+bc+ca的值等于.13.已知(2008﹣a)2+(2007﹣a)2=1,则(2008﹣a)•(2007﹣a)=.14.若m为正实数,且m﹣=3,则m2﹣=.15.x2+kx+9是完全平方式,则k=.16.已知a+=3,则a2+的值是.17.如图,边长为m+4的正方形纸片剪出一个边长为m的正方形之后,剩余部分可剪拼成一个矩形,若拼成的矩形一边长为4,则另一边长为.18.已知x+=2,则=.19.若x2+2(m﹣3)x+16是关于x的完全平方式,则m=.20.已知:(a﹣b)2=4,ab=,则(a+b)2=.21.已知a+b=8,a2b2=4,则﹣ab=.三.解答题22.若x+y=3,且(x+2)(y+2)=12.(1)求xy的值;(2)求x2+3xy+y2的值.23.(1)已知a+的值;(2)已知xy=9,x﹣y=3,求x2+3xy+y2的值.参考答案一.选择题1.解:∵x2+(m﹣1)x+9是一个完全平方式,∴(m﹣1)x=±2•x•3,∴m﹣1=±6,∴m=﹣5或7,故选:C.2.解:∵x2﹣(m+1)x+1是完全平方式,∴﹣(m+1)x=±2×1•x,解得:m=1或m=﹣3.故选:D.3.解:x2+y2+2x﹣4y+7=(x2+2x+1)+(y2﹣4y+4)+2=(x+1)2+(y﹣2)2+2,∵(x+1)2≥0,(y﹣2)2≥0,∴(x+1)2+(y﹣2)2+2≥2,∴x2+y2+2x﹣4y+7≥2.故选:A.4.解:由题意可知a﹣b=﹣1,b﹣c=﹣1,a﹣c=﹣2,所求式=(2a2+2b2+2c2﹣2ab﹣2bc﹣2ca),=[(a2﹣2ab+b2)+(b2﹣2bc+c2)+(a2﹣2ac+c2)],=[(a﹣b)2+(b﹣c)2+(a﹣c)2],=[(﹣1)2+(﹣1)2+(﹣2)2],=3.故选:D.5.解:∵a+b=3,ab=2,∴a2+b2=(a+b)2﹣2ab=32﹣2×2=5,故选:C.6.解:∵x2+2mx+9是一个完全平方式,∴2m=±6,∴m=±3,故选:B.7.解:∵x2+mx+25是完全平方式,∴m=±10,故选:B.8.解:∵x+y=﹣5,xy=3,∴x2+y2=(x+y)2﹣2xy=25﹣6=19.故选:C.9.解:∵a+b=1,∴a2﹣b2+2b=(a+b)(a﹣b)+2b=a﹣b+2b=a+b=1.故选:C.10.解:∵(x﹣2015)2+(x﹣2017)2=34,∴(x﹣2016+1)2+(x﹣2016﹣1)2=34,(x﹣2016)2+2(x﹣2016)+1+(x﹣2016)2﹣2(x﹣2016)+1=34,2(x﹣2016)2+2=34,2(x﹣2016)2=32,(x﹣2016)2=16.故选:D.11.解:根据图形可得出:大正方形面积为:(a+b)2,大正方形面积=4个小图形的面积和=a2+b2+ab+ab,∴可以得到公式:(a+b)2=a2+2ab+b2.故选:C.二.填空题12.解:∵a﹣b=b﹣c=,∴(a﹣b)2=,(b﹣c)2=,a﹣c=,∴a2+b2﹣2ab=,b2+c2﹣2bc=,a2+c2﹣2ac=,∴2(a2+b2+c2)﹣2(ab+bc+ca)=++=,∴2﹣2(ab+bc+ca)=,∴1﹣(ab+bc+ca)=,∴ab+bc+ca=﹣=﹣.故答案为:﹣.13.解:∵(2008﹣a)2+(2007﹣a)2=1,∴(2008﹣a)2﹣2(2008﹣a)(2007﹣a)+(2007﹣a)2=1﹣2(2008﹣a)(2007﹣a),即(2008﹣a﹣2007+a)2=1﹣2(2008﹣a)(2007﹣a),整理得﹣2(2008﹣a)(2007﹣a)=0,∴(2008﹣a)(2007﹣a)=0.14.解:法一:由得,得m2﹣3m﹣1=0,即=,∴m1=,m2=,因为m为正实数,∴m=,∴=()()=3×(),=3×,=;法二:由平方得:m2+﹣2=9,m2++2=13,即(m+)2=13,又m为正实数,∴m+=,则=(m+)(m﹣)=3.故答案为:.15.解:中间一项为加上或减去x和3的积的2倍,故k=±6.16.解:∵a+=3,∴a2+2+=9,∴a2+=9﹣2=7.故答案为:7.17.解:设拼成的矩形的另一边长为x,则4x=(m+4)2﹣m2=(m+4+m)(m+4﹣m),解得x=2m+4.故答案为:2m+4.18.解:∵x+=2,∴(x+)2=4,即x2+2+=4,解得x2+=2.故答案为:2.19.解:∵x2+2(m﹣3)x+16是关于x的完全平方式,∴2(m﹣3)=±8,解得:m=﹣1或7,故答案为:﹣1或7.20.解:∵(a﹣b)2=4,ab=,∴(a﹣b)2=a2+b2﹣2ab,=a2+b2﹣1=4,∴a2+b2=5,∴(a+b)2=a2+b2+2ab=5+1=6.21.解:﹣ab=﹣ab=﹣ab﹣ab=﹣2ab∵a2b2=4,∴ab=±2,①当a+b=8,ab=2时,﹣ab=﹣2ab=﹣2×2=28,②当a+b=8,ab=﹣2时,﹣ab=﹣2ab=﹣2×(﹣2)=36,故答案为28或36.三.解答题22.解:(1)∵x+y=3,(x+2)(y+2)=12,∴xy+2x+2y+4=12,∴xy+2(x+y)=8,∴xy+2×3=8,∴xy=2;(2)∵x+y=3,xy=2,∴x2+3xy+y2=(x+y)2+xy=32+2=11.23.解:(1)将a+=3两边同时平方得:,∴=9.∴=7;(2)将x﹣y=3两边同时平方得:x2﹣2xy+y2=9,∴x2+y2=9+2xy=9+2×9=27.∴x2+3xy+y2=27+3×9=54.14.3因式分解一.选择题1.下列因式分解正确的是()A.x2﹣1=(x﹣1)2B.x2﹣9y2=(x﹣9y)(x+9y)C.a2﹣a=a(a﹣1)D.a2+2a+1=a(a+2)+1 2.下列各式从左边到右边的变形是因式分解的是()A.﹣18x4y3=﹣6x2y23x2y B.=a2﹣4C.x2+2x+1=x(x+2)+1D.a2﹣8a+16=(a﹣4)2 3.若关于x的二次三项式x2+kx+b因式分解为(x﹣1)(x﹣3),则k+b的值为()4.把多项式4x﹣4x3因式分解正确的是()A.﹣x(x+2)(x﹣2)B.x(x+2)(2﹣x)C.﹣4x(x+1)(1﹣x)D.4x(x+1)(1﹣x)5.若mn=﹣2,m﹣n=3,则代数式m2n﹣mn2的值是()A.﹣6B.﹣5C.1D.66.把多项式a2﹣a分解因式,结果正确的是()A.a(a﹣1)B.C.a D.﹣a(a﹣1)7.下列从左到右的变形中是因式分解的有()①(p﹣2)(p+2)=p2﹣4,②4x2﹣4x+1=(2x﹣1)2,③a2+2ab+b2﹣1=a(a+2b)+(b+1)(b﹣1),④(a+b)(a﹣b)+(b﹣a)=(a﹣b)(a+b﹣1).A.1个B.2个C.3个D.4个8.已知多项式x2+ax﹣6因式分解的结果为(x+2)(x+b),则a+b的值为()9.下列因式分解正确的是()A.m2﹣4n2=(m﹣2n)2B.﹣3x﹣6x2=﹣3x(1﹣2x)C.a2+2a+1=a(a+2)D.﹣2x2+2y2=﹣2(x+y)(x﹣y)10.如果一个正整数可以表示为两个连续奇数的立方差,则称这个正整数为“和谐数”.如:2=13﹣(﹣1)3,26=33﹣13,2和26均为“和谐数”.那么,不超过2016的正整数中,所有的“和谐数”之和为()A.6858B.6860C.9260D.9262二.填空题11.若m3+m﹣1=0,则m4+m3+m2﹣2=.12.若a+b=﹣1,ab=﹣6,则代数式a3b+2a2b2+ab3的值为.13.分解因式:(a+2b)2﹣8ab的结果是.14.分解因式4m3﹣mn2的结果是.15.因式分解:3a3b﹣12a2b2+12ab3的结果是.三.解答题16.分解因式:(1)(a﹣2b)2﹣3a+6b;(2)x2﹣4y(x﹣y).17.因式分解:(1)4x2y﹣2xy2;(2)x2(y﹣4)+9(4﹣y).18.对任意一个两位数m,如果m等于两个正整数的平方和,那么称这个两位数m为“平方和数”,若m=a2+b2(a、b为正整数),记A(m)=ab.例如:29=22+52,29就是一个“平方和数”,则A(29)=2×5=10.(1)判断25是否是“平方和数”,若是,请计算A(25)的值;若不是,请说明理由;(2)若k是一个“平方和数”,且A(k)=,求k的值.19.【类比学习】小明同学类比除法240÷16=15的竖式计算,想到对二次三项式x2+3x+2进行因式分解的方法:即(x2+3x+2)÷(x+1)=x+2,所以x2+3x+2=(x+1)(x+2).【初步应用】小明看到了这样一道被墨水污染的因式分解题:x2+□x+6=(x+2)(x+☆),(其中□、☆代表两个被污染的系数),他列出了下列竖式:得出□=,☆=.【深入研究】小明用这种方法对多项式x3+2x2﹣x﹣2进行因式分解,进行到了:x3+2x2﹣x﹣2=(x+2)(*)(*代表一个多项式),请你利用前面的方法,列出竖式,将多项式x3+2x2﹣x﹣2因式分解.参考答案与试题解析一.选择题1.【解答】解:A、x2﹣1=(x+1)(x﹣1),原题分解错误,故此选项不合题意;B、x2﹣9y2=(x﹣3y)(x+3y),原题分解错误,故此选项不合题意;C、a2﹣a=a(a﹣1),原题分解正确,故此选项符合题意;D、a2+2a+1=(a+1)2,原题分解错误,故此选项不合题意;故选:C.2.【解答】解:A、从左边到右边的变形不属于因式分解,故本选项不符合题意;B、从左边到右边的变形不属于因式分解,故本选项不符合题意;C、从左边到右边的变形不属于因式分解,故本选项不符合题意;D、从左边到右边的变形属于因式分解,故本选项符合题意;故选:D.3.【解答】解:由题意得:x2+kx+b=(x﹣1)(x﹣3)=x2﹣4x+3,∴k=﹣4,b=3,则k+b=﹣4+3=﹣1.故选:A.4.【解答】解:原式=4x(1﹣x2)=4x(x+1)(1﹣x),故选:D.5.【解答】解:∵mn=﹣2,m﹣n=3,∴m2n﹣mn2=mn(m﹣n)=﹣2×3=﹣6.故选:A.6.【解答】解:原式=a(a﹣1),故选:A.7.【解答】解:①(p﹣2)(p+2)=p2﹣4,从左到右的变形是整式乘法,不合题意;②4x2﹣4x+1=(2x﹣1)2,从左到右的变形是因式分解,符合题意;③a2+2ab+b2﹣1=a(a+2b)+(b+1)(b﹣1),从左到右的变形不符合因式分解的定义,不合题意④(a+b)(a﹣b)+(b﹣a)=(a﹣b)(a+b﹣1),从左到右的变形是因式分解,符合题意;故选:B.8.【解答】解:根据题意得:x2+ax﹣6=(x+2)(x+b)=x2+(b+2)x+2b,∴a=b+2,2b=﹣6,解得:a=﹣1,b=﹣3,则a+b=﹣1﹣3=﹣4,故选:A.9.【解答】解:A、m2﹣4n2=(m+2n)(m﹣2n),故此选项错误;B、﹣3x﹣6x2=﹣3x(1+2x),故此选项错误;C、a2+2a+1=(a+1)2,故此选项错误;D、﹣2x2+2y2=﹣2(x2﹣y2)=﹣2(x+y)(x﹣y),正确.故选:D.10.【解答】解:(2k+1)3﹣(2k﹣1)3=[(2k+1)﹣(2k﹣1)][(2k+1)2+(2k+1)(2k﹣1)+(2k﹣1)2]=2(12k2+1)(其中k为非负整数),由2(12k2+1)≤2016得,k≤9∴k=0,1,2,…,8,9,即得所有不超过2016的“和谐数”,它们的和为[13﹣(﹣1)3]+(33﹣13)+(53﹣33)+…+(173﹣153)+(193﹣173)=193+1=6860.故选:B.二.填空题(共5小题)11.【解答】解:∵m3+m﹣1=0,∴m3+m=1,∴m4+m3+m2﹣2=m4+m2+m3﹣2=m(m3+m)+m3﹣2=m×1+m3﹣2=m+m3﹣2=1﹣2=﹣1.故答案为:﹣1.12.【解答】解:∵a+b=﹣1,ab=﹣6,∴a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2=(﹣6)×(﹣1)2=(﹣6)×1=﹣6,故答案为:﹣6.13.【解答】解:原式=a2+4ab+4b2﹣8ab=a2﹣4ab+4b2=(a﹣2b)2.故答案为:(a﹣2b)2.14.【解答】解:原式=m(4m2﹣n2)=m(2m+n)(2m﹣n).故答案为:m(2m+n)(2m﹣n).15.【解答】解:原式=3ab(a2﹣4ab+4b2)=3ab(a﹣2b)2.故答案为:3ab(a﹣2b)2.三.解答题(共4小题)16.【解答】解:(1)原式=(a﹣2b)2﹣3(a﹣2b)=(a﹣2b)(a﹣2b﹣3);(2)原式=x2﹣4xy+4y2=(x﹣2y)2.17.【解答】解:(1)原式=2xy(2x﹣y);(2)原式=x2(y﹣4)﹣9(y﹣4)=(y﹣4)(x2﹣9)=(y﹣4)(x﹣3)(x+3).18.【解答】解:(1)25是“平方和数”.∵25=32+42,∴A(25)=3×4=12;(2)设k=a2+b2,则A(k)=ab,∵A(k)=,∴ab=,∴2ab=a2+b2﹣4,∴a2﹣2ab+b2=4,∴(a﹣b)2=4,∴a﹣b=±2,即a=b+2或b=a+2,∵a、b为正整数,k为两位数,∴当a=1,b=3或a=3,b=1时,k=10;当a=2,b=4或a=4,b=2时,k=20;当a=3,b=5或a=5,b=3时,k=34;当a=4,b=6或a=6,b=4时,k=52;当a=5,b=7或a=7,b=5时,k=74;综上,k的值为:10或20或34或52或74.19.【解答】解:【初步应用】□=5,☆=3;故答案为5,3。

人教版八年级数学上册《整式的乘法》拓展练习

人教版八年级数学上册《整式的乘法》拓展练习

《整式的乘法》拓展练习一、选择题(本大题共5小题,共25.0分)1.(5分)如果“□×2ab=2a2b”,那么“□”内应填的代数式是()A.ab B.2ab C.a D.2a2.(5分)已知ab2=﹣1,则﹣ab(a2b5﹣ab3﹣b)的值等于()A.﹣1B.0C.1D.无法确定3.(5分)下列运算正确的是()A.6a﹣5a=1B.(a2)3=a5C.3a2+2a3=5a5D.a6•a2=a84.(5分)下列运算正确的是()A.3a+2b=5ab B.a3•a2=a6C.a3÷a3=1D.(3a)2=3a2 5.(5分)已知:2m+3n=5,则4m•8n=()A.16B.25C.32D.64二、填空题(本大题共5小题,共25.0分)6.(5分)如果(2x+m)(x﹣5)展开后的结果中不含x的一次项,那么m=.7.(5分)已知2x=3,2y=5,则22x﹣y﹣1的值是.8.(5分)计算:(x﹣1)(x+3)=.9.(5分)计算:(x+1)(x+2)=.10.(5分)计算(﹣3x3)2=.三、解答题(本大题共5小题,共50.0分)11.(10分)甲、乙两人共同计算一道整式乘法题:(2x+a)(3x+b).甲由于把第一个多项式中的“+a”看成了“﹣a”,得到的结果为6x2+11x﹣10;乙由于漏抄了第二个多项式中x的系数,得到的结果为2x2﹣9x+10.(1)求正确的a、b的值.(2)计算这道乘法题的正确结果.12.(10分)如图1,长方形的两边长分别为m+3,m+13;如图2的长方形的两边长分别为m+5,m+7.(其中m为正整数)(1)写出两个长方形的面积S1,S2,并比较S1,S2的大小;(2)现有一个正方形的周长与图1中的长方形的周长相等.试探究该正方形的面积与长方形的面积的差是否是一个常数,如果是,求出这个常数;如果不是,说明理由.(3)在(1)的条件下,若某个图形的面积介于S1,S2之间(不包括S1,S2)且面积为整数,这样的整数值有且只有19个,求m的值.13.(10分)已知(a m)n=a6,(a m)2÷a n=a3(1)求mn和2m﹣n的值;(2)求4m2+n2的值.14.(10分)小明与小乐两人共同计算(2x+a)(3x+b),小明抄错为(2x﹣a)(3x+b),得到的结果为6x2﹣13x+6;小乐抄错为(2x+a)(x+b),得到的结果为2x2﹣x﹣6.(1)式子中的a,b的值各是多少?(2)请计算出原题的答案.15.(10分)若(x2+nx+3)(x2﹣3x+m)的乘积中不含x2项和x3项,求m,n的值.《整式的乘法》拓展练习参考答案与试题解析一、选择题(本大题共5小题,共25.0分)1.(5分)如果“□×2ab=2a2b”,那么“□”内应填的代数式是()A.ab B.2ab C.a D.2a【分析】直接利用单项式除以单项式运算法则计算得出答案.【解答】解:∵□×2ab=2a2b,∴2a2b÷2ab=a,故“□”内应填的代数式是a.故选:C.【点评】此题主要考查了单项式乘以单项式,正确把握运算法则是解题关键.2.(5分)已知ab2=﹣1,则﹣ab(a2b5﹣ab3﹣b)的值等于()A.﹣1B.0C.1D.无法确定【分析】原式利用单项式乘以多项式法则计算,变形后将已知等式代入计算即可求出值.【解答】解:∵ab2=﹣1,∴原式=﹣(ab2)3+(ab2)2+ab2=1+1﹣1=1,故选:C.【点评】此题考查了单项式乘多项式,熟练掌握运算法则是解本题的关键.3.(5分)下列运算正确的是()A.6a﹣5a=1B.(a2)3=a5C.3a2+2a3=5a5D.a6•a2=a8【分析】结合幂的乘方与积的乘方的概念和运算法则进行求解即可.【解答】解:A、6a﹣5a=a≠1,本选项错误;B、(a2)3=a6≠a5,本选项错误;C、3a2+2a3≠5a5,本选项错误;D、a6•a2=a8,本选项正确.故选:D.【点评】本题考查了幂的乘方与积的乘方,解答本题的关键在于熟练掌握该知识点的概念和运算法则.4.(5分)下列运算正确的是()A.3a+2b=5ab B.a3•a2=a6C.a3÷a3=1D.(3a)2=3a2【分析】根据同底数幂的除法、同底数幂的乘法,幂的乘方与积的乘方的运算方法,以及合并同类项的方法,逐项判断即可.【解答】解:∵3a+2b≠5ab,∴选项A不符合题意;∵a3•a2=a5,∴选项B不符合题意;∵a3÷a3=1,∴选项C符合题意;∵(3a)2=9a2,∴选项D不符合题意.故选:C.【点评】此题主要考查了同底数幂的除法、同底数幂的乘法,幂的乘方与积的乘方的运算方法,以及合并同类项的方法,要熟练掌握.5.(5分)已知:2m+3n=5,则4m•8n=()A.16B.25C.32D.64【分析】根据同底数幂的乘法、幂的乘方,即可解答.【解答】解:4m•8n=22m•23n=22m+3n=25=32,故选:C.【点评】本题考查了同底数幂的乘法、幂的乘方,解决本题的关键是熟记同底数幂的乘法、幂的乘方.二、填空题(本大题共5小题,共25.0分)6.(5分)如果(2x+m)(x﹣5)展开后的结果中不含x的一次项,那么m=10.【分析】原式利用多项式乘以多项式法则计算,合并后根据结果不含x的一次项,即可确定出m的值.【解答】解:(2x+m)(x﹣5)=2x2﹣10x+mx﹣5m=2x2+(m﹣10)x﹣5m,∵结果中不含有x的一次项,∴m﹣10=0,解得m=10.故答案为:10.【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.7.(5分)已知2x=3,2y=5,则22x﹣y﹣1的值是.【分析】根据同底数幂的除法底数不变指数相减,幂的乘方,可得答案.【解答】解:22x﹣y﹣1=22x÷2y÷2=(2x)2÷2y÷2=9÷5÷2=,故答案为:.【点评】本题考察了同底数幂的除法、幂的乘方,熟记法则并根据法则计算是解题关键.8.(5分)计算:(x﹣1)(x+3)=x2+2x﹣3.【分析】多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.依此计算即可求解.【解答】解:(x﹣1)(x+3)=x2+3x﹣x﹣3=x2+2x﹣3.故答案为:x2+2x﹣3.【点评】此题考查了多项式乘多项式,运用法则时应注意以下两点:①相乘时,按一定的顺序进行,必须做到不重不漏;②多项式与多项式相乘,仍得多项式,在合并同类项之前,积的项数应等于原多项式的项数之积.9.(5分)计算:(x+1)(x+2)=x2+3x+2.【分析】原式利用多项式乘多项式法则计算即可得到结果.【解答】解:原式=x2+2x+x+2=x2+3x+2,故答案为:x2+3x+2【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.10.(5分)计算(﹣3x3)2=9x6.【分析】利用积的乘方,以及幂的乘法法则即可求解.【解答】解:原式=9x6.故答案是:9x6.【点评】本题考查了幂的乘方,积的乘方,理清指数的变化是解题的关键.三、解答题(本大题共5小题,共50.0分)11.(10分)甲、乙两人共同计算一道整式乘法题:(2x+a)(3x+b).甲由于把第一个多项式中的“+a”看成了“﹣a”,得到的结果为6x2+11x﹣10;乙由于漏抄了第二个多项式中x的系数,得到的结果为2x2﹣9x+10.(1)求正确的a、b的值.(2)计算这道乘法题的正确结果.【分析】(1)按乙错误的说法得出的系数的数值求出a,b的值;(2)把a,b的值代入原式求出整式乘法的正确结果.【解答】解:(1)(2x﹣a)(3x+b)=6x2+2bx﹣3ax﹣ab=6x2+(2b﹣3a)x﹣ab=6x2+11x﹣10.(2x+a)(x+b)=2x2+2bx+ax+ab=2x2+(2b+a)x+ab=2x2﹣9x+10.∴,∴;(2)(2x﹣5)(3x﹣2)=6x2﹣4x﹣15x+10=6x2﹣19x+10.【点评】此题考查了多项式乘多项式;解题的关键是根据多项式乘多项式的运算法则分别进行计算,是常考题型,解题时要细心.12.(10分)如图1,长方形的两边长分别为m+3,m+13;如图2的长方形的两边长分别为m+5,m+7.(其中m为正整数)(1)写出两个长方形的面积S1,S2,并比较S1,S2的大小;(2)现有一个正方形的周长与图1中的长方形的周长相等.试探究该正方形的面积与长方形的面积的差是否是一个常数,如果是,求出这个常数;如果不是,说明理由.(3)在(1)的条件下,若某个图形的面积介于S1,S2之间(不包括S1,S2)且面积为整数,这样的整数值有且只有19个,求m的值.【分析】(1)利用矩形的面积公式计算即可;(2)求出正方形的面积即可解决问题;(3)构建不等式即可解决问题;【解答】解:(1)∵S1=(m+13)(m+3)=m2+16m+39,S2=(m+7)(m+5)=m2+12m+35,∴S1﹣S2=4m+4>0,∴S1>S2.(2)∵一个正方形的周长与图1中的长方形的周长相等,∴正方形的边长为m+8,∴正方形的面积=m2+16m+64,∴m2+16m+64﹣(m2+16m+39)=25,∴该正方形的面积与长方形的面积的差是一个常数;(3)由(1)得,S1﹣S2=4m+4,∴当19<4m+4≤20时,∴<m≤4,∵m为正整数,m=4.【点评】本题考查多项式乘多项式、矩形的性质、正方形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.13.(10分)已知(a m)n=a6,(a m)2÷a n=a3(1)求mn和2m﹣n的值;(2)求4m2+n2的值.【分析】(1)由已知等式利用幂的运算法则得出a mn=a6、a2m﹣n=a3,据此可得答案;(2)将mn、2m﹣n的值代入4m2+n2=(2m﹣n)2+4mn计算可得.【解答】解:(1)∵(a m)n=a6,(a m)2÷a n=a3,∴a mn=a6、a2m﹣n=a3,则mn=6、2m﹣n=3;(2)当mn=6、2m﹣n=3时,4m2+n2=(2m﹣n)2+4mn=32+4×6=9+24=33.【点评】本题主要考查幂的运算,解题的关键是掌握幂的乘方与同底数幂的除法的运算法则.14.(10分)小明与小乐两人共同计算(2x+a)(3x+b),小明抄错为(2x﹣a)(3x+b),得到的结果为6x2﹣13x+6;小乐抄错为(2x+a)(x+b),得到的结果为2x2﹣x﹣6.(1)式子中的a,b的值各是多少?(2)请计算出原题的答案.【分析】(1)根据两人出错的结果列出关于a与b的方程组,求出方程组的解即可得到a 与b的值;(2)将a与b的值代入计算即可求出正确的结果.【解答】解:(1)∵(2x﹣a)(3x+b)=6x2+(2b﹣3a)x﹣ab=6x2﹣13x+6,∴2b﹣3a=﹣13①,∵(2x+a)(x+b)=2x2+(2b+a)x+ab=2x2﹣x﹣6,∴2b+a=﹣1②,联立方程①②,可得,解得:;(2)(2x+a)(3x+b)=(2x+3)(3x﹣2)=6x2+5x﹣6.【点评】此题考查了多项式乘多项式,熟练掌握运算法则是解本题的关键.15.(10分)若(x2+nx+3)(x2﹣3x+m)的乘积中不含x2项和x3项,求m,n的值.【分析】将已知的式子利用多项式乘以多项式的法则变形,合并后根据乘积中不含x2和x3项,得到这两项系数为0,列出关于m与n的方程,求出方程的解即可得到m与n的值.【解答】解:(x2+nx+3)(x2﹣3x+m)=x4+nx3+3x2﹣3x3﹣3nx2﹣9x+mx2+mnx+3m=x4+(n﹣3)x3+(3﹣3n+m)x2+(mn﹣9)x+3m,∵乘积中不含x2和x3项,∴n﹣3=0,3﹣3n+m=0,解得:m=6,n=3.【点评】本题主要考查多项式的乘法,运用不含某一项就是该项的系数等于0是解本题的关键,熟练掌握运算法则也很重要.。

人教版八年级数学上册整式的乘法 同步练习及答案1

人教版八年级数学上册整式的乘法 同步练习及答案1

一、选择题(每小题2分,共20分)1.1.化简2)2()2(a a a −−⋅−的结果是( )A .0B .22aC .26a −D .24a −2.下列计算中,正确的是( )A .ab b a 532=+B .33a a a =⋅C .a a a =−56D .222)(b a ab =−3.若)5)((−+x k x 的积中不含有x 的一次项,则k 的值是( )A .0B .5C .-5D .-5或54.下列各式中,从左到右的变形是因式分解的是( )A .a a a a +=+2)1(B .b a b a b a b a b a −+−+=−+−))((22B .)4)(4(422y x y x y x −+=− D .))((222a bc a bc c b a −+=+−5.如图,在矩形ABCD 中,横向阴影部分是矩形,另一阴影部分是平行四边行.依照图中标注的数据,计算图中空白部分的面积为(A .2c ac ab bc ++−B .2c ac bc ab +−−C .ac bc ab a −++2D .ab a bc b −+−22 6.三个连续奇数,中间一个是k ,则这三个数之积是( A .k k 43− B .k k 883− C .k k −34 D .k k 283−7.如果7)(2=+b a ,3)(2=−b a ,那么ab 的值是( )A .2B .-8C .1D .-18.如果多项式224y kxy x ++能写成两数和的平方,那么k 的值为( )A .2B .±2C .4D .±49.已知3181=a ,4127=b ,619=c ,则a 、b 、c 的大小关系是( )A .a >b >cB .a >c >bC .a <b <cD .b >c >a10.多项式251244522+++−x y xy x 的最小值为( )A .4B .5C .16D .25二、填空题(每小题2分,共20分)11.已知23−=a ,则6a = .12.计算:3222)()3(xy y x −⋅−= .13.计算:)1312)(3(22+−−y x y xy = . 14.计算:)32)(23(+−x x = .15.计算:22)2()2(+−x x = .16.+24x ( 2)32(9)−=+x .17.分解因式:23123xy x −= .18.分解因式:22242y xy x −+−= .19.已知3=−b a ,1=ab ,则2)(b a += .20.设322)2()1(dx cx bx a x x +++=−+,则d b += .三、解答题(本大题共60分)21.计算:(每小题3分,共12分)(1))311(3)()2(2x xy y x −⋅+−⋅−;(2))12(4)392(32−−+−a a a a a ;(3))42)(2(22b ab a b a ++−;(4)))(())(())((a x c x c x b x b x a x −−+−−+−−.22.先化简,再求值:(第小题4分,共8分)(1))1)(2(2)3(3)2)(1(−+++−−−x x x x x x ,其中31=x .(2)2222)5()5()3()3(b a b a b a b a −++−++−,其中8−=a ,6−=b .23.分解因式(每小题4分,共16分):(1))()(22a b b b a a −+−; (2))44(22+−−y y x .(3)xy y x 4)(2+−; (4))1(4)(2−+−+y x y x ;(5)1)3)(1(+−−x x ; (6)22222222x b y a y b x a −+−.24.(本题4分)已知41=−b a ,25−=ab ,求代数式32232ab b a b a +−的值.25.(本题5分)解方程:)2)(13()2(2)1)(1(2+−=++−+x x x x x .26.(本题5分)已知a 、b 、c 满足5=+b a ,92−+=b ab c ,求c 的值.27.(本题5分)某公园计划砌一个形状如图1所示的喷水池.①有人建议改为图2的形状,且外圆直径不变,只是担心原来备好的材料不够,请你比较两种方案,哪一种需要的材料多(即比较哪个周长更长)?②若将三个小圆改成n 个小圆,结论是否还成立?请说明.28.(本题5分)这是一个著名定理的一种说理过程:将四个如图1所示的直角三角形经过平移、旋转、对称等变换运动,拼成如图2所示的中空的四边形ABCD .(1)请说明:四边形ABCD 和EFGH 都是正方形;(2)结合图形说明等式222c b a =+成立,并用适当的文字叙述这个定理的结论.四、附加题(每小题10分,共20分)29.已知n 是正整数,且1001624+−n n 是质数,求n 的值.a ab b b G H F图1 图230.已知522++x x 是b ax x ++24的一个因式,求b a +的值.参考答案一、选择题1.C 2.D 3.B 4.D 5.B 6.A 7.C 8.D 9.A 10.C二、填空题11.4 12.879b a − 13.xy y x xy 36233−+− 14.6562−+x x 15.16824+−x x16.x 12− 17.)2)(2(3y x y x x −+ 18.2)(2y x −− 19.13 20.2三、解答题21.(1)xy y x 32+ (2)a a a 1335623+− (3)338b a −(4)ca bc ab x c b a x +++++−)(2222.(1)210−−x ,315− (2)22102010b ab a +−,40 23.(1))()(2b a b a +− (2))2)(2(+−−+y x y x (3)2)(y x +(4)2)2(−+y x (5)2)2(−x (6)))()((22b a b a y x −++24.原式=3254125)(22−=⎪⎭⎫ ⎝⎛⨯−=−b a ab 25.3−=x26.由5=+b a ,得b a −=5,把b a −=5代入92−+=b ab c ,得∴222)3(969)5(−−=−−=−+−=b b b b b b c .∵2)3(−b ≥0, ∴22)3(−−=b c ≤0.又2c ≥0,所以,2c =0,故c =0.27. ①设大圆的直径为d ,周长为l ,图2中三个小圆的直径分别为1d 、2d 、3d ,周长分别为1l 、2l 、3l ,由321321321)(l l l d d d d d d d l ++=++=++==πππππ. 可见图2大圆周长与三个小圆周长之和相等,即两种方案所用材料一样多.②结论:材料一样多,同样成立.设大圆的直径为d ,周长为l ,n 个小圆的直径分别为1d ,2d ,3d ,…,n d ,周长为1l ,2l ,3l ,…,n l ,由+++==321(d d d d l ππ…)n d ++++=321d d d πππ…n d π++++=321l l l …n l +.所以大圆周长与n 个小圆周长和相等,所以两种方案所需材料一样多.28.(1)在四边形ABCD 中,因为AB =BC =CD =DA =b a +, 所以四边形ABCD 是菱形. 又因为∠A 是直角, 所以四边形ABCD 是正方形.在四边形EFGH 中, 因为EF =FG =GH =HE =c , 所以四边形EFGH 是菱形. 因为∠AFE +∠AEF =90°,∠AFE =∠HED ,所以∠HED +∠AEF =90°,即∠FEH =90°,所以四边形EFGH 是正方形.(2)因为S 正方形ABCD =4S △AEF +S 正方形EFGH , 所以,22214)(c ab b a +⨯=+, 整理,得222c b a =+.这个定理是:直角三角形两条直角边的平方和等于斜边的平方.四、附加题29.)106)(106(100162224+−++=+−n n n n n n ,∵n 是正整数,∴1062++n n 与1062+−n n 的值均为正整数,且1062++n n >1.∵1001624+−n n 是质数,∴必有1062+−n n =1,解得3=n .30.设))(52(2224n mx x x x b ax x ++++=++,展开,得a ab b b G Hn x m n x m n x m x b ax x 5)52()52()2(23424++++++++=++. 比较比较边的系数,得⎪⎪⎩⎪⎪⎨⎧==++=+=+.5,52,052,02b n a m n m n m 解得2−=m ,5=n ,6=a ,25=b . 所以,31256=+=+b a .。

人教版八年级上册数学第14章 整式的乘法与因式分解 单项式与多项式相乘

人教版八年级上册数学第14章 整式的乘法与因式分解 单项式与多项式相乘

答案显示
1.单项式与多项式相乘,就是用单项式去乘多项式的__每_一__项_____,
再把所得的积___相_加_______;其实质是将单项式与多项式相乘
单项式
单项式
转化为_________与_________相乘.
2.(2019·青岛)计算(-2m)2·(-m·m2+3m3)的结果是( A ) A.8m5 B.-8m5 C.8m6 D.-4m4+12m5
16.(1)先化简,再求值:3(2x+1)+2(3-x),其中 x=-1.
解:原式=6x+3+6-2x=4x+9. 当 x=-1 时,原式=4x+9=4×(-1)+9=-4+9=5.
(2)已知实数 a,b,c 满足|a-b-3|+(b+1)2+|c-1|=0,求 (-3ab)·(a2c-6b2c)的值. 解:由题意得 a-b-3=0,b+1=0,c-1=0, 解得 a=2,b=-1,c=1. 故(-3ab)·(a2c-6b2c)=-3a3bc+18ab3c=-3×23×(-1)×1+ 18×2×(-1)3×1=24-36=-12.
解法三(分割求和法):连接 BG,则 S 阴影部分=S△BDG+S△BGF+S△DGF =12a(a-b)+12b2+12b(a-b)=12a2-12ab+12b2+12ab-12b2=12a2.
明拿出课堂笔记复习,发现一道题:-3xy(4y-2x-1)=
-12xy2+6x2y+■,■的地方被墨水弄污了.你认为■处应为
(A )
A.3xy
B.(-3xy)
C.(-1)
D.1
8.要使 x(x+a)+3x-2b=x2+5x+4 成立,则 a,b 的值分别为
(C )
A.-2,-2 B.2,2
C.2,-2

人教版八上数学《整式的乘法》练习及答案

人教版八上数学《整式的乘法》练习及答案

《整式的乘法》同步测试一、选择题:1.下列各式中,正确的是()A.t2·t3 = t5 B.t4+t2 = t 6 C.t3·t4 = t12 D.t5·t5 = 2t52.下列计算错误的是()A.−a2·(−a)2 = −a4 B.(−a)2·(−a)4 = a6C.(−a3)·(−a)2 = a5 D.(−a)·(−a)2 = −a33.下列计算中,运算正确的个数是()①5x3−x3 = x3 ② 3m·2n = 6m+n③a m+a n = a m+n ④x m+1·x m+2 = x m·x m+3A.1 B. 2 C.3 D.44.计算a6(a2)3的结果等于()A.a11 B.a 12 C.a14 D.a365.下列各式计算中,正确的是()A.(a3)3 = a6 B.(−a5)4 = −a 20 C.[(−a)5]3 = a15 D.[(−a)2]3 = a6 6.下列各式计算中,错误的是()A.(m6)6 = m36 B.(a4)m = (a 2m) 2 C.x2n = (−x n)2 D.x2n = (−x2)n 7.下列计算正确的是()A.(xy)3 = xy3 B.(2xy)3 = 6x3y3C.(−3x2)3 = 27x5 D.(a2b)n = a2n b n8.下列各式错误的是()A.(23)4 = 212 B.(− 2a)3 = − 8a3C.(2mn2)4 = 16m4n8 D.(3ab)2 = 6a2b29.下列计算中,错误的是()A.m n·m2n+1 = m3n+1 B.(−a m−1)2 = a 2m−2C.(a2b)n = a2n b n D.(−3x2)3 = −9x610.下列计算中,错误的是()A.(−2ab2)2·(− 3a2b)3 = − 108a8b7B.(2xy)3·(−2xy)2 = 32x5y5C.(m2n)(−mn2)2 =m4n4D.(−xy)2(x2y) = x4y311.下列计算结果正确的是()A.(6ab2− 4a2b)•3ab = 18ab2− 12a2bB.(−x)(2x+x2−1) = −x3−2x2+1C.(−3x2y)(−2xy+3yz−1) = 6x3y2−9x2y2z2+3x2yD.(34a3−12b)•2ab=32a4b−ab212.若(x−2)(x+3) = x2+a+b,则a、b的值为()A.a = 5,b = 6 B.a = 1,b = −6C.a = 1,b = 6 D.a = 5,b = −6二、解答题:1.计算(1)(− 5a3b2)·(−3ab 2c)·(− 7a2b);(2)− 2a2b3·(m−n)5·13ab2·(n−m)2+13a2(m−n)·6ab2;(3) 3a2(13ab2−b)−( 2a2b2−3ab)(− 3a);(4)(3x2−5y)(x2+2x−3).2.当x = −3时,求8x2−(x−2)(x+1)−3(x−1)(x−2)的值.3.把一个长方形的长减少3,宽增加2,面积不变,若长增加1,宽减少1,则面积减少6,求长方形的面积.4.(x+my−1)(nx−2y+3)的结果中x、y项的系数均为0,求3m+n之值.参考答案:一、选择题1.A说明:t4与t2不是同类项,不能合并,B错;同底数幂相乘,底不变,指数相加,所以t3·t4 = t3+4 = t7≠t12,C错;t5•t5 = t5+5 = t10≠2t5,D错;t2•t3 = t2+3 = t5,A 正确;答案为A.2.C说明:−a2·(−a)2 = −a2·a2 = −a2+2 = −a4,A计算正确;(−a)2·(−a)4 = a2·a4 = a2+4 = a6,B计算正确;(−a3)·(−a)2 = −a3·a2 = −a5≠a5,C计算错误;(−a)·(−a)2 = −a·a2 = −a3,D计算正确;所以答案为C3.A说明:5x3−x3 = (5−1)x3 = 4x3≠x3,①错误;3m与2n不是同底数幂,它们相乘把底数相乘而指数相加显然是不对的,比如m = 1,n = 2,则3m·2n = 31·22 = 3·4 = 12,而6m+n = 61+2 = 63= 216≠12,②错误;a m与a n只有在m = n时才是同类项,此时a m+a n = 2a m≠a m+n,而在m≠n时,a m与a n无法合并,③错;x m+1·x m+2 = x m+1+m+2 = x m+m+3 =x m·x m+3,④正确;所以答案为A.4.B说明:a6(a2)3 = a6·a2×3 = a6·a6 = a6+6 = a12,所以答案为B.5.D说明:(a3)3 = a3×3 = a9,A错;(−a5)4 = a5×4 = a20,B错;[(−a)5]3 = (−a)5×3 = (−a)15 = −a15,C错;[(−a)2]3 = (−a)2×3 = (−a)6 = a6,D正确,答案为D.6.D说明:(m6)6 = m6×6 = m36,A计算正确;(a4)m = a 4m,(a 2m)2 = a 4m,B计算正确;(−x n)2 = x2n,C计算正确;当n为偶数时,(−x2)n = (x2)n = x2n;当n为奇数时,(−x2)n = −x2n,所以D不正确,答案为D.7.D说明:(xy)3 = x3y3,A错;(2xy)3 = 23x3y3 = 8x3y3,B错;(−3x2)3 = (−3)3(x2)3 = −27x6,C错;(a2b)n = (a2)n b n = a2n b n,D正确,答案为D.8.C9.D 10.C 11.D 12.B二、解答题1.解:(1)(− 5a3b2)·(−3ab 2c)·(− 7a2b) = [(−5)×(−3)×(−7)](a3·a·a2)(b2·b2·b)c = −105a6b 5c.(2)− 2a2b3·(m−n)5·13ab2·(n−m)2+13a2(m−n)·6ab2= (−2·13)·(a2·a)·(b3·b2)[(m−n)5·(m−n)2]+(13·6)(a2·a)(m−n)b2 = −23a3b5(m−n)7+2a3b2(m−n).(3) 3a2(13ab2−b)−( 2a2b2−3ab)(− 3a) = 3a2·13ab2− 3a2b+ 2a2b2· 3a−3ab· 3a= a3b2− 3a2b+ 6a3b2− 9a2b = 7a3b2− 12a2b.(4)(3x2−5y)(x2+2x−3) = 3x2·x2−5y·x2+3x2·2x−5y·2x+3x2·(−3)−5y·(−3)= 3x4−5x2y+6x3−10xy−9x2+15y= 3x4+6x3−5x2y−9x2−10xy+15y.2. 解:8x2−(x−2)(x+1)−3(x−1)(x−2) = 8x2−(x2−2x+x−2)−3(x2−x−2x+2)= 8x2−x2+x+2−3x2+9x−6 = 4x2+10x−4.当x = −3时,原式= 4·(−3)2+10·(−3)−4 = 36−30−4 = 2.3. 解:设长方形的长为x,宽为y,则由题意有即解得xy = 36.答:长方形的面积是36.4. 解:(x+my−1)(nx−2y+3) = nx2−2xy+3x+mnxy−2my2+3my−nx+2y−3= nx2−(2−mn)xy−2my2+(3−n)x+( 3m+2)y−3∵x、y项系数为0,∴得故3m+n = 3·(−23)+3 = 1.。

人教版 八年级数学上册 14.1--14.3分节练习(含答案)

人教版 八年级数学上册 14.1--14.3分节练习(含答案)

人教版 八年级数学上册 14.1--14.3分节练习(含答案) 14.1 整式的乘法一、选择题(本大题共10道小题) 1. 下列计算正确的是( )A .3515a a a ⋅=B .623a a a ÷=C .358a a a +=D .()43a a a -÷=2. 单项式乘多项式运算法则的依据是()A .乘法交换律B .加法结合律C .分配律D .加法交换律3. 若a 3=b ,b 4=m ,则m 为() A .a 7B .a 12C .a 81D .a 644. 一个长方形的周长为4a +4b ,若它的一边长为b ,则此长方形的面积为( ) A .b 2+2ab B .4b 2+4ab C .3b 2+4abD .a 2+2ab5. 已知a m =4,则a 2m 的值为() A .2 B .4C .8D .166. 已知x a =2,x b =3,则x 3a +2b 的值() A .48 B .54C .72D .177. 下列计算错误的是()A .()333327ab a b -=- B .2326411416a b a b ⎛⎫-= ⎪⎝⎭C .()326xy xy -=- D .()24386a b a b -=8. 已知0a b +=,n 为正数,则下列等式中一定成立的是()A .0n n a b +=B .220n n a b +=C .21210n n a b +++=D .110n n a b +++=9. 通过计算,比较图①、图②中阴影部分的面积,可以验证的算式是()A .a (b -x )=ab -axB .(a -x )(b -x )=ab -ax -bx +x 2C .(a -x )(b -x )=ab -ax -bxD .b (a -x )=ab -bx10. 若n 是自然数,并且有理数,a b 满足10a b+=,则必有( ) A .21()0n n a b += B .2211()0n n a b++=C .221()0n n a b+=D .21211()0n n a b+++=二、填空题(本大题共6道小题)11.根据里氏震级的定义,地震所释放的相对能量E 与震级n 的关系为:E =10n ,那么9级地震所释放的相对能量是7级地震所释放的相对能量的倍数是________.12. 填空:()()()324a a a -⋅-⋅-= ;13. 填空:()()3223x x x --⋅=14. 计算:a 3·(a 3)2=________.15. 一个长方体的长、宽、高分别是3x -4,2x ,x ,它的体积等于________.16. 如图①,有多个长方形和正方形的卡片,图②是选取了2块不同的卡片拼成的一个图形,借助图中阴影部分面积的不同表示方法可以验证等式a (a +b )=a 2+ab 成立,根据图③,利用面积的不同表示方法,仿照上面的式子写出一个等式:____________________.三、解答题(本大题共3道小题)17. 已知x满足22x+2-4x=48,求x的值.18. 阅读下列解题过程:试比较2100与375的大小.解:∵2100=(24)25=1625,375=(33)25=2725,且16<27,∴2100<375.请根据上述解答过程解决下列问题:比较255,344,433的大小.19. 小明在做多项式乘法的时候发现,两个多项式相乘在合并同类项后的结果存在缺项的可能.比如x+2和x-2相乘的结果为x2-4,x的一次项没有了.(1)请计算x2+2x+3与x-2相乘后的结果,并观察x的几次项没有了;(2)请想一下,x2+2x+3与x+a相乘后的结果有没有可能让一次项消失?如果可能,那么a的值应该是多少?人教版八年级数学上册14.1 整式的乘法同步训练-答案一、选择题(本大题共10道小题)1. 【答案】D【解析】根据同底数幂相乘除的法则,应选D2. 【答案】C3. 【答案】B [解析] 因为a3=b,b4=m,所以m=(a3)4=a12.4. 【答案】A[解析] 因为一个长方形的周长为4a +4b ,若它的一边长为b ,则另一边长=2a +2b -b =2a +b , 故面积=(2a +b)b =b 2+2ab.5. 【答案】D[解析] 由于a m =4,因此a 2m =(a m )2=42=16.6. 【答案】C[解析] 因为x a =2,x b =3,所以x 3a +2b =(x a )3·(x b )2=23×32=72.7. 【答案】C【解析】根据积的乘方运算法则,应选C8. 【答案】C【解析】因为a b ,互为相反数,它们的偶次幂相等,而奇次幂互为相反数,指数中只有21n +一定是奇数,故选C9. 【答案】B[解析] 图①中阴影部分的面积=(a -x)·(b -x),图②中阴影部分的面积=ab -ax -bx +x 2,所以(a -x)(b -x)=ab -ax -bx +x 2.10. 【答案】D【解析】由10a b +=知1,a b两数为相反数,且不为0,易得答案二、填空题(本大题共6道小题)11. 【答案】100 【解析】根据公式可得109÷107=102=100.12. 【答案】9a -【解析】原式()99a a =-=-13. 【答案】65x x - 【解析】原式65x x =-14. 【答案】a 9[解析] a 3·(a 3)2=a 3·a 6=a 9.15. 【答案】6x 3-8x 216. 【答案】(a +b)(a +2b)=a 2+3ab +2b 2三、解答题(本大题共3道小题)17. 【答案】解:因为22x+2-4x=48,所以(22)x+1-4x=48.所以4x+1-4x=48.所以4x(4-1)=48.所以4x=16.所以4x=42.所以x=2.18. 【答案】解:因为255=(25)11=3211,344=(34)11=8111,433=(43)11=6411,且32<64<81,所以255<433<344.19. 【答案】解:(1)(x2+2x+3)(x-2)=x3-2x2+2x2-4x+3x-6=x3-x-6,x的二次项没有了.(2)(x2+2x+3)(x+a)=x3+ax2+2x2+2ax+3x+3a=x3+(a+2)x2+(2a+3)x+3a.当2a+3=0,即a=-1.5时,x的一次项消失了.故x2+2x+3与x+a相乘后的结果有可能让一次项消失,此时a=-1.5.14.2乘法公式一.选择题1.如果x2+6xy+m是一个完全平方式,则m的值为()A.9y2B.3y2C.y2D.6y2 2.若M(5x﹣y2)=y4﹣25x2,那么代数式M应为()A.﹣5x﹣y2B.﹣y2+5x C.5x+y2D.5x2﹣y2 3.下列运算正确的是()A.a2+2a=3a3B.A.x3x2=x6B.x(x﹣3)=x2﹣3xC.=x2+y2D.﹣2x3y2÷xy2=2x47.下列各式中,不能用平方差公式计算的是()A.B.C.D.8.已知4﹣8x+mx2是关于x的完全平方式,则m的值为()A.2 B.±2 C.4 D.±49.如果x2﹣6x+N是一个完全平方式,那么N是()A.11 B.9 C.﹣11 D.﹣910.如图①,边长为a的大正方形中有四个边长均为b的小正方形,小华将阴影部分拼成一个长方形,(如图②)则这个长方形的面积为()A.B.C.D.二.填空题11.已知a+b=2,ab=1,则a2+b2=.12.已知:a+b=6,ab=﹣10,则a2+b2=.13.若x2﹣10x+m2是一个完全平方式,那么m的值为.14.若(x+y)2=11,(x﹣y)2=1,则x2﹣xy+y2的值为.15.如图1,在边长为a的大正方形中剪去一个边长为b的小正方形,再将图中的阴影部分剪拼成一个长为20,宽为10的长方形,如图2,则图2中(1)部分的面积是.三.解答题16.已知(m﹣53)(m﹣47)=12,求(m﹣53)2+(m﹣47)2的值.17.已知:x+y=5,xy=3.求:①x2+5xy+y2;②x4+y4.18.某学生化简a(a+1)﹣(a﹣2)2出现了错误,解答过程如下:解:原式=a2+a﹣(a2﹣4a+4)(第一步)=a2+a﹣a2﹣4a+4(第二步)=﹣3a+4(第三步)(1)该学生解答过程是从第步开始出错,其错误原因是;(2)请你帮助他写出正确的简化过程.19.学习整式乘法时,老师拿出三种型号的卡片,如图1:A型卡片是边长为a 的正方形,B型卡片是边长为b的正方形,C型卡片是长和宽分别为a,b的长方形.(1)选取1张A型卡片,2张C型卡片,1张B型卡片,在纸上按照图2的方式拼成一个长为(a+b)的大正方形,通过不同方式表示大正方形的面积,可得到乘法公式:.(2)若用图1中的8块C型长方形卡片可以拼成如图3所示的长方形,它的宽为20cm,请你求出每块长方形的面积.(3)选取1张A型卡片,3张C型卡片按图4的方式不重叠地放在长方形DEFG框架内,已知GF的长度固定不变,DG的长度可以变化,图中两阴影部分(长方形)的面积分别表示为S1,S2,若S=S2﹣S1,则当a与b满足时,S为定值,且定值为.参考答案与试题解析一.选择题1.【解答】解:∵x2+6xy+m是一个完全平方式,∴m==9y2.故选:A.2.【解答】解:∵M(5x﹣y2)=y4﹣25x2=(y2+5x)(y2﹣5x)=(5x﹣y2)(﹣5x﹣y2),∴M=﹣5x﹣y2.故选:A.3.【解答】解:A.a2与2a不能合并,所以A选项的计算错误;B.原式=4a6,所以B选项的计算错误;C.原式=a2+a﹣2,所以C选项的计算正确;D.(a+b)2=a2+2ab+b2,所以D选项的计算错误.故选:C.4.【解答】解:A、原式=2m2,不符合题意;B、原式=m2+4m+4,不符合题意;C、原式=8m3n6,不符合题意;D、原式=m8,符合题意.故选:D.5.【解答】解:A.结果是a5,故本选项不符合题意;B.结果是﹣8a9,故本选项不符合题意;C.结果是a2,故本选项符合题意;D.结果是a2+2ab+b2,故本选项不符合题意;故选:C.6.【解答】解:A、x3x2=x5,原计算错误,故此选项不符合题意;B、x(x﹣3)=x2﹣3x,原计算正确,故此选项符合题意;C、=x2﹣y2,原计算错误,故此选项不符合题意;D、﹣2x3y2与xy2不是同类项,不能合并,原计算错误,故此选项不符合题意;故选:B.7.【解答】解:A、=(﹣y+x)(﹣y﹣x)=(﹣y)2﹣x2=y2﹣x2,此题符合平方差公式的特征,能用平方差公式计算,故此题不符合题意;B、=﹣(x﹣y)(x﹣y)=﹣(x﹣y)2=﹣x2+2xy﹣y2,此题不符合平方差公式的特征,不能用平方差公式计算,故此选项符合题意;C、=(4x2)2﹣(y2)2=16x4﹣y4,原式能用平方差公式计算,故此选项不符合题意;D、=(3x)2﹣12=9x2﹣1,原式能用平方差公式计算,故此选项不符合题意,故选:B.8.【解答】解:∵4﹣8x+mx2是关于x的完全平方式,∴﹣8=﹣2×2,解得:m=4,故选:C.9.【解答】解:∵x2﹣6x+N=x2﹣2x3+N是一个完全平方式,∴N=32=9.故选:B.10.【解答】解:图②长方形的长为(a+2b),宽为(a﹣2b),因此阴影部分的面积为,故选:A.二.填空题11.【解答】解:∵a+b=2,ab=﹣1,∴a2+b2=(a+b)2﹣2ab=4+2=6,故答案为:6.12.【解答】解:∵a+b=6,ab=﹣10,∴a2+b2=(a+b)2﹣2ab=62﹣2×(﹣10)=56,故答案为:56.13.【解答】解:∵x2﹣10x+m2是一个完全平方式,∴m=±5,故答案为:±5.14.【解答】解:∵(x+y)2=x2+y2+2xy=11①,(x﹣y)2=x2+y2﹣2xy=1②,∴①+②得:2(x2+y2)=12,即x2+y2=6,①﹣②得:4xy=10,即xy=2.5,则原式=6﹣2.5=3.5.故答案为:3.5.15.【解答】解:根据题意得,a+b=20,a﹣b=10,解得,a=15,b=5,图2中(1)的面积为a(a﹣b)=15×10=150,故答案为:150.三.解答题16.【解答】解:(m﹣53)2+(m﹣47)2=[(m﹣53)﹣(m﹣47)]2+2(m﹣53)(m﹣47)=(﹣6)2+2×12=60.17.【解答】解:①∵x+y=5,xy=3,∴x2+5xy+y2=(x+y)2+3xy=52+3×3=34;②∵x+y=5,xy=3,∴x2+y2=(x+y)2﹣2xy=52﹣2×3=19,∴x4+y4=(x2+y2)2﹣2x2y2=192﹣2×32=333.18.【解答】解:(1)第二步在去括号时,﹣4a+4应变为4a﹣4.故错误原因为去括号时没有变号.(2)原式=a2+a﹣(a2﹣4a+4)=a2+a﹣a2+4a﹣4=5a﹣4.19.【解答】解:(1)方法1:大正方形的面积为(a+b)2,方法2:图2中四部分的面积和为:a2+2ab+b2,因此有(a+b)2=a2+2ab+b2,故答案为:(a+b)2=a2+2ab+b2.(2)设每块C型卡片的宽为xcm,长为ycm,根据题意得x+y=20,4x=20,解得x=5,y=15,所以每块长方形材料的面积是:5×15=75(cm2)14.3因式分解一.选择题(共10小题)1.下列从左到右的变形是因式分解的是()A.ma+mb﹣c=m(a+b)﹣cB.﹣a2+3ab﹣a=﹣a(a+3b﹣1)C.(a﹣b)(a2+ab+b2)=a3﹣b3D.4x2﹣25y2=(2x+5y)(2x﹣5y)2.利用因式分解简便计算69×99+32×99﹣99正确的是()A.99×(69+32)=99×101=9999B.99×(69+32﹣1)=99×100=9900C.99×(69+32+1)=99×102=10096D.99×(69+32﹣99)=99×2=1983.关于x的二次三项式x2+ax+36能直接用完全平方公式分解因式,则a的值是()A.﹣6B.±6C.12D.±124.把多项式﹣2x3+12x2﹣18x分解因式,结果正确的是()A.﹣2x(x2+6x﹣9)B.﹣2x(x﹣3)2C.﹣2x(x+3)(x﹣3)D.﹣2x(x+3)25.下列分解因式正确的是()A.a2﹣9=(a﹣3)2B.6a2+3a=a(6a+3)C.a2+6a+9=(a+3)2D.a2﹣2a+1=a(a﹣2)+16.分解因式:4﹣12(a﹣b)+9(a﹣b)2=()A.(2+3a﹣3b)2B.(2﹣3a﹣3b)2C.(2+3a+3b)2D.(2﹣3a+3b)2 7.下列因式分解中:①x3+2xy+x=x(x+2y);②x2+4x+4=(x+2)2;③﹣x2+y2=(x+y)(y﹣x);④x3﹣9x=x(x﹣3)2,正确的个数为()A.1个B.2个C.3个D.4个8.已知a,b,c为△ABC三边,且满足ab+bc=b2+ac,则△ABC是()A.直角三角形B.等边三角形C.等腰三角形D.不能确定9.已知多项式6x3+13x2+9x+2可以写成两个因式的积,又已知其中一个因式为3x2+5x+2,那么另一个因式为()A.2x﹣1B.2x+1C.﹣2x﹣1D.﹣2x+110.已知x﹣5是多项式2x2+8x+a的一个因式,则a可为()A.65B.﹣65C.90D.﹣90二.填空题(共5小题)11.因式分解:(1)m2﹣4=.(2)2x2﹣4x+2=.12.因式分解:4a2﹣9a4=.13.如果x2+Ax+B因式分解的结果为(x﹣3)(x+5),则A+B=.14.分解因式:=.15.多项式4x3y2﹣2x2y+8x2y3的公因式是.三.解答题(共3小题)16.分解因式:(1)3x2﹣6x+3;(2)2ax2﹣8a.17.因式分解:(1)2ax2﹣8a;(2)a3﹣6a2b+9ab2;(3)(a﹣b)2+4ab.18.(1)若代数式(m﹣2y+1)(n+3y)+ny2的值与y无关,且等腰三角形的两边长为m、n,求该等腰三角形的周长.(2)若x2﹣2x﹣5=0,求2x3﹣8x2﹣2x+2020的值.参考答案1.解:A、没将一个多项式化成几个整式的乘积的形式,不是因式分解,故本选项不符合题意;B、提公因式变号错误,不是正确的因式分解,故本选项不符合题意;C、不是因式分解,是整式的乘法,故本选项不符合题意;D、符合因式分解定义,是因式分解,故本选项符合题意;故选:D.2.解:69×99+32×99﹣99=99(69+32﹣1)=99×100=9900.故选:B.3.解:∵关于x的二次三项式x2+ax+36能直接用完全平方公式分解因式,∴a=±12.故选:D.4.解:﹣2x3+12x2﹣18x=﹣2x(x2﹣6x+9)=﹣2x(x﹣3)2.故选:B.5.解:A、原式=(a+3)(a﹣3),不符合题意;B、原式=3a(2a+1),不符合题意;C、原式=(a+3)2,符合题意;D、原式=(a﹣1)2,不符合题意.故选:C.6.解:原式=[2﹣3(a﹣b)]2=(2﹣3a﹣3b)2.故选:D.7.解:①x3+2xy+x=x(x2+2y+1),故原题分解错误;②x2+4x+4=(x+2)2,故原题分解正确;③﹣x2+y2=y2﹣x2=(x+y)(y﹣x),故原题分解正确;④x3﹣9x=x(x2﹣9)=x(x+3)(x﹣3),故原题分解错误;正确的个数为2个,故选:B.8.解:∵ab+bc=b2+ac,∴ab﹣ac=b2﹣bc,即a(b﹣c)=b(b﹣c),∴(a﹣b)(b﹣c)=0,∴a=b或b=c,∴△ABC是等腰三角形,故选:C.9.解:设另一个因式为(mx+n),根据题意得:6x3+13x2+9x+2=(3x2+5x+2)(mx+n)=3mx3+(5m+3n)x2+(2m+5n)x+2n,∴2n=2,2m+5n=9,解得:m=2,n=1,所以另一个因式为2x+1,故选:B.10.解:设多项式的另一个因式为2x+b.则(x﹣5)(2x+b)=2x2+(b﹣10)x﹣5b=2x2+8x+a.所以b﹣10=8,解得b=18.所以a=﹣5b=﹣5×18=﹣90.故选:D.11.解:(1)原式=(m+2)(m﹣2);(2)原式=2(x2﹣2x+1)=2(x﹣1)2.故答案为:(1)(m+2)(m﹣2);(2)2(x﹣1)2.12.解:原式=a2(4﹣9a2)=a2(2+3a)(2﹣3a).故答案为:a2(2+3a)(2﹣3a).13.解:x2+Ax+B=(x﹣3)(x+5)=x2+2x﹣15,得A=2,B=﹣15,∴A+B=2﹣15=﹣13.故答案为:﹣13.14.解:原式=(x2﹣x+)=(x﹣)2.故答案为:(x﹣)2.15.解:多项式4x3y2﹣2x2y+8x2y3的公因式是2x2y,故答案为:2x2y.16.解:(1)原式=3(x2﹣2x+1)=3(x﹣1)2;(2)原式=2a(x2﹣4)=2a(x+2)(x﹣2).17.解:(1)原式=2a(x2﹣4)=2a(x+2)(x﹣2);(2)原式=a(a2﹣6ab+9b2)=a(a﹣3b)2;(3)原式=a2﹣2ab+b2+4ab=a2+2ab+b2=(a+b)2.18.解:(1)(m﹣2y+1)(n+3y)+ny2=mn+3my﹣2ny﹣6y2+n+3y+ny2=mn+n+(3m﹣2n+3)y+(n﹣6)y2∵代数式的值与y无关,∴,∴,①若等腰三角形的三边长分别为6,6,3,则等腰三角形的周长为15.②若等腰三角形的三边长分别为6,3,3,则不能组成三角形.∴等腰三角形的周长为15.(2)∵x2﹣2x﹣5=0,∴x2=2x+5,∴2x3﹣8x2﹣2x+2020=2x(2x+5)﹣8x2﹣2x+2020=4x2+10x﹣8x2﹣2x+2020=﹣4x2+8x+2020=﹣4(2x+5)+8x+2020=﹣8x﹣20+8x+2020=2000.。

人教版八年级数学上册整式的乘法及因式分解专题训练.doc

人教版八年级数学上册整式的乘法及因式分解专题训练.doc

整式的乘法及因式分解专题训练一、同底数幂的乘法。

1、同底数幂相乘,不变,;2、计算工式:a m× a n =a() (m,n都是);3、计算:2 · x3 6( 3)、(- 2)×(-5×(- 2)5( 1)、x ( 2)、 a· a 2)( 4)、 m x-2· m 2-x(5)、- x5·x3·x10(6)、10x×1000 ( 7)、- 3×(- 3)2( 8)、 3× 105× 2× 106( 9)、- 8×(- 26)二、幂的乘方。

1 、幂的乘方,不变,相乘;2 、计算公式:( a m)n());=a ( m、 n 都是3、计算:3 )6 4)2 m)10 4)5( 1)、( 10 ( 2)、( a ( 3)、( a ( 4)、-( x4 )4 2 35 4)2 2)2( 5)、( a ( 6)、( a )· a ( 7)、( x ( 8)、-(- x三、积的乘方。

1 、积的乘方,等于把积的每一个因式分别,再把所得的幂。

2 、计算公式:( ab)n()()=a b ( n 为正整数);3、计算:( 1)、( 2a)2(2)、(-5b)3(3)、(x2y)3(4)、(-3m2) 3( 5)、-( x2y 3z5)2( 6)、(- 1/2xy )3( 7)、( 2ab2)3( 8)(- pq)3四、整式的乘法。

(一)、单项式×单项式。

1、运算法则:单项式与单项式相乘,把它们的、分别相乘,对于只在一个单项式里含有的字母,则连同它的作为积的一个因式。

2 2 2 2 1+2 1+23 32、举例: 2xy · 3x y z = ( 2× 3)( x · x )( y · y ) z=6x y z=6x y z(请同学们按上面举例的格式进行计算)2 3 4 5( 2)、3x 2 2 2)( 1)、-8m n · 3m n ; ·(- 6xy ) ; ( 3)、(-5a b)(- 4a2 2( 5)、 4y ·(-2xy 2 2 3( 4)、3x · 6x )( 6)、(-3x )· 5x2 3 2 2( 8)、( 2x )(-6xy 2( 7)、(-2a bc )(- 3ab ))(二)、单项式×多项式。

14.1.4.1 整式的乘法 人教版数学八年级上册作业(含解析)

14.1.4.1 整式的乘法 人教版数学八年级上册作业(含解析)

14.1 整式的乘法14.1.4 整式的乘法第1课时 整式的乘法测试时间:15分钟一、选择题1.(2023江西九江月考)计算2a3·(-3a2)的结果是( )A.6aB.-6a5C.6a5D.-6a62.(2023安徽宣城月考)如果单项式-3m6-2b n2a+b与mn18是同类项,那么这两个单项式的积是( )A.-3m2n36B.-3m6n16C.-3m3n8D.-9m6n163.(2023浙江宁波鄞州月考)下列运算错误的是( )A.3xy-(x2-2xy)=5xy-x2B.5x(2x2-y)=10x3-5xyC.5mn(2m+3n-1)=10m2n+15mn2-1D.(ab)2(2ab2-c)=2a3b4-a2b2c4.(2022河南南阳月考)计算a2(a+1)-a(a2-2a-1)的结果为( )A.-a2-aB.2a2+a+1C.3a2+aD.3a2-a5.(2023四川南充期末)若计算(3x2+2ax+1)·(-3x)-4x2的结果中不含有x2项,则a的值为( )A.2B.0C.-23D.-32二、填空题6.(2023吉林长春期末)化简(4x2y)2(-xy2)的结果是 .7.(2023上海长宁月考)若A=3x-2,B=1-2x,C=-6x,则C·B+A·C= .8.(2023广西南宁八中期中)计算2―15xy(-10x)= .9.(2023四川遂宁期末)已知多项式(x-2a)与(x2+x-1)的乘积中不含x2项,则常数a的值是 .10.(2023湖北潜江期末)若m,n为常数,等式(x+2)(x-1)=x2+mx+n恒成立,则n m的值为 .三、解答题11.计算:(-4a3b)2+8a3·(-2a3b2).12.计算:6ab(2a-0.5b)-ab(-a+b).13.(2023湖北武汉七一中学期中)已知ab2=-1,求-ab(a2b5-3ab3-2b)的值.14.已知x2+3mx―x2-3x+n)中不含x项和x3项,求(-18m2n)2+(9mn)2的值.15.(2023江西南昌期末)(1)如果(x-3)(x+2)=x2+mx+n,求m,n的值;,求(a-2)(b-2)的值.(2)如果(x+a)(x+b)=x2-2x+12答案全解全析一、选择题1.答案 B 2a 3·(-3a 2)=-6a 5.故选B.2.答案 A ∵单项式-3m 6-2b n 2a +b 与mn 18是同类项,∴-3m 6-2b n 2a +b =-3mn 18,∴这两个单项式的积是-3mn 18·mn 18=-3m 2n 36.故选A.3.答案 C A.3xy -(x 2-2xy )=5xy -x 2,故此选项不合题意;B.5x (2x 2-y )=10x 3-5xy ,故此选项不合题意;C.5mn (2m +3n -1)=10m 2n +15mn 2-5mn ,故此选项符合题意;D.(ab )2(2ab 2-c )=2a 3b 4-a 2b 2c ,故此选项不合题意.故选C.4.答案 C a 2(a +1)-a (a 2-2a -1)=a 3+a 2-a 3+2a 2+a =3a 2+a.故选C.5.答案 C (3x 2+2ax +1)·(-3x )-4x 2=-9x 3-6ax 2-3x -4x 2=-9x 3+(-6a -4)x 2-3x ,∵结果中不含有x 2项,∴-6a -4=0,解得a =-23.故选C.二、填空题6.答案 -16x 5y 4解析 原式=16x 4y 2·(-xy 2)=-16x 5y 4.7.答案 -6x 2+6x解析 ∵A =3x -2,B =1-2x ,C =-6x ,∴C ·B =(-6x )·(1-2x )=12x 2-6x ,A ·C =(3x -2)·(-6x )=-18x 2+12x ,∴C ·B +A ·C =(12x 2-6x )+(-18x 2+12x )=12x 2-6x -18x 2+12x =-6x 2+6x.8.答案 -5x 3+2x 2y解析 原式=12x 2·(-10x )-15xy ·(-10x )=-5x 3+2x 2y.9.答案 0.5解析 (x -2a )(x 2+x -1)=x 3+x 2-x -2ax 2-2ax +2a=x 3+(1-2a )x 2-(1+2a )x +2a ,∵多项式(x -2a )与(x 2+x -1)的乘积中不含x 2项,∴1-2a =0,解得a =0.5.10.答案 -2解析 ∵(x +2)(x -1)=x 2+mx +n ,∴x 2+x -2=x 2+mx +n ,∴m =1,n =-2,∴n m =(-2)1=-2.三、解答题11.解析 原式=16a 6b 2-16a 6b 2=0.12.解析 原式=12a 2b -3ab 2+a 2b -ab 2=13a 2b -4ab 2.13.解析 原式=-a 3b 6+3a 2b 4+2ab 2=-(ab 2)3+3(ab 2)2+2ab 2.因为ab 2=-1,所以原式=1+3-2=2.14.解析 x 2+3mx ―x 2-3x +n )=x 4-3x 3+nx 2+3mx 3-9mx 2+3mnx -13x 2+x -n 3=x 4+3mx 3-3x 3+nx 2-9mx 2-13x 2+3mnx +x -n 3=x 4+(3m -3)x 3+n ―9m ―2+(3mn +1)x -n 3,由题意得3m -3=0,3mn +1=0,∴m =1,n =-13,∴(-18m 2n )2+(9mn )2=324m 4n 2+81m 2n 2=324×1×19+81×1×19=36+9=45.15.解析 (1)∵(x -3)(x +2)=x 2+mx +n ,∴x 2-x -6=x 2+mx +n ,∴m =-1,n =-6.(2)∵(x +a )(x +b )=x 2+(a +b )x +ab =x 2-2x +12,∴a +b =-2,ab =12,∴(a -2)(b -2)=ab -2(a +b )+4=12-2×(-2)+4=172.。

八年级上册数学人教版课时练《14.1.4 整式的乘法》03(含答案)

八年级上册数学人教版课时练《14.1.4  整式的乘法》03(含答案)

8年级上册数学人教版《14.1.4 整式的乘法》课时练一、选择题1.计算2m3•3m4的结果是()A.5m7B.5m12C.6m7D.6m122.计算﹣3x2•(﹣3x3)的结果是()A.﹣6x5B.9x5C.﹣2x6D.2x63.下列运算正确的是()A.a3•a2=a6B.2a(3a﹣1)=6a2﹣1C.x3+x3=2x3D.(3a2)2=6a44.若(x2+ax+1)(﹣6x3)的展开式中不含x4项,则a=()A.﹣6B.0C.D.﹣15.在一次数学课上,学习了单项式乘多项式,小刘回家后,拿出课堂笔记本复习,发现这样一道题:2x(﹣3x2﹣3x+1)=﹣6x3﹣□+2x,“□”的地方被墨水污染了,你认为“□”内应填写()A.﹣6x2B.6x2C.6x D.﹣6x6.若A(m2﹣3n)=m3﹣3mn,则代数式A的值为()A.m B.mn C.mn2D.m2n7.如果(x+1)(3x+a)的乘积中不含x的一次项,则a为()A.3B.﹣3C.D.﹣8.若(x+2)(x﹣3)=x2+ax+b,则a,b的值分别为()A.﹣1,﹣6B.﹣5,﹣6C.﹣5,6D.﹣1,69.已知:(x﹣5)(x+☆)=x2﹣2x﹣15,其中☆代表一个常数,则☆的值为()A.1B.2C.3D.410.如图,现有足够多的型号为①②③的正方形和长方形卡片,如果分别选取这三种型号卡片若干张,可以拼成一个不重叠、无缝隙的长方形.小星想用拼图前后面积之间的关系解释多项式乘法(a+2b)(3a+b)=3a2+7ab+2b2,则其中②和③型号卡片需要的张数各是()A.3张和7张B.2张和3张C.5张和7张D.2张和7张11.聪聪计算一道整式乘法的题:(x+m)(5x﹣4),由于聪聪将第一个多项式中的“+m”抄成“﹣m”,得到的结果为5x2﹣34x+24.这道题的正确结果是()A.5x2+26x﹣24B.5x2﹣26x﹣24C.5x2+34x﹣24D.5x2﹣34x﹣24二、填空题12.计算:(3x2y﹣2x+1)(﹣2xy)=.13.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如下:×(﹣xy)=3x2y﹣xy2+xy,所捂多项式是.14.如图所示,四边形均为长方形,根据图形,写出一个正确的等式:.15.某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间修建一座边长是(a+b)米的正方形雕像.请用含a,b的代数式表示绿化面积.16.已知m+n=5,mn=﹣2,则(1﹣m)(1﹣n)的值为17.已知有甲、乙两个长方形,它们的边长如图所示(m为正整数),甲、乙的面积分别为S1,S2.(1)S1与S2的大小关系为:S1S2;(用“>”、“<”、“=”填空)(2)若满足条件|S1﹣S2|<n≤2021的整数n有且只有4个,则m的值为.三、解答题18.化简:(1)2(2x2﹣xy)+x(x﹣y);(2)ab(2ab2﹣a2b)﹣(2ab)2b+a3b2.19.(1)计算:2(x3)2•x3﹣(3x3)3+(5x)2•x7.(2)已知2x+5y﹣3=0,求4x•32y的值.20.在高铁站广场前有一块长为(2a+b)米,宽为(a+b)米的长方形空地(如图).计划在中间留两个长方形喷泉(图中阴影部分),两喷泉及周边留有宽度为b米的人行通道.(1)请用代数式表示广场面积并化简.(2)请用代数式表示两个长方形喷泉(图中阴影部分)的面积并化简.21.【知识回顾】七年级学习代数式求值时,遇到这样一类题“代数式ax﹣y+6+3x﹣5y﹣1的值与x的取值无关,求a的值”,通常的解题方法是:把x、y看作字母,a看作系数合并同类项,因为代数式的值与x的取值无关,所以含x项的系数为0,即原式=(a+3)x﹣6y+5,所以a+3=0,则a=﹣3.【理解应用】(1)若关于x的多项式(2x﹣3)m+2m2﹣3x的值与x的取值无关,求m值;(2)已知A=(2x+1)(x﹣1)﹣x(1﹣3y),B=﹣x2+xy﹣1,且3A+6B的值与x无关,求y的值;【能力提升】(3)7张如图1的小长方形,长为a,宽为b,按照图2方式不重叠地放在大长方形ABCD 内,大长方形中未被覆盖的两个部分(图中阴影部分),设右上角的面积为S1,左下角的面积为S2,当AB的长变化时,S1﹣S2的值始终保持不变,求a与b的等量关系.参考答案一、选择题1.C2.B3.C4.B5.B6.A7.B8.A9.C10.D 11.A三、填空题12.﹣6x3y2+4x2y﹣2xy.13.﹣6x+2y﹣1.14.m(m+a)=m2+ma(答案不唯一).15.5a2+3ab.16.-6.17.1009.三、解答题18.解:(1)2(2x2﹣xy)+x(x﹣y)=4x2﹣2xy+x2﹣xy=5x2﹣3xy;(2)ab(2ab2﹣a2b)﹣(2ab)2b+a3b2=2a2b3﹣a3b2﹣4a2b3+a3b2=﹣2a2b3.19.解:(1)原式=2x6•x3﹣27x9+25x2•x7=2x9﹣27x9+25x9=0;(2)∵2x+5y﹣3=0,∴2x+5y=3,∴原式=(22)x•(25)y=22x•25y=22x+5y=23=8.20.解:(1)广场面积为(a+b)(2a+b)=2a2+3ab+b2.(2)两个长方形喷泉(图中阴影部分)的面积为:(a+b﹣b﹣b)(2a+b﹣3b)=(a﹣b)(2a﹣2b)=2a2﹣4ab+2b2.21.解:(1)(2x﹣3)m+2m2﹣3x=2mx﹣3m+2m2﹣3x=(2m﹣3)x+2m2﹣3m,∵其值与x的取值无关,∴2m﹣3=0,解得,m=,答:当m=时,多项式(2x﹣3)m+2m2﹣3x的值与x的取值无关;(2)∵A=(2x+1)(x﹣1)﹣x(1﹣3y),B=﹣x2+xy﹣1,∴3A+6B=3[(2x+1)(x﹣1)﹣x(1﹣3y)]+6(﹣x2+xy﹣1)=3(2x2﹣2x+x﹣1﹣x+3xy]﹣6x2+6xy﹣6=6x2﹣6x+3x﹣3﹣3x+9xy﹣6x2+6xy﹣6=15xy﹣6x﹣9=3x(5y﹣2)﹣9,∵3A+6B的值与x无关,∴5y﹣2=0,即y=;(3)设AB=x,由图可知S1=a(x﹣3b),S2=2b(x﹣2a),∴S1﹣S2=a(x﹣3b)﹣2b(x﹣2a)=(a﹣2b)x+ab,∵当AB的长变化时,S1﹣S2的值始终保持不变.∴S1﹣S2取值与x无关,∴a﹣2b=0∴a=2b.。

【精品讲义】人教版 八年级数学(上) 专题14.1 整式的乘法(知识点+例题+练习题)含答案

【精品讲义】人教版 八年级数学(上) 专题14.1  整式的乘法(知识点+例题+练习题)含答案

第十四章 整式的乘法与因式分解14.1 整式的乘法一、同底数幂的乘法一般地,对于任意底数a 与任意正整数m ,n ,a m ·a n =()m aa a a ⋅⋅⋅个·()n aa a a ⋅⋅⋅个=()m n aa a a +⋅⋅⋅个=m n a +.语言叙述:同底数幂相乘,底数不变,指数__________.【拓展】1.同底数幂的乘法法则的推广:三个或三个以上同底数幂相乘,法则也适用.m n p a a a ⋅⋅⋅=m n pa +++(m ,n ,…,p 都是正整数).2.同底数幂的乘法法则的逆用:a m +n =a m ·a n (m ,n 都是正整数). 二、幂的乘方1.幂的乘方的意义:幂的乘方是指几个相同的幂相乘,如(a 5)3是三个a 5相乘,读作a 的五次幂的三次方,(a m )n 是n 个a m 相乘,读作a 的m 次幂的n 次方. 2.幂的乘方法则:一般地,对于任意底数a 与任意正整数m ,n ,()=mn mm n m m m m m mmn n a a a a a a a +++=⋅⋅⋅=个个.语言叙述:幂的乘方,底数不变,指数__________.【拓展】1.幂的乘方的法则可推广为[()]m n p mnpa a =(m ,n ,p 都是正整数).2.幂的乘方法则的逆用:()()mn m n n m a a a ==(m ,n 都是正整数). 三、积的乘方1.积的乘方的意义:积的乘方是指底数是乘积形式的乘方.如(ab )3,(ab )n 等.3()()()()ab ab ab ab =⋅⋅(积的乘方的意义)=(a ·a ·a )·(b ·b ·b )(乘法交换律、结合律)=a 3b 3.2.积的乘方法则:一般地,对于任意底数a ,b 与任意正整数n ,()()()()=n n nn an bn ab ab ab ab ab a a a b b b a b =⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅个个个.因此,我们有()nn nab a b =.语言叙述:积的乘方,等于把积的每一个因式分别__________,再把所得的幂相乘. 四、单项式与单项式相乘法则:一般地,单项式与单项式相乘,把它们的系数、同底数幂分别__________,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.1.只在一个单项式里含有的字母,要连同它的指数写在积里,注意不要把这个因式遗漏. 2.单项式与单项式相乘的乘法法则对于三个及以上的单项式相乘同样适用. 3.单项式乘单项式的结果仍然是单项式.【注意】1.积的系数等于各项系数的积,应先确定积的符号,再计算积的绝对值. 2.相同字母相乘,是同底数幂的乘法,按照“底数不变,指数相加”进行计算. 五、单项式与多项式相乘法则:一般地,单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积__________.用式子表示:m (a +b +c )=ma +mb +mc (m ,a ,b ,c 都是单项式).【注意】1.单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同,可以以此来检验在运算中是否漏乘某些项.2.计算时要注意符号问题,多项式中每一项都包括它前面的符号,同时还要注意单项式的符号. 3.对于混合运算,应注意运算顺序,有同类项必须合并,从而得到最简结果. 六、多项式与多项式相乘1.法则:一般地,多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积__________.2.多项式与多项式相乘时,要按一定的顺序进行.例如(m +n )(a +b +c ),可先用第一个多项式中的每一项与第二个多项式相乘,得m (a +b +c )与n (a +b +c ),再用单项式乘多项式的法则展开,即 (m +n )(a +b +c )=m (a +b +c )+n (a +b +c )=ma +mb +mc +na +nb +nc . 【注意】1.运用多项式乘法法则时,必须做到不重不漏.2.多项式与多项式相乘,仍得多项式.在合并同类项之前,积的项数应该等于两个多项式的项数之积. 七、同底数幂的除法 同底数幂的除法法则:一般地,我们有m n m n a a a -÷=(a ≠0,m ,n 都是正整数,并且m >n ). 语言叙述:同底数幂相除,底数不变,指数__________.【拓展】1.同底数幂的除法法则的推广:当三个或三个以上同底数幂相除时,也具有这一性质,例如:m n p m n p a a a a --÷÷=(a ≠0,m ,n ,p 都是正整数,并且m >n +p ). 2.同底数幂的除法法则的逆用:m n m n a a a -=÷(a ≠0,m ,n 都是正整数,并且m >n ). 八、零指数幂的性质 零指数幂的性质:同底数幂相除,如果被除式的指数等于除式的指数,例如a m ÷a m ,根据除法的意义可知所得的商为1.另一方面,如果依照同底数幂的除法来计算,又有a m ÷a m =a m -m =a 0. 于是规定:a 0=1(a ≠0).语言叙述:任何不等于0的数的0次幂都等于__________. 【注意】1.底数a 不等于0,若a =0,则零的零次幂没有意义. 2.底数a 可以是不为零的单顶式或多项式,如50=1,(x 2+y 2+1)0=1等. 3.a 0=1中,a ≠0是极易忽略的问题,也易误认为a 0=0. 九、单项式除以单项式单项式除以单项式法则:一般地,单项式相除,把系数与同底数幂分别__________作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.单项式除以单项式法则的实质是将单项式除以单项式转化为同底数幂的除法运算,运算结果仍是单项式. 【归纳】该法则包括三个方面:(1)系数相除;(2)同底数幂相除;(3)只在被除式里出现的字母,连同它的指数作为商的一个因式.【注意】可利用单项式相乘的方法来验证结果的正确性. 十、多项式除以单项式多项式除以单项式法则:一般地,多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商__________.【注意】1.多项式除以单项式是将其化为单项式除以单项式问题来解决,在计算时多项式里的各项要包括它前面的符号.2.多项式除以单项式,被除式里有几项,商也应该有几项,不要漏项. 3.多项式除以单项式是单项式乘多项式的逆运算,可用其进行检验.一、相加 二、相乘 三、乘方四、相乘五、相加六、相加七、相减八、1九、相除十、相加1.同底数幂的乘法(1)同底数幂的乘法法则只有在底数相同时才能使用. (2)单个字母或数字可以看成指数为1的幂.(3)底数不一定只是一个数或一个字母,也可以是单项式或多项式.计算m 2·m 6的结果是A .m 12B .2m 8C .2m 12D .m 8【答案】D【解析】m 2·m 6=m 2+6=m 8,故选D .计算-(a -b )3(b -a )2的结果为A .-(b -a )5B .-(b +a )5C .(a -b )5D .(b -a)5【答案】D【解析】-(a-b )3(b -a )2=(b -a )3(b -a )2=(b -a )5,故选D .2.幂的乘方与积的乘方(1)每个因式都要乘方,不能漏掉任何一个因式.(2)要注意系数应连同它的符号一起乘方,尤其是当系数是-1时,不可忽略.计算24()a 的结果是A .28aB .4aC .6aD .8a【答案】D【解析】24()a =248a a ⨯=,故选D .下列等式错误的是A .(2mn )2=4m 2n 2B .(-2mn )2=4m 2n 2C .(2m 2n 2)3=8m 6n 6D .(-2m 2n 2)3=-8m 5n 5【答案】D【解析】A .(2mn )2=4m 2n 2,该选项正确; B .(-2mn )2=4m 2n 2,该选项正确; C .(2m 2n 2)3=8m 6n 6,该选项正确;D .(-2m 2n 2)3=-8m 6n 6,该选项错误.故选D .3.整式的乘法(1)单顶式与单顶式相乘,系数是带分数的一定要化成假分数,还应注意混合运算的运算顺序:先乘方,再乘法,最后加减.有同类顶的一定要合并同类顶.(2)单顶式与多顶式相乘的计算方法,实质是利用分配律将其转化为单项式乘单项式.计算:3x 2·5x 3的结果为A .3x 6B .15x 6C .5x 5D .15x 5【答案】D【解析】直接利用单项式乘以单项式运算法则,得3x 2·5x 3=15x 5.故选D .下列各式计算正确的是A .2x (3x -2)=5x 2-4xB .(2y +3x )(3x -2y )=9x 2-4y 2C .(x +2)2=x 2+2x +4D .(x +2)(2x -1)=2x 2+5x -2【答案】B【解析】A 、2x (3x -2)=6x 2-4x ,故本选项错误; B 、(2y +3x )(3x -2y )=9x 2-4y 2,故本选项正确; C 、(x +2)2=x 2+4x +4,故本选项错误;D 、(x +2)(2x -1)=2x 2+3x -2,故本选项错误.故选B .4.同底数幂的除法多顶式除以单项式可转化为单项式除以单顶式的和,计算时应注意逐项相除,不要漏项,并且要注意符号的变化,最后的结果通常要按某一字母升幂或降幂的顺序排列.计算2x 2÷x 3的结果是 A .xB .2xC .x -1D .2x -1【答案】D【解析】因为2x 2÷x 3=2x -1,故选D .计算:4333a b a b ÷的结果是 A .aB .3aC .abD .2a b【答案】A【解析】因为43334333a b a b a b a --÷==.故选A .计算:22(1510)(5)x y xy xy --÷-的结果是A .32x y -+B .32x y +C .32x -+D .32x --【答案】B【解析】因为2221111121(1510)(5)3232x y xy xy xyx y x y ------÷-=+=+.故选B .5.整式的化简求值(1)化简求值题一般先按整式的运算法则进行化简,然后再代入求值.(2)在求整式的值时,代入负数时应用括号括起来,作为底数的分数也应用括号括起来.先化简,再求值:2[()(4)8]2x y y x y x x -+--÷,其中8x =,2018y =.【解析】原式222(248)2x xy y xy y x x =-++--÷2(28)2x xy x x =+-÷142x y =+-. 当8x =,2018y =时,原式182018420182=⨯+-=.1.计算3(2)a -的结果是 A .38a -B .36a -C .36aD .38a2.下列计算正确的是 A .77x x x ÷=B .224(3)9x x -=-C .3362x x x ⋅=D .326()x x =3.如果2(2)(6)x x x px q +-=++,则p 、q 的值为 A .4p =-,12q =- B .4p =,12q =- C .8p =-,12q =-D .8p =,12q =4.已知30x y +-=,则22y x ⋅的值是 A .6B .6-C .18D .85.计算3n ·(-9)·3n +2的结果是 A .-33n -2B .-3n +4C .-32n +4D .-3n +66.计算223(2)(3)m m m m -⋅-⋅+的结果是 A .8m 5B .–8m 5C .8m 6D .–4m 4+12m 57.若32144m nx y x y x ÷=,则m ,n 的值是 A .6m =,1n = B .5m =,1n = C .5m =,0n =D .6m =,0n =8.计算(-x )2x 3的结果等于__________. 9.(23a a a ⋅⋅)³=__________.10.3119(1.210)(2.510)(410)⨯⨯⨯=__________. 11.计算:(a 2b 3-a 2b 2)÷(ab )2=__________.12.若1221253()()m n n m a b a b a b ++-= ,则m +n 的值为__________. 13.计算:(1)21(2)()3(1)3x y xy x -⋅-+⋅-; (2)23(293)4(21)a a a a a -+--. (3)(21x 4y 3–35x 3y 2+7x 2y 2)÷(–7x 2y ).14.先化简,再求值:(1)x (x -1)+2x (x +1)-(3x -1)(2x -5),其中x =2; (2)243()()m m m -⋅-⋅-,其中m =2-.15.“三角”表示3xyz ,“方框”表示-4a b d c .求×的值.16.下列运算正确的是A .326a a a ⨯=B .842a a a ÷=C .3(1)33a a --=-D .32911()39a a =17.计算5642333312(3)2a b c a b c a b c ÷-÷,其结果正确的是A .2-B .0C .1D .218.计算:(7)(6)(2)(1)x x x x +---+=__________. 19.如果1()()5x q x ++展开式中不含x 项,则q =__________. 20.已知:2x =3,2y =6,2z =12,试确定x ,y ,z 之间的关系.21.在一次测试中,甲、乙两同学计算同一道整式乘法:(2x +a )(3x +b ),由于甲抄错了第一个多项式中的符号,得到的结果为6x 2+11x -10;由于乙漏抄了第二个多项式中的系数,得到的结果为2x 2-9x +10. (1)试求出式子中a ,b 的值;(2)请你计算出这道整式乘法的正确结果.22.(2019•镇江)下列计算正确的是A .236a a a ⋅=B .734a a a ÷=C .358()a a =D .22()ab ab =23.(2019•泸州)计算233a a ⋅的结果是A .54aB .64aC .53aD .63a24.(2019•柳州)计算:2(1)x x -=A .31x -B .3x x -C .3x x +D .2x x -25.(2019•天津)计算5x x ⋅的结果等于__________. 26.(2019•绥化)计算:324()m m -÷=__________. 27.(2019•乐山)若392m n ==,则23m n +=__________. 28.(2019•武汉)计算:2324(2)x x x -⋅. 29.(2019•南京)计算:22()()x y x xy y +-+.1.【答案】A【解析】33(2)8a a -=-,故选A . 2.【答案】D【解析】A 、76x x x ÷=,故此选项错误; B 、224(3)9x x =-,故此选项错误; C 、336x x x ⋅=,故此选项错误; D 、326()x x =,故此选项正确, 故选D . 3.【答案】A【解析】已知等式整理得:x 2-4x -12=x 2+px +q ,可得p =-4,q =-12,故选A .4.【答案】D【解析】∵x +y -3=0,∴x +y =3,∴2y ·2x =2x +y =23=8.故选D .5.【答案】C【解析】3n ·(-9)·3n +2=-3n ·32·3n +2=-32n +4,故选C .6.【答案】A【解析】原式=4m 2·2m 3=8m 5,故选A .7.【答案】B 【解析】因为33121444m n m n x y x y x y x --÷==,所以32m -=,10n -=,5m =,1n =,故选B . 8.【答案】x 5【解析】根据积的乘方以及同底数幂的乘法法则可得:(-x )2x 3=x 2·x 3=x 5.故答案为:x 5. 9.【答案】a 18【解析】(23a a a ⋅⋅)³=(6a )³=a 18.故答案为:a 18. 10.【答案】241.210⨯【解析】原式=1.2×103×(2.5×1011)×(4×109)=12×1023=1.2×1024.故答案为:1.2×1024. 11.【答案】1b -【解析】(a 2b 3-a 2b 2)÷(ab )2=(a 2b 3-a 2b 2)÷a 2b 2=a 2b 3÷a 2b 2-a 2b 2÷a 2b 2=1b -.故答案为:1b -. 12.【答案】2【解析】(a m +1b n +2)(a 2n –1b 2m )=a m +1+2n –1·b n +2+2m =a m +2n ·b n +2m +2=a 5b 3, ∴25223m n n m +=++=⎧⎨⎩, 两式相加,得3m +3n =6,解得m +n =2,故答案为:2.13.【解析】(1)原式=2x 2y +3xy -x 2y=x 2y +3xy .(2)原式=6a 3-27a 2+9a -8a 2+4a=6a 3-35a 2+13a .(3)原式=21x 4y 3÷(–7x 2y )–35x 3y ÷(–7x 2y )+7x 2y 2÷(–7x 2y )=–3x 2y 2+5xy –y .14.【解析】(1)原式=x 2-x +2x 2+2x -6x 2+17x -5=(x 2+2x 2-6x 2)+(-x +2x +17x )-5=-3x 2+18x -5.当x =2时,原式=19.(2)原式=-m 2·m 4·(-m 3)=m 2·m 4·m 3=m 9.当m =-2时,则原式=(-2)9=-512.15.【解析】由题意得×=(3mn ·3)×(–4n 2m 5) =[]526333(4)()()36m m n n m n ⨯⨯-⋅⋅⋅=-.16.【答案】C【解析】A 、2326a a a ⨯=,故本选项错误;B 、844a a a ÷=,故本选项错误;C 、()3133a a --=-,正确;D 、32611()39a a =,故本选项错误, 故选C .17.【答案】A【解析】因为5642333352363341312(3)222a b c a b c a b c ab c ------÷-÷=-=-,故选A . 18.【答案】2x -40【解析】原式=(x 2+x -42)-(x 2-x -2)=2x -40.故答案为:2x -40.19.【答案】15- 【解析】1()()5x q x ++=211()55x q x q +++,由于展开式中不含x 的项,∴105q +=,∴15q =-.故答案为:15-.20.【解析】因为2x =3,所以2y =6=2×3=2×2x =2x +1, 2z =12=2×6=2×2y =2y +1.所以y =x +1,z =y +1.两式相减,得y -z =x -y ,所以x +z =2y .21.【解析】(1)由题意得:(2x -a )(3x +b )=6x 2+(2b -3a )x -ab ,(2x +a )(x +b )=2x 2+(a +2b )x +ab , 所以2b -3a =11①,a +2b =-9②,由②得2b =-9-a ,代入①得-9-a -3a =11,所以a =-5,2b =-4,b =-2.(2)由(1)得(2x +a )(3x +b )=(2x -5)(3x -2)=6x 2-19x +10.22.【答案】B【解析】A 、a 2·a 3=a 5,故此选项错误;B 、a 7÷a 3=a 4,正确;C 、(a 3)5=a 15,故此选项错误;D 、(ab )2=a 2b 2,故此选项错误,故选B .23.【答案】C【解析】23533a a a ⋅=,故选C .24.【答案】B【解析】23(1)x x x x -=-,故选B .25.【答案】6x【解析】56⋅=x x x ,故答案为:6x .26.【答案】2m【解析】原式64642m m m m ÷-===,故答案为:m 2.27.【答案】4【解析】∵23=9=32=m n n ,∴2233339224+=⨯=⨯=⨯=m n m n m n ,故答案为:4.28.【解析】2324(2)x x x -⋅=668x x -67x =.29.【解析】22()()x y x xy y +-+322223x x y xy x y xy y =-++-+ 33x y =+.。

人教版初中八年级数学上册第十四章《整式的乘法与因式分解》经典习题(含答案解析)

人教版初中八年级数学上册第十四章《整式的乘法与因式分解》经典习题(含答案解析)

一、选择题1.对于①2(2)(1)2x x x x +-=+-,②4(14)x xy x y -=-,从左到右的变形,表述正确的是( )A .都是因式分解B .都是乘法运算C .①是因式分解,②是乘法运算D .①是乘法运算,②是因式分解D解析:D【分析】根据因式分解的定义(把一个多项式化成几个整式积的形式,叫因式分解,也叫分解因式判断即可.将多项式×多项式变得多项式,是乘法运算.【详解】解:①2(2)(1)2x x x x +-=+-,从左到右的变形是整式的乘法;②4(14)x xy x y -=-,从左到右的变形是因式分解;所以①是乘法运算,②因式分解.故选:D .【点睛】此题考查了因式分解与乘法运算的定义的认识,解题的关键是掌握因式分解及乘法运算的定义.2.如表,已知表格中竖直、水平、对角线上的三个数的和都相等,则m +n =( )A .1B .2C .5D .7D 解析:D【分析】 由题意竖直、水平、对角线上的三个数的和都相等,则有m ﹣3+4﹣(m +3)=﹣3+1+n ﹣(4+1),即可解出n =5,从而求出m 值即可.【详解】解:由题意得竖直、水平、对角线上的三个数的和都相等,则有m ﹣3+4﹣(m +3)=﹣3+1+n ﹣(4+1),整理得n =5,则有m ﹣3+4=﹣3+1+5,解得m =2,∴m +n =5+2=7,故选:D .【点睛】此题主要考查列一元一次方程解决实际问题,理解题意,找出等量关系是解题关键. 3.已知3a b -=、4b c -=、5c d -=,则()()a c d b --的值为( )A .7B .9C .-63D .12C 解析:C【分析】由3a b -=与4b c -=两式相加可得7a c -=,由4b c -=与5c d -=两式相加得9b d -=,即9d b -=-,然后整体代入求解即可.【详解】解:由3a b -=与4b c -=两式相加可得7a c -=,由4b c -=与5c d -=两式相加得9b d -=,即9d b -=-,∴()()()7963a c d b --=⨯-=-;故选C .【点睛】本题主要考查求代数式的值,关键是根据题意利用整体思想进行求解.4.下列多项式中,不能用完全平方公式分解因式的是( )A .214m m ++ B .222x xy y -+- C .221449x xy y -++D .22193x x -+ C 解析:C【分析】直接利用完全平方公式分解因式得出答案.【详解】 A 、222111(44)(2)444m m m m m ++=++=+能用完全平方公式分解因式,不符合题意; B 、222222(2)()x xy y x xy y x y -+-=--+=--能用完全平方公式分解因式,不符合题意;C 、221449x xy y -++不能用完全平方公式分解因式,符合题意;D 、2222111(69)(3)9399x x x x x -+=-+=-能用完全平方公式分解因式,不符合题意; 故选:C .【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握完全平方公式是解本题的关键. 5.下列运算正确的是( )A .3m ·4m =12mB .m 6÷m 2= m 3(m≠0)C .236(3)27m m -=D .(2m+1)(m-1)=2m 2-m-1D解析:D【分析】利用同底数幂的乘法和除法,积的乘方、幂的乘方,多项式乘多项式的运算法则计算即可判断.【详解】A 、 347·m m m =,该选项错误;B 、624m m m ÷=,该选项错误;C 、236(3)27m m -=-,该选项错误;D 、(()221)121m m m m +-=--,该选项正确; 故选:D .【点睛】本题考查了同底数幂的乘法和除法,积的乘方、幂的乘方,多项式乘多项式,熟练掌握运算法则是解题的关键.6.已知552a =,443b =,334c =,则a ,b ,c 的大小关系是( )A .a b c >>B .b c a >>C .c a b >>D .a c b >> B解析:B【分析】由552a =,443b =,334c =,比较5432,3,4的大小即可.【详解】解:∵555112=(2)a =,444113(3)b == ,333114(4)c == ,435342>> , ∴411311511(3)(4)(2)>>,即b c a >>,故选B .【点睛】本题考查了幂的乘方的逆运算及数的大小的比较,解题的关键是熟练掌握幂的乘方运算法则.7.下列计算正确的是( )A .()222x y x y +=+B .()32626m m =C .()2224x x -=-D .()()2111x x x +-=- D 解析:D【分析】根据完全平方公式,平方差公式和积的乘方公式分别判断即可.【详解】A. ()2222x y x xy y +=++,故原选项错误;B.()32628m m =,故原选项错误;C.()22244x x x -=-+,故原选项错误;D. ()()2111x x x +-=-,故选项正确.故选:D .【点睛】本题考查完全平方公式,平方差公式和积的乘方公式.熟记公式是解题关键.8.下列各多项式中,能用平方差公式分解因式的是( )A .21x -+B .21x +C .21x --D .221x x -+ A 解析:A【分析】根据平方差公式:两个数平方的差,等于这两个数的和与差的平方解答.【详解】A 、21x -+,能用平方差公式分解因式;B 、21x +,不能用平方差公式分解因式;C 、21x --,不能用平方差公式分解因式;D 、221x x -+,不能用平方差公式分解因式;故选:A .【点睛】此题考查平方差公式:22()()a b a b a b -=+-,掌握公式中多项式的特点是解题的关键.9.若()()()248(21)2121211A =+++++,则A 的末位数字是( )A .4B .2C .5D .6D 解析:D【分析】在原式前面加(2-1),利用平方差公式计算得到结果,根据2的乘方的计算结果的规律得到答案.【详解】 ()()()248(21)2121211A =+++++=()()()248(21)(21)2121211-+++++=()()()2248(21)2121211-++++=()()448(21)21211-+++ =()88(21)211-++ =162,∵2的末位数字是2,22的末位数字是4,32的末位数字是8,42的末位数字是6,52的末位数字是2,,∴每4次为一个循环,∵1644÷=,∴162的末位数字与42的末位数字相同,即末位数字是6,故选:D .【点睛】此题考查利用平方差公式进行有理数的简便运算,数字类规律的探究,根据2的乘方末位数字的规律得到答案是解题的关键.10.下列各式计算正确的是( )A .5210a a a =B .()428=a aC .()236a b a b =D .358a a a += B解析:B【分析】根据同底数幂相乘、幂的乘方、积的乘方、合并同类项法则逐一计算即可判断.【详解】解:A 、a 5•a 2=a 7,此选项计算错误,故不符合题意;B 、(a 2)4=a 8,此选项计算正确,符合题意;C 、(a 3b )2=a 6b 2,此选项计算错误,故不符合题意;D 、a 3与a 5不能合并,此选项计算错误,故不符合题意.故选:B .【点睛】本题主要考查幂的运算,合并同类项,解题的关键是熟练掌握同底数幂相乘、幂的乘方与积的乘方的运算法则. 二、填空题11.因式分解()()26x mx x p x q +-=++,其中m 、p 、q 都为整数,则m 的最大值是______.5【分析】根据整式的乘法和因式分解的逆运算关系按多项式乘以多项式法则把式子变形然后根据pq 的关系判断即可【详解】解:∵(x +p)(x +q)=x2+(p+q )x+pq=x2+mx-6∴p+q=mpq=解析:5【分析】根据整式的乘法和因式分解的逆运算关系,按多项式乘以多项式法则把式子变形,然后根据p 、q 的关系判断即可.【详解】解:∵(x +p)(x +q)= x 2+(p+q )x+pq= x 2+mx-6∴p+q=m ,pq=-6,∴pq=1×(-6)=(-1)×6=(-2)×3=2×(-3)=-6,∴m=-5或5或1或-1,∴m 的最大值为5,故答案为:5.【点睛】此题主要考查了整式乘法和因式分解的逆运算的关系,关键是根据整式的乘法还原因式分解的关系式,注意分类讨论的作用.12.历史上数学家欧拉最先把关于x 的多项式用记号()f x 来表示,把x 等于某数a 时的多项式的值用()f a 来表示.例如,对于多项式()35f x mx nx =++,当3x =时,多项式的值为()32735f m n =++,若()36f =,则()3f -的值为__________.4【分析】由得到整体代入求出结果【详解】解:∵∴即∴故答案是:4【点睛】本题考查代数式求值解题的关键是掌握整体代入求值的思想解析:4【分析】由()36f =得到2731m n +=,整体代入()32735f m n -=--+求出结果.【详解】解:∵()36f =,∴27356m n ++=,即2731m n +=,∴()()327352735154f m n m n -=--+=-++=-+=.故答案是:4.【点睛】本题考查代数式求值,解题的关键是掌握整体代入求值的思想.13.因式分解269x y xy y -+-=______.-y (x-3)2【分析】提公因式-y 再利用完全平方公式进行因式分解即可;【详解】解:-x2y+6xy-9y=-y (x2-6x+9)=-y (x-3)2故答案为:-y (x-3)2;【点睛】本题考查了因式解析:-y (x-3)2【分析】提公因式-y ,再利用完全平方公式进行因式分解即可;【详解】解:-x 2y+6xy-9y=-y (x 2-6x+9)=-y (x-3)2,故答案为:-y (x-3)2;【点睛】本题考查了因式分解的方法,掌握提公因式法、公式法是正确解答的关键.14.若26x x m ++为完全平方式,则m =____.9【分析】完全平方式可以写为首末两个数的平方则中间项为x 和积的2倍即可解得m 的值【详解】解:根据题意是完全平方式且6>0可写成则中间项为x 和积的2倍故∴m=9故答案填:9【点睛】本题是完全平方公式的【分析】 完全平方式可以写为首末两个数的平方()2x m +,则中间项为x 和m 积的2倍,即可解得m 的值.【详解】解:根据题意,26x x m ++是完全平方式,且6>0,可写成()2x m +,则中间项为x 和m 积的2倍,故62x x m =,∴m =9,故答案填:9.【点睛】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意中间项的符号,避免漏解.15.从边长为a 的正方形中剪掉一个边长为b 的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)探究:上述操作能验证的等式是:__________;(请选择正确的一个)A .2222()a ab b a b -+=-B .22()()a b a b a b -=+-C .2()a ab a a b +=+(2)应用:利用所选(1)中等式两边的等量关系,完成下面题目:若46x y +=,45x y -=,则221664x y -+的值为__________.B ;【分析】(1)先求出图1中剩余部分的面积为a2-b2再求出图2中图形的面积即可列得等式;(2)利用平方差公式分解因式后代入求值即可【详解】(1)图1中边长为a 的正方形的面积为:a2边长为b 的正方解析:B ; 94(1)先求出图1中剩余部分的面积为a 2-b 2,再求出图2中图形的面积即可列得等式; (2)利用平方差公式分解因式后代入求值即可.【详解】(1)图1中,边长为a 的正方形的面积为:a 2,边长为b 的正方形的面积为:b 2,∴图1中剩余部分面积为:a 2-b 2,图2中长方形的长为:a+b ,长方形的宽为:a-b ,∴图2长方形的面积为:(a+b )(a-b ),故选:B ;(2)∵46x y +=,45x y -=,∴221664x y -+=(4)(4)64x y x y +-+=6564⨯+=94,故答案为:94.【点睛】此题考查几何图形中平方差公式的应用,利用平方差公式进行计算,掌握平方差计算公式是解题的关键.16.如图所示,在这个运算程序当中,若开始输入的x 是2,则经过2021次输出的结果是________.4【分析】根据第一次输出的结果是1第二次输出的结果是6…总结出每次输出的结果的规律求出2021次输出的结果是多少即可【详解】解:把x=2代入得:2÷2=1把x=1代入得:1+5=6把x=6代入得:6解析:4【分析】根据第一次输出的结果是1,第二次输出的结果是6,…,总结出每次输出的结果的规律,求出2021次输出的结果是多少即可.【详解】解:把x=2代入得:2÷2=1,把x=1代入得:1+5=6,把x=6代入得:6÷2=3,把x=3代入得:3+5=8,把x=8代入得:8÷2=4,把x=4代入得:4÷2=2,把x=2代入得:2÷2=1,以此类推,∵2021÷6=336…5,∴经过2021次输出的结果是4.故答案为:4.【点睛】本题主要考查了代数式求值问题,要熟练掌握,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.题型简单总结以下三种:①已知条件不化简,所给代数式化简;②已知条件化简,所给代数式不化简;③已知条件和所给代数式都要化简.17.如图,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第6个图形需要黑色棋子的个数是______,第n 个图形需要的黑色棋子的个数是______.(n 为正整数)【分析】根据题意分析可得第一个图形需要黑色棋子的个数为2×3-3第二个图形需要黑色棋子的个数为3×4-4第三个图形需要黑色棋子的个数为4×5-5依此类推可得第n 个图形需要黑色棋子的个数为计算可得答案解析:()2n n +【分析】根据题意分析可得第一个图形需要黑色棋子的个数为2×3-3,第二个图形需要黑色棋子的个数为3×4-4,第三个图形需要黑色棋子的个数为4×5-5,依此类推可得第n 个图形需要黑色棋子的个数为()()()122n n n ++-+,计算可得答案.【详解】解:观察图形可得:第1个图形是三角形,有3条边,每条边上有2个点,重复了3个点,需要黑色棋子2×3-3个,第2个图形是四边形,有4条边,每条边上有3个点,重复了4个点,需要黑色棋子3×4-4个,第3个图形是五边形,有5条边,每条边上有4个点,重复了5个点,需要黑色棋子4×5-5个,按照这样的规律下去:则第n 个图形需要黑色棋子的个数是()()()()1222n n n n n ++-+=+,∴当n=6时,()26848n n +=⨯=;故答案为48;()2n n +.【点睛】本题主要考查图形规律及整式乘法的应用,关键是根据图形得到一般规律,然后问题可求解.18.若2249x mxy y -+是一个完全平方式,则m =______【分析】利用完全平方公式的结构特征判断即可确定出m 的值【详解】∵是一个完全平方式∴故答案为:【点睛】本题考查了完全平方公式的简单应用明确完全平方公式的基本形式是解题的关键解析:12±【分析】利用完全平方公式的结构特征判断即可确定出m 的值.【详解】∵2249x mxy y -+是一个完全平方式,∴22312m =±⨯⨯=±.故答案为:12±.【点睛】本题考查了完全平方公式的简单应用,明确完全平方公式的基本形式是解题的关键. 19.计算:32(2)a b -=________.【分析】积的乘方等于积中每个因式分别乘方再把所得的幂相乘根据法则计算即可【详解】=故答案为:【点睛】此题考查积的乘方:等于积中每个因式分别乘方再把所得的幂相乘解析:624a b【分析】积的乘方等于积中每个因式分别乘方,再把所得的幂相乘,根据法则计算即可.【详解】32(2)a b -=624a b ,故答案为:624a b .【点睛】此题考查积的乘方:等于积中每个因式分别乘方,再把所得的幂相乘.20.已知22m mn -=,25mn n -=,则22325m mn n +-=________.31【分析】由然后把代入求解即可【详解】解:由题意得:∴把代入得:原式=;故答案为31【点睛】本题主要考查代数式的值及整式的加减关键是对于所求代数式进行拆分然后整体代入求解即可解析:31【分析】由()()222232535m mn n m mn mn n+-=-+-,然后把22m mn -=,25mn n -=,代入求解即可.【详解】解:由题意得: ()()222232535m mn n m mn mn n +-=-+-,∴把22m mn -=,25mn n -=代入得:原式=325531⨯+⨯=;故答案为31.【点睛】本题主要考查代数式的值及整式的加减,关键是对于所求代数式进行拆分,然后整体代入求解即可. 三、解答题21.(1)因式分解:()222224x y x y +- (2)计算:()()()233323a b a b a b a b ⎡⎤----++÷-⎣⎦解析:(1)()()22x y x y -+;(2)9a【分析】 (1)先用平方差公式进行因式分解,然后再用完全平方公式进行因式分解;(2)整式的混合运算,注意先算乘方,然后算乘除,最后算加减,如果有小括号先算小括号里面的.【详解】解:(1)()222224x y x y +- =()()222222x y xyx y xy +-++ =()()22x y x y -+(2)()()()233323a b a b a b a b ⎡⎤----++÷-⎣⎦=()222296923a ab b b a a b ⎡⎤++--÷-⎣⎦ =2222(96+9)23a ab b b a a b ++-÷-=2(186)23a ab a b +÷-=933a b b +-=9a【点睛】本题考查因式分解和整式的混合运算,掌握运算法则正确计算是解题关键.22.图1是一个长为2a 、宽为2b 的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图2的形状拼成一个正方形.(1)图2中的阴影部分的正方形的周长等于________.(2)观察图2,请你写出下列三个代数式2()a b +,2()a b -,ab 之间的等量关系为________.(3)运用你所得到的公式,计算:若m 、n 为实数,且3=-mn ,4m n -=,试求m n +的值.(4)如图3,点C 是线段AB 上的一点,以AC 、BC 为边向两边作正方形,设8AB =,两正方形的面积和1226S S +=,求图中阴影部分面积.解析:(1)44a b -或者4()a b -;(2)22()()4a b a b ab -=+-;或22()()4a b a b ab +=-+;或224()()ab a b a b =+--;(3)2或2-;(4)192. 【分析】(1)直接写出边长:长边减短边=a-b ,进而可得周长; (2)根据阴影正方形的面积=大正方形的面积-4个长方形的面积解答,或利用大正方形的面积=阴影方形的面积+4个长方形的面积解答,或利用4个长方形的面积=大正方形的面积-阴影方形的面积解答;(3)根据22()()4a b a b ab +=-+求解即可;(4)设AC x =,BC y =,则21S x =,22S y =,由1226S S +=可得,2226x y +=,然后把8x y +=的两边平方求解即可.【详解】解:(1)由图可知,阴影部分正方形的边长为:a-b ,∴阴影部分的正方形的周长等于44a b -或者4()a b -,故答案为:44a b -或者4()a b -;(2)22()()4a b a b ab -=+-;或(22()()4a b a b ab +=-+;或224()()ab a b a b =+--;(3)∵3=-mn ,4m n -=,∴222()()444(3)16124m n m n mn +=-+=+⨯-=-=,∴2m n +=±,∴m n +的值为2或2-.(4)设AC x =,BC y =,则21S x =,22S y =,由1226S S +=可得,2226x y +=,而8x y AB +==, 而12S xy =阴影部分, ∵8x y +=,∴22264x xy y ++=,又∴2226x y +=,∴238xy =,∴13819242S xy ===阴影部分, 即,阴影部分的面积为192. 【点睛】本题主要考查完全平方公式的几何背景,利用图形的面积是解决此题的关键,利用数形结合的思想,注意观察图形.23.阅读下面材料,完成任务.多项式除以多项式可以类比于多位数的除法进行计算,先把多项式按照某个字母的降幂进行排列,缺少的项可以看做系数为零,然后类比多位数的除法利用竖式进行计算.∴26445123215÷= ∴()()32223133x x x x x +-÷-=++ 请用以上方法解决下列问题:(计算过程要有竖式)(1)计算:()()3223102x x x x +--÷- (2)若关于x 的多项式43225x x ax b +++能被二项式2x +整除,且a ,b 均为自然数,求满足以上条件的a ,b 的值.解析:(1)()()3222310245x x x x x x +--÷-=++;(2)0a =,8b =;1a =,4b =;2a =,0b =【分析】(1)直接利用竖式计算即可;(2)竖式计算,根据整除的意义,利用对应项的系数对应倍数求得答案即可.【详解】解:(1)列竖式如下:()()3222310245x x x x x x +--÷-=++ (2)列竖式如下:∵多项式43225x x ax b +++能被二项式2x +整除∴余式()420b a +-=∵a ,b 均为自然数∴0a =,8b =;1a =,4b =;2a =,0b =【点睛】此题考查利用竖式计算整式的除法,解题时要注意同类项的对应.24.材料:数学兴趣一小组的同学对完全平方公式进行研究:因2()0a b -≥,将左边展开得到2220a ab b -+≥,移项可得222a b ab +≥.(当且仅当a b =时,取“=”)数学兴趣二小组受兴趣一小组的启示,继续研究发现:对于任意两个非负数m ,n ,都存在2m n mn +≥m n =时,取“=”)并进一步发现,两个非负数m ,n 的和一定存在着个最小值.根据材料,解答下列问题:(1)22(3)(4)x y +≥________(0x >,0y >);221x x ⎛⎫+≥ ⎪⎝⎭________(0x >);(2)求312(0)4x x x+>的最小值; (3)已知2x >,当x 为何值时,代数式43201036x x ++-有最小值?并求出这个最小值.解析:(1)24xy ,2;(2)6;(3)83x =,最小值为2020 【分析】(1)根据阅读材料可得结论; (2)根据阅读材料介绍的方法即可得出结论;(3)把已知代数式变形为4(36)201636x x -++-,再利用阅读材料介绍的方法即可得出结论.【详解】解:(1)∵0x >,0y >∴22(3)(4)x y +≥23424x y xy ⨯⨯=∵0x > ∴221x x ⎛⎫+≥ ⎪⎝⎭122x x ⨯⨯= 故答案为:24xy ,2(2)∵0x >时,12x ,34x 均为正数,∴31264x x +≥= ∴3124x x+的最小值是6 (3)当2x >时,3x ,36x -,436x -均为正数 ∴43201036x x ++-4(36)2016201636x x =-++≥-2016=2020= 当43636x x -=-时,即8433x =或(舍去)时,有最小值, ∴当83x =时,代数式43201036x x ++-的最小值是2020.【点睛】此题主要考查了完全平方公式的变形应用,解答本题的关键是理解阅读材料所介绍的方法.25.已知2,3x y a a ==,求23x y a +的值解析:108【分析】首先根据已知条件可得a 2x 、a 3y 的值,然后利用同底数幂的乘法运算法则求出代数式的值.【详解】 解:2,3x y a a ==,∴()()23232323108x y xy a a a +=⨯=⨯=. 【点睛】 本题主要考查了幂的乘方和同底数幂的乘法,利用性质转化为已知条件的形式是解题的关键.26.因式分解:(1)322242a a b ab -+(2)4481x y -解析:(1)22()a a b -;(2)22((3)(3)9)x y x y x y +-+.【分析】(1)先提公因式2a ,再利用完全平方公式进行分解222a ab b -+,即可得出结果;(2)原多项式先利用平方差公式分解为2222(9)(9)x y x y +-,再次利用平方差公式对229x y -进行分解即可.【详解】解:(1)322242a a b ab -+222(2)a a ab b =-+22()a a b =-,(2)4481x y -2222(9)(9)x y x y =+-22(93(3))()x y x y x y =+-+.【点睛】本题考查了因式分解,掌握因式分解的基本方法并能结合多项式的特点准确分解是解题的关键.27.如果2()()41x m x n x x ++=+-.①填空:m n +=______,mn =______.②根据①的结果,求下列代数式的值:(1)225m mn n ++;(2)2()m n -.解析:①4,−1;②(1)13;(2)20【分析】①据多项式乘多项式的运算法则求解即可;②根据完全平方公式计算即可.【详解】①∵(x +m )(x +n )=x 2+(m +n )x +mn =x 2+4x−1,∴m +n =4,mn =−1.故答案为:4,−1;②(1)m 2+5mn +n 2=(m +n )2+3mn =42+3×(−1)=16−3=13;(2)(m−n )2=(m +n )2−4mn =42−4×(−1)=16+4=20.【点睛】本题主要考查了完全平方公式以及多项式乘多项式,熟记相关公式与运算法则是解答本题的关键.28.如图,在长8cm ,宽5cm 的长方形塑料板的四个角剪去4个边长为 cm x 的小正方形,按折痕做一个无盖的长方体盒子,求盒子的容积(塑料板的厚度忽略不计).解析:()32342640cm x x x -+ 【分析】这个盒子的容积=边长为8-2x,5-2x 的长方形的底面积乘高 x ,把相关数值代入即可.【详解】解:由题意,得()()8252x x x --()24016104x x x x =--+()242640x x x =-+3242640x x x =-+,答:盒子的容积是()32342640cm x x x -+.【点睛】本题主要考查单项式乘多项式,多项式乘多项式,解决本题的关键是找到表示长方体容积的等量关系.。

人教版八年级数学上册整式的乘法

人教版八年级数学上册整式的乘法
ac5·bc2是单项式ac5与bc2相乘,我们可以利用乘 法交换律、结合律及同底数幂的运算性质来计算:
ac5·bc2=(a·b)·(c5·c2)=abc5+2=abc7. 一般地,单项式与单项式相乘,把它们的系数、 同底数幂分别相乘,对于只在一个单项式里含有的字 母,则连同它的指数作为积的一个因式.
即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.
我们也可以先分别求原来绿地和新增绿地的面积,再求它们的和,即为
教学目标 1. 掌握正整数幂的乘、除运算性质, 2. 能用代数式和文字语言正确地表述这些性质, 并能运用它们熟练地进行运算. 3. 掌握单项式乘(或除以)单项式、多项式乘( 或除以)单项式以及多项式乘多项式的法则及其几何 含义. 4. 并运用单项式乘(或除以)单项式、多项式乘 (或除以)单项式以及多项式乘多项式的法则进行运 算.
∵ 4a2x3·3ab2=12a3b2x3 , ∴ 12a3b2x3 ÷3ab2=4a2x3. 上面的商式4a2x3 的系数4=12÷3,a 的指数2=3 -1,b的指数0=2-2,而b0=1,x 的指数3=3-0. 一般地,单项式相除,把系数与同底数幂分别相
除作为商的因式,对于只在被除式里含有的字母,则 连同它的指数作为商的一个因式.
一般地,单项式与多项式相乘,就是用单项式去 乘多项式的每一项,再把所得的积相加.
例5 计算:
(1)(-4x2)(3x+1);
(2)(
2 3
ab2-2ab)· 12
ab .
解:(1)(-4x2)(3x+1)
=(-4x2)(3x)+(-4x2)×1
=(-4×3)(x2·x)+(-4x2);
=-12x3-4x2;
=12a3÷3a -6a2÷3a +3a÷3a

2023-2024学年人教版八年级数学上学期:整式的乘法(附答案解析)

2023-2024学年人教版八年级数学上学期:整式的乘法(附答案解析)

一.选择题(共7小题)1.已知x a•x﹣3=x2,x≠0且x≠±1,则a的值为()A.﹣2B.2C.5D.﹣5 2.下列运算中,正确的是()A.2a2•a=2a3B.(a2)3=a5C.a2+a3=a5D.a6÷a2=a3 3.如果一个单项式与﹣5ab的积为 a2bc,则这个单项式为()A. a2c B. ac C. a3b2c D. ac 4.计算t6•t2的结果是()A.t4B.t8C.2t8D.t12 5.下列运算正确的是()A.a2•a3=a5B.(﹣a)4=﹣a4C.(a2)3=a5D.a2+a4=a6 6.计算2a(5a+3a2)的结果是()A.10a+6a3B.10a2+6a3C.10a2+3a3D.5a2+6a2 7.若(﹣2x+a)(x﹣1)的展开式中不含x的一次项,则a的值是()A.﹣2B.2C.﹣1D.任意数二.填空题(共3小题)8.若2x+y﹣2=0.则52x•5y=.9.计算:(2a2)3﹣6a2•a4=.10.计算:10a2b3÷(﹣5ab3)=.参考答案与试题解析一.选择题(共7小题)1.已知x a•x﹣3=x2,x≠0且x≠±1,则a的值为()A.﹣2B.2C.5D.﹣5【解答】解:因为x a•x﹣3=x a﹣3=x2,所以a﹣3=2,a=5.故选:C.2.下列运算中,正确的是()A.2a2•a=2a3B.(a2)3=a5C.a2+a3=a5D.a6÷a2=a3【解答】解:A、2a2•a=2a3,计算正确,故此选项符合题意;B、(a2)3=a6,原计算错误,故此选项不符合题意;C、a2+a3,不是同类项,不能合并,故此选项不符合题意;D、a6÷a2=a4,原计算错误,故此选项不符合题意.故选:A.3.如果一个单项式与﹣5ab的积为 a2bc,则这个单项式为()A. a2c B. ac C. a3b2c D. ac【解答】解:设这个单项式为A,由题意得,A•(﹣5ab) a2bc,∴A a2bc÷(﹣5ab) ac,故选:B.4.计算t6•t2的结果是()A.t4B.t8C.2t8D.t12【解答】解:t6•t2=t6+2=t8.故选:B.5.下列运算正确的是()A.a2•a3=a5B.(﹣a)4=﹣a4C.(a2)3=a5D.a2+a4=a6【解答】解:A、a2•a3=a5,故本选项符合题意;B、(﹣a)4=a4,故本选项不合题意;C、(a2)3=a6,故本选项不合题意;D、a2与a4不是同类项,所以不能合并,故本选项不合题意;故选:A.6.计算2a(5a+3a2)的结果是()A.10a+6a3B.10a2+6a3C.10a2+3a3D.5a2+6a2【解答】解:2a(5a+3a2)=10a2+6a3.故选:B.7.若(﹣2x+a)(x﹣1)的展开式中不含x的一次项,则a的值是()A.﹣2B.2C.﹣1D.任意数【解答】解:(﹣2x+a)(x﹣1)=﹣2x2+(a+2)x﹣a∵展开式中不含x的一次项,∴a+2=0,∴a=﹣2,故选:A.二.填空题(共3小题)8.若2x+y﹣2=0.则52x•5y=25.【解答】解:∵2x+y﹣2=0,∴52x•5y=52x+y=52=25.故答案为:25.9.计算:(2a2)3﹣6a2•a4=2a6.【解答】解:(2a2)3﹣6a2•a4=8a6﹣6a6=2a6,故答案为:2a6.10.计算:10a2b3÷(﹣5ab3)=﹣2a.【解答】解:原式=﹣2a,故答案为:﹣2a.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档