光纤光栅研究
《基于扫描激光器的光纤光栅解调仪研究》范文
《基于扫描激光器的光纤光栅解调仪研究》篇一一、引言随着科技的进步,光纤光栅传感器在众多领域得到了广泛的应用,如航空航天、土木工程、智能交通等。
光纤光栅传感器以其高灵敏度、抗电磁干扰、长距离传输等优点,成为了现代传感技术的重要分支。
然而,如何准确、快速地解调光纤光栅的信号,一直是研究的热点和难点。
本文将重点研究基于扫描激光器的光纤光栅解调仪,探讨其原理、性能及实际应用。
二、光纤光栅及解调技术概述光纤光栅是一种利用光纤内折射率周期性变化制成的光子器件,具有良好的温度、应变、压力等物理量的传感性能。
其解调技术是指通过某种手段将光纤光栅中的光谱信息转换为电信号,以实现对外界物理量的精确测量。
目前,常见的解调技术包括光谱分析、干涉解调等。
三、基于扫描激光器的光纤光栅解调仪原理基于扫描激光器的光纤光栅解调仪是一种采用扫描激光器对光纤光栅进行扫描解调的技术。
其原理是通过扫描激光器发出激光光束,对光纤光栅进行扫描,使光栅反射的光信号发生变化,通过检测这种变化来获取外界物理量的信息。
四、解调仪的性能研究1. 精度与灵敏度:基于扫描激光器的光纤光栅解调仪具有较高的精度和灵敏度。
其能够精确地检测出光纤光栅的微小变化,从而实现对物理量的精确测量。
2. 稳定性与可靠性:解调仪采用高精度的扫描系统,能够保证长时间的稳定工作,具有良好的可靠性。
此外,其采用先进的数据处理技术,可有效提高测量结果的准确性。
3. 动态范围与响应速度:解调仪具有较大的动态范围,能够适应不同强度的光信号。
同时,其响应速度快,可实现对物理量的实时监测。
五、实际应用基于扫描激光器的光纤光栅解调仪在众多领域得到了广泛的应用。
在航空航天领域,其可用于飞机结构健康监测、卫星姿态控制等;在土木工程领域,可用于桥梁、大坝等结构的安全监测;在智能交通领域,可用于车辆速度、路况等信息的实时监测。
此外,该解调仪还可应用于石油化工、医疗健康等领域。
六、结论基于扫描激光器的光纤光栅解调仪以其高精度、高灵敏度、高稳定性等优点,为光纤光栅传感技术的发展提供了强有力的支持。
布拉格与长周期光纤光栅及其传感特性研究
布拉格与长周期光纤光栅及其传感特性研究随着科技的发展,光纤传感技术在各个领域中得到了广泛应用。
光纤光栅作为一种重要的光纤传感元件,具有较好的实时性、远距离传输能力和高灵敏度等优点,在医学、工程、环境监测等领域中具有广泛的应用前景。
本文将对布拉格光纤光栅和长周期光纤光栅及其传感特性进行研究探讨。
首先,我们来了解布拉格光纤光栅。
布拉格光纤光栅由一种周期性的折射率变化构成,可以将输入的连续光信号分成几个离散的波长成分。
通过调控光纤光栅的参数,如折射率调制和周期调制,可以实现对光信号的各种参数的测量。
布拉格光纤光栅传感器的工作原理是利用光纤光栅对周围环境参数的敏感性,通过监测光纤中散射光的强度变化来获得环境参数的相关信息。
布拉格光纤光栅的传感特性主要包括灵敏度、选择性和可靠性。
灵敏度是指传感器对测量目标的响应能力,通过优化光纤光栅结构可以提高传感器的灵敏度。
选择性是指传感器对目标参数的独立测量能力,通过优化光纤光栅的周期和谐振峰可以实现对不同目标参数的选择性测量。
可靠性是指传感器的稳定性和重复性,通过合理选择光纤材料和加工工艺可以提高传感器的可靠性。
接下来,我们来了解长周期光纤光栅。
长周期光纤光栅是一种周期大于波长的光纤光栅,其中周期通常为微米或毫米量级。
长周期光纤光栅的传感特性与布拉格光纤光栅有所不同。
长周期光纤光栅主要应用于抑制或增强特定频率的光信号,具有压力、温度和湿度等参数的敏感性。
长周期光纤光栅的传感特性主要包括增强系数、复合增强系数和等效折射率。
通过调节长周期光纤光栅的参数,如周期、长度和材料等,可以实现对光信号的不同频率成分的调制和增强或抑制。
最后,我们来探讨布拉格光纤光栅和长周期光纤光栅在传感领域的应用。
布拉格光纤光栅主要应用于光纤传感器、光纤通信和光纤激光等领域。
在光纤传感器领域,布拉格光纤光栅可以实现对温度、压力、应变、湿度等参数的实时测量。
在光纤通信领域,布拉格光纤光栅可以实现光纤传感器的远距离传输和分布式传感。
基于光纤光栅的高精度变形监测与分析研究
基于光纤光栅的高精度变形监测与分析研究光纤光栅作为一种重要的光纤传感器,广泛应用于变形监测与分析领域。
本文将对基于光纤光栅的高精度变形监测与分析研究进行探讨。
在科学研究和工程应用中,变形监测与分析对于确保结构安全和性能优化至关重要。
而光纤光栅借助光纤的特性,能够实现对结构变形的高精度检测与分析。
光纤光栅利用光束与光纤中周期性折射率变化的相互作用,对光纤中的光信号进行监测和分析。
其工作原理基于光栅中传输的光信号受到应变和温度的影响,从而实现对光栅周围环境的变形监测。
首先,基于光纤光栅的高精度变形监测技术可以实现对结构形变的实时监测。
光纤光栅传感器可以安装在结构表面,在受力过程中通过测量光纤光栅的拉伸和压缩变化,实时监测结构的变形情况。
相较于传统的电阻应变计或应变片技术,光纤光栅传感器具有抗电磁干扰、体积小、重量轻、易于布线等优势。
通过将多个光纤光栅节点分布在结构表面,可以全面了解结构的变形情况,从而保证结构在工作过程中的稳定性和安全性。
其次,基于光纤光栅的高精度变形监测技术可以实现对结构变形的精确分析。
光纤光栅传感器可以测量微小的变形量,其精度可以达到亚毫米甚至亚微米级别。
通过解析光纤光栅传感器接收到的光信号,可以获得结构变形的具体数值,包括形变量、扭转角度等。
这种精确的分析结果可以为结构设计和优化提供有效的参考,帮助改进结构的性能和耐久性。
此外,基于光纤光栅的高精度变形监测技术还能够实现对结构变形的多参数监测。
光纤光栅传感器可以通过多路光栅多参量传感技术,实现对结构变形中的多个参数同时监测。
例如,通过将多个光纤光栅传感器节点布置在结构表面的不同位置,可以同时监测不同点处的变形情况。
这种多参数监测能够更全面地了解结构的变形情况,为结构的安全运行提供更全面的保障。
基于光纤光栅的高精度变形监测与分析研究不仅在结构工程领域具有广泛应用,还在地质灾害监测、航空航天等领域得到了广泛的应用。
例如,在地质灾害监测中,光纤光栅传感器可以安装在地下管道和桥梁等结构中,实时监测地表变形情况,为地质灾害的预防和治理提供重要的数据支持。
《便携式光纤光栅解调仪研究与设计》范文
《便携式光纤光栅解调仪研究与设计》篇一一、引言随着科技的不断进步,光纤光栅技术已广泛应用于各种传感器和通信系统中。
而其中,解调仪作为光纤光栅的核心部分,其性能直接影响到整个系统的测量精度和可靠性。
传统的解调仪由于体积大、安装不便等缺点,已经不能满足日益增长的实际应用需求。
因此,便携式光纤光栅解调仪的研究与设计成为当前研究领域的热点问题。
本文将探讨便携式光纤光栅解调仪的原理、设计、以及在实际应用中的发展前景。
二、光纤光栅与解调仪概述光纤光栅是一种利用光纤的光敏性制成的光子器件,具有高灵敏度、高分辨率和高稳定性等特点。
而解调仪则是用于检测光纤光栅的反射光谱,从而获取所需信息的设备。
传统的解调仪通常采用固定式设计,体积较大,安装不便,且成本较高。
因此,研究便携式光纤光栅解调仪具有重要的实际应用价值。
三、便携式光纤光栅解调仪的设计原理设计便携式光纤光栅解调仪需要考虑的核心原理主要包括光波的传播理论、光纤光栅传感原理以及信号处理技术等。
首先,通过分析光波在光纤中的传播特性,确定解调仪的光路设计;其次,利用光纤光栅的传感原理,将外界物理量转化为光信号的变化;最后,通过信号处理技术,提取出所需的信息。
在设计中,应充分考虑便携性、稳定性、抗干扰性以及成本等因素。
四、便携式光纤光栅解调仪的设计方案设计便携式光纤光栅解调仪需要遵循一定的设计思路和方法。
首先,应明确系统的主要功能和性能指标,如测量范围、精度、稳定性等。
其次,进行硬件设计,包括光源、光纤光栅、光电探测器等关键部件的选型和布局。
此外,还需要进行软件设计,包括信号处理算法、数据传输协议等。
在设计中,应注重系统的集成性和便携性,同时考虑抗干扰性和稳定性等方面的因素。
五、实验与分析通过实验验证所设计的便携式光纤光栅解调仪的性能和可靠性。
首先,进行静态实验,测试系统在不同条件下的测量精度和稳定性;其次,进行动态实验,模拟实际工作环境中的各种情况,验证系统的实时性能和抗干扰能力;最后,对实验数据进行综合分析,评估系统的性能和可靠性。
2024年光纤光栅市场调研报告
2024年光纤光栅市场调研报告前言光纤光栅是一种基于光纤传感技术的重要组成部分,它通过在光纤内部或外部引入周期性结构,实现了光信号的调制和传感功能。
随着光纤光栅技术的不断发展和应用推广,光纤光栅在通信、传感、激光器等领域得到了广泛应用。
市场概况光纤光栅市场呈现出稳步增长的趋势。
主要推动力包括通信行业的快速发展和光纤传感技术的应用拓展。
随着5G通信技术的普及和相关设备的大规模部署,光纤光栅作为高性能光传感器的重要组成部分,将会迎来更广阔的市场机遇。
市场驱动因素以下是推动光纤光栅市场发展的主要因素:1.通信行业的快速发展。
随着互联网的普及和移动通信技术的进步,人们对通信带宽和速度的要求不断提高,这促使光纤光栅在光通信领域得到广泛应用。
2.光纤传感技术的应用拓展。
光纤光栅作为一种高灵敏度、高稳定性的传感器,能够实现对温度、压力、应变等物理量的测量,具有广泛的应用前景。
在航天、石油、冶金、环境监测等领域,光纤光栅的应用需求不断增加。
3.新技术的驱动。
随着光纤光栅制造技术和光纤传感技术的不断创新,光纤光栅的性能得到了显著提升。
新材料的应用、新结构的设计以及精密制造工艺的改进等都为光纤光栅市场的发展提供了有力支持。
市场规模及预测根据市场调研数据显示,2019年全球光纤光栅市场规模达到了10亿美元,预计到2025年将增长至20亿美元。
其中,光纤光栅在通信领域占据较大的市场份额。
随着5G通信技术的快速发展,光纤光栅在光网络的部署和维护中发挥了重要作用。
预计到2025年,通信领域对光纤光栅的需求将进一步增加。
在传感领域,光纤光栅的应用正在不断扩大。
温度传感、压力传感和应变传感是光纤光栅传感的主要应用方向。
随着相关产业的发展,预计到2025年,传感领域对光纤光栅的需求将持续增长。
市场竞争格局光纤光栅市场竞争激烈,存在着一些领先的光纤光栅制造商和供应商。
主要的竞争策略包括技术创新、产品质量和服务水平的提升以及合作伙伴关系的建立。
《光纤光栅温度应变解调仪研究》范文
《光纤光栅温度应变解调仪研究》篇一一、引言随着现代科技的发展,光纤光栅传感器在各种物理量测量中得到了广泛的应用。
其中,光纤光栅温度应变解调仪作为光纤光栅传感器的重要部分,其性能的优劣直接影响到测量结果的准确性和可靠性。
因此,对光纤光栅温度应变解调仪的研究具有重要意义。
本文将就光纤光栅温度应变解调仪的工作原理、设计方法、实验结果以及未来发展进行详细的阐述和分析。
二、光纤光栅温度应变解调仪的工作原理光纤光栅温度应变解调仪主要利用光纤光栅的传感特性,通过对外界温度和应变的敏感响应,将物理量的变化转化为光信号的变化,再通过解调仪进行信号处理和解析,最终得到温度和应变的数值。
其工作原理主要包括光栅传感原理、光信号传输原理以及解调原理等。
三、光纤光栅温度应变解调仪的设计方法光纤光栅温度应变解调仪的设计需要考虑到多个方面,包括光源的选择、光纤光栅的制备、解调算法的设计以及硬件电路的布局等。
设计时需确保系统具有高灵敏度、高分辨率、高稳定性和良好的抗干扰能力。
具体设计步骤如下:1. 光源选择:选择合适的光源是确保系统性能的关键。
通常选择稳定可靠、光谱宽度可调的激光器作为光源。
2. 光纤光栅制备:光纤光栅的制备对系统性能有着重要的影响。
需要选择合适的材料和工艺,制备出高质量的光纤光栅。
3. 解调算法设计:解调算法是光纤光栅温度应变解调仪的核心部分。
需要根据光纤光栅的传感特性和实际需求,设计出合适的解调算法。
4. 硬件电路布局:硬件电路的布局需要考虑到系统的稳定性和抗干扰能力。
需要合理布局电路,确保系统能够稳定可靠地工作。
四、实验结果与分析通过实验验证了光纤光栅温度应变解调仪的性能。
实验结果表明,该解调仪具有高灵敏度、高分辨率和高稳定性等优点,能够准确地测量温度和应变的变化。
同时,该解调仪还具有良好的抗干扰能力,能够在复杂的环境下稳定工作。
此外,通过对不同类型的光纤光栅进行测试,验证了该解调仪的通用性和适用性。
五、未来发展随着科技的不断进步,光纤光栅温度应变解调仪的应用领域将会越来越广泛。
光纤光栅传感技术与工程应用研究共3篇
光纤光栅传感技术与工程应用研究共3篇光纤光栅传感技术与工程应用研究1光纤光栅传感技术与工程应用研究光纤光栅传感技术是一种重要的光学测量技术,有着广泛的应用领域。
本文将对光纤光栅传感技术的原理、发展现状、应用场景以及工程应用研究进行探讨。
一、光纤光栅传感技术的原理光纤光栅传感技术是一种基于光纤和光栅原理的测量技术。
它可以通过光纤上的一系列微小光学反射镜对光信号进行处理,将信号转换为电信号输出后,再加以分析。
光纤光栅传感技术主要包括光纤光栅模式(FBG)传感技术和长周期光纤光栅传感技术。
二、光纤光栅传感技术的发展现状近年来,光纤光栅传感技术在光学测量领域得到了广泛的应用。
目前,光纤光栅传感技术的发展呈现出以下几个趋势:1、研究对象普遍化。
光纤光栅传感技术不仅用于研究物理量,还可用于研究化学量和生物量等领域。
研究对象的普遍化拓宽了应用范围,使其更加广泛。
2、研究手段趋于多样化。
目前,光纤光栅传感技术在光学测量领域不仅可以使用光方法进行研究,还可以使用激光、声波等多种手段进行研究。
通过多种方式的研究,光纤光栅传感技术在不同研究场合下的应用效果均能得到充分的发挥。
三、光纤光栅传感技术的应用场景在光学测量领域中,光纤光栅传感技术常常被应用于以下几个场景:1、温度测量。
通过在光纤上安装光纤光栅,可以测量两个光纤光栅之间的长度差,从而得到物体的温度。
2、应力测量。
光纤光栅传感技术可以通过测量光纤的弯曲程度,得到物体的应力情况。
3、矿用传感。
在地下煤矿中,可以通过利用FBG光纤传感技术来监测岩石的应力变化,预防矿山灾害的发生。
4、流体探测。
在航天器中,利用光纤光栅传感技术来监测流体的液位和流量,能够保证物质交流的正常运行。
四、工程应用研究光纤光栅传感技术在工程中的应用已经得到了广泛的关注。
在建筑工程中,光纤光栅传感技术可以应用于结构物的安全监测和健康诊断。
在交通运输工程中,光纤光栅传感技术可以应用于汽车、火车、飞机等交通工具的安全监测和诊断。
光纤布拉格光栅传输特性理论分析及其实验研究共3篇
光纤布拉格光栅传输特性理论分析及其实验研究共3篇光纤布拉格光栅传输特性理论分析及其实验研究1光纤布拉格光栅传输特性理论分析及其实验研究随着通信技术的不断发展,人们对高速、宽带、低衰减的光纤通信系统的需求越来越强烈。
在新型光纤通信系统中,光纤布拉格光栅逐渐成为一种广泛应用的光纤分布式传感技术。
本文将分析光纤布拉格光栅的传输特性,并通过实验验证分析结果的准确性。
光纤布拉格光栅是一种基于光纤中的光学衍射现象的光学器件。
在光纤中加入一定周期的光折射率折变结构,就能形成光纤布拉格光栅。
在光纤中传输的光波,经过布拉格光栅时,会出现衍射现象,产生反射、透射和反向散射,这些效应是产生传输特性的基础。
光纤布拉格光栅的传输特性主要表现在其反射光频谱和传输带宽两个方面。
反射光频谱是指光波经过光纤布拉格光栅后,由栅中反射的光波在谱域的表现。
反射光频谱可以通过反射率、衰减率、相位等参数来描述。
光纤布拉格光栅的反射带宽会随着栅体的折射率调制以及周期变化而发生变化。
而传输带宽则是指光波通过光纤布拉格光栅后的传输性能表现,其传输性能主要由栅体的反射率和传播损耗来决定。
传统的光纤布拉格光栅的制备方法主要有激光干涉、可调光束、干涉光阴影和相位掩膜等方法。
一般情况下,涉及到光纤布拉格光栅的应用,需要随时监测栅体的传输特性。
为了准确地监测光纤布拉格光栅的传输特性,通常采用光谱光学方法来进行反射光频谱的测量。
根据光谱光学方法,可以直接测量出光纤布拉格光栅的反射率和反射带宽,同时还能进一步计算出光纤布拉格光栅的传输损耗和传输带宽。
为了验证理论分析的正确性,本文进行了一系列光纤布拉格光栅的实验研究。
实验采用了对光纤布拉格光栅进行反射光频谱的测量,并通过计算反射光频谱的反射率和反射带宽,得出光纤布拉格光栅的传输损耗和传输带宽。
实验结果表明,本文理论分析的光纤布拉格光栅传输特性是可靠的,能够为光纤布拉格光栅在光纤通信系统中的应用提供有效的理论基础。
光纤光栅传感技术的研究的开题报告
光纤光栅传感技术的研究的开题报告一、选题背景及意义光纤光栅传感技术是一种应用于传感和控制领域的新型技术。
其使用光纤光栅作为传感器元件,通过光纤光栅感应的敏感元件所引起的光纤光栅衍射光谱、干涉谱等特征参数的变化来检测被测物理量的变化。
该技术具有测量范围广、测量精度高、抗干扰能力强、重复性好、响应速度快等优点,越来越受到广泛关注和应用。
目前,国内外对光纤光栅传感技术的研究已经较为深入,产生了许多重要的理论和实验成果。
而且,随着现代科技的不断发展,该技术在航空、火箭、海洋、石油、化工、交通运输、智能结构监测、生物医学等领域的应用得到了广泛的推广和应用。
因此,进一步深入研究光纤光栅传感技术的理论、原理和方法,探索新的应用领域和新的技术手段,具有非常重要的意义。
二、研究目的本研究旨在对光纤光栅传感技术进行深入研究,探索其在不同领域的应用。
主要包括以下三个方面:1、理论研究:研究光纤光栅传感器的结构、原理、特征参数等基本理论问题,深入分析其测量原理和测量误差的来源,为后续的实验研究和应用提供理论基础和指导。
2、实验研究:采用现代光学和传感技术手段,进行光纤光栅传感器的实验研究,探索不同参数对传感器响应的影响,研究传感器的灵敏度、可靠性、稳定性等性能指标,为实际应用提供实验依据。
3、应用研究:基于前面两个方面的研究成果,探索在不同领域的应用,如航空、火箭、海洋、石油、化工、交通运输、智能结构监测、生物医学等领域。
比较不同领域的应用特点和技术要求,提出具有创新性的解决方案,并为实际应用提供有效技术支持和服务。
三、研究内容本研究主要针对光纤光栅传感技术的理论研究、实验研究和应用研究三个方面开展相关研究工作,具体研究内容如下:1、理论研究(1)光纤光栅传感器的结构和原理及其应用原理的探讨。
(2)探讨光纤光栅传感器的特征参数及其影响因素。
(3)研究光纤光栅传感器的测量误差源及其消除方法。
2、实验研究(1)搭建光纤光栅传感器系统,确定实验方案。
物理实验技术中如何进行光纤光栅实验
物理实验技术中如何进行光纤光栅实验物理实验技术中的光纤光栅实验是一种常见且重要的实验方法,主要用于测量光学系统中的波长、折射率等物理量。
本文将介绍光纤光栅实验的基本原理、实验步骤和结果分析,并探讨在实验中可能遇到的问题和解决方法。
一、光纤光栅实验的基本原理光纤光栅是一种高精度的光学元件,它可以将光束中的不同波长分离出来。
其基本原理是利用光栅的周期性结构和折射率变化来产生光束的衍射效应。
当光束经过光纤光栅时,光束中不同波长的光会在不同的角度上发生衍射,从而分离出来。
二、光纤光栅实验的实验步骤1. 准备工作:首先,需要准备一根光纤和一个光纤光栅。
光纤的选择应根据实验需求确定,常见的有单模光纤和多模光纤。
光纤光栅的选择应根据需要测量的物理量确定,例如,若要测量波长,则应选择具有特定波长特性的光纤光栅。
2. 搭建实验装置:将光纤固定在台架上,并与光源及检测器连接。
将光纤光栅放置在光纤上,并调整其位置,使之与光纤的连接处光线垂直和平行。
确保光源和检测器之间的路径尽可能短,并避免光线的损失。
3. 调整实验参数:根据实验需要,调整光源的强度和波长,以及检测器的灵敏度。
通过改变光源的波长,可以测量不同波长的光,并获取其衍射光谱。
4. 进行实验测量:打开光源和检测器,记录检测器接收到的光信号强度。
通过改变光源的波长或调整光纤光栅的位置,可以观察到不同波长的光在检测器上的变化。
5. 分析实验结果:根据实验记录,绘制光谱图,并计算出相关的物理量。
根据实验需要,还可以进行光谱拟合或数据处理,以获得更准确的结果。
三、光纤光栅实验的结果分析在光纤光栅实验中,根据实验结果的不同,可以得到不同的信息。
例如,通过测量光纤光栅的衍射光谱,可以确定光栅的周期和衍射效率,从而计算得到光纤的折射率。
此外,光纤光栅实验还可以用于测量光源的波长和光谱特性。
通过改变光源的波长,可以观察到不同波长的光在光纤光栅中的衍射效果,并根据衍射光谱得到波长的测量结果。
光纤光栅传感器的温度灵敏度研究
光纤光栅传感器的温度灵敏度研究一、光纤光栅传感器概述光纤光栅传感器是一种利用光纤光栅的特性来检测物理量变化的传感器。
与传统的传感器相比,光纤光栅传感器具有抗电磁干扰能力强、尺寸小、重量轻、可实现分布式测量等优点。
光纤光栅传感器通过在光纤中写入周期性的折射率变化来形成光栅,当外部环境发生变化时,光栅的周期或折射率也会随之变化,从而引起反射或透射光的波长发生变化,通过测量这些变化可以检测出温度、压力、应力等物理量。
1.1 光纤光栅传感器的工作原理光纤光栅传感器的工作原理基于光的干涉和衍射现象。
当光波在光纤中传播时,遇到光栅结构会发生衍射,产生多个衍射级。
这些衍射级相互干涉,形成特定的反射和透射光谱。
当光栅的周期或折射率发生变化时,衍射光谱也会相应地移动,通过测量光谱的移动量,可以推算出外部环境的变化。
1.2 光纤光栅传感器的分类根据光栅的类型,光纤光栅传感器可以分为布拉格光栅传感器、长周期光栅传感器和光纤布拉格光栅传感器等。
根据测量的物理量,又可以分为温度传感器、压力传感器、应力传感器等。
每种类型的传感器都有其独特的优势和应用场景。
二、光纤光栅传感器的温度灵敏度研究温度是光纤光栅传感器中最常见的测量对象之一。
温度的变化会影响光纤的折射率,进而影响光栅的周期和反射光谱的位置。
因此,研究光纤光栅传感器的温度灵敏度对于提高测量精度和应用范围具有重要意义。
2.1 温度对光纤光栅传感器的影响温度的变化会引起光纤材料的热膨胀和折射率的变化,从而影响光栅的周期和波长。
这种影响可以通过温度系数来量化。
不同的光纤材料具有不同的温度系数,选择合适的材料可以提高传感器的温度灵敏度。
2.2 提高温度灵敏度的方法为了提高光纤光栅传感器的温度灵敏度,研究者们提出了多种方法,包括优化光栅的参数、使用特殊的光纤材料、采用复合光栅结构等。
这些方法可以有效地提高传感器对温度变化的响应速度和精度。
2.3 温度灵敏度的测量与标定温度灵敏度的测量通常采用实验方法,通过将传感器暴露在不同温度下,测量反射光谱的变化,从而计算出温度灵敏度。
光纤光栅传感器研究背景以及应用领域
光纤光栅传感器研究背景以及应用领域光纤光栅传感器是一种基于光纤光栅原理的传感器,它利用光纤中的光栅结构,在光纤内部通过光的干涉效应来测量温度、应变、压力、湿度等物理量。
光纤光栅传感器具有高灵敏度、远程测量、抗电磁干扰和高温耐受等特点,因此在许多应用领域具有广泛的应用前景。
光纤光栅传感器的研究背景源于对传统传感器的不足之处。
传统传感器一般采用电磁或电子原理来测量物理量,但存在着信号干扰、响应速度慢以及不能适应高温、高压等恶劣环境的问题。
而光纤光栅传感器通过利用光纤的特性,将传感器与被测量点分离,并将信号转换为光信号,从而避免了传统传感器的很多问题。
光纤光栅传感器在工程领域具有广泛的应用。
首先,光纤光栅传感器可以用于温度测量。
通过在光纤中引入光栅结构,通过测量光的频率和相位变化来确定温度的变化。
这种传感器具有高灵敏度和快速响应的特点,适用于高温或需要快速温度变化测量的环境。
其次,光纤光栅传感器可以用于压力测量。
通过在光纤中引入应变敏感的光栅结构,当光纤受到外力作用时,会产生应变导致光的频率和相位发生变化。
通过测量光的变化,可以确定外力大小。
光纤光栅传感器的这种特性使其在航空航天、汽车制造等领域的压力测量中具有很大的潜力。
另外,光纤光栅传感器还可以用于应变测量。
通过在光纤中引入应变敏感的光栅结构,当光纤被拉伸或压缩时,会产生应变导致光的特性发生变化。
利用这个原理,可以测量结构物的应变变化,如桥梁、建筑物等。
光纤光栅传感器的高灵敏度和远程测量的特点使其在结构健康监测领域备受关注。
此外,光纤光栅传感器还可以用于湿度测量、气体检测和化学物质分析等领域。
光纤光栅传感器具有很大的灵活性和适应性,可以根据不同的应用需求设计不同的传感器结构,并能够应对各种环境条件。
综上所述,光纤光栅传感器在工程领域具有广泛的应用前景。
随着技术的不断进步和应用需求的扩大,光纤光栅传感器将在各个领域中发挥更加重要的作用。
《基于光纤光栅F-P的环形腔光纤激光器的研究》范文
《基于光纤光栅F-P的环形腔光纤激光器的研究》篇一一、引言随着光通信技术的快速发展,光纤激光器在通信、传感、生物医学等领域的应用日益广泛。
光纤光栅(Fiber Bragg Grating,FBG)作为重要的光纤元件,在环形腔光纤激光器中起到了关键的作用。
本文针对基于光纤光栅F-P的环形腔光纤激光器进行深入的研究和探讨。
二、光纤光栅F-P原理与特点光纤光栅是一种在光纤内部刻制布拉格光栅结构的技术。
当光线经过光纤光栅时,符合光栅结构特性的光波将会发生布拉格反射。
F-P(Fabry-Perot)技术则是一种基于两反射面之间的干涉原理来对光波进行调制的技术。
将光纤光栅与F-P技术相结合,形成的环形腔光纤激光器具有以下特点:1. 高稳定性:由于光纤光栅的布拉格反射特性,激光器输出波长稳定,不易受外界环境干扰。
2. 高效率:F-P技术能够有效地对光波进行调制,提高激光器的输出效率。
3. 调谐范围广:通过调整光纤光栅的参数,可以实现对激光器输出波长的精确调谐。
三、环形腔光纤激光器结构与工作原理基于光纤光栅F-P的环形腔光纤激光器主要由激光介质、光纤光栅、F-P干涉结构等部分组成。
其工作原理如下:首先,激光介质中的受激辐射产生的光波在环形腔内传播。
当光线经过光纤光栅时,符合布拉格条件的波长将发生反射,进入F-P干涉结构。
在F-P干涉结构中,光线在两个反射面之间发生干涉,形成稳定的激光输出。
通过调整光纤光栅的参数和F-P 干涉结构的结构,可以实现对激光器输出波长的精确控制。
四、实验研究及结果分析为了研究基于光纤光栅F-P的环形腔光纤激光器的性能,我们进行了以下实验:1. 制备不同参数的光纤光栅,并将其应用于环形腔光纤激光器中。
通过调整光纤光栅的参数,观察激光器输出波长的变化。
实验结果表明,通过调整光纤光栅的反射波长和反射率,可以实现激光器输出波长的精确控制。
2. 在环形腔中加入F-P干涉结构,观察其对激光器性能的影响。
光纤光栅传感器的应用研究及进展
光纤光栅传感器的应用研究及进展光纤光栅传感器(Fiber Bragg Grating Sensor,FBG Sensor)是一种基于光纤光栅的传感器技术,具有高精度、高灵敏度、抗干扰能力强等优点,在工业、医疗、环境监测等领域有着广泛的应用。
本文将从光纤光栅传感器的基本原理、应用领域和近年来的研究进展三个方面进行探讨。
光纤光栅传感器的基本原理是利用了光纤中的光栅结构对光波的折射率和光纤长度进行测量。
光纤光栅是一种周期性调制的折射率分布结构,当光波通过光纤光栅时,会发生布拉格散射,这种散射会使一部分光波反向传播并被光纤光栅再次散射回来,形成布拉格反射。
当光纤光栅受到外界的力、温度、应变等影响时,其折射率和长度会发生变化,从而导致布拉格反射波长的改变。
通过测量布拉格反射波长的变化,可以得到外界的参数信息。
光纤光栅传感器可以应用于多个领域。
在工业领域,光纤光栅传感器可以实现对物体的形变、压力、温度等参数的测量。
例如,在航空航天领域,光纤光栅传感器可以用于飞机机翼的变形监测;在石油化工领域,光纤光栅传感器可以用于管道压力和温度的监测。
在医疗领域,光纤光栅传感器可以应用于心脏瓣膜的监测和血压的测量。
在环境监测领域,光纤光栅传感器可以用于地下水位、土壤湿度等的监测。
近年来,光纤光栅传感器的研究取得了一系列的进展。
一方面,光纤光栅传感器的灵敏度和分辨率得到了提高。
通过改变光纤光栅的结构和优化信号处理算法,可以提高传感器的灵敏度。
另一方面,光纤光栅传感器的应用领域得到了拓展。
传统的光纤光栅传感器主要应用于单一参数的测量,如温度、压力等,而现在的研究主要关注多参数的测量。
例如,通过改变光纤光栅的布局和优化信号处理算法,可以实现对多种参数的同时测量。
此外,光纤光栅传感器还面临一些挑战和问题。
一方面,光纤光栅传感器的制备和安装需要专业的技术和设备,成本较高。
另一方面,光纤光栅传感器的应用受到光纤光栅的长度限制,难以实现对大范围区域的监测。
光纤光栅的应变和温度传感特性研究
光纤光栅的应力和温度传感特性研究 (1)一 光纤光栅传感器理论基础 (1)1 光纤光栅应力测量 (1)2 光纤光栅温度测量 (2)3 光纤光栅压力测量 (3)二 光纤光栅传感器增敏与封装 (3)1 光纤光栅的应力增敏 (4)2 光纤光栅的温度增敏 (4)3 光纤光栅的温度减敏 (5)4 嵌入式敏化与封装 (5)5 粘敷式敏化与封装 (7)三 光纤光栅传感器交叉敏感问题及其解决方法 (9)1 参考光纤光栅法 (10)2 双光栅矩阵运算法 (10)3 FBG 与LPFG 混合法 (11)4 不同包层直径熔接法 (12)5 啁啾光栅法 (12)光纤光栅的应力和温度传感特性研究一 光纤光栅传感器理论基础1 光纤光栅应力测量由耦合模理论可知,光纤布拉格光栅(FBG)的中心反射波长为:2B eff n λ=Λ (1)式中:eff n 为导模的有效折射率,Λ为光栅的固有周期。
当波长满足布拉格条件式(1)时,入射光将被光纤光栅反射回去。
由公式(1)可知,光纤光栅的中心反射波长B λ随eff n 和Λ的改变而改变。
FBG 对于应力和温度都是很敏感的,应力通过弹光效应和光纤光栅周期Λ的变化来影响B λ,温度则是通过热光效应和热胀效应来影响B λ。
当光纤光栅仅受应力作用时,光纤光栅的折射率和周期发生变化,引起中心反射波长B λ移动,因此有:eff BB effn n λλ∆∆∆Λ=+Λ (2) 式中:eff n ∆为折射率的变化,∆Λ为光栅周期的变化。
光栅产生应力时的折射率变化:()21211112effeff e effn n P P P n μμεε∆=---=-⎡⎤⎣⎦ (3) 式中: ()21211112e eff P n P P μμ=--⎡⎤⎣⎦ (4) ε是轴向应力,μ是纤芯材料的泊松比,11P 、12P 是弹光系数,e P 是有效弹光系数。
假设光纤光栅是绝对均匀的,也就是说,光栅的周期相对变化率和光栅段的物理长度的相对变化率是一致的。
光纤光栅传感技术与工程应用研究共3篇
光纤光栅传感技术与工程应用研究共3篇光纤光栅传感技术与工程应用研究1光纤光栅传感技术是一种基于光纤光栅的传感方法,该方法可以实现对多种物理量的测量和监测,在工业控制、环境监测、航空航天等领域具有广泛的应用。
一、光纤光栅传感技术的基本原理光纤光栅传感技术是基于光纤光栅的干涉原理实现的,其基本结构包括一个光纤光栅和一个光源。
光源经过光纤光栅后,会被反射回来,并与入射光进行干涉,产生干涉图案。
通过对干涉图案进行分析,可以得到与被测量物理量相关的干涉模式,从而实现对物理量的测量和监测。
二、光纤光栅传感技术的特点光纤光栅传感技术具有以下特点:1. 高灵敏度:光纤光栅传感技术具有高灵敏度和高分辨率的特点,能够实现对微小变化的测量和监测。
2. 高可靠性:由于光纤光栅传感技术采用光学传输信号,避免了传统电学测量系统中电磁波干扰等问题,因此具有高可靠性。
3. 高精度:光纤光栅传感技术精度高,能够实现对物理量的精确测量和监测,能够满足工业控制和科学研究的要求。
4. 无须外部电力供应:光纤光栅传感技术可以通过光纤传输信号,无须外部电力供应,避免了传统测量系统中复杂的电路和电源设计。
三、光纤光栅传感技术的工程应用研究1. 工业控制领域:光纤光栅传感技术可以实现对温度、压力、振动等物理量的测量和监测,广泛应用于机械加工、化工等行业的工业控制中。
在机械加工中,光纤光栅传感技术可以实现对数控机床的精确定位、运动速度的监测等。
在化工行业中,光纤光栅可以实现对管道压力、流量等的测量和监测。
2. 油气勘探领域:光纤光栅传感技术可以实现对石油和天然气井的测量和监测,包括温度、压力、流量等多种物理量。
该技术对于提高石油和天然气的产出率、降低开采成本等具有重要的作用。
3. 环境监测领域:光纤光栅传感技术可以实现对环境参数的测量和监测,包括温度、湿度、气体等多种物理量。
在环境监测领域中,光纤光栅传感技术可以用于城市建设、农业生产、气象预报等多个方面。
光纤光栅传感系统的研究与实现共3篇
光纤光栅传感系统的研究与实现共3篇光纤光栅传感系统的研究与实现1光纤光栅传感系统的研究与实现光纤光栅传感系统是一种基于光纤光栅技术的传感技术。
该技术主要利用光纤光栅光栅化准确的传播特性和与周围环境的相互作用,实现光谱、温度、应力、压力等物理量的测量和控制。
目前,光纤光栅传感系统已经越来越受到人们的关注和重视,在工业、航空、能源、通信和环保等领域得到广泛应用。
光纤光栅传感系统的原理是基于光纤光栅的光栅化现象,其中,光纤光栅是一种光纤加工技术,通过将光纤中的几何结构改变,实现光的频率选择性散射,并产生光栅化现象。
当光经过光纤光栅时,光的频率与光纤光栅的光栅周期匹配,将发生布拉格反射,从而产生光谱峰。
当环境参数发生变化时,光纤光栅的光栅周期、折射率和长度等特性也随之变化,从而导致光谱峰的变化。
通过检测光纤光栅的反射光谱,可以实现对环境参数的测量和控制。
光纤光栅传感系统有很多优点,例如,实时性高、精度高、稳定性好、抗干扰性强、容易集成化等。
因此,光纤光栅传感系统在工业、航空、能源、通信和环保等领域得到了广泛应用。
例如,在能源领域中,光纤光栅传感系统可以实现对石油、天然气、水电、风力、光伏等能源的监测和控制。
在通信领域中,光纤光栅传感系统可以实现对光纤通信信号的测量和控制。
在环保领域中,光纤光栅传感系统可以实现对大气、水质和土壤等环境参数的实时监测和控制。
光纤光栅传感系统的研究和实现需要掌握一定的光学、光纤、信号处理、传感器等专业知识。
其中,光学是光纤光栅传感系统实现的基础,主要包括光源、光纤、光栅、波长选择器、光谱分析器等;光纤是光纤光栅传感系统实现的关键,主要包括单模光纤、多模光纤、纤芯直径、纤芯的材质等;信号处理主要是对光谱峰的数字化处理和滤波、放大、数据存储和显示等;传感器主要是具有合适特性的感受元件,可以将环境参数和光纤光栅的物理变化相互转换。
总之,光纤光栅传感系统是一种新型的传感技术,具有重要的应用前景。
光纤光栅传感器应变传递理论研究共3篇
光纤光栅传感器应变传递理论研究共3篇光纤光栅传感器应变传递理论研究1光纤光栅传感器应变传递理论研究光纤光栅传感器是一种基于光纤光栅的效应传感器,它利用了光纤特有的优势,具有体积小、重量轻、易于安装、不受电磁干扰等特点,广泛应用于航空航天、能源、交通、军事、环保等领域。
其中,应变传感器是光纤光栅传感器应用最广泛的一类,其在工程领域中具有非常重要的作用。
因此,对光纤光栅传感器应变传递理论的研究显得尤为重要。
光纤光栅传感器应变传递理论主要包括两个部分,即光纤光栅的应变响应机制和应变信号的传递原理。
首先,我们来看光纤光栅的应变响应机制。
光纤光栅传感器是利用光纤光栅的光栅衍射效应实现的。
因此,当光纤光栅受到外界应变时,其衍射波长会发生改变,即光栅常数随应变变化,这种变化可以通过测量光纤光栅光谱的移位来得到。
此外,光纤光栅光谱的最大移位和应变或温度的线性关系也是在响应机制中需要考虑的因素之一。
其次是应变信号的传递原理。
应变信号从传感器到达光源端的传递主要是通过光学纤维的传输完成。
一般来说,光学纤维传输中主要有三个因素对光学信号的传输质量产生影响,即纤维本身的损耗、光斑(模式场)的展宽和多径散射。
在传输过程中,光纤光栅传感器可以采用不同的光谱分析技术,如微填孔(FBG)、长周期光栅(LPG)等,来实现光学信号的获取和处理。
基于光谱分析的技术可以通过对应变信号的光谱特征进行分析和处理,得到与实际应变值相对应的传感信号。
总的来说,光纤光栅传感器应变传递理论研究是光纤光栅传感器技术的核心。
该领域的研究内容广泛,涵盖了物理学、材料学、光学、工程学等多个学科领域。
传感器的性能取决于其信号测量的准确性、灵敏度和响应速度等因素。
因此,在现有的研究成果基础上,需要继续深入研究光纤光栅传感器应变响应机制和传递原理,以更好地提高其性能和应用范围。
此外,还需要进一步开发和完善相关的仪器设备和分析方法,以满足不同领域应用的要求。
综上所述,光纤光栅传感器应变传递理论研究是一项长期、持续的工作,其对当前智能制造、智能化城市和智慧交通等领域的推动作用不可忽视。
基于光纤光栅的振动传感系统研究
基于光纤光栅的振动传感系统研究
光纤光栅技术是一种新型的光谱分析技术,可用于研究振动传感系统。
振动传
感系统一直是一个非常重要的领域,它涉及到许多工业和科学领域。
它的主要应用包括测量机器和结构中的振动和运动,同时也包括地震监测、振动控制和材料研究等。
光纤光栅是一种重要的光学传感技术,它基于纤维光学,可以通过光的反射来
检测物体的位移或振动。
这种技术在振动传感方面有很多应用,可以通过检测光纤的拉伸或压缩来测量振动的频率和振动的振幅。
在光纤光栅技术中,研究人员通常使用光波导光栅,作为基于压电效应的振动
传感器。
光波导光栅可以将外部的振动无线转换为光学信号,并将其传输到接收器。
这种技术可以用于研究桥梁和建筑物中的振动,以及飞机和汽车的振动。
光纤光栅的另一个应用是研究结构中的应变。
这种技术可以通过裂纹和断裂来
检测结构中的应变,这对于工程师来说非常重要,因为它可以帮助他们确定何时需要修理或更换结构物。
光纤光栅的这种应用也可以用于监测地震产生的应变,以便更好地预测地震的发生。
需要注意的是,光纤光栅振动传感器对于材料的抗扭性和耐腐蚀性要求较高。
而且,在应用过程中可能会受到环境的影响,例如温度和湿度的变化。
因此,在设计这种传感器时,需要仔细考虑如何减小这种环境影响因素对传感器性能的影响。
总之,基于光纤光栅的振动传感系统是非常有用的。
它可以用于测量机器和结
构中的振动,监测地震和结构物中的应变,以及飞机和汽车中的振动等。
尽管使用这种技术的复杂性较高,但是,它的应用前景非常广阔,可以在许多工业和科学领域中得到广泛应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
布拉格光栅的研究1 概述光纤光栅是一种通过一定方法使光纤纤芯的折射率发生轴向周期性调制而形成的衍射光栅,是一种无源滤波器件。
由于光纤光栅具有高灵敏度、低损耗、易制作、性能稳定可靠、易与系统及其它光纤器件连接等优点,因而在光通信、光纤传感等领域得到了广泛应用[1]。
在光纤通信领域,利用光纤光栅可以制成光纤激光器、光纤色散补偿器、光插、分复用器、光纤放大器的增益均衡器等[2],这些器件都是光纤通信系统中不可缺少的重要器件,可见光纤光栅对光纤通信的重要性,因此光纤光栅也被认为是掺铒光纤放大器之后出现的又一关键器件。
在光纤传感领域,光纤光栅也起到了及其重要的作用。
光纤光栅的传感机制包括温度引起的形变和热光效应、应变引起的形变和弹光效应、磁场引起的法拉第效应及折射率引起的有效折射率变化等。
当光纤光栅所处的温度、应力、磁场、溶液浓度等外界环境的发生变化时,光栅周期或者光纤的有效折射率等参数也随之改变,通过测量由此带来的光纤光栅的共振波长变化或者共振波长处的透射功率变化可以获取所需的传感信息[3],由此可见,光纤光栅是波长型检测器件,所以其不光具有普通光纤的优良特性,而且测量信号不易受光强波动及系统损耗的影响,抗干扰能力更强,还可利用波分复用技术,实现对信号的分布式测量。
由于光纤光栅的应用范围较为广泛,故本文只针对光纤光栅传感的应变检测机制进行一定的研究。
光纤光栅可分为布拉格光栅和长周期光栅,在应变检测中,一般采用的布拉格光栅,下文中出现的光纤光栅指的是布拉格光栅。
本文主要的工作主要是分析光纤光栅应变检测的原理,对光纤光栅应变检测进行一定的综述,以及对应变检测中很重要的增敏技术进行研究,并总结。
2 应变检测原理根据光纤光栅的耦合模理论,光纤光栅的中心波长λB 与有效折射率n eff 和光 栅周期Λ满足如下的关系[4]Λ=eff B n 2λ (2-1) 光纤光栅的反射波长取决于光栅周期Λ和有效折射率n eff ,当光栅外部产生应变变化时,会导致光栅周期Λ和有效折射率n eff 的变化,从而引起反射光波长的偏移,通过对波长偏移量的检测可以获得应力的变化情况。
由于课上已经讲过,故不多做赘述,只是简要的回顾一下。
接下来主要讨论应变对光纤光栅作用的模型。
在讨论之前,先对应变有关的几个名词进行解释。
应力:在施加的外力的影响下物体内部产生的力——内力,其值定义为单位面积上的内力,单位为Pa 或N/m 2,记为AP =σ (2-2)图2.1 应力示意图应变:试件被拉伸的时候会产生伸长变形Δl ,试件长度则变为l+Δl 。
由伸长量Δl 和原长l 的比表示伸长率(或压缩率)就叫做应变,记为ε。
ll ε∆= (2-3) 应变表示的是伸长率(或压缩率),属于无量纲数,没有单位。
由于量值很小,通常用1×10−6 微应变表示,或简单地用μ、ε表示。
图2.2 应变示意图径向应变和轴向应变: 径向应变试件在被拉伸的时,直径为d 0 会产生Δd 的变形时,直径方向的应变称为径向应变(或横向应变)。
与外力同方向的伸长(或压缩)方向上的应变称为轴向应变。
泊松比:轴向应变与横向应变的比称为泊松比,记为μ。
每种材料都有确定的泊松比,且大部分材料的泊松比都在0.3左右。
虎克定律:各种材料的单向应力应变关系可以通过虎克定律表示:εσ∙=E (2-4)应力与应变的比例常数E 被称为纵弹性系数或杨氏模量,不同的材料有其固定的杨氏模量。
通过上述对应变检测一些物理量的介绍,我们对应变检测有了一些初步的认识。
通过对比几个文献,发现文献[5]对应变检测原理的解释比较清楚直观,下面总结其光纤光栅应变检测的原理。
对光纤光栅而言,当只考虑轴向应变时,应变一方面使得光栅周期变大,光纤芯层和包层半径变小,另一方面将通过光弹性效应改变光纤的折射率,这些都将引起光栅波长的偏移[5]。
光纤光栅波长的偏移值,可以由下式给予描述:Λ∙∆+∆Λ∙=∆eff eff B n n 22λ (2-5)将上述两边同时除以式2-1,可得ΛΛ+=d n dn d eff eff B B λλ (2-6) 在弹性范围内有: ε=ΛΛd ,式中ε为光纤轴向应变。
有效折射率的变化可以由弹性系数矩阵P ij 和应变张量矩阵i ε表示为:j j ij i P ε∑==⎪⎭⎫ ⎝⎛∆612neff 1 应变张量矩阵j ε表示为:[] 000j z zz v v εεεε--=弹性矩阵为: ⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=444444111212121112121211000000000000000000000000P P P P P P P P P P P P P ij 式中P 11、P 12是弹性系数,即纵向应变分别导致的纵向和横向的折射率的变化。
V 是纤芯材料的泊松比,对各向同性材料P 44=v(P 11-P 12)/2。
不考虑波导效应,即不考虑光纤径向变形对折射率的影响,只考虑光纤的轴向变形是,光纤在轴向弹性变形下的折射率的变化为:[]ε)(2d 1211122P P v P n n n eff eff eff +--= (2-7) 令[])(2P 1211122P P v P n eff +--=,则由式2-5、2-6、2-7可得:ελλ)1(d P BB -= (2-8) 上式即为光纤光栅轴向应变下波长变化的数学表达式,当光纤光栅的材料确定后,可以根据材料确定P 的值,并且P 的变化不大,从而保证了光纤光栅作为应变传感器很好的线性输出。
令)1(K P B -=λε,K ε可以视为光纤轴向应变与中心波长变化的灵敏系数,由此可得ελεK =∆B ,通过该式可以方便的将波长变化的数据处理成应变的结果。
3 光纤光栅应变检测在很多领域中都需要对应变进行测量,如对大桥的应变检测,可以检测桥梁是否安全,对地震的检测也需要应变测量,在光纤光栅水听器中,其基本原理也是对应变的检测。
3.1 应变检测理论简要概述文献[6]包含了对光纤应变检测理论发展的综述,光纤光栅应变检测的理论基础源于对1952年Cox等提出的剪滞理论对单纤维复合材料进行应力传递的分析,1991年,Namni等奖光纤光栅传感器埋入混凝土结构进行无损检测,测试混凝土结构的应力和应变,1998年,Ansari等根据剪滞理论的基本原理,详细分析了光纤传感器的应变传递理论,假定埋入式光纤粘贴长度中心的应变与基体的应变相同,得出了光纤的轴向应变和剪应力的分布,并利用迈克尔逊白光干涉的光纤传感器进行了实验验证,通过等强度梁静态加载实验得出了不同粘接长度下的应变传递系数,2001年,Lau等在Ansari的基础上考虑了胶粘剂对光纤光栅传感器应变传递的影响,并建立包括光纤、涂覆层、胶粘剂层和基体四层结构的光纤光栅传感器模型,对应变传递机理进行了进一步的修正,2008年,王为等对表面式FBG传感器的应变传递进行了理论推导,并对衬底厚度和粘贴长度对应变传递效果的影响进行了仿真分析[6]。
从文献[6]中可看出光纤光栅应变理论的发展已经很完善了,现有的应变传递理论对光纤光栅传感器的应变分布规律以及影响应变传递的参数进行了较好的分析。
但是光纤光栅早期在应变检测中难以使用,这主要是因为光纤光栅本身的应力敏感度非常低,文献错误!未找到引用源。
报道了裸光纤光栅的波长灵敏度在.13-附近,所以要想让光纤光栅在实际中进行应变检测,必须对其28nmMPa/10进行增敏。
如果不进行增敏,必然要将探测器的灵敏度提高,现有对波长的分辨能力还很难达到该要求,这一方面提升了技术难度,令一方面也增加了成本。
因此我认为增敏对光纤光栅应变检测是最重要的问题之一。
3.2 光纤光栅增敏技术浅析封装的材料和封装的结构对都会对光纤光栅应力增敏产生影响,文献[7]提出了基本的增敏思路是固定光纤光栅结构的设计,使光纤光栅在压力作用下发生更多的应变,从而产生较大的波长漂移。
从力的作用角度分析了增敏分装结构的两种模式,一种是侧面压迫式增敏,另一种是光纤光栅的端面拉伸式增敏。
两种增敏方式的示意图分别如图3.1和图3.2所示。
侧压式增敏是指利用杨氏模量比较低的聚合物胶在光纤光栅周围进行灌注或粘接,增大光纤光栅传感器的受压面积,以提高光纤光栅本身的波长变化率。
端面拉伸式增敏原理是指将光纤光栅两端固定于受压薄片上,利用受压薄片随声压的振动拉伸光纤光栅,使光纤光栅波长随之波动,从而达到增敏的目的。
图3.1 侧面压迫式圆柱形增敏方法图3.2 端面拉伸式圆片型增敏方法文献[7]分别采用了两种方式为光纤光栅水听器进行应变增敏,报道的结果中,端面拉伸式增敏比侧面压迫式要高,由于端面拉伸式的膜片非常单薄,在压力下非常容易变形。
下面继续对增敏技术进行更深入的讨论。
根据封装的途径,目前增敏方式还可以分为弹簧管式增敏、聚合物封装增敏、弹性膜片式增敏、薄壁圆筒式增敏以及组合式增敏[8]。
下面分别对每种结构比较好的实现方式进行一定的介绍。
3.2.1 弹簧管式增敏弹簧管式增敏采用的是特种结构的弹簧管,当管内管外承受的压力不同时,产生变形,将光纤光栅粘贴在弹簧管表面或者两端,可实现对压力的测量。
该种方式在文献[9]中利用弹簧管对压力的机械放大作用,将弹簧管与光纤光栅悬臂梁调谐技术相结合,实现了比较好的效果,实验测得的灵敏度约为0.2769nm/MPa,结构图如图3.3所示。
但从图中看出,使用弹簧管能够灵活的设计结构,灵敏度比较高,但是弹簧管稳定性欠佳,容易受到外界振动的影响,而且设计精度要求较高,估计这些因素限制了该方式的应用,这些所以对该种结构的报道后续很少看到。
图3.3 弹簧管式增敏实现案例的结构图3.2.2 聚合物封装增敏聚合物封装增敏的原理是将光纤复合到对压力敏感的聚合物材料中进行压力增敏。
用聚合物进行封装, 一方面起增敏作用 , 同时对光纤光栅有保护作用[10]。
文献[11]采用多层封装结构,将杨氏模量小且粘结性强的聚合物1做成柱体状, 光纤光栅准直地置于该柱体中心,然后置于杨氏模量大的聚合物2中(做成柱体状),结构图如如3.4所示,该报道指出其增敏效果优于单层封装结构,有利于光纤光栅的保护,且结构简单,易实施。
然而该报道并未指出其灵敏度,并且在增加了应变灵敏度的同时,还增加了温度敏感度,容易造成温度和应变交叉敏感的问题,需要采取温度补偿措施,因此也提升了该方法的复杂度。
文献[12]报道了用层压碳纤维复合材料制作的压力传感器,压力灵敏度为0.1 nm/MPa。
由于碳纤维复合材料杨氏模量小,且在高压下具有良好的可重复性。
当压力从0 增加到70MPa 时,传感器中心波长实现了7nm的漂移。
聚合物封装的优点是结构简单,体积小,应变灵敏度增加效果比较好,但其在增加应变灵敏度的同时也增加了温度灵敏度。