第五章 留数
复变函数第五章留数
§1 孤立奇点 §2 留数
1
§5.1 孤立奇点
一、孤立奇点定义
如果函数f z在z0不解析, 但在z0的某个去心邻域
0 z z0 内处处解析, 则称z0为f z的孤 立 奇 点.
例如
1 sin
1
, z0
=
0为奇点,
但不是孤立奇点.
z
z 1 n 1,2,为奇点, n , z 0,
]
sinz
cosz
zzk
sinz sinz
z
zk
1
tgzdz
C
2i 8 1 16i
31
例4 计算 z4 sin 1 dz, C为 z 1 2.
C
z
解 奇点:z 0, 奇点类型不清楚,
•
z4
sin 1 z
z4
1 z
1 3! z3
1 5! z5
1 7! z7
z3
z 3!
1 5! z
1 7! z3
Re
s
f
z,0
c1
1 120
C
z4
sin
1 z
dz
2i
Re
s
f
z,0
60
i
32
例5 计算
C
z z4 1
dz,C为 z
2,正向.
解 显然 z 1,i 都是 f z 的一级极点,
f z ( z z0 )m z ,
其中 z在z0解析,且 z0 0,m为正整数,
则
z
为
0
f
z
的m
级
零
点.
例如 对于 f z z(z 1)3,z0 0, z0 1分别是其一级
第5章-留数及其应用02-留数
3 留数的计算方法
例1: 解: 因为
z 1, z 2,
f (z)dz
z 3
Re s[
f
( z ), 1]
lim
z1
( ห้องสมุดไป่ตู้
1)
(z
ez 1)( z
2)
lim
z1
ez z
2
e
Re s[
f
( z ),
2]
lim
z2
( z
2)
(z
ez 1)( z
2)
lim
z2
ez z
1
e
2
解:
注: 当极点的级数高(三级或者三级以上),则计算繁杂.
第五章 留数及其应用
第二讲 留数与留数定理
主要内容
1. 留数的定义 2. 留数定理 3. 留数的计算方法 4. 函数在无穷远点的留数
1 留数的定义
回顾:复变函数的积分 柯西-古萨基本定理: 柯西积分公式: 高阶导数公式: 闭路变形原理:
明星公式:
2 留数定理
如果函数 f(z) 在某区域 D 内除有限个孤立奇点外处处解析, 则利用复合闭路定理可以得到留数的一个基本定理. 定理: 设 f(z) 在区域内 D 除有限个孤立奇点z1, z2,…,zn外处处解 析, C 是 D 内包含所有奇点在其内部的分段光滑正向曲线, 则
f (z)dz
z 3
f (z)dz
z 2
4 函数在无穷远点处的留数
N 1
Res f (z), zk Res f (z), 0
k 1
第五章 留数(余家荣2014)
eiz (3) f ( z ) , z i 2 1 z
解:方法一: z = -i 为一阶极点
eiz eiz i Res( f , i ) lim( z i ) lim e 2 z i z i z i 1 z 2
解:方法二: z = -i 为一阶极点, 显然f(z)在 z = -i 满足法则3 ,
简单曲线C0,C1,C2组成 , 如图. 设f(z)在区域D内除了
有限个奇点z1,z2,…,zn外处处解析, 则有
C0 1
f ( z)dz 2 i Res( f , zk )
C k 1
n
z1
k
C2
C1
其中沿C的积分, 取区域的正向 .
n zn
zk
proof: 在各个奇点周围作封闭小区域 1 , 2 ,, n , 这些小区域互不包含,互不相交,由复合闭路定理有
目录 上页 下页
1 z
1 z
返回
结束
3. 极点的留数 z0为f(z)的极点, 则有如下法则 (1). 法则1: z0为f(z)的一阶极点, 那么
Res( f , z0 ) lim( z z0 ) f ( z)
z z0
证明: 因为z0为f(z)的一阶极点, 所以
f ( z ) 1 ( z z0 ) 1 0 1 ( z z0 ) ( z z0 ) f ( z ) 1 0 ( z z0 ) 1 ( z z0 )
n 1
2
1 1 故原积分 2 i Res( f , k ) 2 i ( ) 2n 4ni 2 k n
目录 上页 下页 返回 结束
第五章_留数
§5.2
1的计算规则
定义5.4 设z0是f (z)的孤立奇点, C是在z0的充分 小邻域内包含z0在其内部的分段光滑正向简单闭曲 线, 积分
1 f ( z )dz 2 i C
称为f (z)在z0点的留数(Residue), 记做 Res f ( z ), z0 . 函数 f (z)在孤立奇点z0点的留数即是其在以 z0 为中心的圆环域内Laurent级数-1次幂项的系数.
第五章
留数
§5.1
孤立奇点
孤立奇点
如果函数 f (z)在z0点不解析, 则称z0 是f (z)的 一个奇点. 如果z0 是f (z)的一个奇点, 且存在d >0, 使得f (z)在 0 z z0 d 内解析,则称z0 是f (z)的 孤立奇点.
并不是所有的奇点都是孤立奇点
sin z 的孤立奇点. 但z=0 例如z=0是函数 e 和 z z 1 ( k 1, 2,) 不是函数 的孤立奇点, 因为 1 k sin z 都是奇点.
是 D上的解析函数,( z )dz f 那么
f ( z )dz
nC
2 i Res f ( z ), zk .
C k 1
C2
n
f ( z )dz ,
2
留数的计算
Res[f ( z ), z0 ] 0.
(1) 如果 z 0 为 f (z ) 的可去奇点, 则
(2) 如果 z 0 为 f (z ) 的本性奇点, 则需将 f (z ) 展开 成Laurent级数, 求 c1 .
2 1
其中 c m 0 ( m 1). 于是
f ( z ) ( z z0 ) m c m c m1 ( z z0 ) c m 2 ( z z0 )2 ,
复变函数 第五章留数
F(t)
c
n
t
n
cnt
n
(2)
n 1
n0
第五章 留数
相应地规定:如果 t = 0 是 F(t) 的可去奇点、m 级极点或本
性奇点,则称z 是 f (z) 的可去奇点、m 级极点或本性奇点。
将式(1)写成
f
(z)
c
n
z
n
c0
cn zn
(3)
n 1
n 1
将式(2)写成
F(t)
cn t n
c0
cnt
( n 0, 1, 2, , m 1)
f
(m) (z0 ) m!
a0
0
故必有 f (z) cm (z z0 )m cm1(z z0 )m1 cm2 (z z0 )m2
(z z0 )m[cm cm1(z z0 ) cm2 (z z0 )2 ]
(z z0)m (z)
根据 0 z z0 内 f (z) 的 Laurent 级数的不同,孤立奇点 分为三种类型。
第五章 留数
1、可去奇点
如果 Laurent 级数中不含 z z0 的负幂项,孤立奇点 z0 称为 f (z) 的可去奇点。
即
c0 c1(z z0 ) cn (z z0 )n
在 0 z z0 内收敛于 f (z) 。
lim f (z)
zz0
或
lim f (z)
z z0
第五章 留数
如果 f (z)以 z0为其孤立奇点,则下列四个条件是等价的。 它们中的任何一条都是 m 级极点的特征:
(1) f (z) 在以 z0 点为中心的去心邻域内的 Laurent 级数只 有有限多个 z z0 的负幂项;
5 留数
ez 1 f (z) z
1 z2 z3 z z2 1 z 1 1 z 2! 3! 2! 3!
x x0 x x0
[复习 ] “可去”间断: lim f ( x), lim f ( x)存在且相等。 这种间断与连续没什么 本质区别,因此,可去 间断点 可以看作连续点。类似 地,我们将会看到,可 去奇点 可以看作解析点。
f1(z) (z z0)n g1(z) n k g1(z) (z z0) k f2(z) (z z0) g2(z) g2(z)
(n k)
[复习 ] 等价的无穷小:当 x 0时, x~sin x~ln( x 1) ~e x 1 ~tan x~arcsin x~arctan x x2 1 cos x~ 2 1 cos z 1 cos z , 在0 [例 ] 3 z z
(z z0)n g1(z) lim f ( z ) (z z )k g (z) z z0 0 2
n
lim f ( z ) c0不存在
z z0
极点阶数判别: g(z) 1. f (z) m , g(z)在z0解析且g(z0) 0 (z z0) 2. Laurent展开 f (z)
用Laurent级数判断极点阶数比较 复杂,下面提供 一个新的方法:利用倒 数的零点来判断。 [定义] 不恒为 0的解析函数f (z)如果能表示成 f (z) (z z0)m (z), 其中 (z)在z0解析且 (z0) 0,m为某正整数,那么称 z0 为f (z)的m级(m阶)零点。
n n cn z z0
ez 1 f (z) z
1 z2 z3 z z2 1 z 1 1 z 2! 3! 2! 3!
05第五章 留数理论
证明:设圆盘 |z|<ρ包含 b1, b2, …, bn
n
∫ ∑ 留数定理
è
|z|= ρ
f (z)dz
=
2π i
Res f (bk )
k =1
| z |= ρ
∞处留数的定义 è
∫ f (z )dz = − 2π i Res f (∞ ) |z|= ρ
n
∑ Res f (bk ) + Res f (∞) = 0
f ( z )dz
C
k =1 |z−bk |=δ
bn
n
= ∑ 2πi Res f (bk ) (留数定义)
k=1
L
b2 δ
4
2. 孤立奇点 ∞ 处的留数
∞
∑ 洛朗展开 f (z) = Ck zk , r <| z | k = −∞
定义 f(z) 在 z=∞ 处的留数 = z−1 的系数×(–1)
等价定义:
∫ def
Res f (∞) =
−1
f (z)dz (r < ρ)
2π i |z|=ρ
ρ r×0
• 若 f(z) 是偶函数,则 Res f (∞), Res f (0) 有定义时必为零
5
Ø全平面留数之和为零
设函数 f (z) 在整个复平面上只有奇点 b1, b2, …, bn,则 f (z) 在这些点及 ∞ 的留数之和为零
i
−
(b0 + 4a 4
b1 )
=
2π 2a 3
∫ +∞ 0
x
4
1 +
a4
dx
=Q= 2
2π 4a3
ΓR
b1
b0
-R b2
第五章 留数 留数在定积分计算中的应用
个有界区域,函数 f(z) 在 D 内除有限个孤立
奇点 z1 , z2 ,..., zn外处处解析. C是D内包围各 奇点的一条正向简单闭曲线,那么我们有:
n
C
f ( z )dz 2i Res[ f理的基本思想
D
zn C3 Cn z1 z2
z3
C1
显然,函数在z0处的留数C1就是积分 1 f ( z )dz 2 i C 的值.
其中,C为函数f ( z )的去心邻域0 z - z0 R 内绕z0的闭曲线,方向为逆时针方向.
注:留数Res[f(z), z0] 与圆C的半径r无关.
二、留数定理
定理 5.1 (留数定理)设 D 是复平面上的一
C
f ( z )dz 0
如果z0是f(z)的孤立奇点,则上述积分就不 一定等于零。
定义5.1 设z0是解析函数f ( z )的孤立奇点, 我们把f ( z )在z0处的洛朗展开式中负一次 幂项的系数C1称为f ( z )在z0处的留数.记作 Re s[ f ( z ), z0 ],即 Re s[ f ( z ), z0 ] C-1
求沿闭曲线C积分 求C内各孤立奇点处的留数.
三、留数的计算
求函数在孤立奇点处的留数的一般方法 ——将函数在以z0为中心的圆环内展开为 洛朗级数,求出级数中C-1(z-z0)-1项的系数C-1
如果z0是可去奇点,则Res[f(z), z0]=0;
如果z0是本性奇点,则往往只能用展开成洛朗
级数的方法来求C-1.
Res[f ( z ), z0 ] lim( z z0 ) f ( z )
z z0
P( z ) lim( z z0 ) z z0 Q ( z ) Q ( z0 ) P( z0 ) / Q '( z0 ).
留数定理
lim( z
z1
- 1)
z ez z2 -1
lim
z1
z ez z 1
e 2
Res[
f
(z), -1]
lim ( z
z-1
1)
z z2
ez -1
lim
z-1
z ez z -1
e-1 2
.
因此
C
z z2
ez -
1
d
z
2πi(e 2
e-1 ) 2 π i ch1 2
由此可见, 二阶导数的计算过程将十分繁杂。
[方法二]、但把 m 取得比实际的级数高反而使计算方便。尽
管
z=0
是函数
z
- sin z6
z
的三级极点,
如果认为是六级极点,计
算在 z=0 处的留数, 而更加简便。
Res
z
- sin z6
z
, 0
(6
1 lim
-1)! z0
d5 dz5
n
z
Res[
f
( z ),
zk
](k
1,2,, n)
即 f (z) d z 2 π i Res[ f (z), zk ].
C
k 1
意义:把计算沿路径积分的整体问题化为计算各孤立 奇点留数的局部问题。
讨论问题:柯西积分定理、柯西积分公式与留数定理 的关系如何?
n
f (z) d z 2 π i Res[ f (z), zk ]
z
6
z
- sin z6
z
留数
)
(z 2 1)2
A.0
B. ie
4
C. ie
D. e
4
4
10.设 f(z)= 2z ,则 Res[f(z),1]=(
)
z2 1
A.0
B.1
C.π
D.2π
26.利用留数计算积分 I
ez
dz .
|z|2 (z 1)(z 4)4
10.设 C 为正向圆周|z|=1,则 c cot zdz (
这里,我们只介绍三个特殊的类型.
模型一:形如 2 R(cos ,sin )d 的积分. 0
推导:令 z ei , dz iei d ,
s in
ei
ei
z2 1 ,
2i
2iz
cos ei ei
z2 1 .
2
2z
R(cos ,sin )是cos,sin的有理函数;作为的函数,
在 0 2 内不为0,积分有意义.
由: cos 2 1 (e2i e2i ) 1 (z2 z2 )
2
2
所以:原式=
z2 z2
1
dz
|z|1 2 1 2 z1 z p2 iz
2
1 z4
dz f (z)dz.
|z|1 2iz(1 pz)(z p)
C. 0
D. 1
1
20.Res e z , 0 =
.
28.设 f(z)= e2z .
z5
(1)计算 Res[f(z),0]
(2)利用以上结果,计算积分 I= f (z)dz , 其中 C 为正向圆周|z|=1. C
第5章 留数
;
12
极点的判定定理 定理 5.1.4 极点的判定定理 (1) f ( z ) 在奇点 z0 的去心邻域内的洛朗级数的负 幂项部分为有限多项; (2)f ( z ) 在 z0 点的去心邻域 0 | z z0 | R 内能表 示为如下形式:
( z z0 ) 其 中 , 函 数 ( z ) 在 | z z0 | 内 是 解 析 的 , 且
一级极点。
函数的零点与极点的关系 6
不恒等于零的解析函数
f (z ) 若能表示为
f ( z) ( z z0 )m ( z)
其中 (z ) 在 z0 解析,且 ( z0 ) 0 ,m为一正整数, 则称 z0 为 f (z ) 的m级零点。 若 f (z ) 在 z0 解析,则 z0 为 f (z ) 的m级零点的充要 条件是
开式为
sin z 1 z z z z ( z ) 1 . z z 3! 5! 3! 5!
3
3 5 2 4
式中不含 z sin z ,若 在 z 0 点无定义或不等于1,则只要 z 重新定义 z 0 处的函数值,使其等于1,奇点 sin z 就可去,f ( z ) 就在 z 0 解析了。
n
z 0 不是 f (z ) 的孤立奇点。
2
孤立奇点分为可去奇点,极点和本性奇点。
5.1.1 可去奇点
定义5.1.2 如果 f (z ) 在 z z0 的洛朗级数中不含 的负幂项,则称孤立奇点 z0 是 f (z ) 的可去奇点。
sin z 例:f ( z ) 以 z 0 为孤立奇点,其洛朗展 z
z z0
1 (3)函数 h( z ) 也以 z0 为本性奇点; f ( z)
5第五章 留数
第五章 留数定理留数定理是柯西积分理论的继续,可以说,它进一步展现了复变函数积分的细节内情,使我们对复积分有了更深刻的认识。
§5.1 孤立奇点若)(z f 在点0z 的某一去心邻域R z z <-<00内解析,但在点0z 不解析,则称0z 为)(z f 的孤立奇点。
若0z 是)(z f 的一个奇点,且在点0z 的无论多么小的邻域内)(z f 总还有除点0z 外的其它奇点,则称点0z 为)(z f 的非孤立奇点。
例如,0=z 为z z f 1)(=的孤立奇点,为1)1(sin )(-=zz g 的非孤立奇点。
去心邻域可看作内圆周缩为一点的环域。
若0z 为)(z f 的一个孤立奇点,则总存在着正数R ,使得)(z f 在点0z 的去心邻域R z z <-<00内可展成洛朗级数。
这里的正数R ,显然最大可取为0z 与)(z f 的离0z 最近的一个奇点间的距离。
在孤立奇点去心邻域内的洛朗展开,有时也称为在孤立奇点的洛朗展开。
1.孤立奇点的分类设0z 为函数)(z f 的有限孤立奇点,)(z f 在去心邻域R z z <-<00内的洛朗展式为∑∞-∞=-=n nnz z a z f )()(0∑+∞=---=10)(n nn z z a ∑∞=-+00)(n n n z z z 。
前面已知,右边第二个级数称为)(z f 在点0z 的解析部分,其和函数)(z ϕ在包括0z 点的邻域K 内是解析的,故)(z f 在点0z 的奇异性质完全体现在)(z f 的洛朗展式的负幂项部分∑+∞=---10)(n nnz z a,所以从出现奇异性来说,我们称∑+∞=---10)(n n n z z a 为)(z f 在点0z 的主要部分。
根据主要部分仅可能出现三种情况,将)(z f 的有限孤立奇点作如下分类:定义5.1.1:设0z 为)(z f 的有限孤立奇点。
(1)若)(z f 在点0z 的主要部分为零,则称0z 为)(z f 的可去奇点。
第五章 留数
z z0
lim f ( z ) lim F ( z ) F ( z0 ) c0 ,
z z0
5
所以不论f(z)原来在z0是否有定义, 如果令
f(z0)=c0, 则在圆域|z-z0|<d内就有
f(z)=c0+c1(z-z0)+...+cn(z-z0)n+...,
其中 g(z)在 z0 解析, 且 g(z0)0. 所以当 zz0 时, 有 1 1 m m ( z - z0 ) ( z - z0 ) h( z ) f ( z) g ( z)
15
函数h(z)也在z 解析, 且h(z )不等于 0,z 不 是h(z)的零点, 因此z 是1/f(z) 的m级零点. 逆命题证明过程类似。
17
注意不能一看函数表面形式就急于作结论. 像函
e z -1 数 z 2 , 初看似乎 z=0 是它的 2 级极点, 其实是一
级极点. 因为
ez -1 1 z n 1 1 z 1 2 - 1 j ( z ), 2 z z z n 0 n! z 2! 3!
其中j(z)在 z=0 解析, 并且j(0)0.
18
4. 解析函数在无穷孤立奇点的性质 如果函数f(z)在无穷远点z=的去心邻域 R<|z|<内解析, 称点为f(z)的孤立奇点.
1 作变换 t z , 并且规定这个变换把扩充 z 平面上的
无穷远点 z=映射成扩充 t 平面上的点 t=0, 则扩充 平面 z 上每一个向无穷远点收敛的序列{zn}与扩充
3 5 2 n 1
26
§5.2 留数
第五章 留数
,即
R e s[ f ( z ), z 0 ] c 1
或 R e s [ f ( z ), z 0 ]
2 i
1
f ( z )d z
C
C是此圆环域内围绕 z 0 的任一条正向简单闭曲线.
2、留数的计算
(1) 如果 z 0 为 例如:
f (z)
的可去奇点, 则
R es[ f ( z ), z 0 ] 0 .
1、留数的定义
若z0 是 f (z)的孤立奇点,则 f (z) 在某圆环域
0 z z0
内可以展开为洛朗级数
f (z)
n
cn ( z z0 ) ,
n
上述展开式中负一次幂项的系数 c 1 称为
z0
f (z)
在
处的留数,记为
R e s f ( z ), z 0
1
f (z) ( z z0 )
n1
dz
( n 0 , 1, 2 , ),
C
c 1
2 i
1
f ( z )d z
C
C是此圆环域内围绕 z 0 的任一条正向简单闭曲线.
1、留数的定义
若z0 是 f (z)的孤立奇点,则 f (z) 在某圆环域
0 z z0
如果 z 0 为 f ( z ) 的 m 级极点, 则
1 lim d
m 1
R es[ f ( z ), z 0 ]
( m 1) ! z z 0 d z
[( z z 0 ) m 1
m
f ( z )].
说明
(1)当 m=1 时,上式即为
R e s [ f ( z ), z 0 ] lim ( z z 0 ) f ( z ).
第五章 留数及其应用
第五章 留数及其应用一. 目的要求1. 理解孤立奇点概念并掌握其分类法。
2. 理解留数概念,熟练掌握极点处留数的求法(不含无穷远点)。
3. 熟练掌握留数定理,会用留数求围道积分。
二. 主要内容1. 孤立奇点定义、分类,函数的零点与极点之关系,Δ函数在无穷远点的性态。
2. 留数概念,留数定理,留数的计算,*无穷远点的留数。
3. 用留数求围道积分。
4. 用留数求实积分 dx e x R dx x Q x P d R aix ⎰⎰⎰∞+∞-∞+∞-)(*)()(#)sin ,(cos #20,,θθθπ5. *对数留数与辐角原理。
重点:孤立奇点的判定,留数定理及应用。
难点:留数定理的应用。
本章中心问题是留数定理,前面讲的柯西定理、柯西积分公式都是留数定理的特殊情况,并且留数定理在作理论探讨与实际应用中都具有重要意义,它是复积分与复级数理论相结合的产物,为此先对解析函数的孤立奇点进行分类5.1 孤立奇点 5.2 留数5.3 留数在定积分计算中的应用 本章小结 思考题第一节 孤立奇点一、奇点的分类定义:若函数()f z 在0z 处不解析,但在0z 的某一去心领域00z z δ<-<内处处解析,则称0z 为函数()f z 的孤立奇点如: 0z =是函数1()f z z=的孤立奇点,也是函数1()z f z e =的孤立奇点如0z =是函数1()1sin f z z=的一个奇点,除此之外, 1(1,2,)n z n n π==±± 也是它的一个奇点, 当n 的绝对值逐渐增大时,1n π可任意接近0z =,即在0z =不论怎样小的去心领域,总有函数()f z 的奇点存在, 所以0z =不是函数()f z 的孤立奇点 孤立奇点分类:函数()f z 在孤立奇点0z 的领域00z z δ<-<内展为洛朗级数为: ()f z =()nnn C z z ∞=-∑+01()n nn Cz z ∞--=-∑解析部分 主要部分(1) 主部消失即只有()nnn C z z ∞=-∑,则称0z 为函数()f z 的可去奇点(2) 主部仅含有限项(m 项),则称0z 为函数()f z 的m 阶极点 (3) 主部含有无限多项,则称0z 为函数()f z 的本性奇点 例1. 说明点0z =是函数sin ()zf z z=的可去奇点 解: 函数()f z 在0z =的去心领域内可展开成洛朗级数为:35sin 1()()3!5!z z z f z z z z ==-+- 241113!5!z z =-+- ,展开式中不含负幂项,⇒0z =是函数sin ()zf z z=的可去奇点. 二、可去奇点可去奇点的解析化:若0z 为函数()f z 的可去奇点,则()f z 在0z 的去心领域内的洛朗级数就是一个不含负幂项的级数为:20102000()()()(),0n n f z C C z z C z z C z z z z δ=+-+-+-+<-<显然这个幂级数的和函数()F z 在0z z δ-<内处处解析.令000()lim ()lim ()z z z z f z C F z f z →→===孤立奇点0z 为可去奇点的判别方法:设0z 为函数()f z 的孤立奇点,则下列条件是等价的(1) 0z 为函数()f z 的可去奇点;(2) 函数()f z 在0z 点的洛朗级数展开式中不含0z z -的负幂项,即010()()()n n f z C C z z C z z =+-++-+(3) 00lim ()z z f z C →=,(0C 为一常复数);(4)函数()f z 在0z 某去心领域内有界.若0z 为()f z 的极点,则0lim ()?z z f z →=三、极点如果在洛朗级数展开式中只有有限多个0z z -的负幂项, 且关于10()z z --的最高幂为0()m z z --,即2102010010()()()()()m m f z C z z C z z C z z C C z z ------=-++-+-++-+(1,0)m m C -≥≠则孤立奇点0z 称为函数()f z 的m 阶极点.下面讨论m 阶级点的特征: (1) 2110201001()[()()()()m m m m mf z C C z z C z z C z z z z ---+-+-=+-+-++-- 00()]n m n n C z z ∞+=+-∑01()()mg z z z =-这里()g z 满足: (1)在圆域0z z δ-<内是解析函数; (2) 0()0g z ≠.(2)反过来,当任何一个函数()f z 能表示为01()()()mf zg z z z =-的形式, ()g z 在0z z δ-<内解析且0()0g z ≠,那么0z 是函数()f z 的m 阶极点.判定0z 是函数()f z 的m 阶极点的另一个方法.而001lim ()lim()()m z z z z f z g z z z →→==+∞-⇒0lim ()z z f z →=∞ 判定0z 是函数()f z 的m 阶极点的又一方法.孤立奇点0z 为极点的判别方法:设0z 为函数()f z 的孤立奇点,则下列条件是等价的, (1) 0z 是函数()f z 的m 阶极点; (2) 函数()f z 在点0z 处的洛朗展开式为:10000()()(0,0)()()nm n m mn C C f z C z z C m z z z z +∞---==+++-≠>--∑(3)极限0lim ()z z f z →=∞,缺点:不能指明极点的阶数.(4) 函数()f z 在点0z 的某去心领域内表示成: 01()()()mf zg z z z =-, 其中()g z 在0z 的领域内解析,且0()0.g z ≠Z 例1. 求有理分式函数232()(1)(1)z f z z z -=+-的极点. 解: 函数的孤立奇点有: 1z =, z i =±, 1lim ()z f z →=∞, lim ()z if z →±=∞,⇒1z =,z i =±,都是函数()f z 的极点.(1)当1z =时,1233232121()(1)(1)(1)(1)(1)z z g z z z z z z --=⋅=⋅+--+-, 这里1()g z 在1z =的某处领域内处处解析,且1(1)0g ≠,⇒1z =是有理函数的3阶极点.(2) 对于z i =.有22332121()(1)(1)()()(1)()z z g z z z z i z i z z i --=⋅=+--+-- (3)对于i -,有32332121()(1)(1)()()(1)()z z g z z z z i z i z z i --=⋅=+-+--+ ⇒z i =±都是有理函数的1阶极点.四、本性奇点若在洛朗级数展开式中含有无穷多个0z z -的负幂项,那么孤立奇点0z 称为函数()f z 的本性奇点.例如: 1()zf z e =, 0z =是它的本性奇点,因为它的洛朗级数为:1121112!!n ze z z z n ---=+++++ ,含有无穷多个z 的负幂项. 若0z 为函数()f z 的本性奇点,且具有如下性质:0{}n A z z ∀∃→,,使得0lim ()n z z z f z A =→=即: 若0z 为函数()f z 的本性奇点,则极限0lim ()z z f z →不存在且不是无穷大.例3. 函数1()zf z e =,点0z =为它的本性奇点.解: (1)当z 沿正实轴趋向0时,则函数1()zf z e =→+∞; (2)当z 沿负实轴趋向0时,则函数1()0zf z e =→;(3)若对于给定复数(2)2n iA i e ππ+==写成, 要使1(2)2n i ze i eππ+→=, 可取数列1(2)2n z n i ππ⎧⎫⎪⎪=⎨⎬⎪⎪+⎩⎭,n →∞时, 0n z →, 当z 沿数列n z {}趋向于0时,有: 10lim n zz z e i =→=由(1)、(2)、(3)分析得:极限0lim ()z z f z →不存在.故点0z =为1()zf z e =的本性奇点.孤立奇点0z 为本性奇点的判别方法: 设0z 为函数()f z 的孤立奇点,则下列条件是等价的 (1) 0z 为函数()f z 的本性奇点;(2) 函数()f z 在0z 点洛朗级数展开式中含有无穷多个0z z -的负幂项; (3)极限0lim ()z z f z →不存在(也不是无穷大).利用极限判断极点的类型,当极限是型时,可以像《高等数学》中那样用罗必达法则来求:如果函数()f z ,()g z 是当0z z →,以0为极限的两个不恒等于0的解析函数,则0()()limlim ()()z z z z f z f z g z g z →→'='. 例4. 研究函数21()(1)(2)f z z z =--孤立奇点的类型.解: 1z =,2z =是函数()f z 的两个孤立奇点,当1z =时, 211()1(2)f z z z =⋅--, 21(2)z -在1z =的某处领域内解析,且1z =处取值不等于0,⇒1z =是函数()f z的一阶极点;当2z =,211()(2)1f z z z =⋅--,11z -在2z =的某领域内解析,且2z =处取值不等于0,⇒2z =是函数()f z 的二阶极点.例5. 研究函数11()z f z e-=的孤立奇点的类型.解: 11()z f z e-=在整个复平面内除去点1z =外处处解析,⇒1z =是它的唯一的孤立奇点.将函数在0|1|z <-<+∞内展开成洛朗级数,得到:1121111(1)(1)(1)2!!n z ez z z n ----=+-+-++-+ 此级数含有无穷多个负幂项, 故1z =是它的本性奇点.五、函数的零点与极点的关系 1.零点的定义若函数0()()()m f z z z z ϕ=-,其中()z ϕ在0z 处解析,且0()0z ϕ≠,m 为一正整数,则称0z 为函数()f z 的m 阶零点.例如:函数3()(1)f z z z =-,⇒0z =,1z =分别是()f z 的一阶零点和三阶零点.定理1. 如果函数()f z 在0z 处解析,则0z 为()f z 的m 阶零点的充要条件是()()00()0,0,1,2,(1),()0.n m f z n m f z ==-≠证明: ()⇒设0z 是()f z 的m 阶零点,则0()()()m f z z z z ϕ=-, 其中()z ϕ在0z 处解析,且0()0z ϕ≠,从而在0z 领域内泰勒展开式为:201020()()()z C C z z C z z ϕ=+-+-+ ,取其中00()0z C ϕ=≠,⇒10010()()()m m f z C z z C z z +=-+-+⇒()0()0,0,1,2,,(1),n f z n m ==- 而()00()!0.m f z m C =≠,()⇐已知函数()f z 的泰勒级数为:10010()()()m m f z C z z C z z +=-+-+0010()[()]m z z C C z z =-+-+且()()00()0,0,1,2,(1),()0n m f z n m f z ==-≠ ,令201020()()()z C C z z C z z ϕ=+-+-+ ,0()()()m f z z z z ϕ=-,则0z 为函数()f z 的m 阶零点.例6. 设函数3()1f z z =-,点1z =为函数的几阶零点.解: 由于(1)0f =,且31(1)3|30z f z ='==≠,所以1z =是函数()f z 的一阶零点. 2.函数的零点与极点的关系定理2 若0z 为函数()f z 的m 阶极点,则0z 就是()f z 1m 阶零点,反之也成立. 证明: ()⇒设0z 为()f z 的m 阶极点,则有01()()()mf zg z z z =-,其中()g z 在0z 处解析,且0()0g z ≠,⇒当0z z ≠时,有001()()()()()m m z z z z h z f z g z =-=-1其中()h z 在0z 处解析,且0()0h z ≠.当0z z ≠时,由于0lim0()z z f z →=1,只要令00()f z =1, 由0()()()m z z h z f z =-1可知: 0z 是()f z 1的m 阶零点.()⇐如果0z 是()f z 1的m 阶零点,则⇒0()()()m z z z f z ϕ=-1其中()g z 在0z 处解析,且0()0g z ≠,⇒当0z z ≠时, 01()()()mf z z z z φ=-, 而()()z z φϕ1=在0z 处解析,且0()0z φ≠, 所以点0z 是()f z 的m 阶极点. 例7.(通过零点阶数判断极点阶数)函数1sin z有些什么奇点?如果是极点,指出他的阶? 解: 函数1sin z的奇点是使sin 0z =的点: 由sin 0z =得: iz iz e e -=或221iz k ie e π==,⇒22iz k i π=,即: ,0,1,2,z k k π==±± , 所以,(0,1,2,)z k k π==±± 是函数()f x 的孤立奇点.(sin )|cos |z k z k z z ππ=='=cos (1)0k k π==-≠⇒z k π=是sin z 的一阶零点,即: z k π=是1sin z的一阶极点. 例8.判别函数21()z e f z z-=在0z =处是几阶极点. 解:法一: 22011111[1]()!2!3!z n n e z z z z z n z zϕ∞=-=-=+++=∑ , 其中()z ϕ在0z =解析,且(0)0ϕ≠, 所以0z =是函数21()z e f z z-=的一阶极点. 法二: 2111z z e e z z z --=⋅,01lim 10z z e z →-=≠,⇒1z e z -的展开式中不含负幂项,且0C =1.⇒1z e z-的展开式在0z =,且不等于0.所以0z =是函数21()z e f z z -=的一阶极点.练习:3sin zz;0z =是二阶极点,而不是三阶级点. 六、函数在无穷远点的性态前面讨论函数()f z 解析性及孤立奇点时,均假设z 为复平面上有限点, 那么函数在无穷远点的性态又如何呢?下面就讨论在扩充复平面上函数的性态:1. 定义 若函数()f z 在z =∞的去心领域R z <<∞内解析, 则称点∞为函数()f z 的孤立奇点. 分析:令1t z=,∞(扩充z 平面上) →0(扩充t 平面上) ()f z , 11()()t zR z g t f t =<<∞−−→=, 10t R<<. 若0t =是函数()t ϕ的可去奇点,m 阶极点或本性奇点,那么就称点z =∞是函数()f z 的可去奇点,m 阶极点或本性奇点.2. 奇点∞类型的判别方法由于函数()f z 在R z <<∞内解析,所以在此环域内可以展开成洛朗级数:1()(1)nn n n n n f z C zC z ∞∞--===+∑∑ 其中11()(0,1,2,)2n n C f C d n i ζζπζ+==±±⎰,, C 为圆环域内R z <<∞内绕原点的任何一条正向简单闭曲线.因此函数()t ϕ在圆环域10t R <<内的洛朗级数有上式得到:010()(2)nn n n n n t C t C C t ϕ∞∞--===++∑∑(1) 不含t 的负幂项,则0t =是()t ϕ的可去奇点;(2) 含有t 的有限多的负幂项,且m t -为最高负幂项,则0t =是()t ϕ的m 阶极点; (3) 含有t 的无限多的负幂项,则0t =是()t ϕ的本性奇点. 因此根据前面定义,有: 如果在级数(1)式1()nn nn n n f z CzC z ∞∞--===+∑∑中,(1) 不含z 正幂项,则z =∞是()f z 的可去奇点;(2) 含有z 有限多的正幂项,且mz 为最高负幂项,则z =∞是()f z 的m 阶极点; (3) 含有z 无穷多的正幂项, 则z =∞是()f z 的本性奇点.这样,对于无穷远点来说,它的特征与其洛朗级数之间的关系就跟有限远点一样,不过只是把正幂项与负幂项的作用互相对掉就是. 3. 孤立奇点的判别方法一、函数()f z 的孤立奇点∞为可去奇点的充要条件是下列三条中的任何一条成立:(1) 函数()f z 在∞的去心领域R z <<∞内洛朗级数展开式为: 1202()n n C C C f z C z z z---=+++++ ; (2) 极限0lim ()()z f z C →∞=≠∞存在;(3) 存在0r >,使得函数()f z 在r z <<∞内有界.二、函数()f z 的孤立奇点∞为m 阶极点的充要条件是下列三条中的任何一条成立:(1)函数()f z 在∞的去心领域R z <<∞内洛朗级数展开式为:22101()0m nm m nn C f z C z C z C z C C z+∞-==+++++≠∑, (2)极限lim ()z f z →∞=∞;(3) 1()()g z f z =以z =∞为m 的阶零点. 三、函数()f z 的孤立奇点∞为本性奇点的充要条件是下列二条中的任何一条成立:(1) 函数()f z 在∞点处的洛朗级数展开式中含有无穷多z 的正幂项; (2)极限lim ()z f z →∞不存在,且非∞.例9. 函数1()1f z z =+在圆环域1z <<+∞内可展成: 解: 2311111()1(1)11n n f z z z z z z==-+-++-++它不含正幂项,所以∞是函数()f z 的可去奇点.说明: 当z =∞是函数()f z 的可去奇点,若取()lim ()z f f z →∞∞=则认为函数()f z 在∞解析的.例10. 讨论函数1()f z z z=+解: 含有正幂项,且z 为最高正幂项所以∞是它的一阶极点, 另外0也是它的一阶极点. 例11.讨论函数sin z解: 其展开式为: 3521111sin (1)3!5!(21)!n n z z z z z n +=-+-+-++ 含有无穷多的正幂项,所以z =∞是它的本性奇点.例12.函数2()1zf z z =+是否以z =∞孤立奇点?若是,属于哪一类? 解: 函数2()1zf z z=+在整个复平面内除去z i =与z i =-外的区域内处处解析,所以函数在无穷远的领域1||z <<+∞内是解析的,⇒z =∞是孤立奇点.又因为: 2lim01z zz →∞=+,⇒z =∞是函数的可去奇点.例13.函数23()1234f z z z z =+++是否以z =∞为孤立奇点?若是,属于哪一类?解: 23()1234f z z z z =+++在整个复平面内处处解析,所以z =∞为函数的孤立奇点且为3阶极点.例14. 函数()z f z e =是否以z =∞为孤立奇点?若是,属于哪一类?解: 函数()z f z e =在整个复平面内处处解析,所以z =∞是它的孤立奇点. 极限lim zz e →∞不存在(不是无穷大),⇒z =∞是函数的本性奇点.例15. 函数1()sin f z z=是否以z =∞为孤立奇点? 解: 令sin z =0,得:(0,1,2,)k z k k π==±± ,⇒1()sin f z z=在整个复平面除了(0,1,2,)k z k k π==±± 外处处解析, 而在扩充复平面上,序列{}k z 以z =∞为聚点,⇒z =∞不是函数1()sin f z z=的孤立奇点. 结果:在扩充复平面上, ∞是奇点,但不一定是孤立奇点.例16. 函数233(1)(2)()(sin )z z f z z π--=在扩充复平面内有些什么类型的奇点?如果说极点,指出它的阶数.解: 函数()f z 除使分母为0的点0,1,2,z =±± 外,(1) 当1,1,2z ≠-的奇点时, (sin )cos z z πππ'=,在0,z =-±± 2,3,4处cos z ππ均不为0,⇒这些点是sin z π的一阶零点,从而是3sin z π()的三阶零点,⇒0,z =-±± 2,3,4是()f z 的三阶极点.(2) 当1z =±时, ⇒1z =±为21(1)(1)z z z -=-+的一阶零点, 而且1z =±为3sin z π()的三阶零点,⇒1z =±为函数()f z 的二阶极点.(3) 当2z =时,23233222(1)(2)2lim ()lim lim(1)()(sin )sin z z z z z z f z z z zππ→→→---==-2333013lim[(2)1](),(2)sin z ζπζζζπζππ→=+-==+ 令 ⇒2z =是()f z 的可去奇点.(4) 当z =∞时,由于∞是0,1,2,z =±± 的聚点, ⇒z =∞不是函数()f z 的孤立奇点.第二节 留数留数是复变函数论中重要的概念之一,它与解析函数在孤立奇点处的洛朗展开式、柯西复合闭路定理等有着密切的联系. 一、留数的概念及留数定理 1.留数概念如果函数()f z 在0z 的领域内解析,则有柯西-古萨定理: ()0,Cf z dz =⎰其中C 为0z 领域内的任意一条简单闭曲线.若0z 为函数()f z 的一个孤立奇点,则沿着0z 的某一个去心领域00z z R <-<内含0z 的任意一条正向简单闭曲线C 的积分:(),Cf z dz ⎰一般不等于0.因此将函数()f z 在00z z R <-<内展开成洛朗级数:00011()()(),nn n n n n f z C z z C C z z ∞∞--===-++-∑∑对展开式两边沿着C 逐项积分得:00011()()(),nnnnCCCCn n f z dz Cz z dz C dz C z z dz ∞∞--===-++-∑∑⎰⎰⎰⎰001101(),()nn n n C C Cn n C dz C dz C z z dz z z ∞∞-===++--∑∑⎰⎰⎰ 101()C C dz z z -=-⎰12.C i π-=102,010,0()n C i n dz n z z π+=⎧=⎨≠-⎩⎰ 留数定义:设0z 是函数()f z 的孤立奇点,在环形域00z z R <-<内, 函数()f z 的洛朗展开式中10()z z --项的系数1C -称为函数()f z 在0z 点的留数. 记作: 01Re [(),]s f z z C -=或01Re [(),]()2C s f z z f z dz i π=⎰. 说明1C -的值与C 的半径大小无关,只要求C 包含0z 即可.例1. 求函数1()zf z ze =在孤立奇点0z =处的留数.解: 函数()f z 在0||z <<+∞内的洛朗展开式为:1211()1,2!3!zf z ze z z z ==++++ ⇒11Re [,0]2!zs ze =. 例2. 求函数21()cosf z z z=在孤立奇点0z =处的留数. 解: 函数()f z 在0||z <<+∞内的洛朗展开式为:22211111()cos (1),2!4!(2)!z nn f z z z z z n z -==-+-+-+ 21Re [cos ,0]0.s z z ⇒= 例3. 求函数sin ()zf z z=在孤立奇点0z =处的留数. 解: 0sin lim 1z z z →=,⇒ 0z =是函数sin ()z f z z =的可去奇点,⇒sin Re [,0]0zs z=. 2.留数定理定理 1 设函数()f z 在区域D 内除有限个孤立奇点12,,,n z z z 外处处解析,C 是D 内包围所有奇点的一条正向简单闭曲线,则:1()2Re [(),]nk Ck f z dz i s f z z π==∑⎰.证明: 由复合闭路定理得:1()()()nCC C f z dz f z dz f z dz =++⎰⎰⎰⇒11()Re [(),]2C f z dz s f z z i π=+⎰Re [(),]n s f z z + ,即: 1()2Re [(),]nk Ck f z dz i s f z z π==∑⎰.二、函数在极点的留数法则1:如果0z 为函数()f z 的一阶极点,则000Re [(),]lim()()z z s f z z z z f z →=-.证明: 由于0z 为函数()f z 的一阶极点,⇒110000()()(),0||n n n f z C z z C z z z z δ∞--==-+-<-<∑⇒10100()()()n n n z z f z C C z z +∞+-=-=+-∑,⇒001lim()()z z z z f z C -→-=.结论:先知道奇点的类型,对求留数有时更为有利.例4. 求函数34()(1)(2)z f z z z z -+=--在孤立奇点0,1,2z z z ===的留数.解: 0,1,2z z z ===都是函数()f z 的一阶极点,⇒003434Re [(),0]lim lim 2(1)(2)(1)(2)z z z z s f z zz z z z z →→-+-+===----; ⇒113434Re [(),1]lim(1)lim 1(1)(2)(2)z z z z s f z z z z z z z →→-+-+=-==----;⇒223434Re [(),2]lim(2)lim 1(1)(2)(1)z z z z s f z z z z z z z →→-+-+=-==----.法则 设函数()()()P z f z Q z =,其中()P z 及()Q z 在z 解析,且0()0P z ≠, 00()0,()0Q z Q z '=≠,则0z 是函数()f z 的一阶极点,且留数000()Re [(),]()P z s f z z Q z ='.证明: 已知00()0,()0Q z Q z '=≠,⇒0z 是函数()f z 的一阶零点,⇒0z 是1()Q z 的一阶极点, ⇒011()()z Q z z z ϕ=-,()z ϕ在0z 解析,且0()0z ϕ≠, ⇒0011()()()()f z z P z g z z z z z ϕ==--,()g z 在0z 解析, 且0()0g z ≠, ⇒0z 是函数()f z 的一阶极点.由法则1:0Re [(),]s f z z 00lim()()z z z z f z →=-00000()()lim()()()z z P z P z Q z Q z Q z z z →==-'- 例5. 求函数()cot f z z =在0z =的留数.解:由于cos cot ,sin z z z =⇒0z =是函数()f z 的一阶阶极点,⇒Re [(),0]s f z =0cos cos01(sin )|cos0z z z ==='. 例6. 计算积分21zCze dz z -⎰,其中C 为正向圆周2z =. 解: 在2z =内,函数2()1zze f z z =-有两个一阶极点: 1z =±,⇒22Re [(),1]2Re [(),1]1zCze dz i s f z i s f z z ππ=+--⎰ ,而 211Re [(),1]lim(1)lim (1)12z z z z ze ze es f z z z z →→=-==-+,1211Re [(),1]lim(1)lim (1)12z z z z ze ze e s f z z z z -→-→--=+==--, ⇒122()2cos 122z Cze e e dz i i i z ππ-=+=-⎰ . 法则3 如果0z 为函数()f z 的m 阶极点,则()f z 01011lim [()()](1)!m m m z z d z z f z m dz--→=--证明:因为0z 为函数()f z 的m 阶极点,则在0z 的洛朗展开式为:210201000()()()()()mn m n n f z C z z C z z C z z C z z ∞------==-++-+-+-∑⇒0()()mz z f z -=1101000()()()m m n m m n n C C z z C z z C z z ∞-+--+-=+-++-+-∑⇒101[()()]m m m d z z f z dz ---=1(1)!m C --+{含有(0z z -)正幂的项}⇒01011lim [()()](1)!m m m z z d z z f z m C dz---→-=-, 即: 011011lim [()()](1)!m m m z z d C z z f z m dz---→=--.例7. 求函数2()ze f z z-=在0z =的留数.解: 0z =是函数2()ze f z z-=的二阶极点,⇒Re [(),0]s f z =2201lim [(0)](21)!zz d e z dz z-→--0lim()1z z e -→=-=-. 例8. 计算积分41Czdz z -⎰,其中C 为正向圆周2z =.解: 4()1zf z z =-在圆周2z =内有四个一阶极点: 1,i ±±, ⇒41Czdz z =-⎰ 2Re [(),1]2Re [(),1]i s f z i s f z ππ+-2Re [(),]2Re [(),]i s f z i i s f z i ππ+-+ 由法则2, 得:32()1()44P z z Q z z z==';⇒411112{}014444C z dz i z π=+--=-⎰ , 说明: 用法则1计算比较繁一些.例9. 计算积分2(1)zC e dz z z -⎰ , 其中C 为正向圆周2z =.解: 在圆周2z =内, 0z =是函数()f z 的一阶极点, 1z =是二阶极点,⇒ 2200Re [(),0]lim lim 1(1)(1)z zz z e e s f z zz z z →→===--, ⇒ 2211Re [(),1]lim [(1)](1)!(1)z z d e s f z z z dz z z →=--- 211(1)lim lim 0z z z z d e e z dz z z→→-===, ⇒22{Re [(),0]Re [(),1]}(1)zC e dz i s f z s f z z z π=+-⎰2(10)2i i ππ=+=. 例10. 计算积分6sin Cz zdz z-⎰, 其中C 为正向圆周2z =. 解: 法一: 0z 是函数()f z 的孤立奇点,令()sin P z z z =-,⇒0(0)(sin )|0z P z z ==-=,⇒0(0)(1cos )|0z P z ='=-=,0(0)sin |0z P z =''==.0(0)cos |0z P z ='''=≠, ⇒0z =是()sin P z z z =-的三阶零点, ⇒0z =是是函数()f z 的三阶极点,有规则3,得:2236262300sin 1sin 1sin Re [,0]lim ()lim ()(31)!2!z z z z d z z d z z s z z dz z dz z →→---=⋅=-再往下计算比较繁琐!法二: 如果0z 是函数()f z 的阶极点,则0Re [(),]s f z z 01011lim [()()](1)!m m m z z d z z f z m dz--→=--. 01011lim [()()](1)!m n m n m n z z d z z f z m n dz+-++-→=-+-∑⇒6sin Re [,0]z zs z -565601sin lim [](61)!z d z z z dz z→-=- 5501lim (sin )5!z d z z dz→=-011lim(cos )5!5!z z →=-=. 三、函数在无穷远点的留数无穷远点留数定义:设函数()f z 在圆环域R z <<+∞内解析,C 为只会圆环内绕原点的任何一条正向简单闭曲线,则称积分: 1()2C f z dz i π-⎰,为函数()f z 在无穷远点的留数, 记作: 1Re [(),]()2C s f z f z dz iπ-∞=⎰ . 定理 2 如果函数()f z 在扩充复平面内只有有限个孤立奇点(包括∞), 则函数()f z 在所有各奇点(包括∞)的留数的总和一定为零,即:1R e [(),]R e [(),]0nk k s fz z s f z =+∞=∑ 证明: 设函数()f z 的有限个孤立奇点为(1,2,,)k z k n = , 除∞外, 又设C 为一条绕原点的并将(1,2,,)k z k n = 包含在它内部的正向简单闭曲线, 由留数定理及无穷远点留数定义得:1Re [(),]Re [(),]nk k s f z z s f z =+∞∑11()()022C C f z dz f z dz i i ππ-=+=⎰⎰. 法则4: 211Re [(),]Re [(),0]s f z s f z z ∞=-⋅. 证明: 据在无穷远的留数定义中,取正向的简单闭曲线C为半径足够打的正向圆周z ρ=.令1z ζ=,并设,i i z e re θϕρζ==,⇒1,rρθϕ==-⇒1Re [(),]()2C s f z f z dz i π-∞=⎰201()2i i f e ie d i πθθρρθπ-=⎰2011()2i i i f d i re reπϕϕϕπ=-⎰ 220111()()2()i i i f d re i re re πϕϕϕπ=-⎰21111()2f d i ζρζπζζ==-⎰ 由于函数()f z 在z ρ<<+∞内解析,从而1()f ζ在10ζρ<<内解析,⇒ 211()f ζζ在1ζρ<内除0ζ=外没有其他的奇点,由留数定理得:22111111()Re [(),0].2f d s f iζρζπζζζζ==⋅⎰例11.计算Re [(),]s f z ∞的值,如果(1) 2();1z e f z z =- (2) 41().(1)(4)f z z z z =+- 解: (1) 1Re [(),]Re [(),]0,nk k s f z z s f z =+∞=∑2()1ze f z z =-有两个有限孤立奇点1z =±,且均为一阶极点;21Re [(),1]lim(1),12z z e e s f z z z →=-=- 121Re [(),1]lim(1)12z z e e s f z z z -→--=+=--⇒ Re [(),]Re [(),1]Re [(),1]s f z s f z s f z ∞=---11()sin .222e e e e hi ---=--=-=- (2) 211Re [(),]Re [(),0]s f z s f z z ∞=-⋅ 241Re ,011(1)(4)z s z z z ⎡⎤⎢⎥=-⎢⎥⎢⎥+-⎣⎦44Re ,0(1)(14)z s z z ⎡⎤=-⎢⎥+-⎣⎦例12. 计算积分41Czdz z -⎰其中C 为正向圆周2z =. 解: 4()1zf z z =-在2z =外部除z =∞点外无其他的奇点, ⇒42Re [(),]1C z dz i s f z z π=-∞-⎰ 2112Re [(),0]i s f z z π=⋅42Re [,0]01z i s zπ==-.例13. 计算积分10()(1)(3)C dzz i z z +--⎰ ,其中C 为正向圆周2z =.解: 函数的奇点有: ,1,3,z i z z z =-===∞,Re [(),]Re [(),1]Re [(),3]Re [(),]0s f z i s f z s f z s f z ⇒-+++∞=102{Re [(),]Re [(),1]}()(1)(3)C dzi s f z i s f z z i z z π=-++--⎰2{Re [(),3]Re [(),]}i s f z s f z π=-+∞10231112{lim(3)Re [(),0]}()(1)(3)z i z s f z i z z z zπ→=--++-- 10101012{Re [,0]}(3)2(1)(1)(13)z i s i iz z z π=-++⋅+-- 10(3)ii π=-+ 第三节 留数在定积分计算中的应用留数定理为某些类型积分的计算提供了有效的方法.应用留数定理计算实变函数的定积分的方法称为围道积分法.围道积分法就是把求实变函数的积分化为复变函数沿着围线的积分,然后利用留数定理,使沿着围线的积分计算,归结为留数计算.要使用留数计算,需要两个条件:一是被积函数与某个解析函数有关;其次,定积分可化为某个沿闭路的积分.其实质就是用复积分来计算实积分,这一方法对有些不易求得的定积分和广义积分常常比较有用.现在就几个特殊类型举例说明. 一、形如20(cos ,sin )R d πθθθ⎰的积分令i z e θ=, i dz ie d θθ=, dzd iz θ=, 1cos 22i ie e z z θθθ--++==, 1sin 22i i e e z z i iθθθ----==,其中(cos ,sin )R θθ为cos θ与sin θ的有理函数,且在[0,2]π上连续, 当[0,2]θπ∈时,对应的z 正好沿着单位圆||1z =的正向绕行一周, 函数22111()(,)22z z f z R z iz iz+-=为z 的有理函数,且在||1z =上分母不为零, 即在单位圆||1z =上无奇点,因此满足留数定理的条件,故有2220111(cos ,sin )(,)22z z z dz R d R z iz iz πθθθ=+-=⎰⎰ 1()z f z d ==⎰ .例1. 计算22cos 2(01)12cos I d p p pπθθθ=<<-+⎰,的值. 解: 在02ππ≤≤内, 2212cos (1)2(1cos )0p p p p θθ-+=-+-≠,因而该积分是定积分,21cos 22i i e e z zθθθ-++==,222211cos 2()()22i i e e z z θθθ--=+=+ 2212112122z z z dzI z z iz p p --=+⇒=+-+⎰42112(1)()z z dz iz pz z p =+=--⎰ 1().z f z dz ==⎰被积函数421()2(1)()z f z iz pz z p +=--有三个极点10,,z z p z p ===,只有0,z z p ==在圆周1z =内,其中0z =为二阶极点, z p =为一阶极点,42201Re [(),0]lim []2(1)()z d z s f z z dz iz pz z p →+⇒=--223422220()4(1)(12)lim 2()z z pz p p z z z pz p i z pz p p z →--+-+-+=--+ 2212p ip +=-,421Re [(),]lim [()]2(1)()z p d z s f z p z p dz iz pz z p →+⇒=---,24222221122[].22(1)1p p p I i ip ip p p ππ++⇒=-+=--二、形如()R x dx +∞-∞⎰的积分1111()(),2()n n nm m mz a z a P z R z m n Q z z b z b --+++==-≥+++ 是关于z 的有理函数.(1) ()Q z 比()P z 至少高两次; (2) ()Q z 在实轴上无零点;(3) ()R z 在上半平面Im 0z >内的极点为(1,2,,)k z k n = , 则有:1()2Re [(),]nk k R x dx i s R z z π+∞-∞==∑⎰.基本思想:(1)先取被积函数()R x 在有限区间[,]R R -上的定积分,在引入辅助曲线,即上半圆周:Re (0)i R C z θθπ=≤≤,同[,]R R -一起构成围线,取R 适当的打,使得()()()P z R z Q z =所有的在上班平面内的极点k z 都包含在积分路径内,如下图:1()()()2Re [(),]RnRk CRC k R z dz R x dx R z dz i s R z z π-=⇒=+=∑⎰⎰⎰(2)在R C 上,令Re (0)i z θθπ=≤≤, 则有0()(Re )Re ()(Re )R i i i C P z P dz i d Q z Q θπθθθ=⎰⎰, 因为()Q z 的次数比()P z 的次数至少高两次,于是有当||z R =→∞时,()Re (Re )0()(Re )i i i zP z P Q z Q θθθ=→,1()2Re [(),].()n k k P x dx i s R z z Q x π+∞-∞=⇒=∑⎰ 例2. 计算积分22222,(0,0)()()x dxI a b x a x b +∞-∞=>>++⎰的值. 解: 4,2,2,m n m n ==-=函数()R z 在实轴上没有孤立奇点, 22222()()z z a z b ++在上半平面的奇点为ai bi ,,且为一阶极点;1()2Re [(),].()nk k P x dx i s R z z Q x π+∞-∞=⇒=∑⎰Re [(),]s R z ai 222222()2()a aai b a i a b -==--, 同理, 22Re [(),]2()b s R z bi i b a =-,22222[]2()2()a b I i i a b i b a a bππ=+=--+三、形如()(0)aix R x e dx a +∞-∞>⎰的积分(1) ()R x 是x 的有理函数,而分母的次数至少比分子的次数高一次,(2) 并且()R z 在实轴没有孤立奇点,(3) (1,2,,)k z k n = 为函数()()iaz f z R z e =在上半平面的奇点. 则积分存在,且1()()2Re [(),]()niaxiaxiaz k k P x R x e dx e dx i s R z e z Q x π+∞+∞-∞-∞===∑⎰⎰基本思想:(1) 解决思路同类型2,此时被积函数为()aixR x e ,1111()(),1()--+++==-≥+++ n n nm m mx a x a P x R x m n Q x x b x b (2) 设()R x 在半圆周,0arg R C z R z θπ=≤=≤:上连续(对充分打的R 都如此)且一致地有lim ()0z R z →∞=,则当0a >时,有lim()0Riaz C R R z e dz →∞=⎰.(3)设1111()(),1()n n n m m mx a x a P x R x m n Q x x b x b --+++==-≥+++ ,()P x 与()Q x 互质且在实轴上()0Q x ≠,且0a >, 则:1()2Re [(),]niaxiaz k k R x e dx i s R z e z π+∞-∞==∑⎰,k z 为()R z 上半平面的奇点. 特别地,将上式分开实部与虚部,可得积分1()sin Im{2Re [(),]}niaz k k R x axdx i s R z e z π+∞-∞==∑⎰,1()cos Re{2Re [(),]}niaz k k R x axdx i s R z e z π+∞-∞==∑⎰.例3. 计算积分22cos (0)xdx a x a+∞-∞>+⎰,的值. 解: 2,0,21,m n m n ==-=> 221()R z z a =+在实轴上没有奇点, 所以此积分存在,且此积分是22ixe dx x a +∞-∞+⎰的实部. 而222212Re [,]ix iz n k k e e dx i s z x a z a π+∞-∞==++∑⎰, 函数22iz e z a +在上半平面内只有一个一阶极点z ai =, 22Re [,]2,2iz a ae e e s ai i z a ai a ππ--⇒==+ 22cos x dx x a +∞-∞⇒+⎰ae aπ-=. 例4. 计算22sin (0)x xI dx a x a+∞-∞=>+⎰,的值.解: 2,1,1,m n m n ==-=函数22R()zz z a =+在实轴上没有孤立奇点, 则积分存在,()R z 在上半平面内内只有一个一阶极点z ai =222Re [(),]ix iz xe dx i s R z e ai x aπ+∞-∞⇒=+⎰22aa e i ie ππ--==, 于是可得: 22sin ax x dx e x aπ+∞--∞=+⎰. 同时可以得到:22220sin 1cos 0.2a x x x xdx e dx x a x a π+∞+∞--∞==++⎰⎰, 四、函数在实轴上有奇点的积分可适当的选取路径来积分,使积分路线绕开孤立奇点,得:111()2Re [(),]Re [(),],2nnk k k k f x dx i s f z z s f z x π+∞-∞===+∑∑⎰其中k z 是上班平面的奇点, k x 是实轴上的奇点. 例5. 计算积分sin xdx x+∞-∞⎰的值. 解: 函数sin ()x f x x =是偶函数, 所以0sin 1sin 1Im[]22ixx x e dx dx dx x x x+∞+∞+∞-∞-∞==⎰⎰⎰ ize z 在实轴上有一个一阶极0z =, 012{0Re [,0]}lim .2ix iz izz e e e dx i s i z i x z zπππ+∞-∞→=+==⎰ 0sin 2x x π+∞⇒=⎰. 例6.证明220sin cos x dx x dx +∞+∞==⎰⎰. 证明: 222cos sin ix ex i x =+,取积分的封闭曲线是半径为R 的4π扇形边界, 由于2iz e 在D 内及其边界上C 解析, 20iz Ce dz ⇒=⎰, 即:2220(1)ix iz iz OAABBOe dx e dz e dz ++=⎰⎰⎰在AB 上: Re i z θ=,θ从0到4π; 因此(1)成为: 222240()()4400ii Riix iR e i i re Re dx eRie d ee dr πθππθθ++=⎰⎰⎰;或22222cos2sin 244(cos sin )RRir iRR i x i x dx eedr e Rie d ππθθθθ--+=-⎰⎰⎰,(1) 22444lim Riiir r R e e dr e e dr e πππ+∞--→∞==⎰⎰sin )44i ππ=+==(2)222cos2sin 2sin 2440iR R i R eRie d eRd ππθθθθθθ--≤⎰⎰22440(1)4R R R ed e Rπθππθ--≤=-⎰, 当R →∞时,上面积分趋向于零, 从而有220(cos sin )x i x dx ∞+=⎰,两端实部和虚部分别相等,得:220cos sin x dx x dx ∞∞==⎰⎰。
第5章 留数
ϕ 内解析函数,且 内解析函数 且 ( z
0
)≠0
反之,可推出 阶极点. 反之 可推出 z0 是f(z)的m阶极点 的 阶极点
2)定理 设f(z)在 0 <| z − z0 |< δ (0 < δ < +∞) 内解 定理: 定理 在
lim 极点的充要条件是: 析,那么z0是f(z)极点的充要条件是: z f ( z ) = ∞ 那么 极点的充要条件是 z →
c0 + c1 ( z − z 0 ) + c2 ( z − z 0 ) + ⋯ + c n ( z − z 0 ) + ⋯
2 n
sin z 例如 z = 0 是 z
的可去奇点
因为
sin z z
在z = 0的去心邻域内的罗伦级数为
sin z 1 z3 z5 = z − + −⋯ 3! 5! z z z2 z4 = 1− + −⋯ 3! 5!
sin z ∵ lim =1 z →0 z
为可去奇点. ∴z=0为可去奇点 为可去奇点
( 2) f ( z ) =
1 ; 2 ( z − 1)( z − 2)
的两个孤立奇点,且 解:z=1和z=2是f(z)的两个孤立奇点 且 和 是 的两个孤立奇点
1 ∵ lim( z − 1) =1 2 z →1 ( z − 1)( z − 2) 1 lim( z − 2) 2 =1 2 z →2 ( z − 1)( z − 2)
f ( z) = e
1 z
1 −2 1 −n ∵ e = 1 + z + z + ... + z + ... 2! n!
第5章 留数
3. 性质
若z0为f (z)的可去奇点 的可去奇点
⇔ f (z) =
c n ( z − z 0 ) n ⇔ lim f ( z ) = c 0 ∑
n=0 z → z0
+∞
补充定义: 补充定义: f ( z 0 ) = c 0 若z0为f (z)的本性奇点 的本性奇点
f ( z )在 z 0 解析 .
1 故 Re s[ f ( z ), z0 ] = c−1 = ∫c f (z)dz 2πi
(2)
2. 留数定理
定理 设 是 条 单 曲 , 函 f (z)在 内 c 一 简 闭 线 数 c 有
限 孤 奇 z , 有 个 立 点1, z2 ,L zn, 除 以 , f (z) 此 外 c 及 解 , 在 内 c上 析 则
Q (1 + eπz )'
z = i ( 2 k +1)
k = 0 , ± 1, ± 2 , L
= π e πz
z = i ( 2 k +1)
= π [cosπ ( 2k + 1) + i sin π ( 2k + 1)] = −π ≠ 0
∴ zk = i ( 2k + 1) ( k = 0,±1,±2,L)是1 + e πz的一阶零点
( ii ) f ( z ) =
n= − m
∞
∑c
∑c
∞
n
( z − z0 ) (c− m ≠ 0, m ≥ 1)
n
只有有限多个负幂次项, 阶极点; 只有有限多个负幂次项,称z=z0为m 阶极点 ~~~~~~~~
( iii ) f ( z ) =
n = −∞
n
第5章:留数理论及其应用
[
]
16
四、本性奇点处留数的计算 对本性奇点或奇性不明的奇点,没有一般的公式, 只能作Laurent展开,然后取负一次幂的系数!当 极点的阶数较高时,也直接作Laurent展开求留数。 例
cos x = ( z + z ) / 2; sin x = ( z − z ) /( 2i ); dx = dz /(iz )
21
−1
−1
原积分变成
z + z −1 z − z −1 dz , I= R iz | z |=1 2 2 i
∫
• 0 y
• 2π
x
z平面 1 o • x
例题:计算积分
I=
∫
2π
0
cos 2ϑ dϑ , (0 < p < 1). 2 1 − 2 p cosϑ + p
分析:因 1-2pcosϑ+p2=(1-p)2+2p(1-cosϑ),当0<p<1, 在 0≤ϑ ≤2π, 分母大于0, 因而在实轴上无零点。
22
cos 2ϑ = ( e 2iϑ + e −2iϑ ) / 2 = ( z 2 + z −2 ) / 2
1 Resf ( z0 ) ≡ f ( z )dz ∫ 2πi C
为函数f(z)在奇点z0处数f(z)在奇点 z0处作Laurent展开
f ( z) =
n = −∞
∑
∞
an ( z − bk ) n
利用公式
0, (C 不包围z0 ) 1 dz = ∫ 2πi C z − z0 1, (C 包 围 z0 ) 1 n ( z − z ) 0 dz = 0. (n ≠ −1) ∫ 2πi C
复变函数第五章 留数理论及其应用
由规则3
P( z) z 1 = 3= 2, Q ( z ) 4 z 4z
此法在很多情况下此法更为简单.
z dz , C为正向圆周: z = 2 . 例5 计算积分 4 z 1 C z 在 z = 2 的外部, 除 点外没有 解 函数 4 z 1
其他奇点. 根据定理 5.2与规则4: z z 4 1 dz = 2iRes f ( z ), C 1 1 = 2iRes f 2 ,0 z z z = 0. = 2iRes , 0 4 1 z
k =1
n
C
Res[ f ( z ), zk ] f ( z )dz = 2i k =1
= 2iRes[ f ( z ), ].
n
(留数定理)
计算积分
C
f ( z )dz
计算无穷远点的留数.
优点: 使计算积分进一步得到简化. (避免了计算诸有限点处的留数)
3.在无穷远点处留数的计算 •规则4
z = 0是p( z )的 三 级 零 点 , 是f (z)的三级极点。
1 z sin z z sin z 由规则2 Re s ,0 = lim " 6 3 z (3 1)! z0 z
若将f ( z )作Laurent级数展开 :
z sinz 1 1 3 1 5 = 6 [ z ( z z z )] 6 z z 3! 5! 1 1 11 = 3 3! z 5! z
1 故 Re s[ f ( z ), z0 ] = c1 = f ( z )dz 2i c
( 2)
二、利用留数求积分
1. 留数定理 设函数 f(z)在区域D内除有限个孤立奇点
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
R( x )e iax dx 2 i Res[ R( z )e iaz , zk ].
k 1
n
证明: 同定理二的证法,由 m n 1, 对于充分大的
z 有
2 R( z ) z
2 ay e ds ds R CR
aR sin
CR
2 2 R( z ) ds 2 R R R
所以,当
R , R( z )dz 0
CR
再由
R
R
R( x )dx R( z )dz
CR n i 1
2 i Re s R( z ), zk
有
R( x )dx 2 i Re s R( z ), zk
单位圆周内部f (z) 的所有孤立奇点.
定理 4.5 (留数基本定理的条件 ) 设函数 满足 . f (z)在区域D 内除有限个孤立奇点 z1 , z2 ,, zn 外处处解析, C是D
例1 计算
I
2
0
cos 2 d 2 1 2 p cos p
由于 0 p 1,
0 p 1 .
l
l 1
在实轴上处处解析,则积分
R( x ) dx 存在,且
R( x )dx 2 i Res[ R( z ), zk ].
k 1
n
R(z)在上半平面内的所有孤立奇点。
证明:设函数R(z)在上半平面的所有孤立奇点为
z1 , z2 ,, zn
以原点为中心作上半圆周 C R , 取逆时针方向, 使上半平面的所有孤立奇点在由实轴和 C R
1 f ( z )dz 2 i C
定理1.1 (留数定理) 设函数f (z)在有界区域D 内除有限个孤立奇点 z1 , z2 ,, zn 外处处解析, C是D 内包含所有奇点在其内部的分段光滑正向 简单闭 曲线, 则
f ( z )dz 2 i Res f ( z ), z .
k 1
n
R( x )cos axdx i R( x )sin axdx
Re
R( x )e dx
iax
Im
R( x )e iaxdx
例3
计算积分 I 0
cos x dx (a 0). 2 x 1
1 , 则 z0 i 是 R (z)在上半 解 记 R( z ) 2 z 1
留数的计算
Res f ( z ), z0 0.
(1) 如果 z 0 为 f ( z ) 的可去奇点, 则
(2) 如果 z 0 为 f ( z ) 的本性奇点, 则需将 f ( z ) 展开 成Laurent级数, 求 c1 .
(3) 如果 z 0 为 f ( z ) 的极点, 则有如下计算规则
上连续的复变函数,并且设 r 是以O为圆心,r为
半径的圆弧在这闭区域上的一段 r r0 。如果当 z在这闭区域上时,
lim f ( z ) 0,
z 0
y
那么我们有
r r
lim f ( z )e iz dz 0.
0
x
注:
R( x )e iax dx 2 i Res[ R( z )e iaz , zk ].
C k 1 k
n
根据留数基本定理, 函数在闭曲线f (z)上的积 分可归结为函数在曲线内部各孤立奇点处留数的计 算问题.
证明
分别以 z1 , z2 ,, zn 为
Cn C1
中心, 作半径充分小的正向圆周
C z .n
D
C1 , C2 ,, Cn , 使得它们中的每个
都在其余的外部, 而都在C的内部. 根据柯西定理
第五章
留
数
§5.1 一般理论
§5.2 留数计算的应用
§1
1
一般理论
留数定理
2 留数的计算
定义5.4 设z0是f (z)的孤立奇点, C是在z0的充分 小邻域内包含z0在其内部的分段光滑正向简单闭曲 线, 积分
称为f (z)在z0点的留数(Residue), 记做 Res f ( z ), z0 . 函数 f (z)在孤立奇点z0点的留数即是其在以 z0 为中心的圆环域内Laurent级数-1次幂项的系数.
其中 n m 例2 :计算留数
sec z Re s 3 ,0 z
z sin z 例 : 计算函数 f ( z ) , 6 z
在z=0处的留数。 例 3: 计算函数 f ( z )
z z 1
2
e iz
2,
在z=i处的留数。
§5.2 留数计算的应用
1 2 3 三角有理式的积分 有理函数的无穷积分 有理函数与三角函数乘积的积分
aiz
所以,当
R , R( z )e aiz dz 0
CR
aix R( x )e aix dx 2 i Re s R ( z ) e , zk i 1
n
引理3.1
设 f ( z ) 是在闭区域
1 Argz 2 , r0 z r0 0,0 1 2
1 z
mn
1 a1 z 1 an z n 1 m 1 b1 z bm z
1 a1 z an z
1 n
1 z
mn
1 b1 z 1 bm z m
当 z 充分大的时候,总有
a1 z an z
1
n
1 10
平面内唯一的孤立奇点, 且是1级极点. 显然 R(z)满 足定理2的条件, 所以
1 cos x 1 e ix I dx Re dx 2 2 2 x 1 2 x 1
1 iz Re 2 i Re s R( z )e , i . 2 e
1 z Re s f ( z ), p lim z p 2 z p 2iz (1 pz )( z p )
4
1 p4 2ip 2 (1 p 2 )
因此
2 p I 1 p2
2
5.4.2
有理函数的无穷积分
定理1 设有理函数
z a1 z al R( z ) m , ml 2 m 1 z b1 z bm
0
1 dx . 2 2 (1 x )
5.3.3 有理函数与三角函数乘积的积分
考虑形如
R( x )e dx , (a 0)
aix
的积分
定理2
P(z) 设 R( z ) 是有理函数, Q(z)在 Q( z )
实轴上没有零点,多项式Q(z)的次数至少比P(z)的
z1 , z2 ,, zn 是 R (z)在上半平面内的所有 次数高1次,
C C1 C2
z1 .
.z2 …
C2
,
Cn
f ( z )dz f ( z )dz f ( z )dz f ( z )dz.
再由留数的定义, 即得
f ( z )dz 2 i Res f ( z ), z .
C k 1 k
n
2
4
1 z dz 2 2iz (1 pz )( z p ) z 1
被积函数
1 z4 f (z) 2iz 2 (1 pz )( z p)
在复平面内有三个极点
1 z1 0, z2 , z3 p. p
其中2级极点 z1 0 与1级极点 z3 p 在单位圆周
所围的区域内. 于是由留数定理有
R
R
R( x )dx R( z )dz
CR n i 1
y … . z2 . zn . z1 R -R 0
CR
2 i R为
CR
R( z )dz
n n 1
z a1 z an R( z ) m z b1 z m 1 bm
因此,在半径R充分大的CR上,有
CR
R( z )e dz
aiz
CR
R( z ) e
aiz
2 e
0
aR sin
d 4 e
2 0
d
2 aR 2 aR 2 / 1 e 4 e d 0 aR
2 aR CR R( z )e dz aR 1 e
2π
0
R(cos ,sin ) d
2 2
z 1 z 1 1 R , dz 2iz iz 2z z 1
1.被积函数的转化 2.积分区域的转化
k
z 1
f ( z ) dz 2π i Res f ( z ), z .
k 1
n
f (z)是有理函数. 如果在 单位圆周上分母不为零,
dz dz ie d d , 则 令ze iz 1 i i z2 1 sin e e , 2i 2iz
i
i
1 i i z2 1 cos e e . 2 2z
当 在 [0 , 2π ] 变化时, z 沿单位圆周 z 1的正向 绕行一周. 于是
解
1 2 p cos p2 (1 p)2 2 p(1 cos )